On the maximum number of colorings of a graph

Aysel Erey

Let $C_k(n)$ be the family of all connected k-chromatic graphs of order n. Given a natural number $x \geq k$, we consider the problem of finding the maximum number of x-colorings among graphs in $C_k(n)$. When $k \leq 3$ the answer to this problem is known, and when $k \geq 4$ the problem is wide open. For $k \geq 4$ it was conjectured that the maximum number of x-colorings is $x(x-1)\cdots(x-k+1)x^{n-k}$. In this article, we prove this conjecture under the additional condition that the independence number of the graphs is at most 2.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 05C15, 05C30, 05C31, 05C35.

Keywords and phrases: x-coloring, chromatic number, k-chromatic, chromatic polynomial.

1. Introduction

All graphs in this article are simple, that is, they do not have loops or multiple edges. Let V(G) and E(G) be the vertex set and edge set of a graph G, respectively. The order of G is |V(G)| which is denoted by n_G , and the size of G is |E(G)|. For a nonnegative integer x, an x-coloring of G is a function $f:V(G) \to \{1,\ldots,x\}$ such that $f(u) \neq f(v)$ for every $uv \in E(G)$. The $chromatic\ number\ \chi(G)$ is smallest x for which G has an x-coloring and G is called k-chromatic if $\chi(G) = k$. Let $\pi(G,x)$ denote the $chromatic\ polynomial\ of\ G$. For nonnegative integers x, $\pi(G,x)$ counts the number of x-colorings of G.

There has been a great interest in maximizing or minimizing the number of x-colorings over various families of graphs. Here we shall focus on the family of all connected graphs with fixed chromatic number and fixed order. Let $C_k(n)$ be the family of all connected k-chromatic graphs of order n. Given a natural number $x \geq k$, we consider the problem of finding the maximum number of x-colorings among graphs in $C_k(n)$. When $k \leq 3$ the answer to this problem is known. It is well known that (see, for example, [2]) for k = 2 and $x \geq 2$, the maximum number of x-colorings of a graph in $C_2(n)$ is equal to

arXiv: 1610.07208

 $x(x-1)^{n-1}$, and extremal graphs are trees when $x \geq 3$. Also, for $x \geq k = 3$, the maximum number of x-colorings of a graph in $\mathcal{C}_3(n)$ is

$$(x-1)^n - (x-1)$$
 for odd n

and

$$(x-1)^n - (x-1)^2$$
 for even n

and furthermore the extremal graph is the odd cycle C_n when n is odd and odd cycle with a vertex of degree 1 attached to the cycle (denoted C_{n-1}^1) when n is even [4]. For $k \geq 4$, the problem is wide open. For $k \geq 4$, Tomescu [4] (see also [2, 3]) conjectured that the maximum number of x-colorings of a graph in $C_k(n)$ is $(x)_{\downarrow k}(x-1)^{n-k} = x(x-1)\cdots(x-k+1)(x-1)^{n-k}$, and the extremal graphs are those which belong to the family of all connected k-chromatic graphs of order n with clique number k and size $\binom{k}{2} + n - k$, denoted by $C_k^*(n)$.

Conjecture 1.1. [2, pg. 315] Let G be a graph in $C_k(n)$ where $k \geq 4$. Then for every $x \in \mathbb{N}$ with $x \geq k$

$$\pi(G, x) \le (x)_{\downarrow k} (x - 1)^{n - k}.$$

Moreover, the equality holds if and only if G belongs to $C_k^*(n)$.

Several authors studied this conjecture. Tomescu [4] proved this conjecture for k=4 under the additional condition that graphs are planar. In [1], the authors proved this conjecture for every $k \geq 4$, provided that $x \geq n-2+\left(\binom{n}{2}-\binom{k}{2}-n+k\right)^2$. Our main result in this article is Theorem 2.1 which proves this conjecture for graphs whose independence numbers are at most 2 (i.e. complements of triangle-free graphs).

Let G/e be the graph formed from G by contracting edge e, that is, by identifying the ends of e (and taking the underlying simple graph). For $e \notin E(G)$, observe that

$$\chi(G) = \min\{\chi(G+e)\,,\,\chi(G/e)\}$$

and the well known Edge Addition-Contraction Formula says that

$$\pi(G, x) = \pi(G + e, x) + \pi(G/e, x).$$

Also, the chromatic polynomial of a graph can be computed by using the Complete Cut-set Theorem: If G_1 and G_2 are two graphs such that $G_1 \cap G_2 \cong$

 K_r , then

$$\pi(G_1 \cup G_2, x) = \frac{\pi(G_1, x) \pi(G_2, x)}{(x)_{\downarrow r}}.$$

Let $G \cup H$ be the disjoint union of G and H, and $G \vee H$ be their join. It is easy to see that

$$\pi(G \vee K_1, x) = x \pi(G, x - 1).$$

The maximum degree of a graph G is $\Delta(G)$, and a vertex v of G is universal if it is joined to all other vertices. In [1], Conjecture 1.1 was proven for graphs which contain a universal vertex.

Lemma 1.1. [1] Let $G \in \mathcal{C}_k(n)$ and $\Delta(G) = n - 1$. Then, for all $x \in \mathbb{N}$ with $x \geq k$, the inequality $\pi(G, x) \leq (x)_{\downarrow k} (x - 1)^{n-k}$ holds. Furthermore, the equality is achieved if and only if $G = K_1 \vee (K_{k-1} \cup (n-k)K_1)$.

Lastly, let $\omega(G)$ and $\alpha(G)$ be the clique number and independence number of G respectively.

2. Main results

Lemma 2.1. Let $G \in \mathcal{C}_k(n)$ and $\omega(G) = k$. Then for all $x \in \mathbb{N}$ with $x \geq k$,

$$\pi(G, x) \le (x)_{\downarrow k} (x - 1)^{n - k}$$

with equality if and only if $G \in \mathcal{C}_k^*(n)$.

Proof. Let H be a k-clique of G. If G has no cycle C such that $E(C) \setminus E(H) \neq \emptyset$ then $G \in \mathcal{C}_k^*(n)$ and the result is clear. So we assume that there exists a cycle C of G such that $E(C) \setminus E(H) \neq \emptyset$ (i.e. $G \notin \mathcal{C}_k^*(n)$). We may choose a cycle C such that $|E(C) \cap E(H)| \leq 1$, as H is a clique. Let G' be a minimal spanning connected subgraph of G which contains H and C. First we shall show that $\pi(G',x) = (x-1)_{\downarrow k-1} \pi(C,x) (x-1)^{n-k-n_C+1}$. If $|E(C) \cap E(H)| = 0$ (resp. $|E(C) \cap E(H)| = 1$), let G_1 and G_2 be two subgraphs of G' such that G_1 contains H, G_2 contains C, $G_1 \cup G_2 = G'$, and G_1 and G_2 intersect in a single vertex (resp. edge) of C. By the Complete Cut-set Theorem, if $|E(C) \cap E(H)| = 0$ then $\pi(G',x) = \frac{\pi(G_1,x)\pi(G_2,x)}{x}$, and if $|E(C) \cap E(H)| = 1$ then $\pi(G',x) = \frac{\pi(G_1,x)\pi(G_2,x)}{x}$. In each case, $G_1 \in \mathcal{C}_k^*(n_{G_1})$ and G_2 is a connected unicyclic graph. Therefore,

$$\pi(G_1, x) = (x)_{\downarrow k} (x - 1)^{n_{G_1} - k}$$

and

$$\pi(G_2, x) = \pi(C, x)(x - 1)^{n_{G_2} - n_C}.$$

If $|E(C) \cap E(H)| = 0$ then $n_{G_1} + n_{G_2} = n + 1$, and if $|E(C) \cap E(H)| = 1$ then $n_{G_1} + n_{G_2} = n + 2$. Thus, we obtain $\pi(G', x) = (x - 1)_{\downarrow k - 1} \pi(C, x) (x - 1)^{n - k - n_C + 1}$. Also,

$$\pi(G',x) = (x-1)_{\downarrow k-1} \pi(C,x) (x-1)^{n-k-n_C+1}$$

$$= (x-1)_{\downarrow k-1} ((x-1)^{n_C} + (-1)^{n_C} (x-1)) (x-1)^{n-k-n_C+1}$$

$$= (x-1)_{\downarrow k-1} \left((x-1)^{n-k+1} + (-1)^{n_C} (x-1)^{n-k-n_C+2} \right)$$

$$< (x-1)_{\downarrow k-1} \left((x-1)^{n-k+1} + (x-1)^{n-k} \right)$$

$$= (x)_{\downarrow k} (x-1)^{n-k}$$

where the inequality holds as $n_C \geq 3$. Now the result follows since $\pi(G', x) \geq \pi(G, x)$.

A *cut-set* of a connected graph is a subset of the vertex set whose removal disconnects the graph. To prove our main result, we first deal with graphs which have a cut-set of size at most 2.

Proposition 2.1. Let G be a connected k-chromatic graph with $\alpha(G) = 2$. If G has a stable cut-set S of size at most 2 then

- (i) $G \setminus S$ has exactly two connected components, say, G_1 and G_2 ,
- (ii) G_1 and G_2 are complete graphs,
- (iii) $\max\{\chi(G_1), \chi(G_2)\} \ge k 1$,
- (iv) For every u in S, either $V(G_1) \subseteq N_G(u)$ or $V(G_2) \subseteq N_G(u)$.
- *Proof.* (i) If $G \setminus S$ had more than two components then we could pick a vertex from each component and get a stable set of size at least 3. And this would contradict with the assumption that $\alpha(G) = 2$.
 - (ii) Suppose on the contrary that G_1 or G_2 is not a complete graph. Without loss, we may assume G_1 has two nonadjacent vertices u and v. Let w be a vertex of G_2 . Then $\{u, v, w\}$ is a stable set of size 3 and again this contradicts with $\alpha(G) = 2$.
- (iii) Suppose that $\chi(G_1)$ and $\chi(G_2)$ are at most k-2. Then we can properly color G_1 and G_2 with colors $1, \ldots, k-2$ and we can assign a new color k-1 to all vertices in S. This yields a proper (k-1)-coloring of G and this contradicts with the assumption that G is k-chromatic.

(iv) If there exists a vertex u in S such that u has a non-neighbor v in G_1 and a non-neighbor w in G_2 then we get a stable set $\{u, v, w\}$ of size S and this contradicts with S and S is a stable set S and S is a stable set S in S is a stable set S in S

Note that if $G \in C_k^*(n)$ and $\alpha(G) = 2$ then either G is a k-clique with a path of size one hanging off a vertex of the clique (denoted by $F_{1,k}$) or G is a k-clique with a path of size two hanging off a vertex of the clique (denoted by $F_{2,k}$).

Lemma 2.2. Let $G \in \mathcal{C}_k(n)$ with $\alpha(G) = 2$. Let $x \in \mathbb{N}$ with $x \geq k$ and u be a cut-vertex of G. Then, $\pi(G, x) \leq (x)_{\downarrow k} (x - 1)^{n-k}$. Furthermore, the equality holds if and only if $G \cong F_{1,k}$ or $G \cong F_{2,k}$.

Proof. By Proposition 2.1, G-u has exactly two connected components and they are complete graphs. Now it is easy to see that G is chordal and hence $\omega(G) = k$. Thus, the result follows by Lemma 2.1.

Lemma 2.3. Let G be a graph in $C_k(n)$ with $\alpha(G) = 2$ and $k \geq 4$. If G has a stable cut-set of size 2 then

$$\pi(G, x) \le (x)_{\downarrow k} (x - 1)^{n - k}$$

for all $x \in \mathbb{N}$ with $x \geq k$. Furthermore, the equality is achieved if and only if $G \cong F_{2,k}$.

Proof. Let $S = \{u, v\}$ be a stable cut-set of G. If $\omega(G) = k$ then the result follows from Lemma 2.1, so we may assume that $\omega(G) < k$. By Proposition 2.1, the graph $G \setminus S$ has exactly two connected components, say G_1 and G_2 , and we may assume $G_1 \cong K_p$, $G_2 \cong K_q$ where $p \geq q$. Now, $p \geq k-1$ by Proposition 2.1 and $\omega(G) < k$ by the assumption. Therefore, p = k-1. Since $\omega(G) < k$, every vertex in S has at least one non-neighbor in G_1 . Let u' and v' be two vertices of G_1 which are non-neighbors of u and v respectively.

Since $V(G_1) \nsubseteq N_G(u)$ and $V(G_1) \nsubseteq N_G(v)$, all vertices in S are adjacent to all vertices in G_2 by Proposition 2.1. The graph G_2 has at most k-2 vertices, as $\omega(G) < k$. If G_2 has less than k-2 vertices, then we can find a proper k-1 coloring c of G (we can first properly color the vertices of G_1 with colors $1, 2, \ldots k-1$ and assign c(u') (resp. c(v')) to u (resp. v) and then we can properly color the vertices of G_2 with colors $\{1, 2, \ldots k-1\} \setminus \{c(u), c(v)\}$ which yields a proper k-1 coloring of G). Therefore G_2 has exactly k-2 vertices and g=k-2.

Since $\alpha(G)=2$, the vertices u and v have no common non-neighbor. Therefore,

$$G/uv \cong K_1 \vee (K_{k-1} \cup K_{k-2}).$$

Now it is easy to see that

(1)
$$\pi(G/uv, x) = (x - 1)_{\downarrow k-1}(x)_{\downarrow k-1}.$$

Let H_1 (resp. H_2) be the subgraph of G + uv induced by the vertex set $V(G_1) \cup S$ (resp. $V(G_2) \cup S$). Now, the graphs H_1 and H_2 intersect at the edge uv in G + uv. Therefore,

$$\pi(G + uv, x) = \frac{\pi(H_1, x) \pi(H_2, x)}{x(x - 1)}.$$

Since $H_2 \cong K_k$, we get $\pi(H_2, x) = (x)_{\downarrow k}$. Also, one of the vertices of S has a neighbor in G_1 , as G is connected. So, H_1 contains a spanning subgraph which is isomorphic to a graph in $\mathcal{C}_{k-1}^*(k+1)$. Thus, $\pi(H_1, x) \leq (x)_{\downarrow k-1}(x-1)^2$. Now,

$$(2\pi(G+uv,x) \le \frac{(x)_{\downarrow k}(x)_{\downarrow k-1}(x-1)^2}{x(x-1)} = (x-1)(x)_{\downarrow k-1}(x-1)_{\downarrow k-1}.$$

Using the edge addition-contraction formula and (1) and (2) we get

$$\pi(G,x) = \pi(G + uv, x) + \pi(G/uv, x)$$

$$\leq (x-1)(x)_{\downarrow k-1}(x-1)_{\downarrow k-1} + (x-1)_{\downarrow k-1}(x)_{\downarrow k-1}$$

$$= (x)_{\downarrow k}(x)_{\downarrow k-1}.$$

The graph G has 2k-1 vertices, so $(x)_{\downarrow k} (x-1)^{n-k} = (x)_{\downarrow k} (x-1)^{k-1}$. Now it is clear that

$$(x)_{\downarrow k} (x)_{\downarrow k-1} < (x)_{\downarrow k} (x-1)^{k-1}$$

holds for $k \ge 4$, as $(x)_{\downarrow k-1} = x(x-1)(x-2)\cdots$ and $x(x-2) < (x-1)^2$.

Theorem 2.1. Let G be a graph in $C_k(n)$ with $\alpha(G) \leq 2$ and $k \geq 4$. Then, for every $x \in \mathbb{N}$ with $x \geq k$,

$$\pi(G, x) \le (x)_{\downarrow k} (x - 1)^{n - k}.$$

Furthermore, the equality is achieved if and only if $G \cong F_{1,k}$, $G \cong F_{2,k}$ or k = n.

Proof. Since $\alpha(G)\chi(G) \geq n$, the equality k = 4 implies $n \leq 8$. Computations show that the result holds to be true when $n \leq 8$. So we may assume that $k \geq 5$. We proceed by induction on the number of vertices. For the basis

step, n = k and G is a complete graph. Hence, $\pi(G, x) = (x)_{\downarrow k}$ and now the result is clear.

Now we may assume that G is a k-chromatic graph of order at least k+1. By Lemma 2.2 and Lemma 2.3, we may assume that G has no stable cut-set of size at most 2. Also, if $\Delta(G) = n-1$ then the result follows by Lemma 1.1. Hence, we shall assume that $\Delta(G) < n-1$. Let u be a vertex of maximum degree. Set $t = n-1-\Delta(G)$ and let $\{v_1,\ldots,v_t\}$ be the set of non-neighbors of u in G, (that is, $\{v_1,\ldots,v_t\} = V(G) \setminus N_G[u]$). We set $G_0 = G$ and

$$G_i = G_{i-1} + uv_i$$
$$H_i = G_i/uv_i$$

for i = 1, ..., t. By applying the Edge Addition-Contraction Formula successively,

(3)
$$\pi(G,x) = \pi(G_t,x) + \sum_{i=1}^t \pi(H_i,x).$$

Note that $k \leq \chi(G_t) \leq k+1$ and $k \leq \chi(H_i) \leq k+1$ for $i=1,2,\ldots,t$. Since u is a universal vertex of G_t , we have

(4)
$$\pi(G_t, x) = x \pi(G - u, x - 1).$$

Clearly, $\alpha(G-u) \leq 2$. Also, G-u is connected as G has no cut-vertex by the assumption. So, by the induction hypothesis,

$$\pi(G-u,x) \le (x)_{1,\chi(G-u)}(x-1)^{n-1-\chi(G-u)}$$
.

Now replacing x with x-1 in the latter, we get

$$\pi(G-u, x-1) \le (x-1)_{\downarrow \chi(G-u)} (x-2)^{n-1-\chi(G-u)}$$
.

Note that $k-1 \le \chi(G-u) \le k$. Also, $(x-1)_{\downarrow k}(x-2)^{n-1-k} < (x-1)_{\downarrow k-1}(x-2)^{n-k}$. Therefore,

$$\pi(G-u, x-1) \le (x-1)_{\downarrow k-1}(x-2)^{n-k}$$
.

Since $(x)_{\downarrow k} = x(x-1)_{\downarrow k-1}$, by (4) we obtain that

(5)
$$\pi(G_t, x) \le (x)_{\downarrow k} (x - 2)^{n - k}.$$

Now we shall give an upper bound for $\pi(H_i, x)$ for all i. Observe that

$$H_i \cong K_1 \vee (G - \{u, v_i\})$$

because $\alpha(G) = 2$ and hence every vertex in $G - \{u, v_i\}$ is adjacent to either u or v_i in G. Therefore,

(6)
$$\pi(H_i, x) = x \pi(G - \{u, v_i\}, x - 1).$$

It is clear that $\alpha(G - \{u, v_i\}) \leq 2$. Since G has no stable cut-set of size 2, the graph $G - \{u, v_i\}$ is connected. Also, $k - 1 \leq \chi(G - \{u, v_i\}) \leq k$, as u and v_i are nonadjacent in G and $\chi(G) = k$. By the induction hypothesis,

$$\pi(G - \{u, v_i\}, x) \le (x)_{\downarrow \chi(G - \{u, v_i\})} (x - 1)^{n - 2 - \chi(G - \{u, v_i\})}.$$

Now replacing x with x-1 in the latter, we get

$$\pi(G - \{u, v_i\}, x - 1) \le (x - 1)_{\downarrow \chi(G - \{u, v_i\})} (x - 2)^{n - 2 - \chi(G - \{u, v_i\})}.$$

Observe that $(x-1)_{\downarrow k}(x-2)^{n-k-2} < (x-1)_{\downarrow k-1}(x-2)^{n-k-1}$. Thus,

$$\pi(G - \{u, v_i\}, x - 1) \le (x - 1)_{\downarrow k - 1}(x - 2)^{n - k - 1}.$$

Since $(x)_{\downarrow k} = x(x-1)_{\downarrow k-1}$, by (6) we obtain that

(7)
$$\pi(H_i, x) \le (x)_{\downarrow k} (x - 2)^{n - k - 1}.$$

By (3), (5) and (7), we get

$$\pi(G,x) \leq (x)_{\downarrow k}(x-2)^{n-k} + (n-1-\Delta(G))(x)_{\downarrow k}(x-2)^{n-k-1}$$
$$= (x)_{\downarrow k}(x-2)^{n-k-1}(x-3+n-\Delta(G)).$$

Now, it suffices to show that $(x-2)^{n-k-1}(x-3+n-\Delta(G)) \leq (x-1)^{n-k}$. The graph G is neither a complete graph nor an odd cycle, so $\Delta(G) \geq k$ by Brook's Theorem. Hence, $n-\Delta(G) \leq n-k$. Now,

$$(x-3+n-\Delta(G))(x-2)^{n-k-1}$$

$$\leq (x-3+n-k)(x-2)^{n-k-1}$$

$$= (x-2-1+n-k)(x-2)^{n-k-1}$$

$$= (x-2)^{n-k} - (x-2)^{n-k-1} + (n-k)(x-2)^{n-k-1}$$

$$< (x-2)^{n-k} + (n-k)(x-2)^{n-k-1}$$

$$\leq (x-2+1)^{n-k}$$

$$= (x-1)^{n-k}$$

where the last inequality holds, as

$$(x-2+1)^{n-k} = (x-2)^{n-k} + (n-k)(x-2)^{n-k-1} + \binom{n-k}{2}(x-2)^{n-k-2} + \cdots$$

Thus, $\pi(G,x) \leq (x)_{\downarrow k} (x-1)^{n-k}$ and the result follows.

Acknowledgements

I would like to thank an anonymous referee for his/her helpful comments and careful reading.

References

- [1] J. Brown, A. Erey, New Bounds for Chromatic Polynomials and Chromatic Roots, *Discrete Math.* **388**(11) (2015) 1938–1946. MR3357779
- [2] F. M. Dong, K. M. Koh, and K. L. Teo, *Chromatic Polynomials And Chromaticity Of Graphs*, World Scientific, London, (2005). MR2159409
- [3] I. Tomescu, Le nombre des graphes connexes k-chromatiques minimaux aux sommets étiquetés, $C.\ R.\ Acad.\ Sci.\ Paris$ 273 (1971) 1124–1126. MR0291027
- [4] I. Tomescu, Maximal Chromatic Polynomials of Connected Planar Graphs, J. Graph Theory 14 (1990) 101–110. MR1037425

AYSEL EREY
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF DENVER
DENVER, CO 80208
USA

E-mail address: aysel.erey@gmail.com

RECEIVED 4 JULY 2016