
Journal of Combinatorics

Volume 9, Number 4, 599–618, 2018

Stanley sequences with odd character

Richard A. Moy

Given a set of integers containing no 3-term arithmetic progres-
sions, one constructs a Stanley sequence by choosing integers greed-
ily without forming such a progression. These sequences appear
to have two distinct growth rates which dictate whether the se-
quences are structured or chaotic. Independent Stanley sequences
are a “well-structured” class of Stanley sequences with two main
parameters: the character λ(A) and the repeat factor ρ(A). Rol-
nick conjectured that for every λ ∈ N0\{1, 3, 5, 9, 11, 15}, there
exists an independent Stanley sequence S(A) such that λ(A) = λ.
This paper demonstrates that λ(A) �∈ {1, 3, 5, 9, 11, 15} for any in-
dependent Stanley sequence S(A).
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1. Introduction

Let N0 denote the set of non-negative integers. A subset of N0 is called �-free
if it contains no �-term arithmetic progression. We will frequently abbreviate
“arithmetic progression” by AP. We say a subset, or sequence of elements,
of N0 is free of arithmetic progressions if it is 3-free. In 1978, Odlyzko and
Stanley [3] used a greedy algorithm (see Definition 1.1) to produce sequences
free of arithmetic progressions. Their algorithm produced sequences with two
distinct growth rates – those which are highly structured (Type I) and those
which are seemingly random (Type II). These classes of Stanley sequences
will be more precisely defined in Conjecture 1.3.

Definition 1.1. Given a finite 3-free set A = {a0, . . . , an} ⊂ N0, the Stanley
sequence generated by A is the infinite sequence S(A) = {a0, a1, . . . } defined
by the following recursion. If k ≥ n and a0 < · · · < ak have been defined,
let ak+1 be the smallest integer a > ak such that {a0, . . . , ak} ∪ {a} is 3-
free. Though formally one writes S({a0, . . . , an}), we will frequently use the
notation S(a0, . . . , an) instead.
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Remark 1.2. If one translates the elements of A by n to obtain B, then
S(B) is obtained by translating the elements of S(A) by n. Therefore, we
may assume that every Stanley sequence begins with 0.

In Rolnick’s investigation of Stanley sequences [4], he made the following
conjecture about the growth rate of the two types of Stanley sequences.

Conjecture 1.3. Let S(A) = (an) be a Stanley sequence. Then, for all n
large enough, one of the following two patterns of growth is satisfied:

• Type I: α/2 ≤ lim inf an/n
log2(3) ≤ lim sup an/n

log2(3) ≤ α, or
• Type II: an = Θ(n2/ ln(n)).

Though Type II Stanley sequences are mysterious, a great deal of progress
has been made in classifying Type I Stanley sequences [1]. In [4], Rolnick
introduced the concept of the independent Stanley sequence. These Stanley
sequences follow Type I growth and are defined as follows:

Definition 1.4. A Stanley sequence S(A) = (an) is independent if there
exist constants λ = λ(A) and κ = κ(A) such that for all k ≥ κ and 0 ≤ i <
2k, we have

• a2k+i = a2k + ai
• a2k = 2a2k−1 − λ+ 1.

The constant λ is called the character, and it is easy to show that λ ≥ 0
for all independent Stanley sequences. If κ is taken as small as possible,
then a2κ is called the repeat factor. Informally, κ is the point at which the
sequence begins its repetitive behavior. Rolnick and Venkataramana proved
that every sufficiently large integer ρ is the repeat factor of some independent
Stanley sequence [5].

Rolnick also made a table [4] of independent Stanley sequences with
various characters λ ≥ 0. He found Stanley sequences with every character
up to 75 with the exception of those in the set {1, 3, 5, 9, 11, 15}. He proved
that, for an independent Stanley sequence S(A), λ(A) �= 1, 3 [4, Proposition
2.12]. In light of his observations, he made the following conjecture:

Conjecture 1.5 (Conjecture 2.15, [4]). The range of the character func-
tion is exactly the set of non-negative integers λ that are not in the set
{1, 3, 5, 9, 11, 15}.

Recent work of Sawhney [6, Theorem 1.5] and Moy-Sawhney-Stoner [2,
Theorem 9] has resulted in the following theorem.

Theorem 1.6. All nonnegative integers λ �∈ {1, 3, 5, 9, 11, 15} can be
achieved as characters of independent Stanley sequences.
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Analyzing the character of an independent Stanley sequence is closely
related to another feature of a Stanley sequence which we introduce now.

Definition 1.7. Given a Stanley sequence S(A), we define the omitted set
O(A) to be the set of nonnegative integers that are neither in S(A) nor are
covered by S(A). For O(A) �= ∅, we let ω(A) denote the largest element of
O(A).

Remark 1.8. The only Stanley sequence S(A) where O(A) = ∅ is S(0).

Using this definition, one can show the following lemma.

Lemma 1.9 (Lemma 2.13, [4]). If S(A) is independent, then ω(A) < λ(A).

Since max(A) > ω(A), the following corollary easily follows.

Corollary 1.10 (Corollary 2.14, [4]). At most finitely many independent
Stanley sequences exist with a given character λ.

Using this corollary, one can show that there are no independent Stan-
ley sequences of a given character λ by classifying every Stanley sequence
with ω < λ. One can utilize this technique to prove that λ �= 1, 3 because
every Stanley sequence with ω(A) < 3 is independent with λ(A) �= 1, 3.
Unfortunately, this argument does not work for λ = 5 because the Stanley
sequence S(0, 4) does not appear to be independent and experimentally ex-
hibits Type II growth. Though no Stanley sequence, including S(0, 4), has
been proven to follow Type II growth, we will prove that no independent
Stanley sequence has character λ = 1, 3, 5, 9, 11, 15 by showing sequences
such as S(0, 4) cannot be independent and have certain characters.

Theorem 1.11. Let S(A) be an independent Stanley sequence where A is
a finite 3-free subset of N0. Then λ(A) �∈ {1, 3, 5, 9, 11, 15}.

Combining Theorem 1.6 with Theorem 1.11 proves Conjecture 1.5, thus
resolving Rolnick’s conjecture.

2. Modular sequences

In order to prove our main result, we will use the theory of modular sequences
developed in [1] and more recently studied in [7]. Modular sequences are a
class of Stanley sequences of Type I which contains all independent Stanley
sequences as a strictly smaller subset.

Definition 2.1. Let A be a set of integers and z be an integer. We say that
z is covered by A if there exist x, y ∈ A such that x < y and 2y−x = z. We
frequently say that z is covered by x and y.
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Suppose that N is a positive integer. If x, y, z ∈ {0, . . . , N − 1} and
x �= y, we say they form an arithmetic progression modulo N , or a mod-AP
if 2y − x ≡ z (mod N).

Suppose again that N is a positive integer and A ⊆ {0, . . . , N − 1}.
Then, we say that z is covered by A modulo N , or mod-covered, if there exist
x, y ∈ A with x < y such that x, y, z form an arithmetic progression modulo
N .

Definition 2.2. Fix a positive integer N ≥ 1. Suppose the set A ⊂ {0, . . . ,
N − 1} containing 0 is 3-free modulo N , and all x ∈ {0, . . . , N − 1}\A are
covered by A modulo N . Then A is said to be a modular set modulo N and
S(A) is said to be a modular Stanley sequence modulo N .

Observe that the modulus N of a modular Stanley sequence is analagous
to the repeat factor ρ of an independent Stanley sequence. One can make
this statement more precise in the following proposition:

Proposition 2.3 (Proposition 2.3, [1]). Suppose A is a finite subset of N0

and suppose S(A) is an independent Stanley sequence with repeat factor ρ.
Then S(A) is a modular Stanley sequence modulo 3� · ρ for some integer
� ≥ 0.

Remark 2.4. One can show that the modulus of a modular Stanley sequence
is well-defined up to a power of 3.

Definitions and results involving independent Stanley sequences gener-
alize nicely to modular Stanley sequences.

Definition 2.5. Suppose that A is a modular set modulo N . Define λ(A) =
2 ·max(A)−N + 1. Let O(A) denote the set of elements x ∈ {0, 1, . . . , N −
1}\A such that x is covered by A modulo N but x is not covered by A. If
O(A) �= ∅, then define ω(A) to be max(O(A)).

Remark 2.6. The set O(A) = ∅ if and only if S(A) = S(0).

The definitions of λ and ω coincide with the corresponding definitions
for an independent Stanley sequence when S(A) is an independent Stanley
sequence. Using these definitions, one can easily prove the following gener-
alization of Lemma 1.9.

Lemma 2.7. If S(A) is modular, then ω(A) < λ(A).

Remark 2.8. Throughout this paper, we will repeatedly use the fact that,
for a modular set A modulo N , every element x ∈ {0, 1, . . . , N − 1}\A, such
that x > ω(A), is covered by A (and not merely mod-covered by A).
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3. Proof of main result

Theorem 3.1. If A is a modular set modulo N ∈ N, then λ(A) �∈ {1, 3, 5, 9,
11, 15}.

Observe that this result implies Theorem 1.11 since every independent
Stanley sequence is a modular Stanley sequence.

The proof of Theorem 3.1 has been broken up into several more manage-
able results including Lemma 3.3, Lemma 3.5, Proposition 3.7, Proposition
3.10, Proposition 3.15, and Proposition 3.22. The proofs of Lemmas 3.3 and
3.5 and Proposition 3.7 are more detailed in order to give the reader better
guidance in understanding the various proof techniques. The later lemmas
and propositions omit some details for brevity.

Lemma 3.2, though simple, will prove invaluable.

Lemma 3.2. Suppose that A = {a0, . . . , an} with 0 = a0 < · · · < an
is a modular set modulo N for some N ∈ N. If ak > ω(A), then A =
S(a0, . . . , ak) ∩ {0, 1, . . . , N − 1} and S(A) = S(a0, . . . , ak).

Proof. If x ∈ N with x ≤ ak then x ∈ A if and only if x ∈ {a0, . . . , ak}.
Therefore S(a0, . . . , ak)∩ {0, 1, . . . , ak} = A∩ {a0, . . . , ak}. Now we proceed
by induction. Suppose that S(a0, . . . , ak)∩{0, 1, . . . , am} = A∩{0, 1, . . . , am}
for some k ≤ m < n. If z ∈ N and am < z < am+1 then z �∈ A and z > ω(A).
Therefore, there exist ai, aj ∈ A with ai < aj such that ai, aj , z form an
AP. Since i, j ≤ m we see that ai, aj ∈ S(a0, . . . , ak) and therefore z �∈
S(a0, . . . , ak). The greedy algorithm then dictates that am+1 ∈ S(a0, . . . , ak)
and S(a0, . . . , ak)∩{0, 1, . . . , am+1} = A∩{0, 1, . . . , am+1}. By induction we
have shown that S(a0, . . . , ak) ∩ {0, 1, . . . , N − 1} = A and S(a0, . . . , ak) =
S(A).

We begin by proving a few simple lemmas. In all of these lemmas, the
character being investigated is odd, thus the modulus is required to be even
(see Definition 2.5). Therefore, we will only consider modular sets with mod-
ulus 2N for some N ∈ N.

3.1. Characters λ = 1, 3

Lemma 3.3. There does not exist a modular set A modulo 2N with
λ(A) = 1.

Proof. Let A be a modular set with modulus 2N whereN ∈ N and λ(A) = 1.
Using the definition of λ, one finds that max(A) = N , a contradiction.
Every modular set contains 0; therefore, A contains the mod 2N arithmetic
progression 0, N, 0.
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Remark 3.4. The proof of Lemma 3.3 relied on the fact that if a modular

set has modulus 2N and x ∈ A then x+N (mod 2N) �∈ A. We will use this

fact repeatedly throughout the proofs of the following statements.

Lemma 3.5. There does not exist a modular set A modulo 2N with

λ(A) = 3.

Proof. Let A be a modular set with modulus 2N whereN ∈ N and λ(A) = 3.

One deduces that max(A) = N +1 from the definition of λ and 1, N �∈ A by

Remark 3.4. Since 1 �∈ A, it must be mod-covered by A by the definition of

a modular set. That is, there exist x, y ∈ A with x < y such that 2y−x ≡ 1

(mod 2N). Since 0 < y < 2N , one deduces that 2y−x = 1 or 2N +1. Since

y > 1 we also know that 2y − x ≥ y + 1 > 1 and therefore 2y − x �= 1. If

y < N , then 2y−x < 2N −x < 2N +1. Therefore, if 2y−x = 2N +1, then

y ≥ N and y = N + 1 = max(A) necessarily. Finally, if y = N + 1, then

2y − (2N + 1) = x = 1 ∈ A, a contradiction.

Lemmas 3.3 and 3.5 were proven by Rolnick [4] in the case of independent

Stanley sequences. We have proved these statements here as a warm-up for

the upcoming more involved proofs.

Remark 3.6. In [1], an operation was introduced that allows one to combine

modular sets. If A and B are modular sets modulo N and M then A⊗B :=

A+N ·B is a modular set modulo NM with λ(A⊗B) = λ(A) +N · λ(B).

Through the following proofs, we will assume that N is “large.” Let {0, 1}
be the modular set of modulus 3 with character 0. If A is a modular set

modulo 2N then A ⊗ {0, 1} is a modular set modulo 3 · 2N with the same

character λ. Thus, if we show that, for any fixed threshold N0, that there is

no modular set A with odd character λ of modulus 2N where N ≥ N0, then

we have shown there exist no modular sets A of character λ.

3.2. Character λ = 5

Proposition 3.7. There does not exist a modular set A modulo 2N with

λ(A) = 5.

We will break the proof of Proposition 3.7 into Lemmas 3.8 and 3.9. In

these proofs, we assume N is “large” and we can in fact assume N > 100.

Using Remark 3.6, we deduce Proposition 3.7.

Lemma 3.8. Let A be a modular set modulo 2N with λ(A) = 5. Then,

N + 1 �∈ A.
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Proof. Suppose that N + 1 ∈ A. Observe that max(A) = N + 2 and 2
is mod-covered by 0, N + 1, 2 and 4 is mod-covered by 0, N + 2, 4. Also
observe that 1, N �∈ A. Since 1 �∈ A, there exist x, y ∈ A with x < y such
that x, y, 1 form a mod-AP. Since y > 0, we deduce that 2y − x = 2N + 1
which further implies that y = N + 2 and x = 3. Is 5 ∈ A? If not, then by
Lemma 2.7 there exist x, y ∈ A that cover 5 mod 2N since 5 > ω(A). This
is impossible and thus 5 ∈ A. Since we now have 3, 5 ∈ A, we see that A =
S(0, 3, 5)∩{0, 1, . . . , 2N −1} by Lemma 3.2 and therefore S(A) = S(0, 3, 5).
A quick computation shows that S(0, 3, 5) = S(B) where B = {0, 3, 5, 8}, a
modular set modulo 9 with character λ(B) = 8. Therefore, λ(A) = 8 since
S(A) = S(B), a contradiction.

Lemma 3.9. There does not exist a modular set A of modulus 2N and
λ(A) = 5 with N + 1 �∈ A.

Proof. Let A be a modular set modulo 2N with λ(A) = 5 and N + 1 �∈ A.
Observe that max(A) = N + 2 and 2 �∈ A. Since 2 �∈ A, there exist x, y ∈ A
that mod-cover 2. A quick computation shows that we require x = 0 and
y = 1. Thus 1 ∈ A and we see that 3 is mod-covered by 1, N + 2, 3 and 4 is
mod-covered by 0, N +2, 4. Is 5 ∈ A? If not, then by Lemma 2.7 there exist
x, y ∈ A that cover 5 mod 2N since 5 > ω(A). This is impossible and thus
5 ∈ A. Hence, S(A) = S(0, 1, 5) = {0, 1, 5, 6, 8, 13, . . . } by Lemma 3.2.

Since N is “big,” we know that 2N−1, 2N−2, 2N−3, 2N−4, . . . , N+3 �∈
A. Hence, these numbers are mod-covered by A and are in fact covered by
A since ω(A) < 5. We see that 2N − 1 is covered by 5, N + 2 and 2N − 2 is
covered by 6, N + 2. However, we can only cover 2N − 3 by 1, N − 1 which
implies N−1 ∈ A. Thus 2N−4 is covered by 8, N+2. We know 2N−5 �∈ A
and is therefore covered by x, y ∈ A with x < y. Observe that y �= N + 2
otherwise 9 ∈ A, a contradiction. Also observe that y �= N − 1 otherwise
3 ∈ A, a contradiction. We could cover 2N − 5 by 1, N − 2, but this is a
contradiction because then A contains the mod-AP N − 2, 0, N + 2. Hence,
y < N − 2. However, 2N − 5 = 2y − x ≤ 2(N − 3) + x, a contradiction.

Therefore, there does not exist a modular set A of modulus 2N with
λ(A) = 5 with N + 1 �∈ A.

The techniques from Lemmas 3.8 and 3.9 will be used repeatedly in the
following propositions and lemmas.

3.3. Character λ = 9

Proposition 3.10. There does not exist a modular set A modulo 2N with
λ(A) = 9.
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We break the proof of Proposition 3.10 into Lemmas 3.11, 3.12, 3.13, and
3.14. Through case by case analysis, we will eliminate all possible sets A. In
these proofs, we assume N is “large” and we can in fact assume N > 100.
Using Remark 3.6, we deduce Proposition 3.10.

Lemma 3.11. Let A be a modular set modulo 2N with λ(A) = 9. Then
N + 3 �∈ A.

Proof. Suppose that N + 3 ∈ A. Since N + 4 = max(A), we deduce that
N + 2 �∈ A because otherwise A would contain the AP N + 2, N + 3, N + 4.
We see that 3, 4 �∈ A and 6 is mod-covered by 0, N +3 and 8 is mod-covered
by 0, N + 4. The only way to mod-cover 3 is with 5, N + 4 and thus 1 is
mod-covered by 5, N +3. Every valid way to mod-cover 4 requires 2; hence,
2 ∈ A. Since 0, 2 ∈ A, we see that N +1 �∈ A. There is no way to mod-cover
7, so 7 ∈ A. We see that 9 is covered by 5, 7 and 10 is covered by 0, 5.
However, 11 cannot be covered, so 11 ∈ A and thus we have deduced that
S(A) = S(0, 2, 5, 7, 11) = {0, 2, 5, 7, 11, 13, 16, 18, 28, . . . }.

Now we examine how 2N − 1, 2N − 2, . . . are covered by A. We see that
2N − 1 is covered by 7, N + 3 but the only way to cover 2N − 2 is with
0, N−1. Hence, N−1 ∈ A. Similar analysis shows that 2N−3 is covered by
11, N+4, the element 2N−4 is covered by 2, N−1, and the element 2N−5
is covered by 11, N + 3. However, 2N − 6 cannot be covered by x < y using
y = N + 4, N + 3 or N − 1. We see that y = N − 3 and y = N − 2 are the
only possible remaining choices. However, N − 3 cannot be in A, otherwise
A contains the AP N − 3, 0, N + 3. Therefore, y = N − 2 and x = 2 which
implies that N − 2 ∈ A.

Further analysis shows that 2N −7, . . . , 2N −13 are covered by A. How-
ever, 2N − 14 cannot be covered by x, y ∈ A with y ∈ {N − 2, N − 1, N +
3, N + 4}. Therefore, y ∈ {N − 7, N − 6, N − 5, N − 4, N − 3}. However,
N − 3, N − 4 �∈ A by Remark 3.4. Furthermore, N − 5 �∈ A otherwise A
would contain the AP N − 5, N − 1, N + 3. Similarly, one deduces that
N − 6, N − 7 �∈ A, and we have obtained a contradiction.

Lemma 3.12. Let A be a modular set modulo 2N with λ(A) = 9 and
N + 3 �∈ A. Then N + 1 �∈ A.

Proof. Suppose that N +1 ∈ A. We see that 2 and 8 are mod-covered by A
and that 1, 4 �∈ A. The only way to mod-cover 4 is with 0, N + 2; therefore,
N + 2 ∈ A. Observe that 3 �∈ A otherwise A would contain the mod-AP
N + 2, 3, N + 4. Therefore, the only way to mod-cover 1 is with 7, N + 4
which implies 7 ∈ A. The only way to mod-cover 3 is with 5, N + 4 which
implies 5 ∈ A. Since 5, 7 ∈ A, we see that 6 �∈ A yet unfortunately 6 cannot
be mod-covered by A. Thus we have obtained a contradiction.
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Lemma 3.13. Let A be a modular set modulo 2N with λ(A) = 9 and
N + 1, N + 3 �∈ A. Then N + 2 �∈ A.

Proof. Suppose that N +2 ∈ A. We see that 4, 8 are mod-covered by A and
2 �∈ A. Also observe that 3 �∈ A since otherwise A would contain the mod-AP
N + 2, 3, N + 4. We see that 5, 6 ∈ A since there is no way to mod-cover
them. Therefore, 3, 4, 7 are mod-covered by A. This leaves us with no way
to mod-cover 1, so 1 ∈ A. We see that 9, 10, 11, 12 are covered and 13 cannot
be covered by A. Therefore, 13 ∈ A and S(A) = S(0, 1, 5, 6, 13).

Observe that 2N − 1 is covered by 5, N + 2 and 2N − 2 is covered by
6, N+2 and 2N−3. However, neither N+2 nor N+4 may be used to cover
2N − 3. Therefore, 2N − 3 is necessarily covered by 1, N − 1 which implies
N − 1 ∈ A. However, N − 1, N + 2, N + 4 cannot be used to cover 2N − 4.
The only way to cover 2N − 4 requires N − 2 ∈ A. This is a contradiction
since including N −2 in A would introduce the mod-AP N −2, 0, N +2.

Lemma 3.14. There does not exist a modular set A of modulus 2N and
λ(A) = 9 with N + 1, N + 2, N + 3 �∈ A.

Proof. Let A be a modular set modulo 2N with λ(A) = 9 and N + 1, N +
2, N + 3 �∈ A. We see that 8 is mod-covered by A and 4 �∈ A. The element 2
is necessarily in A in order to mod-cover 4. The element 7 ∈ A is needed to
mod-cover 1. We break our proof into the cases where either (Case I) 3 ∈ A
or (Case II) 5 ∈ A.

Case I: Since 3 ∈ A, we see that 5 is mod-covered by A and 9 ∈ A since
it cannot be mod-covered by A. We deduce that S(A) = S(0, 2, 3, 7, 9) =
{0, 2, 3, 7, 9, 10, 19, . . . }. Now, 2N − 1 is covered by 9, N + 4 and 2N − 2 is
covered by 10, N + 4. However, 2N − 3 cannot be covered using N + 4 and
can only be covered by 1, N − 1. This is a contradiction since 1 �∈ A.

Case II: Since 5 ∈ A, we see that 3, 9, 10 are mod-covered by A and 11
cannot be mod-covered by A. Therefore, 11 ∈ A and S(A) = S(0, 2, 5, 7, 11).
Since 9 �∈ A, we cannot use N +4 to cover 2N − 1. Hence 2N − 1 cannot be
covered, which is a contradiction.

Therefore, a modular set A of modulus 2N with λ(A) = 9 and N +
1, N + 2, N + 3 �∈ A cannot exist.

3.4. Character λ = 11

Throughout the remainder of the paper, we will frequently write “covered”
or “mod-covered” to mean “covered by A” or “mod-covered by A.”
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Proposition 3.15. There does not exist a modular set A modulo 2N with
λ(A) = 11.

We break the proof of Proposition 3.15 into Lemmas 3.16, 3.17, 3.18,
3.19, 3.20, and 3.21. In these proofs, we assume N is “large” and we can in
fact assume N > 100. Using Remark 3.6, we deduce Proposition 3.15. When
λ(A) = 11, observe that max(A) = N + 5.

Lemma 3.16. Let A be a modular set modulo 2N with λ(A) = 11 with
N + 2 ∈ A. Then N + 4 �∈ A.

Proof. Assume N +4 ∈ A. Observe that 4, 8, 10 are mod-covered and 2, 3, 5,
N +3 �∈ A. This is a contradiction since there is no way to mod-cover 5.

Lemma 3.17. Let A be a modular set modulo 2N with λ(A) = 11 with
N + 2 �∈ A. Then N + 4 �∈ A.

Proof. Assume N+4 ∈ A. Observe that 8, 10 are mod-covered and 4, 5, N+
3 �∈ A. We need 3 ∈ A to mod-cover 5 and thus 6, 7 are also mod-covered.
Since 2 is required to mod-cover 4, we have 2 ∈ A and 1 �∈ A, and we
need 9 ∈ A to mod-cover 1. Observe that 11 ∈ A since it cannot be mod-
covered. Therefore, S(A) = S(0, 2, 3, 9, 11), a modular Stanley sequence with
character 20. This is a contradiction with λ(A) = 11.

Observe that Lemmas 3.16 and 3.17 imply that a modular set A modulo
2N with λ(A) = 11 cannot contain the element N + 4.

Lemma 3.18. Let A be a modular set modulo 2N with λ(A) = 11 with
N + 4 �∈ A. Then N + 2 �∈ A.

Proof. Assume N+2 ∈ A. Observe that 4, 10 are mod-covered and 2, 5 �∈ A.
Every possible mod-cover of 5 includes 1, so 1 ∈ A and therefore 2, 3, 9 are
also mod-covered. We then see that N + 3 ∈ A is required to mod-cover 5.
Therefore, N + 1 �∈ A and 6 is mod-covered. We cannot mod-cover 7, 8, 11,
so they are elements of A. Therefore, S(A) = S(0, 1, 7, 8, 11).

We see that 2N − 1, 2N − 2, . . . , 2N − 9 are covered. However, we must
include an additional element into A in order to cover 2N−10. The possible
candidates are N − 5, N − 4, N − 3, N − 2, N − 1. However, N − 5, N −
3, N − 2, N − 1 are not allowed for they would introduce a mod-AP into
A. Therefore, 2N − 10 is covered by 2, N − 4. This is a contradiction with
2 �∈ A.

Lemma 3.19. Let A be a modular set modulo 2N with λ(A) = 11 with
N + 2, N + 4 �∈ A. Then N + 3 �∈ A.
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Proof. AssumeN+3 ∈ A. Observe that 6, 10 are mod-covered and 3, 4, 5, N+
1 �∈ A. We require 1 ∈ A to mod-cover 5, so 1 ∈ A. Therefore 2, 9 are
also mod-covered. This is a contradiction since there is no way to
mod-cover 4.

Lemma 3.20. Let A be a modular set modulo 2N with λ(A) = 11 with
N + 2, N + 3, N + 4 �∈ A. Then N + 1 �∈ A.

Proof. Assume N +1 ∈ A. Observe that 2, 10 are mod-covered and 1, 3, 5 �∈
A. There is no way to mod-cover 5 �∈ A, which is a contradiction.

Lemma 3.21. There does not exist a modular set A of modulus 2N and
λ(A) = 11 with N + 1, N + 2, N + 3, N + 4 �∈ A.

Proof. Let A be a modular set modulo 2N with λ(A) = 11 and N + 1, N +
2, N +3, N +4 �∈ A. Observe that 10 is mod-covered and 5 �∈ A. We see that
5 must be covered by (Case I) 1, 3 or (Case II) 3, 4. In both cases, 3 ∈ A, so
6 and 7 are mod-covered.

Case I: In this case 1 ∈ A which implies, 2, 4, 9 are mod-covered. We see
that 4 ∈ A since it cannot be mod-covered, and therefore 8 is covered. Since
11 also cannot be mod-covered, we have 11 ∈ A and S(A) = S(0, 1, 3, 4, 11).

Case II: In this case 4 ∈ A which implies 5, 6, 8 are mod-covered and
2 �∈ A. We see that 1 is required to cover 2 and in turn 2, 7, 9 are mod-covered.
Since 11 cannot be mod-covered, we have 11 ∈ A and S(A) = S(0, 1, 3, 4, 11).

In both these cases, we have S(A) = S(0, 1, 3, 4, 11). Now, we examine
how A covers 2N − 1, 2N − 2, . . . . The elements 2N − 1, 2N − 2 are covered
by 11, N + 5 and 12, N + 5. However, 2N − 3 requires N − 1 ∈ A. Using
similar reasoning, one observes that 2N − 4, 2N − 5, 2N − 6 are covered.
However, covering 2N −7 requires N −2 or N −3. We cannot include N −3
in A otherwise it would contain the mod-AP N − 3, 1, N + 5. Therefore,
N − 2 ∈ A and 2N − 7 is covered by 3, N − 2. We see that 2N − 8 is covered
but 2N − 9 requires N − 4 ∈ A. Even after including N − 4 ∈ A, we need
N − 5 to cover 2N − 10. This is a contradiction since the set A would then
include the mod-AP N − 5, 0, N + 5.

Therefore, there does not exist a modular set of modulus 2N with λ(A) =
11 and N + 1, N + 2, N + 3, N + 4 �∈ A.

3.5. Character λ = 15

Proposition 3.22. There does not exist a modular set A modulo 2N with
λ(A) = 15.
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We break the proof of Proposition 3.22 into Lemmas 3.23 through 3.40
always using the observation that max(A) = N + 7. In these lemmas we
show that, if A is a modular set modulo 2N with λ(A) = 15, the elements
N +1, N +5, N +3, N +2, N +6, N +4 are successively not in A. In Lemma
3.40, we will show that there does not exist such a modular set A with
N+1, N+5, N+3, N+2, N+6, N+4 �∈ A. In these proofs, we assume N is
“large” and we can in fact assume N > 100. Using Remark 3.6, we deduce
Proposition 3.22.

Lemma 3.23. Let A be a modular set modulo 2N with λ(A) = 15 with
N + 1 ∈ A. Then N + 3 �∈ A.

Proof. Suppose N + 3 ∈ A. Then 2, 6, 14 are mod-covered and 1, 3, 7, N −
7, N−4, N−3, N−1, N+2, N+4, N+5 �∈ A. Necessarily 7 is mod-covered by
5, N+6 ∈ A; therefore, 1, 9, 10, 12 are mod-covered and N−4, N−6 �∈ A. We
need 11 ∈ A to mod-cover 3 which implies 8 �∈ A. Furthermore, 13 ∈ A since
it cannot be mod-covered. We see that 4 ∈ A in order to cover 8. We then
see that S(A) = S(0, 4, 5, 11, 13, 16). One computes that 2N−1, . . . , 2N−11
are covered. However, 2N − 12 �∈ A and therefore must be covered by x < y
with x, y ∈ A. However, y = N − 2 necessarily which implies x = 8, a
contradiction with 8 �∈ A.

Lemma 3.24. Let A be a modular set modulo 2N with λ(A) = 15 with
N + 1 ∈ A and N + 3 �∈ A. Then N + 5 �∈ A.

Proof. Assume N + 5 ∈ A. Observe that N + 4, N + 6 �∈ A and 2, 10, 14
are mod-covered and 1, 3, 4, 5, 6, 7 �∈ A. This is a contradiction since it is
impossible to mod-cover 7.

Lemma 3.25. Let A be a modular set modulo 2N with λ(A) = 15 with
N + 1 ∈ A and N + 3, N + 5 �∈ A. Then N + 6 �∈ A.

Proof. Assume N + 6 ∈ A. Observe that 2, 12, 14 are mod-covered and
1, 4, 6, 7, N − 1, N + 4 �∈ A. We need 5 ∈ A in order to mod-cover 7 which
implies 7, 9, 10 are mod-covered. We see that 8 ∈ A since it cannot be
mod-covered and therefore 4, 6, 11 are mod-covered. Since 3 cannot be mod-
covered, we see that 3 ∈ A and thus 13 is mod-covered. Lastly, N + 2 ∈ A
necessarily to mod-cover 1.

Observe that S(A) = S(0, 3, 5, 8, 15) = {0, 3, 5, 8, 15, 17, 18, 20, . . . }.
However, there is no way to cover 2N − 2 �∈ A, a contradiction.

Lemma 3.26. Let A be a modular set modulo 2N with λ(A) = 15 with
N + 1 ∈ A and N + 3, N + 5, N + 6 �∈ A. Then N + 2 �∈ A.
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Proof. AssumeN+2 ∈ A. Observe that 2, 4, 14 are mod-covered and 1, 7, N+
4 �∈ A. Also observe that 3, 5 ∈ A necessarily to cover 7. Therefore, 1, 6, 7, 9,
10, 11 are mod-covered. We see that 8 ∈ A since it cannot be mod-covered.
Therefore, 13 is mod-covered. Lastly, 12 ∈ A since it cannot be mod-covered.

Therefore, S(A) = S(0, 3, 5, 8, 12, 15). We know thatN−1 �∈ A otherwise
this would introduce a mod-AP. However, this leaves us with no way to cover
2N − 2, and we obtain a contradiction.

Lemma 3.27. There does not exist a modular set A modulo 2N with λ(A) =
15 and N + 1 ∈ A and N + 2, N + 3, N + 5, N + 6 �∈ A.

Proof. Suppose A is such a modular set. We see that 2, 14 are mod-covered
and 1, 7 �∈ A. Furthermore, 5 ∈ A is needed to cover 7 and 13 ∈ A is needed
to mod-cover 1. Therefore, 9, 10 are covered. In order to mod-cover 7, we
require either (Case I) 3 ∈ A or (Case II) 6 ∈ A.

Case I: If 3 ∈ A, then 6, 7, 11 are mod-covered and 4 �∈ A. This is a
contradiction since there is no way to mod-cover 4.

Case II: If 6 ∈ A, then 7, 8, 12 are mod-covered and 3, 4 �∈ A. This is a
contradiction since there is no way to mod-cover 4.

Therefore, there does not exist a modular set A modulo 2N with λ(A) =
15 such that N + 1 ∈ A and N + 2, N + 3, N + 5, N + 6 �∈ A.

Observe that Lemmas 3.23, 3.24, 3.25, 3.26, and 3.27 imply that N+1 �∈
A for a modular set A modulo 2N with character λ(A) = 15.

Lemma 3.28. Let A be a modular set modulo 2N with λ(A) = 15 with
N + 5 ∈ A and N + 1 �∈ A. Then N + 4 �∈ A.

Proof. Suppose N+4 ∈ A. Then 8, 10, 14 are mod-covered and 4, 5, 6, 7, N+
3, N + 6 �∈ A. In order to mod-cover 7, we require either (Case I) 1 ∈ A or
(Case II) 3 ∈ A.

Case I: If 1 ∈ A, then 2, 7, 9, 13 are mod-covered. We see N + 2 ∈ A
necessarily to mod-cover 4 and thus 3 is mod-covered. This is a contradiction
since there is no way to mod-cover 5.

Case II: If 3 ∈ A, then 5, 6, 7, 11 are mod-covered and N − 1, N +2 �∈ A.
We require 2 ∈ A to cover 4. Therefore, 1 �∈ A and 12 is mod-covered. We
see 13 ∈ A since it cannot be mod-covered which implies 1 is mod-covered.
Lastly 9 ∈ A since it cannot be mod-covered.

Therefore, S(A) = S(0, 2, 3, 9, 13, 19). We see that N − 1 is needed to
cover 2N − 2. This is a contradiction with N − 1 �∈ A.
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Lemma 3.29. Let A be a modular set modulo 2N with λ(A) = 15 with

N + 5 ∈ A and N + 1, N + 4 �∈ A. Then N + 2 �∈ A.

Proof. Suppose N+2 ∈ A. Then 4, 10, 14 are mod-covered and 2, 5, 6, 7, N+

3, N + 6 �∈ A. We need 3 ∈ A to mod-cover 7 and therefore 1, 6, 11 are also

mod-covered. We deduce 9 ∈ A to mod-cover 5 and then deduce 8 ∈ A since

it cannot be mod-covered. Hence, 2, 13 are mod-covered. Lastly, 12 ∈ A since

it cannot be mod-covered. Therefore, S(A) = S(0, 3, 8, 9, 12, 17). However,

2N − 1 cannot be covered, and we have obtained a contradiction.

Lemma 3.30. There does not exist a modular set A modulo 2N with λ(A) =

15 with N + 5 ∈ A and N + 1, N + 2, N + 4 �∈ A.

Proof. Suppose A is such a modular set. Observe that 10, 14 are mod-covered

and 5, 6, 7, N+3, N+6 �∈ A. In order to mod-cover 7, we require either (Case

I) 1, 4 ∈ A or (Case II) 3 ∈ A.

Case I: Assume 1, 4 ∈ A. Therefore, 2, 6, 7, 8, 9, 13 are mod-covered. We

require 3 ∈ A to mod-cover 5. Therefore, 11 is mod-covered and N − 1 �∈ A.

We have 12 ∈ A since it cannot be mod-covered. We deduce that S(A) =

S(0, 1, 3, 4, 12, 15). This is a contradiction since one cannot cover 2N − 3.

Case II: Assume 3 ∈ A. Observe that 6, 7, 11 are mod-covered and N −
1 �∈ A. We break this case into the following four subcases: (Case II.1)

2, 9 ∈ A, (Case II.2) 9 ∈ A and 2 �∈ A, (Case II.3) 9 �∈ A and 1 ∈ A, and

(Case II.4) 1, 9 �∈ A.

Case II.1: In this case 2, 9 ∈ A. We see that 1, 4, 5, 8, 12 are mod-covered

and 13 ∈ A since it cannot be mod-covered. We deduce that S(A) =

S(0, 2, 3, 9, 13, 19). This is a contradiction since there is no way to cover

2N − 1.

Case II.2: In this case 9 ∈ A and 2 �∈ A. We see that 1, 5 are mod-covered.

We see that 12 ∈ A in order to mod-cover 2. We deduce 4 ∈ A since it

cannot be mod-covered which implies 8 is mod-covered. Lastly, 13 ∈ A since

it cannot be mod-covered. Therefore, S(A) = S(0, 3, 4, 9, 12, 13, 16) and thus

S(A) is an independent Stanley sequence with character λ(A) = 24. This is

a contradiction with λ(A) = 15.

Case II.3: In this case 1 ∈ A, 9 �∈ A and thus 2, 5, 9, 13 are mod-covered.

We see that 4 ∈ A since it cannot be mod-covered and thus 8 is mod-covered.

Lastly, we include 12 ∈ A since it cannot be mod-covered. Therefore, S(A) =

S(0, 1, 3, 4, 12, 15). This is a contradiction since there is no way to cover

2N − 3.
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Case II.4: In this case 3 ∈ A and 1, 9 �∈ A. We see that 6, 7, 11 are mod-
covered. We require 4 ∈ A to cover 5. Therefore, 5, 8 are covered and 2 �∈ A.
This is a contradiction since there is no way to mod-cover 9.

Therefore, there does not exist a modular set A modulo 2N with λ(A) =
15 such that N + 5 ∈ A and N + 1, N + 2, N + 4 �∈ A.

Observe that Lemmas 3.28, 3.29, and 3.30, along with previous results,
imply that N + 5 �∈ A for a modular set A modulo 2N with character
λ(A) = 15.

Lemma 3.31. Let A be a modular set modulo 2N with λ(A) = 15 with
N + 3 ∈ A and N + 1, N + 5 �∈ A. Then N + 4 �∈ A.

Proof. Suppose N +4 ∈ A. Then 6, 8, 14 are mod-covered and 3, 4, 5, 7 �∈ A.
We need 1 ∈ A to mod-cover 7 and therefore 2, 5, 7, 13 are mod-covered. We
see that 9, 10 are in A since they cannot be mod-covered and thus 4, 11 are
mod-covered. We need N + 6 ∈ A to mod-cover 3 which implies 12 is also
mod-covered. Thus S(A) = S(0, 1, 9, 10, 15) and S(A) is an independent
Stanley sequence with character λ(A) = 24. This is a contradiction with
λ(A) = 15.

Lemma 3.32. Let A be a modular set modulo 2N with λ(A) = 15 with
N + 3 ∈ A and N + 1, N + 4, N + 5 �∈ A. Then N + 2 �∈ A.

Proof. Suppose N + 2 ∈ A. Observe that 4, 6, 14 are mod-covered and
2, 3, 5, 7 �∈ A. This is a contradiction since there is no way to mod-cover
7.

Lemma 3.33. There does not exist a modular set A modulo 2N with λ(A) =
15 with N + 3 ∈ A and N + 1, N + 2, N + 4, N + 5 �∈ A.

Proof. We see that 6, 14 are mod-covered and 3, 5, 7, N − 1 �∈ A. We divide
the argument into the cases where either (Case I) 11 ∈ A or (Case II) 11 �∈ A.

Case I: In this case, 3 is mod-covered. We see that 1, 4 ∈ A in order to
mod-cover 7. Therefore, 2, 5, 6, 7, 8, 10, 13 are mod-covered and N + 6 �∈ A.
We see that 9, 12 ∈ A since they cannot be mod-covered. Therefore, S(A) =
S(0, 1, 4, 11, 12, 16). This is a contradiction since we cannot cover 2N − 1.

Case II: We need 9, N + 6 ∈ A to mod-cover 3 and therefore 5, 12 are
also mod-covered. We require 1, 4 ∈ A in order to mod-cover 7. Therefore,
2, 8, 10, 11, 13 are also mod-covered and N − 5, N − 4 �∈ A. Hence, S(A) =
S(0, 1, 4, 9, 15). This is a contradiction since there is no way to cover 2N−11.

Therefore, there does not exist a modular set A modulo 2N with λ(A) =
15 such that N + 3 ∈ A and N + 1, N + 2, N + 4, N + 5 �∈ A.
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Observe that Lemmas 3.31, 3.32, and 3.33 imply that N + 3 �∈ A for a
modular set A modulo 2N with character λ(A) = 15.

Lemma 3.34. Let A be a modular set modulo 2N with λ(A) = 15 with
N + 2 ∈ A and N + 1, N + 3, N + 5 �∈ A. Then N + 4 �∈ A.

Proof. Suppose N +4 ∈ A. Then 4, 8, 14, N +6 are mod-covered and 2, 3, 7,
N − 2, N − 3 �∈ A. We break our proof into the cases where either (Case I)

1 ∈ A or (Case II) 1 �∈ A.

Case I: Suppose 1 ∈ A. Then 2, 3, 7, 13 are mod-covered. We then have

two further subcases: (Case I.1) 5 ∈ A and (Case I.2) 5 �∈ A.

Case I.1: If 5 ∈ A, then 9, 10 are mod-covered. We see that 6 ∈ A
since it cannot be mod-covered and thus 11, 12 are mod-covered. Hence,

S(A) = S(0, 1, 5, 6, 15). We see that N − 1 ∈ A is necessary to mod-cover
2N − 3. This is a contradiction since there is no way to cover 2N − 6.

Case I.2: If 5 �∈ A, then 9 ∈ A is needed to mod-cover 5. We see
that 6 ∈ A since it cannot be mod-covered which implies 11, 12 are cov-

ered. Lastly, 10 ∈ A since it cannot be mod-covered. Therefore, S(A) =
S(0, 1, 6, 9, 10, 15), an independent Stanley sequence with character λ(A) =

24. This is a contradiction with λ(A) = 15.

Case II: If 1 �∈ A, then one requires 5, 6 ∈ A to mod-cover 7 and therefore

2, 3, 7, 9, 10, 12 are mod-covered. We require 13 ∈ A to mod-cover 1. Lastly,
11 ∈ A since it cannot be mod-covered. Therefore, S(A) = S(0, 5, 6, 11,

13, 18). This is a contradiction since there is no way to cover 2N − 6.

Lemma 3.35. Let A be a modular set modulo 2N with λ(A) = 15 with

N + 2 ∈ A and N + 1, N + 3, N + 4, N + 5 �∈ A. Then N + 6 �∈ A.

Proof. Suppose N + 6 ∈ A, then 4, 12, 14 are mod-covered and 2, 6, 7, N −
3, N −2 �∈ A. We see that 5 ∈ A in order to cover 7 and therefore 7, 9, 10 are
mod-covered. We conclude that 8 ∈ A since it cannot be mod-covered which
implies 6, 11 are mod-covered. We need 1 ∈ A to cover 2. Hence, 2, 3, 13 are

mod-covered and N − 4, N − 5 �∈ A. Therefore, S(A) = S(0, 1, 5, 8, 17).

We need N − 1 ∈ A to cover 2N − 2. However, there is no way to cover
2N − 11, which is a contradiction.

Lemma 3.36. There does not exist a modular set A modulo 2N with λ(A) =
15 with N + 2 ∈ A and N + 1, N + 3, N + 4, N + 5, N + 6 �∈ A.

Proof. Suppose A is such a modular set. We see that 4, 14 are mod-covered
and 2, 7, N−3, N−2 �∈ A. We need 5 ∈ A to mod-cover 7 and thus 9, 10 �∈ A.
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We now break the argument up into the cases where either (Case I) 1 ∈ A
or (Case II) 1 �∈ A.

Case I: Suppose 1 ∈ A. Then 2, 3, 13 are mod-covered and N−5 �∈ A. We
see that 6 ∈ A to cover 7 and thus 8, 11, 12 are also mod-covered. Therefore,
S(A) = S(0, 1, 5, 6, 15). We require N − 1 ∈ A in order to cover 2N − 3.
There is no way to cover 2N − 6, which is a contradiction.

Case II: Suppose 1 �∈ A. We need 12 ∈ A to mod-cover 2 and thus
6 �∈ A. We need 3 ∈ A to mod-cover 7 which implies 1, 6, 11 are mod-covered
and N − 1 �∈ A. We see that 8 ∈ A since it cannot be mod-covered and
therefore 13 is covered. Therefore, S(A) = S(0, 3, 5, 8, 12, 15). One cannot
cover 2N − 2, which is a contradiction.

Therefore, there does not exist a modular set A modulo 2N with λ(A) =
15 such that N + 2 ∈ A and N + 1, N + 3, N + 4, N + 5, N + 6 �∈ A.

Observe that Lemmas 3.35 and 3.36, along with previous results, imply
that N + 2 �∈ A for a modular set A modulo 2N with character λ(A) = 15.

Lemma 3.37. Let A be a modular set modulo 2N with λ(A) = 15 with
N + 6 ∈ A and N + 1, N + 2, N + 3, N + 5 �∈ A. Then N + 4 �∈ A.

Proof. Suppose N+4 ∈ A. Then 8, 12, 14 are mod-covered and 4, 5, 6, 7 �∈ A.
We need 1 ∈ A to mod-cover 7 and thus 2, 7, 11, 13 are mod-covered and
N − 2 �∈ A. Therefore we need 3 ∈ A to mod-cover 6 which implies 5, 6, 9
are mod-covered and N − 1 �∈ A. Lastly, we need 10 ∈ A to mod-cover 4.
Thus, S(A) = S(0, 1, 3, 10, 15). There is no way to cover 2N − 5, which is a
contradiction.

Lemma 3.38. There does not exist a modular set A modulo 2N with λ(A) =
15 with N + 6 ∈ A and N + 1, N + 2, N + 3, N + 4, N + 5 �∈ A.

Proof. Suppose that such a modular set A exists. Observe that 12, 14 are
mod-covered and 6, 7, N − 7, N − 6 �∈ A. We break our proof up into cases
where either (Case I) 5 ∈ A or (Case II) 5 �∈ A.

Case I: Since 5 ∈ A then 7, 9, 10 are mod-covered. We then break this
case up into the subcases where (Case I.1) 4 ∈ A, (Case I.2) 3 ∈ A, or (Case
I.3) 3, 4 �∈ A.

Case I.1: Since 4 ∈ A then 6, 8 are mod-covered and 2, 3 �∈ A. We need
11 ∈ A to mod-cover 3 which implies 1 is mod-covered. There is no way to
mod-cover 2, which is a contradiction.

Case I.2: Since 3 ∈ A then 6, 11 are mod-covered and 1, 4, N − 1 �∈ A.
We need 13 ∈ A to mod-cover 1 which then implies that 8 �∈ A. We require
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2 ∈ A to mod-cover 4 and 8 which then implies N − 2 �∈ A. Therefore,
S(A) = S(0, 2, 3, 5, 13, 15). There is no way to cover 2N − 5, which is a
contradiction.

Case I.3: Since 3, 4 �∈ A, we require 8 ∈ A to mod-cover 6. Therefore,
4, 11 are also mod-covered and 2 �∈ A. There is no way to mod-cover 3, which
is a contradiction.

Case II: Since 5 �∈ A, we require 1, 4 ∈ A to mod-cover 7. Therefore,
2, 8, 10, 11, 13 are also mod-covered and N − 5, N − 4 �∈ A. One needs 3 ∈ A
to mod-cover 6 which implies that 5, 9 are also mod-covered and N −1 �∈ A.
Therefore, S(A) = S(0, 1, 3, 4, 15). We need N − 2 ∈ A to cover 2N − 8 and
N − 3 ∈ A to cover 2N − 9. There is no way to cover 2N − 14, which is a
contradiction.

Therefore, there does not exist a modular set A modulo 2N with λ(A) =
15 such that N + 6 ∈ A and N + 1, N + 2, N + 3, N + 4, N + 5 �∈ A.

Observe that Lemmas 3.37 and 3.38, along with previous results, imply
that N + 6 �∈ A for a modular set A modulo 2N with character λ(A) = 15.

Lemma 3.39. There does not exist a modular set A modulo 2N with λ(A) =
15 with N + 4 ∈ A and N + 1, N + 2, N + 3, N + 5, N + 6 �∈ A.

Proof. Suppose such a set A exists. Observe that 8, 14 are mod-covered and
4, 7 �∈ A. We break our proof up into the cases where either (Case I) 1 ∈ A
or (Case II) 1 �∈ A.

Case I: Since 1 ∈ A, we see that 2, 7, 13 are mod-covered. We need
10 ∈ A to mod-cover 4 which implies that 5 �∈ A. We see 9 ∈ A since
it cannot be mod-covered which implies 5, 11 are mod-covered. We have
3 ∈ A since it cannot be mod-covered which implies 6 is mod-covered and
N−1 �∈ A. Lastly, 12 ∈ A since it cannot be mod-covered. Therefore, S(A) =
S(0, 1, 3, 9, 10, 12, 16). One cannot cover 2N − 3, which is a contradiction.

Case II: Since 1 �∈ A, we need 13 ∈ A to mod-cover 1. We need 5 ∈ A
to mod-cover 7 which implies 3, 9, 10 are mod-covered. Therefore we need
6 ∈ A to mod-cover 7 which implies 2, 12 are also mod-covered. There is no
way to mod-cover 4, which is a contradiction.

Therefore, there does not exist a modular set A modulo 2N with λ(A) =
15 such that N + 4 ∈ A and N + 1, N + 2, N + 3, N + 5, N + 6 �∈ A.

Lemma 3.40. There does not exist a modular set A modulo 2N with λ(A) =
15 with N + 1, N + 2, N + 3, N + 4, N + 5, N + 6 �∈ A.
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Proof. Suppose such a set A exists. Then 14 is mod-covered and 7 �∈ A. We

break our argument into the cases where either (Case I) 5 �∈ A or (Case II)

5 ∈ A.

Case I: If 5 �∈ A then 1, 4 ∈ A in order to cover 7. Therefore, 2, 7, 8, 10, 13

are mod-covered by A. We now break this case up into the subcases where

(Case I.1) 3 ∈ A and (Case I.2) 3 �∈ A.

Case I.1: If 3 ∈ A, then 5, 6, 11 are mod-covered by A. We see that 9, 12 ∈
A since they cannot be mod-covered. Therefore, S(A) = S(0, 1, 4, 6, 9, 12, 16).

There is no way to cover 2N − 1, which is a contradiction.

Case I.2: If 3 �∈ A then we need 11 ∈ A to mod-cover 3 which implies

6 �∈ A. There is no way to mod-cover 6, which is a contradiction.

Case II: Suppose 5 ∈ A. Then 9, 10 are mod-covered by A. We break

this case up into the subcases where (Case II.1) 3 ∈ A, (Case II.2) 6 ∈ A,

3 �∈ A, and (Case II.3) 3, 6 �∈ A.

Case II.1: Suppose 3 ∈ A. Then 6, 7, 11 are mod-covered and 1, 4, N−1 �∈
A. We need 13 ∈ A to mod-cover 1. We see that 2 ∈ A in order to mod-cover

4 and 8, 12 are mod-covered as well. Therefore, S(A) = S(0, 2, 3, 5, 13, 15).

There is no way to cover 2N − 3, which is a contradiction.

Case II.2: Suppose 6 ∈ A and 3 �∈ A. Then 7, 8, 12 are mod-covered and

4 �∈ A. We see that 2 ∈ A in order to cover 4 and therefore 1 �∈ A. Thus,

11 ∈ A in order to mod-cover 3 and 13 ∈ A in order to mod-cover 1. Hence,

S(A) = S(0, 3, 5, 6, 11, 13, 18). There is no way to mod-cover 2N − 1, which

is a contradiction.

Case II.3: Suppose 3, 6 �∈ A. Therefore, 1, 4 ∈ A in order to cover 7.

Thus, 2, 6, 7, 8, 13 are mod-covered and N − 5 �∈ A. We see 11 ∈ A in

order to mod-cover 3 and 12 ∈ A since it cannot be mod-covered. Thus,

S(A) = S(0, 1, 4, 5, 11, 12, 15). We need N − 1 ∈ A to cover 2N − 3 and

N − 2 ∈ A to cover 2N − 4. Therefore, N − 3 �∈ A. There is no way to cover

2N − 10, which is a contradiction.

Therefore, there does not exist a modular set A modulo 2N with λ(A) =

15 such that N + 1, N + 2, N + 3, N + 4, N + 5, N + 6 �∈ A.
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