Stanley sequences with odd character

RICHARD A. MOY

Given a set of integers containing no 3-term arithmetic progressions, one constructs a Stanley sequence by choosing integers greedily without forming such a progression. These sequences appear to have two distinct growth rates which dictate whether the sequences are structured or chaotic. Independent Stanley sequences are a "well-structured" class of Stanley sequences with two main parameters: the character $\lambda(A)$ and the repeat factor $\rho(A)$. Rolnick conjectured that for every $\lambda \in \mathbb{N}_0 \setminus \{1, 3, 5, 9, 11, 15\}$, there exists an independent Stanley sequence $S(A)$ such that $\lambda(A) = \lambda$. This paper demonstrates that $\lambda(A) \notin \{1,3,5,9,11,15\}$ for any independent Stanley sequence $S(A)$.

2010 Mathematical subject classification: 11B25. Keywords and phrases: Stanley sequence, 3-free set, arithmetic progression.

1. Introduction

Let \mathbb{N}_0 denote the set of non-negative integers. A subset of \mathbb{N}_0 is called ℓ -free if it contains no ℓ -term arithmetic progression. We will frequently abbreviate "arithmetic progression" by AP. We say a subset, or sequence of elements, of \mathbb{N}_0 is free of arithmetic progressions if it is 3-free. In 1978, Odlyzko and Stanley [\[3\]](#page-19-0) used a greedy algorithm (see Definition [1.1\)](#page-0-0) to produce sequences free of arithmetic progressions. Their algorithm produced sequences with two distinct growth rates – those which are highly structured (Type I) and those which are seemingly random (Type II). These classes of Stanley sequences will be more precisely defined in Conjecture [1.3.](#page-1-0)

Definition 1.1. Given a finite 3-free set $A = \{a_0, \ldots, a_n\} \subset \mathbb{N}_0$, the *Stanley* sequence generated by A is the infinite sequence $S(A) = \{a_0, a_1, \dots\}$ defined by the following recursion. If $k \geq n$ and $a_0 < \cdots < a_k$ have been defined, let a_{k+1} be the smallest integer $a > a_k$ such that $\{a_0, \ldots, a_k\} \cup \{a\}$ is 3free. Though formally one writes $S({a_0, \ldots, a_n})$, we will frequently use the notation $S(a_0, \ldots, a_n)$ instead.

arXiv: [1707.02037](http://arxiv.org/abs/1707.02037)

Remark 1.2. If one translates the elements of A by n to obtain B , then $S(B)$ is obtained by translating the elements of $S(A)$ by n. Therefore, we may assume that every Stanley sequence begins with 0.

In Rolnick's investigation of Stanley sequences [\[4\]](#page-19-1), he made the following conjecture about the growth rate of the two types of Stanley sequences.

Conjecture 1.3. Let $S(A) = (a_n)$ be a Stanley sequence. Then, for all n large enough, one of the following two patterns of growth is satisfied:

- Type I: $\alpha/2 \leq \liminf a_n/n^{\log_2(3)} \leq \limsup a_n/n^{\log_2(3)} \leq \alpha$, or
- Type II: $a_n = \Theta(n^2/\ln(n)).$

Though Type II Stanley sequences are mysterious, a great deal of progress has been made in classifying Type I Stanley sequences [\[1\]](#page-19-2). In [\[4\]](#page-19-1), Rolnick introduced the concept of the independent Stanley sequence. These Stanley sequences follow Type I growth and are defined as follows:

Definition 1.4. A Stanley sequence $S(A)=(a_n)$ is *independent* if there exist constants $\lambda = \lambda(A)$ and $\kappa = \kappa(A)$ such that for all $k \geq \kappa$ and $0 \leq i <$ 2^k , we have

- $a_{2^k+i} = a_{2^k} + a_i$
- $a_{2^k} = 2a_{2^k-1} \lambda + 1$.

The constant λ is called the *character*, and it is easy to show that $\lambda \geq 0$ for all independent Stanley sequences. If κ is taken as small as possible, then a_{2^k} is called the *repeat factor*. Informally, κ is the point at which the sequence begins its repetitive behavior. Rolnick and Venkataramana proved that every sufficiently large integer ρ is the repeat factor of some independent Stanley sequence [\[5](#page-19-3)].

Rolnick also made a table [\[4](#page-19-1)] of independent Stanley sequences with various characters $\lambda \geq 0$. He found Stanley sequences with every character up to 75 with the exception of those in the set $\{1, 3, 5, 9, 11, 15\}$. He proved that, for an independent Stanley sequence $S(A)$, $\lambda(A) \neq 1, 3$ [\[4,](#page-19-1) Proposition 2.12]. In light of his observations, he made the following conjecture:

Conjecture 1.5 (Conjecture 2.15, [\[4\]](#page-19-1))**.** The range of the character function is exactly the set of non-negative integers λ that are not in the set $\{1, 3, 5, 9, 11, 15\}.$

Recent work of Sawhney [\[6](#page-19-4), Theorem 1.5] and Moy-Sawhney-Stoner [\[2](#page-19-5), Theorem 9] has resulted in the following theorem.

Theorem 1.6. All nonnegative integers $\lambda \notin \{1,3,5,9,11,15\}$ can be achieved as characters of independent Stanley sequences.

Analyzing the character of an independent Stanley sequence is closely related to another feature of a Stanley sequence which we introduce now.

Definition 1.7. Given a Stanley sequence $S(A)$, we define the omitted set $O(A)$ to be the set of nonnegative integers that are neither in $S(A)$ nor are covered by $S(A)$. For $O(A) \neq \emptyset$, we let $\omega(A)$ denote the largest element of $O(A).$

Remark 1.8. The only Stanley sequence $S(A)$ where $O(A) = \emptyset$ is $S(0)$.

Using this definition, one can show the following lemma.

Lemma 1.9 (Lemma 2.13, [\[4\]](#page-19-1)). If $S(A)$ is independent, then $\omega(A) < \lambda(A)$.

Since $\max(A) > \omega(A)$, the following corollary easily follows.

Corollary 1.10 (Corollary 2.14, [\[4\]](#page-19-1))**.** At most finitely many independent Stanley sequences exist with a given character λ .

Using this corollary, one can show that there are no independent Stanley sequences of a given character λ by classifying every Stanley sequence with $\omega < \lambda$. One can utilize this technique to prove that $\lambda \neq 1, 3$ because every Stanley sequence with $\omega(A) < 3$ is independent with $\lambda(A) \neq 1,3$. Unfortunately, this argument does not work for $\lambda = 5$ because the Stanley sequence $S(0, 4)$ does not *appear* to be independent and experimentally exhibits Type II growth. Though no Stanley sequence, including $S(0, 4)$, has been proven to follow Type II growth, we will prove that no independent Stanley sequence has character $\lambda = 1, 3, 5, 9, 11, 15$ by showing sequences such as $S(0, 4)$ cannot be independent and have certain characters.

Theorem 1.11. Let $S(A)$ be an independent Stanley sequence where A is a finite 3-free subset of \mathbb{N}_0 . Then $\lambda(A) \notin \{1,3,5,9,11,15\}$.

Combining Theorem [1.6](#page-1-1) with Theorem [1.11](#page-2-0) proves Conjecture [1.5,](#page-1-2) thus resolving Rolnick's conjecture.

2. Modular sequences

In order to prove our main result, we will use the theory of modular sequences developed in [\[1](#page-19-2)] and more recently studied in [\[7](#page-19-6)]. Modular sequences are a class of Stanley sequences of Type I which contains all independent Stanley sequences as a strictly smaller subset.

Definition 2.1. Let A be a set of integers and z be an integer. We say that z is covered by A if there exist $x, y \in A$ such that $x < y$ and $2y - x = z$. We frequently say that z is covered by x and y.

Suppose that N is a positive integer. If $x, y, z \in \{0, \ldots, N-1\}$ and $x \neq y$, we say they form an arithmetic progression modulo N, or a mod-AP if $2y - x \equiv z \pmod{N}$.

Suppose again that N is a positive integer and $A \subseteq \{0,\ldots,N-1\}.$ Then, we say that z is *covered by A modulo N*, or mod-covered, if there exist $x, y \in A$ with $x \leq y$ such that x, y, z form an arithmetic progression modulo N.

Definition 2.2. Fix a positive integer $N \geq 1$. Suppose the set $A \subset \{0, \ldots, \}$ $N-1$ } containing 0 is 3-free modulo N, and all $x \in \{0, \ldots, N-1\} \backslash A$ are covered by A modulo N. Then A is said to be a modular set modulo N and $S(A)$ is said to be a modular Stanley sequence modulo N.

Observe that the modulus N of a modular Stanley sequence is analagous to the repeat factor ρ of an independent Stanley sequence. One can make this statement more precise in the following proposition:

Proposition 2.3 (Proposition 2.3, [\[1](#page-19-2)]). Suppose A is a finite subset of \mathbb{N}_0 and suppose $S(A)$ is an independent Stanley sequence with repeat factor ρ . Then $S(A)$ is a modular Stanley sequence modulo $3^{\ell} \cdot \rho$ for some integer $\ell \geq 0$.

Remark 2.4. One can show that the modulus of a modular Stanley sequence is well-defined up to a power of 3.

Definitions and results involving independent Stanley sequences generalize nicely to modular Stanley sequences.

Definition 2.5. Suppose that A is a modular set modulo N. Define $\lambda(A)$ = $2 \cdot \max(A) - N + 1$. Let $O(A)$ denote the set of elements $x \in \{0, 1, \ldots, N - 1\}$ $1\} \A$ such that x is covered by A modulo N but x is not covered by A. If $O(A) \neq \emptyset$, then define $\omega(A)$ to be max $(O(A))$.

Remark 2.6. The set $O(A) = \emptyset$ if and only if $S(A) = S(0)$.

The definitions of λ and ω coincide with the corresponding definitions for an independent Stanley sequence when $S(A)$ is an independent Stanley sequence. Using these definitions, one can easily prove the following generalization of Lemma [1.9.](#page-2-1)

Lemma 2.7. If $S(A)$ is modular, then $\omega(A) < \lambda(A)$.

Remark 2.8. Throughout this paper, we will repeatedly use the fact that, for a modular set A modulo N, every element $x \in \{0, 1, \ldots, N-1\} \backslash A$, such that $x > \omega(A)$, is *covered* by A (and not merely mod-covered by A).

3. Proof of main result

Theorem 3.1. If A is a modular set modulo $N \in \mathbb{N}$, then $\lambda(A) \notin \{1, 3, 5, 9, \ldots\}$ $11, 15$.

Observe that this result implies Theorem [1.11](#page-2-0) since every independent Stanley sequence is a modular Stanley sequence.

The proof of Theorem [3.1](#page-4-0) has been broken up into several more manageable results including Lemma [3.3,](#page-4-1) Lemma [3.5,](#page-5-0) Proposition [3.7,](#page-5-1) Proposition [3.10,](#page-6-0) Proposition [3.15,](#page-9-0) and Proposition [3.22.](#page-10-0) The proofs of Lemmas [3.3](#page-4-1) and [3.5](#page-5-0) and Proposition [3.7](#page-5-1) are more detailed in order to give the reader better guidance in understanding the various proof techniques. The later lemmas and propositions omit some details for brevity.

Lemma [3.2,](#page-4-2) though simple, will prove invaluable.

Lemma 3.2. Suppose that $A = \{a_0, ..., a_n\}$ with $0 = a_0 < \cdots < a_n$ is a modular set modulo N for some $N \in \mathbb{N}$. If $a_k > \omega(A)$, then $A =$ $S(a_0, \ldots, a_k) \cap \{0, 1, \ldots, N-1\}$ and $S(A) = S(a_0, \ldots, a_k)$.

Proof. If $x \in \mathbb{N}$ with $x \le a_k$ then $x \in A$ if and only if $x \in \{a_0, \ldots, a_k\}$. Therefore $S(a_0, ..., a_k) \cap \{0, 1, ..., a_k\} = A \cap \{a_0, ..., a_k\}$. Now we proceed by induction. Suppose that $S(a_0, \ldots, a_k) \cap \{0, 1, \ldots, a_m\} = A \cap \{0, 1, \ldots, a_m\}$ for some $k \leq m < n$. If $z \in \mathbb{N}$ and $a_m < z < a_{m+1}$ then $z \notin A$ and $z > \omega(A)$. Therefore, there exist $a_i, a_j \in A$ with $a_i < a_j$ such that a_i, a_j, z form an AP. Since $i, j \leq m$ we see that $a_i, a_j \in S(a_0, \ldots, a_k)$ and therefore $z \notin$ $S(a_0,\ldots,a_k)$. The greedy algorithm then dictates that $a_{m+1} \in S(a_0,\ldots,a_k)$ and $S(a_0,...,a_k) \cap \{0,1,...,a_{m+1}\} = A \cap \{0,1,...,a_{m+1}\}.$ By induction we have shown that $S(a_0,...,a_k) \cap \{0,1,...,N-1\} = A$ and $S(a_0,...,a_k) =$ $S(A).$ \Box

We begin by proving a few simple lemmas. In all of these lemmas, the character being investigated is odd, thus the modulus is required to be even (see Definition [2.5\)](#page-3-0). Therefore, we will only consider modular sets with modulus 2N for some $N \in \mathbb{N}$.

3.1. Characters $\lambda = 1, 3$

Lemma 3.3. There does not exist a modular set A modulo 2N with $\lambda(A)=1.$

Proof. Let A be a modular set with modulus 2N where $N \in \mathbb{N}$ and $\lambda(A) = 1$. Using the definition of λ , one finds that max(A) = N, a contradiction. Every modular set contains 0; therefore, A contains the mod 2N arithmetic progression $0, N, 0$. □ Remark 3.4. The proof of Lemma [3.3](#page-4-1) relied on the fact that if a modular set has modulus 2N and $x \in A$ then $x + N \pmod{2N} \notin A$. We will use this fact repeatedly throughout the proofs of the following statements.

Lemma 3.5. There does not exist a modular set A modulo 2N with $\lambda(A)=3.$

Proof. Let A be a modular set with modulus 2N where $N \in \mathbb{N}$ and $\lambda(A) = 3$. One deduces that $\max(A) = N + 1$ from the definition of λ and $1, N \notin A$ by Remark [3.4.](#page-5-2) Since $1 \notin A$, it must be mod-covered by A by the definition of a modular set. That is, there exist $x, y \in A$ with $x < y$ such that $2y - x \equiv 1$ (mod 2N). Since $0 < y < 2N$, one deduces that $2y - x = 1$ or $2N + 1$. Since $y > 1$ we also know that $2y - x \ge y + 1 > 1$ and therefore $2y - x \ne 1$. If $y < N$, then $2y - x < 2N - x < 2N + 1$. Therefore, if $2y - x = 2N + 1$, then $y \geq N$ and $y = N + 1 = \max(A)$ necessarily. Finally, if $y = N + 1$, then $2y - (2N + 1) = x = 1 \in A$, a contradiction. \Box

Lemmas [3.3](#page-4-1) and [3.5](#page-5-0) were proven by Rolnick [\[4](#page-19-1)] in the case of independent Stanley sequences. We have proved these statements here as a warm-up for the upcoming more involved proofs.

Remark 3.6. In [\[1](#page-19-2)], an operation was introduced that allows one to combine modular sets. If A and B are modular sets modulo N and M then $A \otimes B :=$ $A + N \cdot B$ is a modular set modulo NM with $\lambda(A \otimes B) = \lambda(A) + N \cdot \lambda(B)$. Through the following proofs, we will assume that N is "large." Let $\{0, 1\}$ be the modular set of modulus 3 with character 0. If A is a modular set modulo 2N then $A \otimes \{0,1\}$ is a modular set modulo $3 \cdot 2N$ with the same character λ . Thus, if we show that, for any fixed threshold N_0 , that there is no modular set A with odd character λ of modulus 2N where $N \geq N_0$, then we have shown there exist no modular sets A of character λ .

3.2. Character $\lambda = 5$

Proposition 3.7. There does not exist a modular set A modulo 2N with $\lambda(A)=5.$

We will break the proof of Proposition [3.7](#page-5-1) into Lemmas [3.8](#page-5-3) and [3.9.](#page-6-1) In these proofs, we assume N is "large" and we can in fact assume $N > 100$. Using Remark [3.6,](#page-5-4) we deduce Proposition [3.7.](#page-5-1)

Lemma 3.8. Let A be a modular set modulo 2N with $\lambda(A)=5$. Then, $N+1 \notin A$.

Proof. Suppose that $N + 1 \in A$. Observe that $\max(A) = N + 2$ and 2 is mod-covered by $0, N + 1, 2$ and 4 is mod-covered by $0, N + 2, 4$. Also observe that $1, N \notin A$. Since $1 \notin A$, there exist $x, y \in A$ with $x < y$ such that $x, y, 1$ form a mod-AP. Since $y > 0$, we deduce that $2y - x = 2N + 1$ which further implies that $y = N + 2$ and $x = 3$. Is $5 \in A$? If not, then by Lemma [2.7](#page-3-1) there exist $x, y \in A$ that cover 5 mod 2N since $5 > \omega(A)$. This is impossible and thus $5 \in A$. Since we now have $3, 5 \in A$, we see that $A =$ $S(0, 3, 5) \cap \{0, 1, \ldots, 2N - 1\}$ by Lemma [3.2](#page-4-2) and therefore $S(A) = S(0, 3, 5)$. A quick computation shows that $S(0, 3, 5) = S(B)$ where $B = \{0, 3, 5, 8\}$, a modular set modulo 9 with character $\lambda(B) = 8$. Therefore, $\lambda(A) = 8$ since $S(A) = S(B)$, a contradiction. 口

Lemma 3.9. There does not exist a modular set A of modulus 2N and $\lambda(A) = 5$ with $N + 1 \notin A$.

Proof. Let A be a modular set modulo 2N with $\lambda(A) = 5$ and $N + 1 \notin A$. Observe that $\max(A) = N + 2$ and $2 \notin A$. Since $2 \notin A$, there exist $x, y \in A$ that mod-cover 2. A quick computation shows that we require $x = 0$ and $y = 1$. Thus $1 \in A$ and we see that 3 is mod-covered by $1, N + 2, 3$ and 4 is mod-covered by $0, N+2, 4$. Is $5 \in A$? If not, then by Lemma [2.7](#page-3-1) there exist $x, y \in A$ that cover 5 mod 2N since $5 > \omega(A)$. This is impossible and thus $5 \in A$. Hence, $S(A) = S(0, 1, 5) = \{0, 1, 5, 6, 8, 13, \dots\}$ by Lemma [3.2.](#page-4-2)

Since N is "big," we know that $2N-1$, $2N-2$, $2N-3$, $2N-4$, ..., $N+3 \notin$ A. Hence, these numbers are mod-covered by A and are in fact covered by A since $\omega(A)$ < 5. We see that $2N-1$ is covered by $5, N+2$ and $2N-2$ is covered by $6, N+2$. However, we can only cover $2N-3$ by $1, N-1$ which implies $N-1 \in A$. Thus $2N-4$ is covered by $8, N+2$. We know $2N-5 \notin A$ and is therefore covered by $x, y \in A$ with $x < y$. Observe that $y \neq N + 2$ otherwise $9 \in A$, a contradiction. Also observe that $y \neq N-1$ otherwise $3 \in A$, a contradiction. We could cover $2N-5$ by $1, N-2$, but this is a contradiction because then A contains the mod-AP $N-2, 0, N+2$. Hence, $y < N - 2$. However, $2N - 5 = 2y - x \le 2(N - 3) + x$, a contradiction.

Therefore, there does not exist a modular set A of modulus 2N with $\lambda(A) = 5$ with $N + 1 \notin A$. □

The techniques from Lemmas [3.8](#page-5-3) and [3.9](#page-6-1) will be used repeatedly in the following propositions and lemmas.

3.3. Character $\lambda = 9$

Proposition 3.10. There does not exist a modular set A modulo 2N with $\lambda(A)=9.$

We break the proof of Proposition [3.10](#page-6-0) into Lemmas [3.11,](#page-7-0) [3.12,](#page-7-1) [3.13,](#page-8-0) and [3.14.](#page-8-1) Through case by case analysis, we will eliminate all possible sets A. In these proofs, we assume N is "large" and we can in fact assume $N > 100$. Using Remark [3.6,](#page-5-4) we deduce Proposition [3.10.](#page-6-0)

Lemma 3.11. Let A be a modular set modulo 2N with $\lambda(A)=9$. Then $N+3 \notin A$.

Proof. Suppose that $N + 3 \in A$. Since $N + 4 = \max(A)$, we deduce that $N+2 \notin A$ because otherwise A would contain the AP $N+2, N+3, N+4$. We see that $3, 4 \notin A$ and 6 is mod-covered by $0, N+3$ and 8 is mod-covered by $0, N + 4$. The only way to mod-cover 3 is with $5, N + 4$ and thus 1 is mod-covered by $5, N+3$. Every valid way to mod-cover 4 requires 2; hence, $2 \in A$. Since $0, 2 \in A$, we see that $N+1 \notin A$. There is no way to mod-cover 7, so $7 \in A$. We see that 9 is covered by 5,7 and 10 is covered by 0,5. However, 11 cannot be covered, so $11 \in A$ and thus we have deduced that $S(A) = S(0, 2, 5, 7, 11) = \{0, 2, 5, 7, 11, 13, 16, 18, 28, \dots\}.$

Now we examine how $2N-1$, $2N-2$,... are covered by A. We see that $2N-1$ is covered by $7, N+3$ but the only way to cover $2N-2$ is with $0, N-1$. Hence, $N-1 \in A$. Similar analysis shows that $2N-3$ is covered by $11, N+4$, the element $2N-4$ is covered by $2, N-1$, and the element $2N-5$ is covered by 11, $N + 3$. However, $2N - 6$ cannot be covered by $x < y$ using $y = N + 4, N + 3$ or $N - 1$. We see that $y = N - 3$ and $y = N - 2$ are the only possible remaining choices. However, $N-3$ cannot be in A, otherwise A contains the AP $N-3, 0, N+3$. Therefore, $y = N-2$ and $x = 2$ which implies that $N - 2 \in A$.

Further analysis shows that $2N - 7, \ldots, 2N - 13$ are covered by A. However, $2N-14$ cannot be covered by $x, y \in A$ with $y \in \{N-2, N-1, N+1\}$ 3, $N + 4$. Therefore, $y \in \{N - 7, N - 6, N - 5, N - 4, N - 3\}$. However, $N-3, N-4 \notin A$ by Remark [3.4.](#page-5-2) Furthermore, $N-5 \notin A$ otherwise A would contain the AP $N-5, N-1, N+3$. Similarly, one deduces that $N-6, N-7 \notin A$, and we have obtained a contradiction. 口

Lemma 3.12. Let A be a modular set modulo 2N with $\lambda(A)=9$ and $N+3 \notin A$. Then $N+1 \notin A$.

Proof. Suppose that $N + 1 \in A$. We see that 2 and 8 are mod-covered by A and that $1, 4 \notin A$. The only way to mod-cover 4 is with $0, N+2$; therefore, $N + 2 \in A$. Observe that $3 \notin A$ otherwise A would contain the mod-AP $N+2, 3, N+4$. Therefore, the only way to mod-cover 1 is with $7, N+4$ which implies $7 \in A$. The only way to mod-cover 3 is with $5, N + 4$ which implies $5 \in A$. Since $5, 7 \in A$, we see that $6 \notin A$ yet unfortunately 6 cannot be mod-covered by A. Thus we have obtained a contradiction.□ **Lemma 3.13.** Let A be a modular set modulo 2N with $\lambda(A) = 9$ and $N+1, N+3 \notin A$. Then $N+2 \notin A$.

Proof. Suppose that $N + 2 \in A$. We see that 4,8 are mod-covered by A and $2 \notin A$. Also observe that $3 \notin A$ since otherwise A would contain the mod-AP $N+2, 3, N+4$. We see that $5, 6 \in A$ since there is no way to mod-cover them. Therefore, $3, 4, 7$ are mod-covered by A. This leaves us with no way to mod-cover 1, so $1 \in A$. We see that 9, 10, 11, 12 are covered and 13 cannot be covered by A. Therefore, $13 \in A$ and $S(A) = S(0, 1, 5, 6, 13)$.

Observe that $2N-1$ is covered by $5, N+2$ and $2N-2$ is covered by $6, N+2$ and $2N-3$. However, neither $N+2$ nor $N+4$ may be used to cover $2N-3$. Therefore, $2N-3$ is necessarily covered by $1, N-1$ which implies $N-1 \in A$. However, $N-1, N+2, N+4$ cannot be used to cover $2N-4$. The only way to cover $2N-4$ requires $N-2 \in A$. This is a contradiction since including $N-2$ in A would introduce the mod-AP $N-2, 0, N+2$. \Box

Lemma 3.14. There does not exist a modular set A of modulus 2N and $\lambda(A) = 9 \text{ with } N+1, N+2, N+3 \notin A.$

Proof. Let A be a modular set modulo 2N with $\lambda(A) = 9$ and $N + 1, N +$ $2, N+3 \notin A$. We see that 8 is mod-covered by A and $4 \notin A$. The element 2 is necessarily in A in order to mod-cover 4. The element $7 \in A$ is needed to mod-cover 1. We break our proof into the cases where either (Case I) $3 \in A$ or (Case II) $5 \in A$.

Case I: Since $3 \in A$, we see that 5 is mod-covered by A and $9 \in A$ since it cannot be mod-covered by A. We deduce that $S(A) = S(0, 2, 3, 7, 9) =$ $\{0, 2, 3, 7, 9, 10, 19, \ldots\}$. Now, $2N - 1$ is covered by $9, N + 4$ and $2N - 2$ is covered by 10, $N + 4$. However, $2N - 3$ cannot be covered using $N + 4$ and can only be covered by 1, $N-1$. This is a contradiction since $1 \notin A$.

Case II: Since $5 \in A$, we see that 3, 9, 10 are mod-covered by A and 11 cannot be mod-covered by A. Therefore, $11 \in A$ and $S(A) = S(0, 2, 5, 7, 11)$. Since $9 \notin A$, we cannot use $N+4$ to cover $2N-1$. Hence $2N-1$ cannot be covered, which is a contradiction.

Therefore, a modular set A of modulus 2N with $\lambda(A) = 9$ and $N +$ $1, N+2, N+3 \notin A$ cannot exist. \Box

3.4. Character $\lambda = 11$

Throughout the remainder of the paper, we will frequently write "covered" or "mod-covered" to mean "covered by A" or "mod-covered by A."

Proposition 3.15. There does not exist a modular set A modulo 2N with $\lambda(A) = 11.$

We break the proof of Proposition [3.15](#page-9-0) into Lemmas [3.16,](#page-9-1) [3.17,](#page-9-2) [3.18,](#page-9-3) [3.19,](#page-9-4) [3.20,](#page-10-1) and [3.21.](#page-10-2) In these proofs, we assume N is "large" and we can in fact assume $N > 100$. Using Remark [3.6,](#page-5-4) we deduce Proposition [3.15.](#page-9-0) When $\lambda(A) = 11$, observe that $\max(A) = N + 5$.

Lemma 3.16. Let A be a modular set modulo 2N with $\lambda(A) = 11$ with $N+2 \in A$. Then $N+4 \notin A$.

Proof. Assume $N+4 \in A$. Observe that 4, 8, 10 are mod-covered and 2, 3, 5, $N+3 \notin A$. This is a contradiction since there is no way to mod-cover 5. \Box

Lemma 3.17. Let A be a modular set modulo 2N with $\lambda(A) = 11$ with $N + 2 \notin A$. Then $N + 4 \notin A$.

Proof. Assume $N+4 \in A$. Observe that 8, 10 are mod-covered and 4, 5, $N+$ $3 \notin A$. We need $3 \in A$ to mod-cover 5 and thus 6,7 are also mod-covered. Since 2 is required to mod-cover 4, we have $2 \in A$ and $1 \notin A$, and we need $9 \in A$ to mod-cover 1. Observe that $11 \in A$ since it cannot be modcovered. Therefore, $S(A) = S(0, 2, 3, 9, 11)$, a modular Stanley sequence with character 20. This is a contradiction with $\lambda(A) = 11$. \Box

Observe that Lemmas [3.16](#page-9-1) and [3.17](#page-9-2) imply that a modular set A modulo 2N with $\lambda(A) = 11$ cannot contain the element $N + 4$.

Lemma 3.18. Let A be a modular set modulo 2N with $\lambda(A) = 11$ with $N+4 \notin A$. Then $N+2 \notin A$.

Proof. Assume $N+2 \in A$. Observe that 4, 10 are mod-covered and 2, $5 \notin A$. Every possible mod-cover of 5 includes 1, so $1 \in A$ and therefore 2, 3, 9 are also mod-covered. We then see that $N+3 \in A$ is required to mod-cover 5. Therefore, $N + 1 \notin A$ and 6 is mod-covered. We cannot mod-cover 7, 8, 11, so they are elements of A. Therefore, $S(A) = S(0, 1, 7, 8, 11)$.

We see that $2N-1$, $2N-2$, ..., $2N-9$ are covered. However, we must include an additional element into A in order to cover $2N - 10$. The possible candidates are $N - 5$, $N - 4$, $N - 3$, $N - 2$, $N - 1$. However, $N - 5$, $N 3, N-2, N-1$ are not allowed for they would introduce a mod-AP into A. Therefore, $2N - 10$ is covered by $2, N - 4$. This is a contradiction with $2 \notin A$. \Box

Lemma 3.19. Let A be a modular set modulo 2N with $\lambda(A) = 11$ with $N+2, N+4 \notin A$. Then $N+3 \notin A$.

Proof. Assume $N+3 \in A$. Observe that 6, 10 are mod-covered and 3, 4, 5, N+ $1 \notin A$. We require $1 \in A$ to mod-cover 5, so $1 \in A$. Therefore 2,9 are also mod-covered. This is a contradiction since there is no way to mod-cover 4. □

Lemma 3.20. Let A be a modular set modulo 2N with $\lambda(A) = 11$ with $N+2, N+3, N+4 \notin A$. Then $N+1 \notin A$.

Proof. Assume $N + 1 \in A$. Observe that 2, 10 are mod-covered and 1, 3, 5 \notin A. There is no way to mod-cover $5 \notin A$, which is a contradiction. □

Lemma 3.21. There does not exist a modular set A of modulus 2N and $\lambda(A) = 11 \text{ with } N + 1, N + 2, N + 3, N + 4 \notin A.$

Proof. Let A be a modular set modulo 2N with $\lambda(A) = 11$ and $N + 1, N +$ $2, N+3, N+4 \notin A$. Observe that 10 is mod-covered and $5 \notin A$. We see that 5 must be covered by (Case I) 1, 3 or (Case II) 3, 4. In both cases, $3 \in A$, so 6 and 7 are mod-covered.

Case I: In this case $1 \in A$ which implies, 2, 4, 9 are mod-covered. We see that $4 \in A$ since it cannot be mod-covered, and therefore 8 is covered. Since 11 also cannot be mod-covered, we have $11 \in A$ and $S(A) = S(0, 1, 3, 4, 11)$.

Case II: In this case $4 \in A$ which implies 5,6,8 are mod-covered and $2 \notin A$. We see that 1 is required to cover 2 and in turn 2, 7, 9 are mod-covered. Since 11 cannot be mod-covered, we have $11 \in A$ and $S(A) = S(0, 1, 3, 4, 11)$.

In both these cases, we have $S(A) = S(0, 1, 3, 4, 11)$. Now, we examine how A covers $2N-1$, $2N-2$,.... The elements $2N-1$, $2N-2$ are covered by 11, $N + 5$ and 12, $N + 5$. However, $2N - 3$ requires $N - 1 \in A$. Using similar reasoning, one observes that $2N - 4$, $2N - 5$, $2N - 6$ are covered. However, covering $2N - 7$ requires $N - 2$ or $N - 3$. We cannot include $N - 3$ in A otherwise it would contain the mod-AP $N-3, 1, N+5$. Therefore, $N-2 \in A$ and $2N-7$ is covered by $3, N-2$. We see that $2N-8$ is covered but $2N-9$ requires $N-4 \in A$. Even after including $N-4 \in A$, we need $N-5$ to cover $2N-10$. This is a contradiction since the set A would then include the mod-AP $N - 5, 0, N + 5$.

Therefore, there does not exist a modular set of modulus 2N with $\lambda(A) =$ 11 and $N + 1$, $N + 2$, $N + 3$, $N + 4 \notin A$. \Box

3.5. Character $\lambda = 15$

Proposition 3.22. There does not exist a modular set A modulo 2N with $\lambda(A) = 15.$

We break the proof of Proposition [3.22](#page-10-0) into Lemmas [3.23](#page-11-0) through [3.40](#page-17-0) always using the observation that $\max(A) = N + 7$. In these lemmas we show that, if A is a modular set modulo 2N with $\lambda(A) = 15$, the elements $N+1, N+5, N+3, N+2, N+6, N+4$ are successively not in A. In Lemma [3.40,](#page-17-0) we will show that there does not exist such a modular set A with $N+1, N+5, N+3, N+2, N+6, N+4 \notin A$. In these proofs, we assume N is "large" and we can in fact assume $N > 100$. Using Remark [3.6,](#page-5-4) we deduce Proposition [3.22.](#page-10-0)

Lemma 3.23. Let A be a modular set modulo 2N with $\lambda(A) = 15$ with $N+1 \in A$. Then $N+3 \notin A$.

Proof. Suppose $N + 3 \in A$. Then 2, 6, 14 are mod-covered and 1, 3, 7, N – $7, N-4, N-3, N-1, N+2, N+4, N+5 \notin A$. Necessarily 7 is mod-covered by $5, N+6 \in A$; therefore, 1, 9, 10, 12 are mod-covered and $N-4, N-6 \notin A$. We need $11 \in A$ to mod-cover 3 which implies $8 \notin A$. Furthermore, $13 \in A$ since it cannot be mod-covered. We see that $4 \in A$ in order to cover 8. We then see that $S(A) = S(0, 4, 5, 11, 13, 16)$. One computes that $2N-1, \ldots, 2N-11$ are covered. However, $2N - 12 \notin A$ and therefore must be covered by $x < y$ with $x, y \in A$. However, $y = N - 2$ necessarily which implies $x = 8$, a contradiction with $8 \notin A$. \Box

Lemma 3.24. Let A be a modular set modulo 2N with $\lambda(A) = 15$ with $N+1 \in A$ and $N+3 \notin A$. Then $N+5 \notin A$.

Proof. Assume $N + 5 \in A$. Observe that $N + 4$, $N + 6 \notin A$ and 2, 10, 14 are mod-covered and $1, 3, 4, 5, 6, 7 \notin A$. This is a contradiction since it is impossible to mod-cover 7. □

Lemma 3.25. Let A be a modular set modulo 2N with $\lambda(A) = 15$ with $N+1 \in A$ and $N+3, N+5 \notin A$. Then $N+6 \notin A$.

Proof. Assume $N + 6 \in A$. Observe that 2, 12, 14 are mod-covered and $1, 4, 6, 7, N-1, N+4 \notin A$. We need $5 \in A$ in order to mod-cover 7 which implies 7, 9, 10 are mod-covered. We see that $8 \in A$ since it cannot be mod-covered and therefore 4, 6, 11 are mod-covered. Since 3 cannot be modcovered, we see that $3 \in A$ and thus 13 is mod-covered. Lastly, $N + 2 \in A$ necessarily to mod-cover 1.

Observe that $S(A) = S(0, 3, 5, 8, 15) = \{0, 3, 5, 8, 15, 17, 18, 20, \ldots\}.$ However, there is no way to cover $2N - 2 \notin A$, a contradiction. \Box

Lemma 3.26. Let A be a modular set modulo 2N with $\lambda(A) = 15$ with $N + 1 \in A$ and $N + 3, N + 5, N + 6 \notin A$. Then $N + 2 \notin A$.

Proof. Assume $N+2 \in A$. Observe that 2, 4, 14 are mod-covered and 1, 7, $N+$ $4 \notin A$. Also observe that $3, 5 \in A$ necessarily to cover 7. Therefore, 1, 6, 7, 9, 10, 11 are mod-covered. We see that $8 \in A$ since it cannot be mod-covered. Therefore, 13 is mod-covered. Lastly, $12 \in A$ since it cannot be mod-covered.

Therefore, $S(A) = S(0, 3, 5, 8, 12, 15)$. We know that $N-1 \notin A$ otherwise this would introduce a mod-AP. However, this leaves us with no way to cover $2N-2$, and we obtain a contradiction. \Box

Lemma 3.27. There does not exist a modular set A modulo 2N with $\lambda(A)$ = 15 and $N + 1 \in A$ and $N + 2$, $N + 3$, $N + 5$, $N + 6 \notin A$.

Proof. Suppose A is such a modular set. We see that 2, 14 are mod-covered and 1, 7 $\notin A$. Furthermore, $5 \in A$ is needed to cover 7 and 13 $\in A$ is needed to mod-cover 1. Therefore, 9, 10 are covered. In order to mod-cover 7, we require either (Case I) $3 \in A$ or (Case II) $6 \in A$.

Case I: If $3 \in A$, then 6, 7, 11 are mod-covered and $4 \notin A$. This is a contradiction since there is no way to mod-cover 4.

Case II: If $6 \in A$, then 7, 8, 12 are mod-covered and $3, 4 \notin A$. This is a contradiction since there is no way to mod-cover 4.

Therefore, there does not exist a modular set A modulo 2N with $\lambda(A)$ = 15 such that $N + 1 \in A$ and $N + 2$, $N + 3$, $N + 5$, $N + 6 \notin A$. \Box

Observe that Lemmas [3.23,](#page-11-0) [3.24,](#page-11-1) [3.25,](#page-11-2) [3.26,](#page-11-3) and [3.27](#page-12-0) imply that $N+1 \notin$ A for a modular set A modulo 2N with character $\lambda(A) = 15$.

Lemma 3.28. Let A be a modular set modulo 2N with $\lambda(A) = 15$ with $N+5 \in A$ and $N+1 \notin A$. Then $N+4 \notin A$.

Proof. Suppose $N+4 \in A$. Then 8, 10, 14 are mod-covered and 4, 5, 6, 7, N + $3, N + 6 \notin A$. In order to mod-cover 7, we require either (Case I) $1 \in A$ or (Case II) $3 \in A$.

Case I: If $1 \in A$, then 2, 7, 9, 13 are mod-covered. We see $N + 2 \in A$ necessarily to mod-cover 4 and thus 3 is mod-covered. This is a contradiction since there is no way to mod-cover 5.

Case II: If $3 \in A$, then $5, 6, 7, 11$ are mod-covered and $N-1, N+2 \notin A$. We require $2 \in A$ to cover 4. Therefore, $1 \notin A$ and 12 is mod-covered. We see $13 \in A$ since it cannot be mod-covered which implies 1 is mod-covered. Lastly $9 \in A$ since it cannot be mod-covered.

Therefore, $S(A) = S(0, 2, 3, 9, 13, 19)$. We see that $N-1$ is needed to cover $2N - 2$. This is a contradiction with $N - 1 \notin A$. □ **Lemma 3.29.** Let A be a modular set modulo 2N with $\lambda(A) = 15$ with $N+5 \in A$ and $N+1, N+4 \notin A$. Then $N+2 \notin A$.

Proof. Suppose $N+2 \in A$. Then 4, 10, 14 are mod-covered and 2, 5, 6, 7, N + $3, N + 6 \notin A$. We need $3 \in A$ to mod-cover 7 and therefore 1, 6, 11 are also mod-covered. We deduce $9 \in A$ to mod-cover 5 and then deduce $8 \in A$ since it cannot be mod-covered. Hence, 2, 13 are mod-covered. Lastly, $12 \in A$ since it cannot be mod-covered. Therefore, $S(A) = S(0, 3, 8, 9, 12, 17)$. However, $2N-1$ cannot be covered, and we have obtained a contradiction. \Box

Lemma 3.30. There does not exist a modular set A modulo 2N with $\lambda(A)$ = 15 with $N + 5 \in A$ and $N + 1, N + 2, N + 4 \notin A$.

Proof. Suppose A is such a modular set. Observe that 10, 14 are mod-covered and $5, 6, 7, N+3, N+6 \notin A$. In order to mod-cover 7, we require either (Case I) $1, 4 \in A$ or (Case II) $3 \in A$.

Case I: Assume $1, 4 \in A$. Therefore, 2, 6, 7, 8, 9, 13 are mod-covered. We require $3 \in A$ to mod-cover 5. Therefore, 11 is mod-covered and $N - 1 \notin A$. We have $12 \in A$ since it cannot be mod-covered. We deduce that $S(A) =$ $S(0, 1, 3, 4, 12, 15)$. This is a contradiction since one cannot cover $2N - 3$.

Case II: Assume $3 \in A$. Observe that 6, 7, 11 are mod-covered and N – $1 \notin A$. We break this case into the following four subcases: (Case II.1) $2, 9 \in A$, (Case II.2) $9 \in A$ and $2 \notin A$, (Case II.3) $9 \notin A$ and $1 \in A$, and (Case II.4) $1, 9 \notin A$.

Case II.1: In this case $2, 9 \in A$. We see that $1, 4, 5, 8, 12$ are mod-covered and 13 \in A since it cannot be mod-covered. We deduce that $S(A)$ = $S(0, 2, 3, 9, 13, 19)$. This is a contradiction since there is no way to cover $2N - 1$.

Case II.2: In this case $9 \in A$ and $2 \notin A$. We see that 1, 5 are mod-covered. We see that $12 \in A$ in order to mod-cover 2. We deduce $4 \in A$ since it cannot be mod-covered which implies 8 is mod-covered. Lastly, $13 \in A$ since it cannot be mod-covered. Therefore, $S(A) = S(0, 3, 4, 9, 12, 13, 16)$ and thus $S(A)$ is an independent Stanley sequence with character $\lambda(A) = 24$. This is a contradiction with $\lambda(A) = 15$.

Case II.3: In this case $1 \in A$, $9 \notin A$ and thus $2, 5, 9, 13$ are mod-covered. We see that $4 \in A$ since it cannot be mod-covered and thus 8 is mod-covered. Lastly, we include $12 \in A$ since it cannot be mod-covered. Therefore, $S(A)$ = $S(0, 1, 3, 4, 12, 15)$. This is a contradiction since there is no way to cover $2N - 3$.

Case II.4: In this case $3 \in A$ and $1, 9 \notin A$. We see that 6, 7, 11 are modcovered. We require $4 \in A$ to cover 5. Therefore, 5, 8 are covered and $2 \notin A$. This is a contradiction since there is no way to mod-cover 9.

Therefore, there does not exist a modular set A modulo 2N with $\lambda(A) =$ 15 such that $N + 5 \in A$ and $N + 1, N + 2, N + 4 \notin A$. □

Observe that Lemmas [3.28,](#page-12-1) [3.29,](#page-13-0) and [3.30,](#page-13-1) along with previous results, imply that $N + 5 \notin A$ for a modular set A modulo 2N with character $\lambda(A) = 15.$

Lemma 3.31. Let A be a modular set modulo 2N with $\lambda(A) = 15$ with $N+3 \in A$ and $N+1, N+5 \notin A$. Then $N+4 \notin A$.

Proof. Suppose $N + 4 \in A$. Then 6, 8, 14 are mod-covered and 3, 4, 5, 7 $\notin A$. We need $1 \in A$ to mod-cover 7 and therefore 2, 5, 7, 13 are mod-covered. We see that 9, 10 are in A since they cannot be mod-covered and thus 4, 11 are mod-covered. We need $N + 6 \in A$ to mod-cover 3 which implies 12 is also mod-covered. Thus $S(A) = S(0, 1, 9, 10, 15)$ and $S(A)$ is an independent Stanley sequence with character $\lambda(A) = 24$. This is a contradiction with $\lambda(A) = 15.$ \Box

Lemma 3.32. Let A be a modular set modulo 2N with $\lambda(A) = 15$ with $N+3 \in A$ and $N+1, N+4, N+5 \notin A$. Then $N+2 \notin A$.

Proof. Suppose $N + 2 \in A$. Observe that 4,6,14 are mod-covered and $2, 3, 5, 7 \notin A$. This is a contradiction since there is no way to mod-cover 7. \Box

Lemma 3.33. There does not exist a modular set A modulo 2N with $\lambda(A)$ = 15 with $N + 3 \in A$ and $N + 1, N + 2, N + 4, N + 5 \notin A$.

Proof. We see that 6, 14 are mod-covered and $3, 5, 7, N - 1 \notin A$. We divide the argument into the cases where either (Case I) $11 \in A$ or (Case II) $11 \notin A$.

Case I: In this case, 3 is mod-covered. We see that $1, 4 \in A$ in order to mod-cover 7. Therefore, 2, 5, 6, 7, 8, 10, 13 are mod-covered and $N + 6 \notin A$. We see that $9, 12 \in A$ since they cannot be mod-covered. Therefore, $S(A)$ = $S(0, 1, 4, 11, 12, 16)$. This is a contradiction since we cannot cover $2N - 1$.

Case II: We need $9, N + 6 \in A$ to mod-cover 3 and therefore 5, 12 are also mod-covered. We require $1, 4 \in A$ in order to mod-cover 7. Therefore, 2, 8, 10, 11, 13 are also mod-covered and $N-5$, $N-4 \notin A$. Hence, $S(A)$ = $S(0, 1, 4, 9, 15)$. This is a contradiction since there is no way to cover $2N-11$.

Therefore, there does not exist a modular set A modulo 2N with $\lambda(A) =$ 15 such that $N + 3 \in A$ and $N + 1, N + 2, N + 4, N + 5 \notin A$. □

Observe that Lemmas [3.31,](#page-14-0) [3.32,](#page-14-1) and [3.33](#page-14-2) imply that $N+3 \notin A$ for a modular set A modulo 2N with character $\lambda(A) = 15$.

Lemma 3.34. Let A be a modular set modulo 2N with $\lambda(A) = 15$ with $N+2 \in A$ and $N+1, N+3, N+5 \notin A$. Then $N+4 \notin A$.

Proof. Suppose $N + 4 \in A$. Then $4, 8, 14, N + 6$ are mod-covered and $2, 3, 7$, $N-2, N-3 \notin A$. We break our proof into the cases where either (Case I) $1 \in A$ or (Case II) $1 \notin A$.

Case I: Suppose $1 \in A$. Then 2, 3, 7, 13 are mod-covered. We then have two further subcases: (Case I.1) $5 \in A$ and (Case I.2) $5 \notin A$.

Case I.1: If $5 \in A$, then 9, 10 are mod-covered. We see that $6 \in A$ since it cannot be mod-covered and thus 11, 12 are mod-covered. Hence, $S(A) = S(0, 1, 5, 6, 15)$. We see that $N - 1 \in A$ is necessary to mod-cover $2N-3$. This is a contradiction since there is no way to cover $2N-6$.

Case I.2: If $5 \notin A$, then $9 \in A$ is needed to mod-cover 5. We see that $6 \in A$ since it cannot be mod-covered which implies 11, 12 are covered. Lastly, $10 \in A$ since it cannot be mod-covered. Therefore, $S(A) =$ $S(0, 1, 6, 9, 10, 15)$, an independent Stanley sequence with character $\lambda(A)$ 24. This is a contradiction with $\lambda(A) = 15$.

Case II: If $1 \notin A$, then one requires $5, 6 \in A$ to mod-cover 7 and therefore 2, 3, 7, 9, 10, 12 are mod-covered. We require $13 \in A$ to mod-cover 1. Lastly, $11 \in A$ since it cannot be mod-covered. Therefore, $S(A) = S(0, 5, 6, 11,$ 13, 18). This is a contradiction since there is no way to cover $2N - 6$. \Box

Lemma 3.35. Let A be a modular set modulo 2N with $\lambda(A) = 15$ with $N + 2 \in A$ and $N + 1, N + 3, N + 4, N + 5 \notin A$. Then $N + 6 \notin A$.

Proof. Suppose $N + 6 \in A$, then 4, 12, 14 are mod-covered and 2, 6, 7, N – $3, N-2 \notin A$. We see that $5 \in A$ in order to cover 7 and therefore 7, 9, 10 are mod-covered. We conclude that $8 \in A$ since it cannot be mod-covered which implies 6, 11 are mod-covered. We need $1 \in A$ to cover 2. Hence, 2, 3, 13 are mod-covered and $N-4, N-5 \notin A$. Therefore, $S(A) = S(0, 1, 5, 8, 17)$.

We need $N - 1 \in A$ to cover $2N - 2$. However, there is no way to cover $2N - 11$, which is a contradiction. \Box

Lemma 3.36. There does not exist a modular set A modulo 2N with $\lambda(A) =$ 15 with $N + 2 \in A$ and $N + 1, N + 3, N + 4, N + 5, N + 6 \notin A$.

Proof. Suppose A is such a modular set. We see that $4,14$ are mod-covered and 2, 7, $N-3$, $N-2 \notin A$. We need $5 \in A$ to mod-cover 7 and thus 9, $10 \notin A$. We now break the argument up into the cases where either (Case I) $1 \in A$ or (Case II) $1 \notin A$.

Case I: Suppose $1 \in A$. Then 2, 3, 13 are mod-covered and $N-5 \notin A$. We see that $6 \in A$ to cover 7 and thus 8, 11, 12 are also mod-covered. Therefore, $S(A) = S(0, 1, 5, 6, 15)$. We require $N - 1 \in A$ in order to cover $2N - 3$. There is no way to cover $2N - 6$, which is a contradiction.

Case II: Suppose $1 \notin A$. We need $12 \in A$ to mod-cover 2 and thus $6 \notin A$. We need $3 \in A$ to mod-cover 7 which implies 1, 6, 11 are mod-covered and $N-1 \notin A$. We see that $8 \in A$ since it cannot be mod-covered and therefore 13 is covered. Therefore, $S(A) = S(0, 3, 5, 8, 12, 15)$. One cannot cover $2N - 2$, which is a contradiction.

Therefore, there does not exist a modular set A modulo 2N with $\lambda(A)$ = 15 such that $N + 2 \in A$ and $N + 1, N + 3, N + 4, N + 5, N + 6 \notin A$. \Box

Observe that Lemmas [3.35](#page-15-0) and [3.36,](#page-15-1) along with previous results, imply that $N + 2 \notin A$ for a modular set A modulo 2N with character $\lambda(A) = 15$.

Lemma 3.37. Let A be a modular set modulo 2N with $\lambda(A) = 15$ with $N + 6 \in A$ and $N + 1, N + 2, N + 3, N + 5 \notin A$. Then $N + 4 \notin A$.

Proof. Suppose $N+4 \in A$. Then 8, 12, 14 are mod-covered and 4, 5, 6, 7 $\notin A$. We need $1 \in A$ to mod-cover 7 and thus 2, 7, 11, 13 are mod-covered and $N-2 \notin A$. Therefore we need $3 \in A$ to mod-cover 6 which implies 5,6,9 are mod-covered and $N-1 \notin A$. Lastly, we need $10 \in A$ to mod-cover 4. Thus, $S(A) = S(0, 1, 3, 10, 15)$. There is no way to cover $2N - 5$, which is a contradiction. □

Lemma 3.38. There does not exist a modular set A modulo 2N with $\lambda(A)$ = 15 with $N + 6 \in A$ and $N + 1, N + 2, N + 3, N + 4, N + 5 \notin A$.

Proof. Suppose that such a modular set A exists. Observe that $12, 14$ are mod-covered and 6, 7, $N - 7$, $N - 6 \notin A$. We break our proof up into cases where either (Case I) $5 \in A$ or (Case II) $5 \notin A$.

Case I: Since $5 \in A$ then 7, 9, 10 are mod-covered. We then break this case up into the subcases where (Case I.1) $4 \in A$, (Case I.2) $3 \in A$, or (Case I.3) $3, 4 \notin A$.

Case I.1: Since $4 \in A$ then 6,8 are mod-covered and $2, 3 \notin A$. We need $11 \in A$ to mod-cover 3 which implies 1 is mod-covered. There is no way to mod-cover 2, which is a contradiction.

Case I.2: Since $3 \in A$ then 6, 11 are mod-covered and $1, 4, N - 1 \notin A$. We need $13 \in A$ to mod-cover 1 which then implies that $8 \notin A$. We require $2 \in A$ to mod-cover 4 and 8 which then implies $N-2 \notin A$. Therefore, $S(A) = S(0, 2, 3, 5, 13, 15)$. There is no way to cover $2N - 5$, which is a contradiction.

Case I.3: Since $3, 4 \notin A$, we require $8 \in A$ to mod-cover 6. Therefore, 4, 11 are also mod-covered and $2 \notin A$. There is no way to mod-cover 3, which is a contradiction.

Case II: Since $5 \notin A$, we require $1, 4 \in A$ to mod-cover 7. Therefore, 2, 8, 10, 11, 13 are also mod-covered and $N-5$, $N-4 \notin A$. One needs $3 \in A$ to mod-cover 6 which implies that 5, 9 are also mod-covered and $N-1 \notin A$. Therefore, $S(A) = S(0, 1, 3, 4, 15)$. We need $N - 2 \in A$ to cover $2N - 8$ and $N-3 \in A$ to cover $2N-9$. There is no way to cover $2N-14$, which is a contradiction.

Therefore, there does not exist a modular set A modulo 2N with $\lambda(A)$ = 15 such that $N + 6 \in A$ and $N + 1$, $N + 2$, $N + 3$, $N + 4$, $N + 5 \notin A$. \Box

Observe that Lemmas [3.37](#page-16-0) and [3.38,](#page-16-1) along with previous results, imply that $N + 6 \notin A$ for a modular set A modulo 2N with character $\lambda(A) = 15$.

Lemma 3.39. There does not exist a modular set A modulo 2N with $\lambda(A)$ = 15 with $N + 4 \in A$ and $N + 1, N + 2, N + 3, N + 5, N + 6 \notin A$.

Proof. Suppose such a set A exists. Observe that 8, 14 are mod-covered and $4, 7 \notin A$. We break our proof up into the cases where either (Case I) $1 \in A$ or (Case II) $1 \notin A$.

Case I: Since $1 \in A$, we see that 2, 7, 13 are mod-covered. We need $10 \in A$ to mod-cover 4 which implies that $5 \notin A$. We see $9 \in A$ since it cannot be mod-covered which implies 5, 11 are mod-covered. We have $3 \in A$ since it cannot be mod-covered which implies 6 is mod-covered and $N-1 \notin A$. Lastly, $12 \in A$ since it cannot be mod-covered. Therefore, $S(A)$ = $S(0, 1, 3, 9, 10, 12, 16)$. One cannot cover $2N-3$, which is a contradiction.

Case II: Since $1 \notin A$, we need $13 \in A$ to mod-cover 1. We need $5 \in A$ to mod-cover 7 which implies 3, 9, 10 are mod-covered. Therefore we need $6 \in A$ to mod-cover 7 which implies 2, 12 are also mod-covered. There is no way to mod-cover 4, which is a contradiction.

Therefore, there does not exist a modular set A modulo 2N with $\lambda(A) =$ 15 such that $N + 4 \in A$ and $N + 1$, $N + 2$, $N + 3$, $N + 5$, $N + 6 \notin A$. □

Lemma 3.40. There does not exist a modular set A modulo 2N with $\lambda(A) =$ 15 with $N + 1$, $N + 2$, $N + 3$, $N + 4$, $N + 5$, $N + 6 \notin A$.

Proof. Suppose such a set A exists. Then 14 is mod-covered and $7 \notin A$. We break our argument into the cases where either (Case I) $5 \notin A$ or (Case II) $5 \in A$.

Case I: If $5 \notin A$ then $1, 4 \in A$ in order to cover 7. Therefore, $2, 7, 8, 10, 13$ are mod-covered by A . We now break this case up into the subcases where (Case I.1) $3 \in A$ and (Case I.2) $3 \notin A$.

Case I.1: If $3 \in A$, then 5, 6, 11 are mod-covered by A. We see that $9, 12 \in$ A since they cannot be mod-covered. Therefore, $S(A) = S(0, 1, 4, 6, 9, 12, 16)$. There is no way to cover $2N - 1$, which is a contradiction.

Case I.2: If $3 \notin A$ then we need $11 \in A$ to mod-cover 3 which implies $6 \notin A$. There is no way to mod-cover 6, which is a contradiction.

Case II: Suppose $5 \in A$. Then 9,10 are mod-covered by A. We break this case up into the subcases where (Case II.1) $3 \in A$, (Case II.2) $6 \in A$, $3 \notin A$, and (Case II.3) $3, 6 \notin A$.

Case II.1: Suppose $3 \in A$. Then 6, 7, 11 are mod-covered and 1, 4, $N-1 \notin A$ A. We need $13 \in A$ to mod-cover 1. We see that $2 \in A$ in order to mod-cover 4 and 8, 12 are mod-covered as well. Therefore, $S(A) = S(0, 2, 3, 5, 13, 15)$. There is no way to cover $2N-3$, which is a contradiction.

Case II.2: Suppose $6 \in A$ and $3 \notin A$. Then 7, 8, 12 are mod-covered and $4 \notin A$. We see that $2 \in A$ in order to cover 4 and therefore $1 \notin A$. Thus, 11 ∈ A in order to mod-cover 3 and 13 ∈ A in order to mod-cover 1. Hence, $S(A) = S(0, 3, 5, 6, 11, 13, 18)$. There is no way to mod-cover $2N - 1$, which is a contradiction.

Case II.3: Suppose 3, 6 $\notin A$. Therefore, 1, 4 $\in A$ in order to cover 7. Thus, 2, 6, 7, 8, 13 are mod-covered and $N-5 \notin A$. We see $11 \in A$ in order to mod-cover 3 and $12 \in A$ since it cannot be mod-covered. Thus, $S(A) = S(0, 1, 4, 5, 11, 12, 15)$. We need $N - 1 \in A$ to cover $2N - 3$ and $N-2 \in A$ to cover $2N-4$. Therefore, $N-3 \notin A$. There is no way to cover $2N - 10$, which is a contradiction.

Therefore, there does not exist a modular set A modulo 2N with $\lambda(A)$ = 15 such that $N + 1$, $N + 2$, $N + 3$, $N + 4$, $N + 5$, $N + 6 \notin A$. \Box

Acknowledgements

The author would like to thank Joe Gallian and David Rolnick for their helpful comments on preliminary drafts of this paper.

References

- [1] Richard A. Moy and David Rolnick. Novel structures in Stanley sequences. Discrete Math., 339(2):689–698, 2016. [MR3431382](http://www.ams.org/mathscinet-getitem?mr=3431382)
- [2] Richard A. Moy, Mehtaab Sawhney, and David Stoner. Characters of independent Stanley sequences. arXiv:1708.01849.
- [3] Andrew M. Odlyzko and Richard P. Stanley. Some curious sequences constructed with the greedy algorithm, 1978. Bell Laboratories internal memorandum.
- [4] David Rolnick. On the classification of Stanley sequences. European J. Combin., 59:51–70, 2017. [MR3546902](http://www.ams.org/mathscinet-getitem?mr=3546902)
- [5] David Rolnick and Praveen S. Venkataramana. On the growth of Stanley sequences. Discrete Math., 338(11):1928–1937, 2015. [MR3357778](http://www.ams.org/mathscinet-getitem?mr=3357778)
- [6] Mehtaab Sawhney. Character values of Stanley sequences. arXiv:1706.05444.
- [7] Mehtaab Sawhney and Jonathan Tidor. Two classes of modular p-Stanley sequences. arXiv:1506.07941v2.

RICHARD A. MOY WILLAMETTE UNIVERSITY 900 STATE STREET Salem, OR 97301 E-mail address: rmoy@willamette.edu

Received 1 September 2017