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On the maximum number of colorings of a graph

Aysel Erey

Let Ck(n) be the family of all connected k-chromatic graphs of or-
der n. Given a natural number x ≥ k, we consider the problem
of finding the maximum number of x-colorings among graphs in
Ck(n). When k ≤ 3 the answer to this problem is known, and when
k ≥ 4 the problem is wide open. For k ≥ 4 it was conjectured that
the maximum number of x-colorings is x(x−1) · · · (x−k+1)xn−k.
In this article, we prove this conjecture under the additional con-
dition that the independence number of the graphs is at most 2.
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1. Introduction

All graphs in this article are simple, that is, they do not have loops or
multiple edges. Let V (G) and E(G) be the vertex set and edge set of a
graph G, respectively. The order of G is |V (G)| which is denoted by nG, and
the size of G is |E(G)|. For a nonnegative integer x, an x-coloring of G is a
function f : V (G) → {1, . . . , x} such that f(u) �= f(v) for every uv ∈ E(G).
The chromatic number χ(G) is smallest x for which G has an x-coloring
and G is called k-chromatic if χ(G) = k. Let π(G, x) denote the chromatic
polynomial of G. For nonnegative integers x, π(G, x) counts the number of
x-colorings of G.

There has been a great interest in maximizing or minimizing the number
of x-colorings over various families of graphs. Here we shall focus on the
family of all connected graphs with fixed chromatic number and fixed order.
Let Ck(n) be the family of all connected k-chromatic graphs of order n. Given
a natural number x ≥ k, we consider the problem of finding the maximum
number of x-colorings among graphs in Ck(n). When k ≤ 3 the answer to this
problem is known. It is well known that (see, for example, [2]) for k = 2 and
x ≥ 2, the maximum number of x-colorings of a graph in C2(n) is equal to
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x(x−1)n−1, and extremal graphs are trees when x ≥ 3. Also, for x ≥ k = 3,
the maximum number of x-colorings of a graph in C3(n) is

(x− 1)n − (x− 1) for odd n

and

(x− 1)n − (x− 1)2 for even n

and furthermore the extremal graph is the odd cycle Cn when n is odd
and odd cycle with a vertex of degree 1 attached to the cycle (denoted
C1
n−1) when n is even [4]. For k ≥ 4, the problem is wide open. For k ≥ 4,

Tomescu [4] (see also [2, 3]) conjectured that the maximum number of x-
colorings of a graph in Ck(n) is (x)↓k(x − 1)n−k = x(x − 1) · · · (x − k +
1)(x− 1)n−k, and the extremal graphs are those which belong to the family
of all connected k-chromatic graphs of order n with clique number k and
size

(
k
2

)
+ n− k, denoted by C∗

k(n).

Conjecture 1.1. [2, pg. 315] Let G be a graph in Ck(n) where k ≥ 4. Then
for every x ∈ N with x ≥ k

π(G, x) ≤ (x)↓k(x− 1)n−k.

Moreover, the equality holds if and only if G belongs to C∗
k(n).

Several authors studied this conjecture. Tomescu [4] proved this con-
jecture for k = 4 under the additional condition that graphs are planar.
In [1], the authors proved this conjecture for every k ≥ 4, provided that

x ≥ n − 2 +
((

n
2

)
−

(
k
2

)
− n+ k

)2
. Our main result in this article is Theo-

rem 2.1 which proves this conjecture for graphs whose independence numbers
are at most 2 (i.e. complements of triangle-free graphs).

Let G/e be the graph formed from G by contracting edge e, that is,
by identifying the ends of e (and taking the underlying simple graph). For
e /∈ E(G), observe that

χ(G) = min{χ(G+ e) , χ(G/e)}

and the well known Edge Addition-Contraction Formula says that

π(G, x) = π(G+ e, x) + π(G/e, x).

Also, the chromatic polynomial of a graph can be computed by using the
Complete Cut-set Theorem: If G1 and G2 are two graphs such that G1∩G2

∼=
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Kr, then

π(G1 ∪G2, x) =
π(G1, x)π(G2, x)

(x)↓r
.

Let G ·∪H be the disjoint union of G and H, and G ∨H be their join.
It is easy to see that

π(G ∨K1, x) = xπ(G, x− 1).

The maximum degree of a graph G is Δ(G), and a vertex v of G is universal
if it is joined to all other vertices. In [1], Conjecture 1.1 was proven for
graphs which contain a universal vertex.

Lemma 1.1. [1] Let G ∈ Ck(n) and Δ(G) = n − 1. Then, for all x ∈ N
with x ≥ k, the inequality π(G, x) ≤ (x)↓k (x − 1)n−k holds. Furthermore,
the equality is achieved if and only if G = K1 ∨ (Kk−1 ·∪ (n− k)K1).

Lastly, let ω(G) and α(G) be the clique number and independence num-
ber of G respectively.

2. Main results

Lemma 2.1. Let G ∈ Ck(n) and ω(G) = k. Then for all x ∈ N with x ≥ k,

π(G, x) ≤ (x)↓k (x− 1)n−k

with equality if and only if G ∈ C∗
k(n).

Proof. LetH be a k-clique ofG. IfG has no cycle C such that E(C)\E(H) �=
∅ then G ∈ C∗

k(n) and the result is clear. So we assume that there exists
a cycle C of G such that E(C) \ E(H) �= ∅ (i.e. G /∈ C∗

k(n)). We may
choose a cycle C such that |E(C) ∩ E(H)| ≤ 1, as H is a clique. Let G′

be a minimal spanning connected subgraph of G which contains H and C.
First we shall show that π(G′, x) = (x − 1)↓k−1 π(C, x) (x − 1)n−k−nC+1.
If |E(C) ∩ E(H)| = 0 (resp. |E(C) ∩ E(H)| = 1), let G1 and G2 be two
subgraphs of G′ such that G1 contains H, G2 contains C, G1∪G2 = G′, and
G1 and G2 intersect in a single vertex (resp. edge) of H. By the Complete

Cut-set Theorem, if |E(C)∩E(H)| = 0 then π(G′, x) = π(G1,x)π(G2,x)
x , and if

|E(C)∩E(H)| = 1 then π(G′, x) = π(G1,x)π(G2,x)
x(x−1) . In each case, G1 ∈ C∗

k(nG1
)

and G2 is a connected unicyclic graph. Therefore,

π(G1, x) = (x)↓k(x− 1)nG1−k
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and

π(G2, x) = π(C, x)(x− 1)nG2−nC .

If |E(C) ∩ E(H)| = 0 then nG1
+ nG2

= n + 1, and if |E(C) ∩ E(H)| = 1

then nG1
+nG2

= n+2. Thus, we obtain π(G′, x) = (x− 1)↓k−1 π(C, x) (x−
1)n−k−nC+1. Also,

π(G′, x) = (x− 1)↓k−1 π(C, x) (x− 1)n−k−nC+1

= (x− 1)↓k−1 ((x− 1)nC + (−1)nC (x− 1)) (x− 1)n−k−nC+1

= (x− 1)↓k−1

(
(x− 1)n−k+1 + (−1)nC (x− 1)n−k−nC+2

)

< (x− 1)↓k−1

(
(x− 1)n−k+1 + (x− 1)n−k

)

= (x)↓k (x− 1)n−k

where the inequality holds as nC ≥ 3. Now the result follows since π(G′, x) ≥
π(G, x).

A cut-set of a connected graph is a subset of the vertex set whose removal

disconnects the graph. To prove our main result, we first deal with graphs

which have a cut-set of size at most 2.

Proposition 2.1. Let G be a connected k-chromatic graph with α(G) = 2.

If G has a stable cut-set S of size at most 2 then

(i) G \ S has exactly two connected components, say, G1 and G2,

(ii) G1 and G2 are complete graphs,

(iii) max{χ(G1), χ(G2)} ≥ k − 1,

(iv) For every u in S, either V (G1) ⊆ NG(u) or V (G2) ⊆ NG(u).

Proof. (i) If G \ S had more than two components then we could pick a

vertex from each component and get a stable set of size at least 3. And

this would contradict with the assumption that α(G) = 2.

(ii) Suppose on the contrary that G1 or G2 is not a complete graph. With-

out loss, we may assume G1 has two nonadjacent vertices u and v. Let

w be a vertex of G2. Then {u, v, w} is a stable set of size 3 and again

this contradicts with α(G) = 2.

(iii) Suppose that χ(G1) and χ(G2) are at most k−2. Then we can properly

color G1 and G2 with colors 1, . . . , k−2 and we can assign a new color

k − 1 to all vertices in S. This yields a proper (k − 1)-coloring of G

and this contradicts with the assumption that G is k-chromatic.
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(iv) If there exists a vertex u in S such that u has a non-neighbor v in G1

and a non-neighbor w in G2 then we get a stable set {u, v, w} of size
3 and this contradicts with α(G) = 2.

Note that if G ∈ C∗
k(n) and α(G) = 2 then either G is a k-clique with a

path of size one hanging off a vertex of the clique (denoted by F1,k) or G is
a k-clique with a path of size two hanging off a vertex of the clique (denoted
by F2,k).

Lemma 2.2. Let G ∈ Ck(n) with α(G) = 2. Let x ∈ N with x ≥ k and u
be a cut-vertex of G. Then, π(G, x) ≤ (x)↓k (x − 1)n−k. Furthermore, the
equality holds if and only if G ∼= F1,k or G ∼= F2,k.

Proof. By Proposition 2.1, G−u has exactly two connected components and
they are complete graphs. Now it is easy to see that G is chordal and hence
ω(G) = k. Thus, the result follows by Lemma 2.1.

Lemma 2.3. Let G be a graph in Ck(n) with α(G) = 2 and k ≥ 4. If G has
a stable cut-set of size 2 then

π(G, x) ≤ (x)↓k (x− 1)n−k

for all x ∈ N with x ≥ k. Furthermore, the equality is achieved if and only
if G ∼= F2,k.

Proof. Let S = {u, v} be a stable cut-set of G. If ω(G) = k then the result
follows from Lemma 2.1, so we may assume that ω(G) < k. By Proposi-
tion 2.1, the graph G\S has exactly two connected components, say G1 and
G2, and we may assume G1

∼= Kp, G2
∼= Kq where p ≥ q. Now, p ≥ k− 1 by

Proposition 2.1 and ω(G) < k by the assumption. Therefore, p = k−1. Since
ω(G) < k, every vertex in S has at least one non-neighbor in G1. Let u

′ and
v′ be two vertices of G1 which are non-neighbors of u and v respectively.

Since V (G1) � NG(u) and V (G1) � NG(v), all vertices in S are adjacent
to all vertices in G2 by Proposition 2.1. The graph G2 has at most k − 2
vertices, as ω(G) < k. If G2 has less than k − 2 vertices, then we can find a
proper k−1 coloring c ofG (we can first properly color the vertices ofG1 with
colors 1, 2, . . . k − 1 and assign c(u′) (resp. c(v′)) to u (resp. v) and then we
can properly color the vertices of G2 with colors {1, 2, . . . k−1}\{c(u), c(v)}
which yields a proper k − 1 coloring of G). Therefore G2 has exactly k − 2
vertices and q = k − 2.

Since α(G) = 2, the vertices u and v have no common non-neighbor.
Therefore,

G/uv ∼= K1 ∨ (Kk−1 ·∪Kk−2).
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Now it is easy to see that

π(G/uv, x) = (x− 1)↓k−1 (x)↓k−1.(1)

Let H1 (resp. H2) be the subgraph of G + uv induced by the vertex set
V (G1) ∪ S (resp. V (G2) ∪ S). Now, the graphs H1 and H2 intersect at the
edge uv in G+ uv. Therefore,

π(G+ uv, x) =
π(H1, x)π(H2, x)

x(x− 1)
.

Since H2
∼= Kk, we get π(H2, x) = (x)↓k. Also, one of the vertices of S has

a neighbor in G1, as G is connected. So, H1 contains a spanning subgraph
which is isomorphic to a graph in C∗

k−1(k+1). Thus, π(H1, x) ≤ (x)↓k−1(x−
1)2. Now,

π(G+ uv, x) ≤ (x)↓k (x)↓k−1 (x− 1)2

x(x− 1)
= (x− 1) (x)↓k−1 (x− 1)↓k−1.(2)

Using the edge addition-contraction formula and (1) and (2) we get

π(G, x) = π(G+ uv, x) + π(G/uv, x)

≤ (x− 1) (x)↓k−1 (x− 1)↓k−1 + (x− 1)↓k−1 (x)↓k−1

= (x)↓k (x)↓k−1.

The graph G has 2k−1 vertices, so (x)↓k (x−1)n−k = (x)↓k (x−1)k−1. Now
it is clear that

(x)↓k (x)↓k−1 < (x)↓k (x− 1)k−1

holds for k ≥ 4, as (x)↓k−1 = x(x−1)(x−2) · · · and x(x−2) < (x−1)2.

Theorem 2.1. Let G be a graph in Ck(n) with α(G) ≤ 2 and k ≥ 4. Then,
for every x ∈ N with x ≥ k,

π(G, x) ≤ (x)↓k (x− 1)n−k.

Furthermore, the equality is achieved if and only if G ∼= F1,k, G ∼= F2,k or
k = n.

Proof. Since α(G)χ(G) ≥ n, the equality k = 4 implies n ≤ 8. Computations
show that the result holds to be true when n ≤ 8. So we may assume that
k ≥ 5. We proceed by induction on the number of vertices. For the basis
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step, n = k and G is a complete graph. Hence, π(G, x) = (x)↓k and now the

result is clear.

Now we may assume that G is a k-chromatic graph of order at least

k+ 1. By Lemma 2.2 and Lemma 2.3, we may assume that G has no stable

cut-set of size at most 2. Also, if Δ(G) = n − 1 then the result follows by

Lemma 1.1. Hence, we shall assume that Δ(G) < n − 1. Let u be a vertex

of maximum degree. Set t = n − 1 − Δ(G) and let {v1, . . . , vt} be the set

of non-neighbors of u in G, (that is, {v1, . . . , vt} = V (G) \ NG[u]). We set

G0 = G and

Gi = Gi−1 + uvi

Hi = Gi/uvi

for i = 1, . . . , t. By applying the Edge Addition-Contraction Formula suc-

cessively,

(3) π(G, x) = π(Gt, x) +

t∑
i=1

π(Hi, x).

Note that k ≤ χ(Gt) ≤ k + 1 and k ≤ χ(Hi) ≤ k + 1 for i = 1, 2, . . . , t.

Since u is a universal vertex of Gt, we have

(4) π(Gt, x) = xπ(G− u, x− 1).

Clearly, α(G− u) ≤ 2. Also, G− u is connected as G has no cut-vertex

by the assumption. So, by the induction hypothesis,

π(G− u, x) ≤ (x)↓χ(G−u)(x− 1)n−1−χ(G−u).

Now replacing x with x− 1 in the latter, we get

π(G− u, x− 1) ≤ (x− 1)↓χ(G−u)(x− 2)n−1−χ(G−u).

Note that k−1 ≤ χ(G−u) ≤ k. Also, (x−1)↓k(x−2)n−1−k < (x−1)↓k−1(x−
2)n−k. Therefore,

π(G− u, x− 1) ≤ (x− 1)↓k−1(x− 2)n−k.

Since (x)↓k = x(x− 1)↓k−1, by (4) we obtain that

(5) π(Gt, x) ≤ (x)↓k(x− 2)n−k.

Now we shall give an upper bound for π(Hi, x) for all i. Observe that

Hi
∼= K1 ∨ (G− {u, vi})
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because α(G) = 2 and hence every vertex in G−{u, vi} is adjacent to either
u or vi in G. Therefore,

(6) π(Hi, x) = xπ(G− {u, vi}, x− 1).

It is clear that α(G− {u, vi}) ≤ 2. Since G has no stable cut-set of size
2, the graph G − {u, vi} is connected. Also, k − 1 ≤ χ(G − {u, vi}) ≤ k, as
u and vi are nonadjacent in G and χ(G) = k. By the induction hypothesis,

π(G− {u, vi}, x) ≤ (x)↓χ(G−{u,vi})(x− 1)n−2−χ(G−{u,vi}).

Now replacing x with x− 1 in the latter, we get

π(G− {u, vi}, x− 1) ≤ (x− 1)↓χ(G−{u,vi})(x− 2)n−2−χ(G−{u,vi}).

Observe that (x− 1)↓k(x− 2)n−k−2 < (x− 1)↓k−1(x− 2)n−k−1. Thus,

π(G− {u, vi}, x− 1) ≤ (x− 1)↓k−1(x− 2)n−k−1.

Since (x)↓k = x(x− 1)↓k−1, by (6) we obtain that

(7) π(Hi, x) ≤ (x)↓k(x− 2)n−k−1.

By (3), (5) and (7), we get

π(G, x) ≤ (x)↓k(x− 2)n−k + (n− 1−Δ(G))(x)↓k(x− 2)n−k−1

= (x)↓k(x− 2)n−k−1(x− 3 + n−Δ(G)).

Now, it suffices to show that (x− 2)n−k−1(x− 3 + n−Δ(G)) ≤ (x− 1)n−k.
The graph G is neither a complete graph nor an odd cycle, so Δ(G) ≥ k by
Brook’s Theorem. Hence, n−Δ(G) ≤ n− k. Now,

(x− 3 + n−Δ(G))(x− 2)n−k−1

≤ (x− 3 + n− k) (x− 2)n−k−1

= (x− 2− 1 + n− k) (x− 2)n−k−1

= (x− 2)n−k − (x− 2)n−k−1 + (n− k)(x− 2)n−k−1

< (x− 2)n−k + (n− k)(x− 2)n−k−1

≤ (x− 2 + 1)n−k

= (x− 1)n−k
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where the last inequality holds, as

(x−2+1)n−k = (x−2)n−k+(n−k)(x−2)n−k−1+

(
n− k

2

)
(x−2)n−k−2+· · · .

Thus, π(G, x) ≤ (x)↓k(x− 1)n−k and the result follows.
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