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Multiple bracket function, Stirling number, and Lah
number identities

Hasan Coskun

The author has constructed multiple analogues of several families
of combinatorial numbers in a recent article, including the bracket
symbol, and the Stirling numbers of the first and second kind. In
the present paper, a multiple analogue of another sequence, the
Lah numbers, is developed, and certain associated identities and
significant properties of all these sequences are constructed.
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1. Introduction

The Stirling numbers of the first and the second kind have been studied and
their properties have been investigated extensively in number theory, combi-
natorics and other areas. One dimensional generalizations of these numbers
have also been subject of interest. An important class of generalizations is
their one parameter q-extensions. Many have made significant contributions
to the q-extensions investigating their properties and applications. We will
give references to some of these important works in Section 5 below.

In a recent paper, the author took a major step from one dimensional
generalizations to multiple analogues of combinatorial numbers by construct-
ing elegant multiple qt-generalizations of Stirling numbers of the first and
second kind, besides sequences of other combinatorial numbers including
multiple binomial, Fibonacci, Bernoulli, Catalan, and Bell numbers [9]. In
this paper, we focus on the multiple analogies of the factorial function, Stir-
ling numbers of both kinds, and Lah numbers, and give interesting new
identities they satisfy.

The multiple generalizations developed in [9] are given in terms of the
qt-binomial coefficients constructed in the same paper. Its definition may be
written in the general form as
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(
z

μ

)
q,t

:=
q|μ|t2n(μ)+(1−n)|μ|

(qtn−1)μ

∏
1≤i<j≤n

{
(qtj−i)μi−μj

(qtj−i−1)μi−μj

}
wμ(q

ztδ(n); q, t)

where μ is a partition of at most n parts, z ∈ Cn and q, t ∈ C. The wμ

function that enters the definition is a limiting case of the BCn well–poised
symmetric rational Macdonald function Wλ. Note that this definition makes
sense even when μ is not an integer partition, but is a vector μ ∈ Cn. The
qt-binomial coefficients are constructed independently by Kaneko [18] in a
special case, and Okounkov [25] using difference operator methods for integer
partitions. Lassalle constructed an equivalent set of qt-binomial coefficients
independently [23], and Sahi has developed the non-symmetric version [28].
Rains [27] used Okounkov’s BCn symmetric interpolation polynomials to
define a three parameter qts-binomial coefficients. The most general defi-
nition (29) of multiple qt-binomial coefficients we constructed in [9] where
z ∈ Cn (and μ ∈ Cn) are variables is essential in the development of the
multiple brackets, and thus the Stirling and Lah numbers in this paper.

Please note that for each multiple identity proved in this paper, we in-
cluded a statement about the corresponding one dimensional classical iden-
tity or its q-analogue for comparison, right before or after the result. The
reader who is not familiar with the theory of multiple hypergeometric sum-
mation identities should review the corresponding one dimensional result
before studying the details of the multiple generalization. This should make
it easier to follow the construction.

2. Background

The (basic) q-Pochhammer symbol (a; q)α may be defined formally for com-
plex parameters q, α ∈ C as

(1) (a)α = (a; q)α :=
(a; q)∞

(aqα; q)∞

where the infinite product (a; q)∞ is defined by (a; q)∞ :=
∏∞

i=0(1 − aqi).
Note that when α = m is a positive integer, the definition reduces to the fi-
nite product (a; q)m =

∏m−1
k=0 (1−aqk). An elliptic analogue is defined [11] by

(2) (a; q, p)m :=

m−1∏
k=0

θ(aqm)

where a ∈ C, m is a positive integer, and the normalized theta function θ(x)
is given by
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(3) θ(x) = θ(x; p) := (x; p)∞(p/x; p)∞

for x, p ∈ C with |p| < 1. The definition is extended to negative m by set-
ting (a; q, p)m = 1/(aqm; q, p)−m. It is clear that when p = 0, the elliptic
(a; q, p)m reduces to the basic (trigonometric) q-Pochhammer symbol (1).

For any partition λ = (λ1, . . . , λn) and t ∈ C, define [30]

(4) (a)λ = (a; q, p, t)λ :=

n∏
i=1

(at1−i; q, p)λi
.

Note that when λ = (λ1) = λ1 is a single part partition, then (a; q, p, t)λ =
(a; q, p)λ1

= (a)λ1
. For brevity of notation, we also use

(5) (a1, . . . , ak)λ = (a1, . . . , ak; q, p, t)λ := (a1)λ . . . (ak)λ.

Recall that we use V to denote [8] the space of infinite lower–triangular ma-
trices whose entries are rational functions over the field F = C(q, p, t, r, a, b)
which are indexed by partitions with respect to the partial inclusion ordering
⊆ defined by

(6) μ ⊆ λ ⇔ μi ≤ λi, ∀i ≥ 1.

The condition that a matrix u ∈ V is lower triangular with respect to ⊆ can
be stated in the form

(7) uλμ = 0, when μ �⊆ λ.

The multiplication operation defined by

(8) (uv)λμ :=
∑

μ⊆ν⊆λ

uλνvνμ

for matrices u, v ∈ V makes V into an F-algebra.

2.1. Well–poised Macdonald functions

The construction of our multiple Stirling numbers involves the elliptic well–
poised Macdonald functions Wλ/μ, and elliptic well–poised Jackson coeffi-
cients ωλ/μ on BCn [8]. These remarkable families of symmetric rational
functions are first introduced in the author’s Ph.D. thesis [6] in the basic
(trigonometric) case, and later in [7] in the more general elliptic form.

Let λ = (λ1, . . . , λn) and μ = (μ1, . . . , μn) be partitions of at most n
parts for a positive integer n such that the skew partition λ/μ is a hori-



502 Hasan Coskun

zontal strip; i.e. λ1 ≥ μ1 ≥ λ2 ≥ μ2 ≥ . . . λn ≥ μn ≥ λn+1 = μn+1 = 0.
Following [8], define

(9) Hλ/μ(q, p, t, b)

:=
∏

1≤i<j≤n

{
(qμi−μj−1tj−i)μj−1−λj

(qλi+λj t3−j−ib)μj−1−λj

(qμi−μj−1+1tj−i−1)μj−1−λj
(qλi+λj+1t2−j−ib)μj−1−λj

·
(qλi−μj−1+1tj−i−1)μj−1−λj

(qλi−μj−1tj−i)μj−1−λj

}
·

∏
1≤i<(j−1)≤n

(qμi+λj+1t1−j−ib)μj−1−λj

(qμi+λj t2−j−ib)μj−1−λj

and

(10) Wλ/μ(x; q, p, t, a, b) := Hλ/μ(q, p, t, b) ·
(x−1, ax)λ(qbx/t, qb/(axt))μ
(x−1, ax)μ(qbx, qb/(ax))λ

·
n∏

i=1

{
θ(bt1−2iq2μi)

θ(bt1−2i)

(bt1−2i)μi+λi+1

(bqt−2i)μi+λi+1

· ti(μi−λi+1)

}

where q, p, t, x, a, b ∈ C. Note that Wλ/μ(x; q, p, t, a, b) vanishes unless λ/μ
is a horizontal strip. The function Wλ/μ(y, z1, . . . , z�; q, p, t, a, b) is extended
to �+ 1 variables y, z1, . . . , z� ∈ C through the following recursion formula

(11) Wλ/μ(y, z1, z2, . . . , z�; q, p, t, a, b)

=
∑

μ≺ν≺λ

Wλ/ν(yt
−�; q, p, t, at2�, bt�)Wν/μ(z1, . . . , z�; q, p, t, a, b).

2.2. The limiting wλ/μ function

The Macdonald functionsWλ are essentially equivalent to BCn abelian func-
tions constructed independently in [26]. The limiting cases defined above are
closely related to the Macdonald polynomials [20], and interpolation Mac-
donald polynomials [25].

The following limiting the basic (the p = 0) case of the elliptic W func-
tions will be used in our constructions below. The existence of these limits
can be seen from (the p = 0 case of) the definition (10), the recursion for-
mula (11) and the limit rule

(12) lim
a→0

a|μ|(x/a)μ = (−1)|μ| x|μ|t−n(μ)qn(μ
′)

where |μ| =
∑n

i=1 μi and n(μ) =
∑n

i=1(i− 1)μi, and n(μ′) =
∑n

i=1

(
μi

2

)
. We

denote Hλ/μ(q, t) = Hλ/μ(q, 0, t, 0), and for x ∈ C define
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(13) wλ/μ(x; q, t) := lim
s→∞

(
s|λ|−|μ| lim

a→0
Wλ/μ(x; q, t, a, as)

)
= (−q/x)−|λ|+|μ|q−n(λ′)+n(μ′)Hλ/μ(q, t)

(x−1)λ
(x−1)μ

·

The recurrence formula for wλ/μ function turns out to be

(14) wλ/μ(y, z; q, t) =
∑
ν≺λ

t�(|λ|−|ν|)wλ/ν(yt
−�; q, t)wν/μ(z; q, t)·

Similarly, for x ∈ C define the dual function

(15) ŵλ/μ(x; q, t) := lim
s→0

(
lim
a→0

Wλ/μ(x; q, t, a, as)
)

= t−n(λ)+|μ|+n(μ)Hλ/μ(q, t)
(x−1)λ
(x−1)μ

·

The recurrence formula for the dual ŵλ/μ(x; q, t) may be written as

(16) ŵλ/μ(y, z; q, t) =
∑

μ≺ν≺λ

ŵλ/ν(yt
−�; q, t) ŵλ/μ(z; q, t)

for y ∈ C and z ∈ C�. We now derive some new basic properties in Corol-
lary 2.1, and recall some existing properties in Remark 2.1 below for the w
function and its dual.

Corollary 2.1. Let μ be a partition of at most n parts, and x=(x1, . . . , xn)∈
Cn. Then

(1) The wμ and its dual ŵμ are flipped versions of one another. That is,

(17) ŵμ(x, q, t) = q−|μ|t−2n(μ)+(n−1)|μ|wμ(1/x, 1/q, 1/t)·

(2) The limit limq→1wμ(xt
δ(n); q, t) exists when denominators do not vanish.

For the particular case when x = λ is a partition, we use the notation

(18) w̄μ(1
λtδ(n); 1, t) := lim

q→1
(1− q)−μ1wμ(q

λtδ(n); q, t)·

Proof. Both properties follow, by direct calculation, from the definition (13)
of wλ/μ, the recurrence relation (14) for wλ/μ, and limit formula (12), and
the flip formula

(19) x|μ|(x−1, q, t)μ = (−1)|μ|qn(μ
′)t−n(μ)(x; q−1, t−1)μ·
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The proof also uses the result that, in the limit

(20) lim
q→1

Hλ/μ(q, t) =
(k)m
m!

where k is the maximum of the list k = max{λ1−λ2, λ2−λ3, . . . , λn−1−λn},
and m is the maximum of m = max{λ1−μ1, μ1−λ2, λ2−μ2, . . . , μn−1−λn}.
If the second list has a negative number (which means that λ/μ is not a
horizontal strip), then Hλ/μ(q, t) = 0.

Remark 2.1. We will need the following properties from [9] in what follows.

(3) If z = xtδ(n), for some x ∈ C, we get

(21) wμ(xt
δ(n); q, t)

= (−1)|μ|x|μ|tn(μ)q−|μ|−n(μ′)(x−1)μ
∏

1≤i<j≤n

(tj−i+1)μi−μj

(tj−i)μi−μj

which, after flipping q and t and using the flip rule (19), may be written as

(22) wμ(xt
δ(n); q, t) = q−|μ|(x; q−1, t−1)μ

∏
1≤i<j≤n

(tj−i+1)μi−μj

(tj−i)μi−μj

(4) The vanishing property of W functions implies that

(23) wμ(q
λtδ; q, t) = 0

when μ �⊆ λ, where ⊆ denotes the partial inclusion ordering.

(5) Let λ be an n-part partition with λn �= 0 and 0 ≤ k ≤ λn for some
integer k, and let z = (x1, . . . , xn) ∈ Cn. It was shown in [9] that

(24) wk̄(z; q, t) = q−nk
n∏

i=1

(q1−kxi)k

where k̄ = (k, . . . , k) is an n-tuple with integer k ≥ 0.

(6) With the same notation as above, we also have

(25) wμ(q
μtδ(n); q, t) = q−|μ| t(n−1)|μ|−2n(μ) (qtn−1)μ

∏
1≤i<j≤n

(qtj−i−1)μi−μj

(qtj−i)μi−μj

·
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2.3. The elliptic Jackson coefficients ωλ/μ

We will also need the basic (p = 0) case of the elliptic Jackson coefficients
ωλ/μ below. Let λ and μ be again partitions of at most n-parts such that
λ/μ is a skew partition. Then the Jackson coefficients ωλ/μ are defined [7] by

(26) ωλ/μ(x; r, q, p, t; a, b) :=
(x−1, ax)λ

(qbx, qb/ax)λ

(qbr−1x, qb/axr)μ
(x−1, ax)μ

· (r, br−1t1−n)μ
(qbr−2, qtn−1)μ

n∏
i=1

{
θ(br−1t2−2iq2μi)

θ(br−1t2−2i)

(
qt2i−2

)μi

}

·
∏

1≤i<j≤n

{
(qtj−i)μi−μj

(qtj−i−1)μi−μj

(br−1t3−i−j)μi+μj

(br−1t2−i−j)μi+μj

}

·Wμ(q
λtδ(n); q, p, t, bt2−2n, br−1t1−n)

where x, r, q, p, t, a, b ∈ C, with an additional parameter r. Note that Wλ/μ

vanishes unless λ/μ is a horizontal strip, whereas ωλ/μ is defined even when
λ/μ is not a horizontal strip.

It is shown [7] that the multivariable ωλ/μ are symmetric functions con-
structed by the recursion formula

(27) ωλ/μ(y, z; r; a, b) :=
∑
ν

ωλ/ν(r
−ky; r; ar2k, brk)ων/μ(z; r; a, b)

where y = (x1, . . . , xn−k) ∈ Cn−k and z = (xn−k+1, . . . , xn) ∈ Ck. Here and
elsewhere we surpass the dimension parameters q, t, s for clarity of notation,
and write ωλ/μ(x; r; a, b) = ωλ/μ(x; r, q, p, t; a, b) unless otherwise specified.
It is also shown [7] that the ωλ/μ are symmetric functions that satisfy the
key result, called the cocycle identity

(28) ωλ/μ((sr)
−1; sr, as2, bs) =

∑
ν

ωλ/ν(s
−1; s, as2, bs)ων/μ(r

−1; r, a, b)

where the summation index ν runs over all partitions.

2.4. The multiple qt-binomial coefficients

The multiple Stirling numbers we develop in this paper are closely connected
with binomial coefficients just as in the one dimensional case. Recall that
the multiple qt-binomial coefficient is defined [9] as
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Definition 2.1. Let z = (x1, . . . , xn) ∈ Cn and μ be an n-part partition.
Then the qt-binomial coefficient is defined by

(29)

(
z

μ

)
q,t

:=
q|μ|t2n(μ)+(1−n)|μ|

(qtn−1)μ

∏
1≤i<j≤n

{
(qtj−i)μi−μj

(qtj−i−1)μi−μj

}
wμ(q

ztδ(n); q, t)

where q, t ∈ C. It should be noted that this definition makes sense even for
μ ∈ Cn.

As pointed out in the Introduction, the qt-binomial coefficients are con-
structed independently by Kaneko [18] in a special case, and Okounkov [25]
using difference operator methods for integer partitions z = λ and μ. Lassalle
constructed an equivalent set of qt-binomial coefficients independently [23],
and Sahi has developed the non-symmetric version [28]. Rains [27] used
Okounkov’s BCn symmetric interpolation polynomials to define a three pa-
rameter qts-binomial coefficients which are equivalent to a limiting case of
our ωλ/μ functions (26) up to rescaling.

Setting t = qα and sending q → 1 yields the multiple ordinary α-binomial
coefficients. For n = 1, z = (n) and μ = (k) for some integers m and k, the
definition reduces to that of the one dimensional q-binomial coefficients

(30)

(
m

k

)
q

:=
(q)m

(q)m−k(q)k

which are also known as the Gaussian polynomials. These are studied ex-
tensively in the literature including but not limited to the works in [1, 2, 3,
5, 14, 15, 17, 21].

Using the definition above, we write [9] the terminating qt-binomial the-
orem in the form

(31) (x)λ =
∑
μ⊆λ

(−1)|μ|qn(μ
′)t−n(μ)

(
λ

μ

)
q,t

x|μ|·

This special case and its nonsymmetric analogues are also proved indepen-
dently in [25, 28], and studied in more recent works [22].

For the special case z = x̄ = (x, . . . , x) ∈ Cn, we get

(32)

(
x̄

μ

)
q,t

=
t2n(μ)+(1−n)|μ|

(qtn−1)μ
(qx; q−1, t−1)μ

·
∏

1≤i<j≤n

{
(qtj−i)μi−μj

(qtj−i−1)μi−μj

(tj−i+1)μi−μj

(tj−i)μi−μj

}
·
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This is also established independently in [23].
Another special case occurs when μ is a rectangular partition, that is

μ = k̄. Using (24) we get

(33)

(
z

k̄

)
q,t

=

n∏
i=1

(q1−kqxitn−i)k
(qtn−i)k

In the particular case for k = 1, the definition reduces to

(34)

(
z

1̄

)
q,t

=

n∏
i=1

(qxitn−i)1
(qtn−i)1

=

n∏
i=1

(1− qxitn−i)

(1− qtn−i)
·

The last property we point out from [9] is that

(35)

(
λ

λ

)
q,t

=

(
λ

0̄

)
q,t

= 1

where λ is an n-part partition, and 0̄ is the n-part partition whose parts are
all zero. In addition,

(36)

(
λ

μ

)
q,t

= 0

when μ �⊆ λ or 0̄ �⊆ μ.

2.5. The multiple qt-factorial function

We now recall another important extension [9] that generalizes the one di-
mensional q-bracket and q-factorial polynomial to the multiple case as fol-
lows.

Definition 2.2. Let μ be a partition of at most n parts, z = (x1, . . . , xn) ∈
Cn and s ∈ Cn. Then

(37) [z, s]μ = [z, s, n, q, t]μ

:= q|μ|
n∏

i=1

{
1

(1− qtn−i)μi

} ∏
1≤i<j≤n

{
(tj−i)μi−μj

(tj−i+1)μi−μj

}
wμ(sq

ztδ(n); q, t)

is called the qt-factorial (bracket) function. Note that the definition combines
a multiplicative variable s, and an exponential variable z. Depending on the
application we often set z = 0̄ and write 〈s〉μ = [0̄, s]μ, or set s = 1̄ and
write [z]μ = [z, 1̄]μ. Using the identity (24) in the special case when μ = 1̄,
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we define the qt-bracket as

(38) [z] = [z, 1̄, n, q, t]1̄ =

n∏
i=1

(1− qxitn−i)

(1− qtn−i)

which is a multiple analogue of the classical q-number or q-bracket.

The definition (37) of [z]μ may also be written as

(39) [z]μ = t−2n(μ)−(1−n)|μ|
n∏

i=1

{
(qtn−i)μi

(1− qtn−i)μi

}

·
∏

1≤i<j≤n

{
(tj−i)μi−μj

(tj−i+1)μi−μj

(qtj−i−1)μi−μj

(qtj−i)μi−μj

}(
z

μ

)
q,t

which reduces to (38) when μ = 1̄ by the identity (33).

Remark 2.2. The qt-factorial function satisfies the following properties:

(a) Let z = (x, . . . , x) = x̄ ∈ Cn for a single variable x ∈ C, then the
qt-factorial function [x̄]μ may be written as

(40) [x̄]μ =

n∏
i=1

{
1

(1− qtn−i)μi

}
(qx; q−1, t−1)μ =

n∏
i=1

{
(qxti−1; q−1)μi

(1− qtn−i)μi

}
·

This definition reduces to the classical q-bracket in the one variable case.

(b) Note that (x; 1/q, 1/t)μ, with the reciprocals of q and t, corresponds to a
multiple basic qt-analogue of the falling factorial xn := x(x−1) · · · (x− (n−
1)) as opposed to the rising factorial or the Pochhammer symbol.

(c) Setting z = μ, and substituting the evaluation (25) in (37) above gives

(41) [μ]μ = t−2n(μ)−(1−n)|μ|
n∏

i=1

{
(qtn−i)μi

(1− qtn−i)μi

}

·
∏

1≤i<j≤n

{
(tj−i)μi−μj

(tj−i+1)μi−μj

(qtj−i−1)μi−μj

(qtj−i)μi−μj

}

which is precisely the front factor in (39) as expected. Similar to the classical
case, we may use the notation μ! = [μ]μ and write

(42) [z]μ = μ!

(
z

μ

)
q,t

·
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Note that in the particular case when μ = k̄ is a rectangular partition, the
μ! reduces to a product of one dimensional quotients for each part

(43) k̄! =

n∏
i=1

{
(qtn−i)k

(1− qtn−i)k

}
·

(d) Recall that a multiple analogue Eq,t(z) of the exponential function ez was
defined [8] by

(44) Eq,t(z) := (−z)∞n =
∑
μ∈Pn

z|μ|qn(μ
′)tn(μ)+(1−n)|μ|

(qtn−1)μ

·
∏

1≤i<j≤n

{
(qtj−i)μi−μj

(qtj−i−1)μi−μj

(tj−i+1)μi−μj

(tj−i)μi−μj

}

where z ∈ C, and Pn denotes the set of all partitions of length at most n,
and (z)∞n =

∏n
i=1(zt

1−i)∞. Using the μ! notation and setting z = 1 gives a
multiple analogue of the number e:

(45) Eq,t(1) := (−1)∞n =
∑
μ∈Pn

qn(μ
′)t−n(μ)∏n

i=1(1− qtn−i)μi
· 1

μ!

similar to the classical case

e =

∞∑
m=0

1

m!
·

3. Recurrence relations for multiple factorial function

We treat the recurrence relations for the multiple factorial function in a
separate section here. We derive three distinct recurrences for the multiple
binomial coefficients, and for multiple factorials [z]λ: A recurrence relation
with respect to the variable z, another recurrence with respect to the index
λ, and a third recurrence with respect to the weight |λ| of the index partition.

3.1. The variable z

We can write the W–Jackson sum [8] in the form

Wλ(z; q, t, at
−2n, bt−n)(46)
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=
(s)λ(as

−1t−n−1)λ
(qbs−1t−1)λ(qbtns/a)λ

·
∏

1≤i<j≤n

{
(tj−i+1)λi−λj

(qbt−i−j+1)λi+λj

(tj−i)λi−λj
(qbt−i−j)λi+λj

}

·
∑
μ⊆λ

(bs−1t−n)μ(qbt
n/a)μ

(qtn−1)μ(as−1t−n−1)μ
·

n∏
i=1

{
(1− bs−1t1−2iq2μi)

(1− bs−1t1−2i)
(qt2i−2)μi

}

·
∏

1≤i<j≤n

{
(tj−i)μi−μj

(qtj−i)μi−μj

(qtj−i−1)μi−μj
(tj−i+1)μi−μj

· (bs−1qt−i−j)μi+μj
(bs−1t−i−j+2)μi+μj

(bs−1t−i−j+1)μi+μj
(qbs−1t−i−j+1)μi+μj

}
·Wμ(q

λtδ(n); q, t, bt1−2n, bs−1t−n) ·Wμ(zs; q, t, as
−2t−2n, bs−1t−n)

where z ∈ Cn. This sum may be viewed as writing the W function on

the left-hand side as a combination of the shifted W function on the right

(shifted by a factor of s ∈ C). Therefore, the left-hand side is independent

of the parameter s.

If we set b = ar in this identity and send a → 0, multiply both sides by

(rtn)|λ| and send r → ∞ using the limit rule (12), and we get

(47) wλ(z; q, t)

= (−1)|λ| q−|λ|−n(λ′)tn(λ)s−|λ|(s)λ ·
∏

1≤i<j≤n

{
(tj−i+1)λi−λj

(tj−i)λi−λj

}

·
∑
μ⊆λ

(−1)|μ| q2|μ|tn(μ)qn(μ
′)

(qtn−1)μ
·

∏
1≤i<j≤n

{
(tj−i)μi−μj

(qtj−i)μi−μj

(qtj−i−1)μi−μj
(tj−i+1)μi−μj

}

·
(
lim
a→0

Wμ(q
λtδ(n); q, t, at1−2n, as−1t−n)

)
· wμ(zs; q, t)s

−|μ|·

Shifting z by s−1z in (47) above, setting s−1 = qα and z = qztδ(n) and using

the flip rule

(48) x−|μ|(x; q, t)μ = (−1)|μ|qn(μ
′)t−n(μ)(x−1; q−1, t−1)μ

to simplify the front factors, and substituting the definition (29) into (47)

gives

(49)

(
z + α

λ

)
q,t

=
∏

1≤i<j≤n

{
(qtj−i)λi−λj

(qtj−i−1)λi−λj

(tj−i+1)λi−λj

(tj−i)λi−λj

}
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· t
2n(λ)+(1−n)|λ| (qα; q−1, t−1)λ

(qtn−1)λ
·
∑
μ⊆λ

(−1)|μ| q(α+1)|μ|+n(μ′)t−n(μ)−(1−n)|μ|

·
∏

1≤i<j≤n

{
(tj−i)μi−μj

(tj−i+1)μi−μj

}(
lim
a→0

Wμ(q
λtδ(n); q, t, at1−2n, aqαt−n)

)(
z

μ

)
q,t

·

This identity defines a general recurrence relation for the multiple binomial
coefficients with respect to the z variable. Choosing α ∈ C and z ∈ Cn

properly yields interesting special cases. For an n partition λ, let λi denote
λi = λ + ei for ei = (ei1, . . . , e

i
j , . . . , e

i
n) with eii = 1, and eij = 0 for i �= j.

Setting z + α = λi in (49), for example, gives a recurrence for

(
λi

λ

)
q,t

=

(
(λ1, . . . , λi−1, λi + 1, λi+1, . . . , λn)

(λ1, . . . , λi−1, λi, λi+1, . . . , λn)

)
q,t

for any 1 ≤ i ≤ n.
If we further substitute (39) for the multiple binomial coefficients on

both sides, we get a recurrence for the multiple bracket function again with
respect to the z variable as follows.

(50)

∏n
i=1

{
(1− qtn−i)λi

}
(qα; q−1, t−1)λ

[z + α]λ

=
∑
μ⊆λ

(−1)|μ| q(α+1)|μ|tn(μ)qn(μ
′)

(qtn−1)μ
·

∏
1≤i<j≤n

{
(qtj−i)μi−μj

(qtj−i−1)μi−μj

}

·
(
lim
a→0

Wμ(q
λtδ(n); q, t, at1−2n, aqαt−n)

) n∏
i=1

{
(1− qtn−i)μi

}
[z]μ·

We may again specialize z and α to derive interesting special cases.

3.2. The index λ

We have shown [7] that for 0 < k ≤ λn

(51) Wλ(z; q, t, a, b) =
∏

1≤i<j≤n

(qbtj−2i)2k
(qbtj−1−2i)2k

·
n∏

i=1

(z−1
i )k(azi)k

(qbzi)k(qb/(azi))k
Wλ−k̄(zq

−k; aq2k, bq2k, t, q)
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where λ− k̄ denotes λ− kn = (λ1 − k, . . . , λn − k). We shift μ by k̄, replace

b by as, send a → 0, multiply both sides by s|μ|+kn, and then send s → ∞
in the last identity, and use the limit rule (12) and the definition (13) of w

function to get

(52) wμ+k̄(z; q, t) = (−1)nkq−nk−n(k2)
n∏

i=1

zki (z
−1
i )k · wμ(zq

−k; t, q)·

We now expand the right-hand side of this identity using (47). Re-

place z by s−1z, set s = qk and z = qztδ(n), and substitute the defini-

tion (29) here. Then using the flip formula (48) and the calculation that

t2n(λ+k̄)+(1−n)|λ+k̄| = t2n(λ)+(1−n)|λ|, we write

(53)

(
z

λ+ k̄

)
q,t

= t2n(λ)+(1−n)|λ|
n∏

i=1

(qzit(n−i); q−1)k

· (q
−k; q−1, t−1)λ
(qtn−1)λ+k̄

∏
1≤i<j≤n

{
(tj−i+1)λi−λj

(tj−i)λi−λj

(qtj−i)λi−λj

(qtj−i−1)λi−λj

}

·
∑
μ⊆λ

(−1)|μ| q(k+1)|μ|+n(μ′)t−n(μ)−(1−n)|μ|
∏

1≤i<j≤n

{
(tj−i)μi−μj

(tj−i+1)μi−μj

}

·
(
lim
a→0

Wμ(q
λtδ(n); q, t, at1−2n, aq−kt−n)

)(
z

μ

)
q,t

·

This is a general recurrence relation for the multiple binomial with respect

to the index partition μ. If we replace the binomials by the corresponding

bracket functions using (39), we get

(54) [z]λ+k̄ =

n∏
i=1

{
(qzit(n−i); q−1)k
(1− qtn−i)k

}
· (q−k; q−1, t−1)λ∏n

i=1(1− qtn−i)λi

·
∑
μ⊆λ

(−1)|μ| q(k+1)|μ|+n(μ′)tn(μ)
(
lim
a→0

Wμ(q
λtδ(n); q, t, at1−2n, aq−kt−n)

)

·
n∏

i=1

{
(1− qtn−i)μi

(qtn−i)μi

} ∏
1≤i<j≤n

{
(qtj−i)μi−μj

(qtj−i−1)μi−μj

}
[z]μ·

Specializing the variables z and the integer k gives interesting special cases

as before.
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3.3. The weight |λ|

Recall that a recurrence relation for the qt-binomial coefficients based on
the weights of the indexing partitions is written [8] as follows: For an n-part
partition λ and k ≤ |λ|, we have

(55)
∑
μ	k

qn(μ
′)t−n(μ)

(
λi

μ

)
qt

=
∑
τ	k

qn(τ
′)t−n(τ)

(
λ

τ

)
qt

+
∑

ν	(k−1)

qn(ν
′)+λit−n(ν)+1−i

(
λ

ν

)
qt

where μ ⊆ λi = (λ1, . . . , λi + 1, . . . , λn) when it is a partition, and τ, ν ⊆ λ.
Here, μ 
 k denotes that μ is a partition of the integer k ≥ 1. Using (42), we
write a recurrence formula for the qt-factorial function [λ]μ in the following
form:

(56)
∑
μ	k

qn(μ
′)t−n(μ) μ! [λi]μ

=
∑
τ	k

qn(τ
′)t−n(τ) τ ! [λ]τ +

∑
ν	(k−1)

qn(ν
′)+λit−n(ν)+1−i μ! [λ]μ·

4. Summation formulas for multiple factorial functions

The cocycle identity (28) for the Jackson coefficients ωλ/μ may be written
in explicit form as

(57)
(rs)λ(asr

−1)λ
(qbr−1)λ(qbr/a)λ

(qb)λ(qb/a)λ
(s)λ(as)λ

(qb/as)μ
(asr−1)μ

(ar−1)μ
(qb/a)μ

·Wμ(t, bst
2−2n, br−1t1−n; qλtδ(n); q)

=
∑
ν

q|ν|t2n(ν)
(qb/as)ν
(as)ν

(bt1−n)ν
(qtn−1)ν

(r)ν(ar
−1)ν

(qbr−1)ν(qbr/a)ν

·
n∏

i=1

{
(1− bt2−2iq2νi)

(1− bt2−2i)

} ∏
1≤i<j≤n

{
(qtj−i)νi−νj

(qtj−i−1)νi−νj

(bt3−i−j)νi+νj

(bt2−i−j)νi+νj

}

·Wν(t, bst
2−2n, bt1−n; qλtδ(n); q)Wμ(t, bt

2−2n, br−1t1−n; qνtδ(n); q)·

A specialization of this result gave the elegant identity for qt-binomial coef-
ficients: For n-part partitions ν and μ, we have [9]



514 Hasan Coskun

(58) t−n(μ)qn(μ
′) (−1)ν
(−1)μ

(
ν

μ

)
q,t

=
∑

μ⊆λ⊆ν

t−n(λ)qn(λ
′)

(
ν

λ

)
q,t

(
λ

μ

)
q,t

·

Setting μ = 1̄ here gives

(59) t−n(μ)qn(μ
′) (−1)ν
(−1)μ

[ν]q,t =
∑

μ⊆λ⊆ν

t−n(λ)qn(λ
′)

(
ν

λ

)
q,t

[λ]q,t

which is a multiple analogue of the identity

(60) 2n−1n =

n∑
k=1

(
n

k

)
k

for the qt-bracket function (37).
We like to also write a multiple analogue of the identity that expresses

the sum of first n integers as

(61)

n∑
i=1

k =

(
n+ 1

2

)
=

n(n+ 1)

2

for the multiple bracket. One dimensional q-analogues of this identity ap-
peared in several papers [12, 31, 29] recently. For the multiple analogue, we
first recall another special case of the cocycle identity written [8] in the form

(62)
(zs)ν
(s)ν

(z)μ
(zs)μ

s|μ|wμ(q
νtδ(n); q, t)

=
∑

μ⊆λ⊆ν

q|λ|t2n(λ)
(z)λ

(qtn−1)λ

∏
1≤i<j≤n

{
(qtj−i)λi−λj

(qtj−i−1)λi−λj

}

·
(
lim
a→0

Wλ(q
νtδ(n); q, t, at1−2n, as−1t−n)

)
wμ(q

λtδ(n); q, t)·

It follows from the recurrence (11) that the W function in the sum simplifies
to

(63)
(
lim
a→0

Wλ(q
νtδ(n); q, t, at1−2n, aq−1t1−2n)

)
=

∏
1≤i<j≤n

(tj−i+1)λi−λj

(tj−i)λi−λj

in the special case when s = qtn−1. Note that this specialization removed
the W function that terminated the sum from above. Using the definition
of multiple bracket function (37) on the right and multiple binomial (29) on
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the left, we may write

(64)

t−2n(μ)−2(1−n)|μ|(z)μ
(zqtn−1)ν
(qtn−1)ν

(qtn−1)μ
(zqtn−1)μ

∏
1≤i<j≤n

{
(qtj−i−1)μi−μj

(qtj−i)μi−μj

}(
ν

μ

)
q,t

=
∑

μ⊆λ⊆ν

(z)λ
(qtn−1)λ

q|λ|t2n(λ)
∏

1≤i<j≤n

{
(qtj−i)λi−λj

(qtj−i−1)λi−λj

(tj−i+1)λi−λj

(tj−i)λi−λj

}

· q−|μ|
n∏

i=1

{
(1− qtn−i)μi

} ∏
1≤i<j≤n

{
(tj−i+1)μi−μj

(tj−i)μi−μj

}
[λ]μ·

Setting z = qtn−1 further removes the factor that terminates the sum from
below as well, but we still get a finite sum

(65) q|μ|t−2n(μ)−2(1−n)|μ| (q
2t2(n−1))ν
(qtn−1)ν

(qtn−1)2μ

(q2t2(n−1))μ

n∏
i=1

{
1

(1− qtn−i)μi

}

·
∏

1≤i<j≤n

{
(qtj−i−1)μi−μj

(qtj−i)μi−μj

(tj−i)μi−μj

(tj−i+1)μi−μj

}(
ν

μ

)
q,t

=
∑

μ⊆λ⊆ν

q|λ|t2n(λ)
∏

1≤i<j≤n

{
(qtj−i)λi−λj

(qtj−i−1)λi−λj

(tj−i+1)λi−λj

(tj−i)λi−λj

}
[λ]μ·

In particular for the special case μ = 1̄, we get a multiple analogue of (61) as

(66) qnt(n−1)n (q
2t2(n−1))ν
(qtn−1)ν

n∏
i=1

(1− qνitn−i)

(1− q2t2n−1−i)

=
∑

1̄⊆λ⊆ν

q|λ|t2n(λ)
∏

1≤i<j≤n

{
(qtj−i)λi−λj

(qtj−i−1)λi−λj

(tj−i+1)λi−λj

(tj−i)λi−λj

}
[λ]·

Note that other specializations of z in (64) above, such as z = 0, gives
different versions of this multiple identity. Using similar methods and the
recurrences for multiple factorial functions, one may also write multiple ana-
logues of the sums of powers of brackets as well.

5. Multiple basic and ordinary qt-Stirling numbers

In this section we review the definition and fundamental properties of the
multiple Stirling numbers of the first and second kind indexed by partitions
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[9]. The classical Stirling numbers of the first kind are defined to be the
coefficients of the power functions xk in the expansion of the falling factorial
xn = x(x− 1) . . . (x− n+ 1) written as

(67) xn = n!

(
x

n

)
=

n∑
k=0

s1(n, k)x
k.

The classical Stirling numbers of the second kind are defined the other way
around as the coefficients of the falling factorials in the expansion of the
power functions. The q-analogue of these numbers are defined in [4] and
their properties are studied in [24, 16, 19, 33] and the works of others.

First, we recall [9] the definition of the multiple qt-Stirling numbers
generalizing the one dimensional q-analogues.

Definition 5.1. For an n part partition λ, the qt-Stirling numbers of the
first kind s1(λ, μ) are defined by

(68) [x̄]λ =
∑
μ⊆λ

q−n(λ′)t2n(μ)−(n−1)|μ|s1(λ, μ)
μ1∏
i=1

[x̄i]

where x ∈ C, x̄ = {x, . . . , x} ∈ Cn, and x̄i = {x, . . . , x, q, . . . , q} ∈ Cn with
μ′
i copies of x for the dual partition μ′. That is,

(69)

μ1∏
i=1

[x̄i] =

n∏
i=1

(1− qxtn−i)μi

(1− qtn−i)μi
·

Likewise, the qt-Stirling numbers of the second kind s2(λ, μ) are defined by

(70)

n∏
i=1

(1− qxtn−i)λi

(1− qtn−i)λi
=

λ1∏
i=1

[x̄i] =
∑
μ⊆λ

qn(μ
′)t−2n(ν)+(n−1)|ν|s2(λ, μ) [x̄]μ·

Note that both the right and left hand sides are bases for the space. So,
existence of the uniquely defined coefficients makes the multiple qt-Stirling
numbers well defined.

We now recall the explicit formula for the qt-Stirling numbers given
in [9], generalizing the one dimensional q-analogues. We will refer to certain
identities derived in the proof several times later on. In addition, there are
some notational changes adopted in this paper. Thus, we include the main
steps of the proof here as well.
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Theorem 5.1. For n-part partitions ν and μ, an explicit formula for the

qt-Stirling numbers of first and second kind s1(λ, μ) and s2(λ, μ) are given by

(71) s1(ν, μ) = s1(ν, μ, q, t) =
qn(ν

′)t−2n(μ)+2(n−1)|μ|∏n
i=1(1− qtn−i)νi−μi

fμ(q, t)

·
∑

μ⊆λ⊆ν

u(ν, λ, q, t) t(1−n)|λ|w̄μ(q
−λt−δ(n); 1, 1/t)

and

(72) s2(ν, μ) = s2(ν, μ, q, t) :=
q−n(μ′)t2n(ν)+(1−n)|ν|∏n

i=1(1− qtn−i)νi−μi

·
∑

μ⊆λ⊆ν

(−1)|λ|tn(λ)w̄λ(q
νtδ(n); 1, t) fλ(q, t) v(λ, μ, q, t)

where ŵμ and w̄μ are as defined above in Corollary 2.1, and f(μ), u(λ, μ)

and v(λ, μ) are given by

(73) f(μ, q, t) := (1− t)μ1−μn

n−1∏
i=1

1

(1− tn−i)μi

·
∏

1≤i<j≤n
j 
=i+1

(
1− tj−i

1− tj−i−1

)μi−μj 1

μn!

n−1∏
i=1

1

(μi − μi+1)!

and

(74) u(λ, μ, q, t) :=
q|μ|t2n(μ)

(qtn−1)μ

∏
1≤i<j≤n

{
(qtj−i)μi−μj

(qtj−i−1)μi−μj

}
ŵμ(q

λtδ(n); q, t)

and

(75) v(λ, μ, q, t)

:= (−1)|μ|qn(μ
′)t−n(μ)

(
λ

μ

)
q,t

=
(−1)|μ|q|μ|+n(μ′)tn(μ)+(1−n)|μ|

(qtn−1)μ

·
∏

1≤i<j≤n

{
(qtj−i)μi−μj

(qtj−i−1)μi−μj

}
wμ(q

λtδ(n); q, t)·
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Proof. Simplify the identity (47) for the case z = xtδ(n) using (22), and send
s → ∞ to get

(76) (x; q−1, t−1)λ =
∑
μ⊆λ

u(λ, μ)x|μ|

with the definition of u(λ, μ) above. Similarly, apply the shifts a → as2,
b → bs and x → x/s in (46) at the beginning, and follow the same steps
except send s to 0 to get

(77) x|λ| =
∑
μ⊆λ

v(λ, μ) (x; q−1, t−1)μ

where v(λ, μ) is defined as in the theorem. It is clear, by a change of basis
argument, that

(78) δνλ =
∑

μ⊆λ⊆ν

u(ν, λ) v(λ, μ)·

Note that the left hand side of (77) does not depend on q or t. Now, flip the
parameters q → 1/q, t → 1/t, take limit q → 1, and multiply and divide the
summand by

∏n
i=1 1/(1− qtn−i)μi to get

(79) x|λ| =
∑
μ⊆λ

n∏
i=1

(1− qtn−i)μi lim
q→1

v(λ, μ, 1/q, 1/t)

μ1∏
i=1

〈x̄i〉

where 〈x̄i〉 defined as in (69) by replacing qx by x. That is,

μ1∏
i=1

〈x̄i〉 =
n∏

i=1

(1− xtn−i)μi

(1− qtn−i)μi
·

Multiply and divide the summand in (76) by t(n−1)|μ|, substitute (79) into
(76) for (xtn−1)|μ|, multiply both sides of this latter identity by

∏n
i=1 1/(1−

qtn−i)νi to get

(80)

n∏
i=1

{
1

(1− qtn−i)νi

}
(x; q−1, t−1)ν =

∑
μ⊆ν

(
n∏

i=1

(1− qtn−i)μi

(1− qtn−i)νi

·
∑

μ⊆λ⊆ν

u(ν, λ, q, t) t−(n−1)|λ|
(
lim
q→1

v(λ, μ, 1/q, 1/t)
)⎞⎠ μ1∏

i=1

〈x̄i〉·
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Multiplying and dividing the summand now by qn(ν
′)t−2n(μ)+(n−1)|μ| gives

(81) 〈x̄〉ν =
∑
μ⊆ν

q−n(ν′)t2n(μ)−(n−1)|μ|s1(ν, μ) ·
n∏

i=1

(1− xtn−i)μi

(1− qtn−i)μi

where s1(ν, μ) is as defined in the theorem. A similar sequence of calculations
show that

(82)

n∏
i=1

(1− xtn−i)νi

(1− qtn−i)νi
=

∑
μ⊆ν

(
n∏

i=1

(1− qtn−i)μi

(1− qtn−i)νi

·
∑

μ⊆λ⊆ν

(
lim
q→1

u(ν, λ, 1/q, 1/t)
)
t(n−1)|λ| v(λ, μ, q, t)

⎞
⎠ 〈x〉μ·

Multiplying and dividing the summand now by q−n(μ′)t2n(ν)+(1−n)|ν| gives
the explicit formula for the qt-Stirling numbers of the second kind

(83)

n∏
i=1

(1− xtn−i)νi

(1− qtn−i)νi
=

∑
μ⊆ν

qn(μ
′)t−2n(ν)+(n−1)|ν|s2(ν, μ) · 〈x̄〉μ·

Finally, substituting x → qx completes the proof. We conclude by simplifying
the flips and limits that entered the formulas above.

It follows immediately from (19) that, if

(84) h(μ, q, t) :=
∏

1≤i<j≤n

{
(qtj−i)μi−μj

(qtj−i−1)μi−μj

}
and g(μ, q, t) := (qtn−1)μ

then

(85) h(μ, 1/q, 1/t) = t2n(μ)−(n−1)|μ|h(μ, q, t)

and

(86) g(μ, 1/q, 1/t) = (−1)|μ|q−|μ|−n(μ′)tn(μ)−(n−1)|μ|g(μ, q, t)·

Thus, flipping the parameters give

(87) u(λ, μ, 1/q, 1/t) =
(−1)|μ|q|μ|+n(μ′)tn(μ)−(n−1)|μ|

(qtn−1)μ
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·
∏

1≤i<j≤n

{
(qtj−i)μi−μj

(qtj−i−1)μi−μj

}
wμ(q

λtδ(n); q, t)

and

v(λ,μ, 1/q, 1/t)(88)

=
t(n−1)|μ|

(qtn−1)μ

∏
1≤i<j≤n

{
(qtj−i)μi−μj

(qtj−i−1)μi−μj

}
· wμ(q

−λt−δ(n); 1/q, 1/t)·

Using the limit rule (12), direct calculations give that

(89) lim
q→1

(1− q)μ1
1

(qtn−1)μ

∏
1≤i<j≤n

{
(qtj−i)μi−μj

(qtj−i−1)μi−μj

}
= f(μ, q, t)

where the f(μ, q, t) factor was defined above. Therefore, multiplying and
dividing the identities (87) and (88) by (1 − q)μ1 , and passing the limit as
q → 1 gives

(90) lim
q→1

u(λ, μ, 1/q, 1/t) = (−1)|μ|tn(μ)−(n−1)|μ|w̄μ(1
λtδ(n); 1, t) f(μ, q, t)·

where w̄μ is defined as above. Similarly,

(91) lim
q→1

v(λ, μ, 1/q, 1/t) = t(n−1)|μ|w̄μ(1
−λt−δ(n); 1, 1/t) f(μ, q, t)

which completes the proof.

Remark 5.1. It is worthwhile to list certain immediate properties of the
multiple Stirling numbers of both kinds, some of which were already pointed
out briefly in [9].

(a) Let Pn denote the set of all partitions with at most n parts. Note that by
the vanishing property (23) of wμ functions, both u(λ, μ, q, t) and v(λ, μ, q, t)
coefficients vanish when μ �⊆ λ for all partitions μ, λ ∈ Pn. This implies by
the definitions (71) and (72) that the vanishing property

s1(ν, μ) = s2(ν, μ) = 0

also holds for the multiple Stirling numbers when μ �⊆ ν. This result gener-
alizes the one dimensional property that s2(n,m) = s2(n,m) = 0 for m ≥ n.

(b) The identities (76) and (77) show that the (x; q−1, t−1)μ form another ba-
sis for the space of polynomials with coefficients from the field C(q, t) of ratio-
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nal functions in parameters q and t. Therefore, the identities (81) and (83)
indicate that the multiple Stirling numbers s1(ν, μ) and s2(ν, μ) are well de-
fined as the unique connection coefficients between the two bases

(92) t2n(μ)−(n−1)|μ|
n∏

i=1

(1− xtn−i)μi

(1− qtn−i)μi
and qn(μ

′)〈x̄〉μ

where

(93) 〈x̄〉μ =

n∏
i=1

{
1

(1− qtn−i)μi

}
(x; q−1, t−1)μ =

n∏
i=1

{
(xti−1; q−1)μi

(1− qtn−i)μi

}

for all μ ∈ Pn.

(c) These explicit formulas in one dimensional case (n = 1) reduce essen-
tially to those for Carltz’s q-Stirling numbers [4, 19]. Moreover, sending
q → 1 in that case yields the sequence of classical Stirling numbers for both
types. The one dimensional form of the identities (81) and (83), for example,
may be written in the form

(94)
(x; q−1)v
(1− q)v

=

v∑
m=0

q−(
v

2) s1(v,m)
(1− x)m

(1− q)m

and

(95)
(1− x)v

(1− q)v
=

v∑
i=0

q(
m

2 ) s2(v,m)
(x; q−1)m
(1− q)m

where

(96) s1(v,m) = s1(v,m, q, t) =
q(

v

2)

(1− q)v−m

v∑
j=m

(−1)mjm
m!

qj (q−v)j
(q)j

and

(97) s2(v,m) = s2(v,m, q, t) =
q−(

m

2 )

(1− q)v−m

v∑
j=m

(−1)jvj

j!

qjm (q−j)m
(q)m

·

where xn = x(x− 1) · · · (x− (n− 1)) denotes the falling factorial as before.
Setting x → qx and sending q → 1 in these results clearly gives the classical
Stirling numbers (67) of both types.
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(d) The matrix m with entries mλμ = s1(λ, μ) is invertible in the sense of
V algebra defined at the beginning of Section 2, and its inverse is given by
m−1

λμ = s2(λ, μ). More precisely, we have

(98) δνλ =
∑

μ⊆λ⊆ν

s1(ν, λ) s2(λ, μ) =
∑

μ⊆λ⊆ν

s2(ν, λ) s1(λ, μ)

which follows immediately from the inversion relation (78).

(e) Similar to the one dimensional case for the q-Stirling numbers, we have

(99) s1(λ, λ) = s2(λ, λ) = 1

for an arbitrary n-part partition λ.

(f) Setting t = qα and sending q → 1 gives the multiple ordinary α-Stirling
numbers of the first and second kind.

6. Summation identities for multiple Stirling numbers

We derive some additional new properties of the multiple Stirling numbers
in this section.

(1) First note that limx→0〈x〉μ =
∏n

i=1 1/(1 − qtn−i)μi follows readily from
the formula (40) written in the qt-angle bracket function 〈x̄〉μ above in (93).
In the multiple case, setting x = 0 in (81) and (83) respectively gives

n∏
i=1

1

(1− qtn−i)νi
=

∑
μ⊆ν

q−n(ν′)t2n(μ)+(n−1)|μ|s1(ν, μ)
n∏

i=1

1

(1− qtn−i)μi
(100)

and

n∏
i=1

1

(1− qtn−i)νi
=

∑
μ⊆ν

qn(μ
′)t−2n(ν)+(n−1)|ν|s2(ν, μ)

n∏
i=1

1

(1− qtn−i)μi
·

(101)

The identities may be interpreted as giving the eigenvectors of certain op-
erators. They appear to be new identities, even in the one dimensional case
for n = 1 which may be obtained easily from (94) and (95) above.

(2) Note that, for an n-part partition ν with νn �= 0, the bracket function
〈x〉ν has roots at x = t1−jqmj for j = 1, . . . , n, and mj = 0, . . . , νj − 1. The
limit bracket function

∏n
i=1(1−xtn−i)μi/(1− qtn−i)μi has roots at x = t1−j
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for j = 1, . . . , n. Therefore, if we set x = t1−jqmj (for some mj < νj) in (83)
we get

(102) 0 =
∑
μ�ν

q−n(ν′)t2n(μ)−(n−1)|μ|
n∏

i=1

(1− qmj t1−j+n−i)μi

(1− qtn−i)μi
s1(ν, μ)

where the summation is over all partitions μ � ν, that is all partitions μ ⊆ ν
such that μj ≤ mj . This inequality follows from the vanishing property of
the w functions (23).

In the particular case, setting x = q in (81) gives

(103) 0 =
∑
μ⊆ν

q−n(ν′)t2n(μ)−(n−1)|μ|s1(λ, μ)

which is an analogue of
∑n

k=0 s1(n, k) = 0 in the classical case.
In another special case, setting x = t1−j (i.e., mj = 0) in (81) and (83)

would amount to vanishing of all factorial functions 〈x〉μ except the ones
in whose index the j-th part (thus all parts j + 1, . . . , n after j) are 0.
That is, the factorial functions will be nonzero only for partitions such as
μ = (μ1, . . . , μj−1, 0, . . . , 0), and others will vanish. This is particularly in-
teresting, for the substitution x = t1−j the limit factorial functions

∏n
i=1(1−

xtn−i)μi/(1 − qtn−i)μi also vanish except for partitions μ = (μ1, . . . , μn−j ,
0, . . . , 0).

Therefore, setting x = t1−j in (81) and (83) respectively gives

(104) 0 =
∑
μ�ν

q−n(ν′)t2n(μ)−(n−1)|μ|s1(ν, μ)
n∏

i=1

(1− t1−j+n−i)μi

(1− qtn−i)μi

where the sum is over all partitions μ � ν such that μ = (μ1, . . . , μj−1, 0, . . . ,
0). Likewise,

(105) 0 =
∑
μ�ν

qn(μ
′)t−2n(ν)+(n−1)|ν|s2(ν, μ) 〈t1−j〉μ

where the sum is over all partitions μ � ν such that μ = (μ1, . . . , μn−j , 0, . . . ,
0). The particular cases when j = 1 in (104) and j = n in (105) show that
the multiple Stirling numbers vanish when μ = 0̄ = (0, . . . , 0) ∈ Cn as in the
classical case. That is,

s1(λ, 0̄) = s2(λ, 0̄) = 0

for any n-part partition λ with λn �= 0.
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(3) Note that setting x = t1−jqmj for j = 1, . . . , n, and mj ≥ νj in (81)
and (83) will not vanish the bracket functions. In particular, setting ν =
x̄ = k̄ = (k, . . . , k) ∈ Zn in (81) and using (43) gives

(106) k̄! =

n∏
i=1

(qtn−i)k
(1− qtn−i)k

=
∑
μ⊆k̄

q−n(λ′)t2n(μ)−(n−1)|μ|s1(k̄, μ)
n∏

i=1

(1− qktn−i)μi

(1− qtn−i)μi
·

which is an analogue of the classical identity

k! =

k∑
m=0

s1(k,m) km

for the special case when ν = k̄ is a rectangular partition.

(4) Recall that, s1(n,m) = −s2(n,m) = −
(
n
2

)
when n − m = 1 for the

classical Stirling numbers. Similarly, if the index partitions satisfy |λ|−|λ̃| =
1, we have that

s1(λ, λ̃) = −s2(λ, λ̃)

exactly as in the one dimensional case.
The proof follows easily from the inversion (98) relation, and the obser-

vation that there are only two partitions between λ and λ̃ under the inclusion
ordering, namely the two partitions themselves. That is,

(107) 0 = δλλ̃ =
∑

λ̃⊆μ⊆λ

s1(λ, μ) s2(μ, λ̃)

which implies that s1(λ, λ) s2(λ, λ̃) = −s1(λ, λ̃) s2(λ̃, λ̃). That the diagonal
entries of both type of multiple qt-Stirling numbers are 1 by (99) is now
enough to conclude.

7. The qt-Lah numbers

The classical Lah numbers are defined to be the connection coefficients in
the expansion

(108) xn =

n∑
k=0

L(n, k)xk



Multiple combinatorial numbers 525

where xn = x(x − 1) . . . (x − n + 1) denotes the falling factorial as before,
and xn = x(x+1) . . . (x+ n− 1) the rising factorial. Various q-analogues of
these numbers are developed in one dimensional case in [13, 32] and others.

We now give the definition of multiple qt-Lah numbers in terms of the
multiple factorial function and its flipped version.

Definition 7.1. Let [x̄]λ denote the multiple analogue of the rising factorial.
That is,

(109) [x̄]λ = [x̄, q, t]λ := [x̄, q−1, t−1]λ·

For an n part partition λ, the qt-Lah numbers L(λ, μ) = L(λ, μ, q, t) are
defined by

(110) [x̄]λ =
∑
μ⊆λ

(−1)|μ|q−|μ|+2n(μ′)t−n(μ)L(λ, μ, q, t) [x̄]μ

where x ∈ C, and x̄ = {x, . . . , x} ∈ Cn as before.

In one dimensional case, the Lah numbers admit some explicit repre-
sentataions. We show that the same is true for the multiple Lah numbers
next.

Theorem 7.1. Let ν and μ be partitions with at most n-parts. Then

(111) L(ν, μ) = (−1)−|ν|+|μ|q−|ν|+|μ|−2n(μ′)tn(ν)+n(μ)

·
n∏

i=1

{
(1− qtn−i)−νi+μi

} ∑
μ⊆λ⊆ν

u(ν, λ, q−1, t−1) v(λ, μ, q, t)

where u and v factors are as defined in (74) and (75) above.

Proof. Multiply and divide the right hand side of (76) by
∏n

i=1(1−qtn−i)λi ,
flip the parameters q and t, and use the definitions (93) and (109) to get

(112) 〈x; q, t〉λ =
∑
μ⊆λ

n∏
i=1

{
1

(1− q−1t−(n−i))λi

}
u(λ, μ, q−1, t−1)x|μ|·

Similarly, multiplying and dividing the right hand side of (77) by the
factor

∏n
i=1(1− qtn−i)μi gives

(113) x|λ| =
∑
μ⊆λ

v(λ, μ, q, t)

n∏
i=1

{
(1− qtn−i)μi

}
〈x; q, t〉μ·
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Combine the two to get

(114) 〈x; q, t〉λ =
∑
μ⊆ν

∑
μ⊆λ⊆ν

n∏
i=1

{
1

(1− q−1t−(n−i))νi

}
u(ν, λ, q−1, t−1)

· v(λ, μ, q, t)
n∏

i=1

{
(1− qtn−i)μi

}
〈x; q, t〉μ·

Setting x → qx and comparing the last identity to the definition of multiple
Lah numbers (110) gives the desired result.

7.1. Properties of Lah numbers

We now establish a few fundamental properties of multiple Lah numbers
starting with some special evaluations.

(1) Set ν = μ = λ in (111) to write

(115) L(λ, λ) = (−1)−|λ|+|λ|q−|λ|+|λ|−2n(λ′)tn(λ)+n(λ)

·
n∏

i=1

{
(1− qtn−i)−λi+λi

}
u(ν, λ, q−1, t−1) v(λ, μ, q, t)

or

(116) L(λ, λ) = q−2n(λ′)t2n(λ)u(λ, λ, q−1, t−1) v(λ, λ, q, t)·

It is clear from the definition (75) that

(117) v(λ, λ, q, t) = (−1)|λ|qn(λ
′)t−n(λ)·

Likewise, the identities and show that

(118) ŵλ(q
λtδ(n); q, t)

= (−1)|λ| t−n(λ)q−|λ|−n(λ′)(qtn−1)λ
∏

1≤i<j≤n

(qtj−i−1)λi−λj

(qtj−i)λi−λj

·

Setting λ = μ, and substituting the last evaluation in (74), and flipping the
parameters q and t shows

(119) u(λ, λ, 1/q, 1/t) = (−1)|λ| t−n(λ)qn(λ
′)

Putting these into (116) now gives that L(λ, λ) = 1, as in the classical case.
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(2) In the view of property (36), the definition (75), and the explicit for-
mula (111), we see that L(λ, μ) = 0 when μ �⊆ λ.

(3) We now derive a multiple analogue of the closed formula

(120) L(n,m) =

(
n

m

)
(n− 1)!

(m− 1)!
·

We first write a generalization of the identity (58).

Lemma 7.1. Let r ∈ C, and ν is an n part partition. Then

(121) (−1)|μ| r|μ|t−n(μ)qn(μ
′) (r)ν
(r)μ

wμ(q
νtδ(n); q, t)

=
∑
λ

μ⊆λ⊆ν

(−1)|λ| r|λ|tn(λ)+(1−n)|λ|q|λ|+n(λ′)

(qtn−1)λ

∏
1≤i<j≤n

{
(qtj−i)λi−λj

(qtj−i−1)λi−λj

}

· wλ(q
νtδ(n); t, q)wμ(q

λtδ(n); t, q)·

Proof. Recall the following transformation identity for wλ functions [8],
which is obtained from a multiple analogue of Bailey’s 10φ9 transformation
formula from [7].

(122)
(s)ν
(z)μ

(−1)|μ| z|μ|t−n(μ)qn(μ
′)

·
∑
λ

μ⊆λ⊆ν

(z)λ
(qtn−1)λ

q|λ|t2n(λ)
∏

1≤i<j≤n

{
(qtj−i)λi−λj

(qtj−i−1)λi−λj

}

·
(
lim
a→0

Wλ(q
νtδ(n); q, t, at1−2n, as−1t−n)

)
wμ(q

λtδ(n); t, q)

=
∑
λ

μ⊆λ⊆ν

(−1)|λ| z|λ|s|λ|tn(λ)+(1−n)|λ|q|λ|+n(λ′)

(qtn−1)λ

∏
1≤i<j≤n

{
(qtj−i)λi−λj

(qtj−i−1)λi−λj

}

· wλ(q
νtδ(n); t, q)wμ(q

λtδ(n); t, q)·

The sum on the left may be evaluated using the summation formula (62) to
get the result where we set r = zs.

This powerful result is more general than (58) because of the additional
free variable r. If we set r = t2n−2, we get
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(123) (−1)|μ| t−n(μ)qn(μ
′) (t

2(n−1))ν

(t2(n−1))μ

(
ν

μ

)
q,t

=
∑
λ

μ⊆λ⊆ν

(−1)|λ| t−n(λ)+2(n−1)|λ|qn(λ
′)

(
ν

λ

)
q,t

(
λ

μ

)
q,t

which will be useful in writing our explicit formula that we give next.

Theorem 7.2. With the notation as above,

(124) L(ν, μ) = (−1)|ν|+|μ|q−|ν|+|μ|tn(ν)−n(μ)

·
n∏

i=1

{
(1− qtn−i)−νi+μi

} (t2(n−1))ν

(t2(n−1))μ

(
ν

μ

)
q,t

·

Proof. Substituting (74) and (75) into the fomula (111) gives

(125) L(ν, μ) = (−1)|ν|q−|ν|+|μ|−n(μ′)tn(ν)
n∏

i=1

{
(1− qtn−i)−νi+μi

}

·
∑

μ⊆λ⊆ν

q−|λ|t−2n(λ)

(q−1t−(n−1), q−1, t−1)λ

∏
1≤i<j≤n

{
(q−1t−(j−i))λi−λj

(q−1t−(j−i−1))λi−λj

}

· ŵλ(q
−νt−δ(n); q−1, t−1)

(
λ

μ

)
q,t

·

By definition (17) we have

(126) ŵλ(q
−νt−δ(n); q−1, t−1) = q|λ|t2n(λ)+(n−1)|λ|wλ(q

νtδ(n); q, t)

and by the flip rule (48) we get

(127) (q−1t−(n−1), q−1, t−1)λ = (−1)|λ|q−n(λ′)−|λ|tn(λ)+(1−n)|λ|(qtn−1; q, t)λ·

Observe also that

∏
1≤i<j≤n

{
(q−1t−(j−i))λi−λj

(q−1t−(j−i−1))λi−λj

}
= t2n(λ)+(1−n)|λ|

∏
1≤i<j≤n

{
(qtj−i)λi−λj

(qtj−i−1)λi−λj

}(128)

Therefore, putting the multiple binomial (29) into (125) gives
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(129) L(ν, μ) = (−1)|ν|q−|ν|+|μ|−n(μ′)tn(ν)
n∏

i=1

{
(1− qtn−i)−νi+μi

}

·
∑

μ⊆λ⊆ν

(−1)|λ|qn(λ
′)t−n(λ)+2(n−1)|λ|

(
ν

λ

)
q,t

(
λ

μ

)
q,t

·

Finally, we use (123) to evaluate the sum which gives the desired result.

(4) The special evaluations we proved earlier, such as L(λ, λ) = 1 and
L(λ, μ) = 0 for μ �⊆ λ can be verified easily using this closed formula.
Other special evaluations are also possible. For example, setting μ = 1̄ gives

(130) L(ν, 1̄) = (−1)|ν|+nq−|ν|+ntn(ν)−(
n

2)

· (t2(n−1))ν

n∏
i=1

{
(1− qtn−i)−νi+1

(1− t2n−1−i)

(1− qνitn−i)

(1− qtn−i)

}

which is an analogue of

L(n, 1) =

(
n

1

)
(n− 1)!

(1− 1)!
= n!·

This may be viewed as an alternative definition for ν!.

(5) The final property we derive here is that the Lah numbers are self inverse
of themselves in the sense that

(131) xn =

n∑
k=0

L(n, k)xk, and xn =

n∑
k=0

(−1)n−kL(n, k)xk.

Note that flipping the parameters q and t in the identity (110) gives the
inverse result

(132) [x̄]λ =
∑
μ⊆λ

(−1)|μ|q|μ|−2n(μ′)tn(μ)L(λ, μ, t−1, q−1) [x̄]μ

so that the matrices defined by the entries L(λ, μ, t, q) and L(λ, μ, t−1, q−1)
respectively are inverses of each other in the sense of Section 2.

8. Conclusion

We have derived several interesting identities for the multiple qt-factorial
functions, multiple qt-Stirling numbers, and multiple qt-Lah numbers in the
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present paper. We will construct additional properties such as new recur-
rence relations they satisfy, their explicit evaluations in various other special
cases, their combinatorial interpretations (partially developed in [10]), other
generating functions they satisfy, and their connections to different families
of multiple combinatorial numbers in an upcoming article. The Stirling and
Lah numbers have interesting connections to various branches in mathe-
matics such as the one expressed in the classical Dobinski’s formula. Such
relations will also be formulated in that paper.

It should be noted that the multiple analogues developed in this paper
are constructed mostly by taking a top-down approach, using the theory of
multiple hypergeometric summation identities and well-poised Macdonald
functions. The author is working on a book project on multiple combina-
torial numbers where these combinatorial numbers as well as several other
multiple sequences are reconstructed by taking a more elementary bottom-
up approach.
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Mathematical Seminars, Birkhäuser, Boston, MA (1997), 171–204.

MR1429892

[12] K. C. Garrett, K. Hummel, A combinatorial proof of the sum of q-cubes,

Electron. J. Comb. 11 (2004). MR2034423

[13] A. Garsia, J. Remmel, A combinatorial interpretation of q-derangement

and q-Laguerre numbers, (1980), European J. Combin. 1, 47–59.

MR0576766

[14] G. Gasper, M. Rahman, Basic hypergeometric series, Encyclopedia of

mathematics and its applications, Vol 96, Cambridge University Press,

Cambridge, (2004). MR2128719

[15] F. Garvan, D. Stanton, Sieved partition functions and q-binomial coef-

ficients, Math. Comp. 55 191 (1990), 299–311. MR1023761

[16] H. W. Gould, The q-Stirling numbers of first and second kinds, Duke

Math. J. 28 (1961), 281–289. MR0122759

[17] H. W. Gould, The bracket function, q-binomial coefficients, and some

new Stirling number formulas, Fibonacci Quart. 5 (1967), 401–422.

MR0225669

[18] J. Kaneko, q-Selberg integrals and Macdonald polynomials, Ann. Sci.

´Ecole Norm. Sup. (4) 29 (1996), no. 5, 583–637. MR1399617

[19] T. Kim, q-Bernoulli numbers and polynomials associated with Gaussian

binomial coefficients, Russian Journal of Math. Physics 15 No. 1 (2008),

51–57. MR2390694

[20] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed.,

Oxford University Press, (1995). MR1354144

http://www.ams.org/mathscinet-getitem?mr=2415079
http://www.ams.org/mathscinet-getitem?mr=2659180
http://www.ams.org/mathscinet-getitem?mr=1429892
http://www.ams.org/mathscinet-getitem?mr=2034423
http://www.ams.org/mathscinet-getitem?mr=0576766
http://www.ams.org/mathscinet-getitem?mr=2128719
http://www.ams.org/mathscinet-getitem?mr=1023761
http://www.ams.org/mathscinet-getitem?mr=0122759
http://www.ams.org/mathscinet-getitem?mr=0225669
http://www.ams.org/mathscinet-getitem?mr=1399617
http://www.ams.org/mathscinet-getitem?mr=2390694
http://www.ams.org/mathscinet-getitem?mr=1354144


532 Hasan Coskun

[21] I. G. Macdonald, An elementary proof of a q-binomial identity. q-series

and partitions, IMA Vol. Math. Appl. 18 (1989) 73–75. MR1019844

[22] A. Lascoux, E. M. Rains, S. Ole Warnaar, Nonsymmetric interpola-

tion Macdonald polynomials and gln basic hypergeometric series, Trans.

Groups 14 (2009), 613–647. MR2534801

[23] M. Lassalle, Coefficients binomiaux generalises et polynomes de Mac-

donald, J. Funct. Anal. 158 (1998), 289–324. MR1648471

[24] S. C. Milne, Restricted growth functions, rank row matchings of parti-

tion lattices, and q-Stirling numbers. Adv. in Math. 43 (1982), no. 2,

173–196. MR0644671

[25] A. Okounkov, Binomial formula for Macdonald polynomials and appli-

cations, Math. Res. Lett. 4 (1997), 533–553. MR1470425

[26] E. Rains, BCn symmetric abelian functions, Duke Math. Journal, Vol-

ume 135 (2006) 1, 99–180. MR2259924

[27] E. Rains, BCn symmetric polynomials, Transform. Groups 10 (2005) 1,

63–132. MR2127341

[28] S. Sahi, The binomial formula for nonsymmetric Macdonald polynomi-

als, Duke Math. J. 94 (1998), 465–477. MR1639523

[29] M. Schlosser, q-Analogues of the sums of consecutive integers, squares,

cubes, quarts and quints, The Electronic Journal of Combinatorics 11

(2004). MR2097337

[30] S. O. Warnaar, Summation and transformation formulas for elliptic

hypergeometric series, Constr. Approx. 18 (2002), 479–502. MR1920282

[31] S. O. Warnaar, On the q-analogue of the sum of cubes, Electron. J.

Comb. 11 (2004). MR2114194

[32] C. Wagner, Generalized Stirling and Lah numbers, Discrete Math.

(1996) 160, 199–218. MR1417571

[33] J. Zeng, The q-Stirling numbers, continued fractions and the q-Charlier

and q-Laguerre polynomials, J. Comput. Appl. Math. 57 (1995), no. 3,

413–424. MR1335793

http://www.ams.org/mathscinet-getitem?mr=1019844
http://www.ams.org/mathscinet-getitem?mr=2534801
http://www.ams.org/mathscinet-getitem?mr=1648471
http://www.ams.org/mathscinet-getitem?mr=0644671
http://www.ams.org/mathscinet-getitem?mr=1470425
http://www.ams.org/mathscinet-getitem?mr=2259924
http://www.ams.org/mathscinet-getitem?mr=2127341
http://www.ams.org/mathscinet-getitem?mr=1639523
http://www.ams.org/mathscinet-getitem?mr=2097337
http://www.ams.org/mathscinet-getitem?mr=1920282
http://www.ams.org/mathscinet-getitem?mr=2114194
http://www.ams.org/mathscinet-getitem?mr=1417571
http://www.ams.org/mathscinet-getitem?mr=1335793


Multiple combinatorial numbers 533

Hasan Coskun

Department of Mathematics

Texas A&M University-Commerce

Binnion Hall, Room 314

Commerce, TX 75429

USA

E-mail address: hasan.coskun@tamuc.edu
url: faculty.tamuc.edu/hcoskun

Received 13 May 2015

mailto:hasan.coskun@tamuc.edu
faculty.tamuc.edu/hcoskun

	Introduction
	Background
	Well–poised Macdonald functions
	The limiting w/ function
	The elliptic Jackson coefficients /
	The multiple qt-binomial coefficients
	The multiple qt-factorial function

	Recurrence relations for multiple factorial function
	The variable z
	The index 
	The weight ||

	Summation formulas for multiple factorial functions
	Multiple basic and ordinary qt-Stirling numbers
	Summation identities for multiple Stirling numbers
	The qt-Lah numbers
	Properties of Lah numbers

	Conclusion
	References

