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Tight bounds and conjectures for the Isolation
Lemma

Vance Faber and David G. Harris
∗

Given a hypergraph H and a weight function w : V → {1, . . . ,M}
on its vertices, we say that w is isolating if there is exactly one edge
of minimum weight w(e) =

∑
i∈e w(i). The Isolation Lemma is a

combinatorial principle introduced in Mulmuley et al. (1987) which
gives a lower bound on the number of isolating weight functions.
Mulmuley used this as the basis of a parallel algorithm for finding
perfect graph matchings. It has a number of other applications to
parallel algorithms and to reductions of general search problems to
unique search problems (in which there are one or zero solutions).

The original bound given by Mulmuley et al. was recently im-
proved by Ta-Shma (2015). In this paper, we show improved lower
bounds on the number of isolating weight functions, and we con-
jecture that the extremal case is when H consists of n singleton
edges. We show that this conjecture holds in a number of special
cases: when H is a linear hypergraph or is 1-degenerate, or when
M = 2.

We also show that the conjecture holds asymptotically when
M � n � 1 (the most relevant case for algorithmic applications).
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1. Introduction

Consider a hypergraph H on n vertices. We assign weights w to the vertices,
which we regard as functions w : [n] → [M ] (where we use the notation
[t] = {1, . . . , t}). This weighting extends naturally to edges e ∈ H by

w(e) =
∑
i∈e

w(i)

We say that e is a min-weight edge (with respect to w,H) if for all edges
e′ ∈ H we have w(e′) ≥ w(e). Given a weight w ∈ [M ]n, we say that w is
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isolating (with respect to H) if there is exactly one min-weight edge; that
is, there is an edge e ∈ H with the property

∀e′ ∈ H, e′ �= e w(e′) > w(e)

We refer to such an edge e (if it exists) as isolated.
Given any hypergraph H, we define

Z(H,M) = {w ∈ [M ]n | w is isolating with respect to H}

Our goal is to show lower bounds on the cardinality of Z(H,M), which
depend solely on M and n and are irrespective of H.

Observe that when we are calculating the number of isolating weights,
we may assume that H is inclusion-free (i.e. there are no pair of edges e, e′ ∈
H, e � e′). We will make this assumption for the remainder of this paper.
Also, by convention, if H is the empty hypergraph (it contains no edges),
then we say that every weight w is isolating and define Z(H,M) = [M ]n.

1.1. Background

The first lower bound on |Z(H,M)|, referred to as the Isolation Lemma, was
shown in [7], as the basis for a parallel algorithm to find a perfect matching
in a graph. Other applications given in [7] include parallel search algorithms
and reduction of CLIQUE to UNIQUE-CLIQUE. The Isolation Lemma has
also seen a number of uses in reducing search problems with an arbitrary
number of possible solution to “unique” search problems (e.g. Unique-SAT),
in which there is one or zero solutions. Two results in this vein which use
the Isolation Lemma are reductions from NL (non-deterministic log-space) to
UL (log-space with a unique solution) in [12, 9]. In [6], a slightly generalized
form of the Isolation Lemma was used for polynomial identity testing.

The usual algorithmic scenario can be summarized as follows. We have
a hypergraph H (which may not be known explicitly), which represents
the space of possible solutions to some combinatorial problem. We wish to
identify a unique edge e ∈ H (a unique solution to the underlying problem).
To do so, we select a random weight w : [n] → [M ], where M is a parameter
to be chosen, and hope that w has an isolated edge e. The probability that
this occurs is |Z(H,M)|/Mn; thus, as long as |Z(H,M)| is large compared to
Mn, then this scheme has a good probability of succeeding in which case the
overall algorithm will succeed as well. The ratio |Z(H,M)|/Mn approaches
1 as M → ∞, and hence one can select M sufficiently large to guarantee an
arbitrarily-high success probability.
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We emphasize that in such applications, typically we may choose M ,
while the hypergraph H is given and we may have very little information
about it.

The original work of [7] showed a somewhat crude lower bound
|Z(H,M)| ≥ Mn(1−n/M). Notably, this lower bound is vacuous for M ≤ n;
however, because we may select M , this is not a problem algorithmically.
For example, in order to achieve |Z(H,M)|/Mn = Ω(1), we must select
M = Ω(n). In [11], Ta-Shma improved this bound to |Z(H,M)| ≥ (M−1)n,
which is strictly stronger than the bound of [7], and is non-vacuous even
when M < n. We will review the proof by [11] in Section 2.

For most applications to computer science (where constant factors are
irrelevant), these imprecise lower bounds on |Z(H,M)| are perfectly ade-
quate. It is nevertheless an interesting problem in extremal combinatorics
to determine the tightest bound on |Z(H,M)|, even though this yields only
minor computational savings.

We note that these algorithmic applications require a large supply of
independent random bits. There has been another line of research in finding
forms of the Isolation Lemma that use less randomness or can be made
deterministic, such as [1, 2, 4, 5, 10]. We do not investigate these issues in
this paper.

1.2. Overview

In Section 2, we discuss a generalization of the Isolation Lemma, and review
the proof of [11]. We also state the main Conjecture 2.4 of our paper on the
size of Z(H,M), namely

|Z(H,M)| ≥ n

M−1∑
i=1

in−1

for all H and that this bound is tight.
We are able to show an improved bound on |Z(H,M)| in Section 2,

namely

|Z(H,M)| ≥ 2(M − 1)n − n

M−2∑
i=1

in−1

When M � n, this is nearly optimal asymptotically, and improves signifi-
cantly on the bound of [11] in all cases.

In Section 3, we show results which can be used to transfer the compu-
tation of |Z(H,M)| to simpler graphs H ′ with fewer vertices. These trans-
formations show that Conjecture 2.4 holds for trees or 1-degenerate graphs.
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They also show that any minimal counterexample to Conjecture 2.4 must
be connected and cannot contain vertices of degree zero or one.

In Section 4, we prove Conjecture 2.4 for the case M = 2.

In Section 5, we prove Conjecture 2.4 for linear hypergraphs.

In Section 6, we discuss asymptotics and algorithmic applications of
these bounds.

In Section 7, we conclude with some further open problems.

2. Bounds and conjectures on |Z(H,M)|

In nearly all applications of the Isolation Lemma, the weights w(i) are chosen
as integers in the range {1, . . . ,M}. However, the key to the Isolation Lemma
is not the specific sizes of the weights, but their dynamic range. We therefore
introduce a slight generalization of the Isolation Lemma, in which we have
a weight function w : [n] → W , where W ⊆ R>0 is a set of cardinality
|W | = M .

An equivalent formulation (which will simplify some notations later on)
is to have w : [n] → [M ] and to specify a strictly increasing objective function
f : [M ] → R>0. We then define the weight of an edge by

fw(e) =
∑
i∈e

f(w(i))

This type of generalized weight function is useful in some applications.
For instance, [8] discusses a method of selecting a weight function in which
there is an auxiliary function g : [n] → R and the edge-weight is defined
by

∑
i∈e(w(i) + g(i)). (This is slightly more general than allowing a single,

vertex-independent, objective function). This generalized weight function
will also be critical for some recursive proofs in this paper.

We say as before that e is isolated if fw(e) < fw(e′) for all e′ �= e. We
may likewise define

Z(H,M, f) = {w ∈ [M ]n | w is isolating with respect to H, f}

When f is the identity function, then Z(H,M, f) = Z(H,M).

Our goal in this paper will be to show lower bounds on the cardinality
of Z(H,M, f), irrespective of H,M, f . Specifically, we define the quantity
Y (M,n) as

Y (M,n) = min
H,f

|Z(H,M, f)|
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where H ranges over all hypergraphs on n vertices and f ranges over all

strictly increasing functions f : [M ] → R>0.

We begin with two useful results which transform arbitrary weights into

isolating weights.

Proposition 2.1 ([11]). Suppose that w ∈ {2, . . . ,M}n and e ∈ H is a min-

weight edge for fw. Then w − χe is isolating for f,H, and e is its isolated

edge.

(Here, χe is the characteristic function for e; that is, χe(v) = 1 if v ∈ e

and χe(v) = 0 otherwise)

Proof. Let e′ ∈ H, e′ �= e and let w′ = w − χe. Note that e ∩ e′ is a strict

subset of e; for, if not, then this would imply e � e′ which contradicts that

H is inclusion-free.

Then we have

fw′(e′)− fw′(e) =
∑

i∈e′−e

f(w′(i))−
∑

i∈e−e′

f(w′(i))

=
∑

i∈e′−e

f(w(i))−
∑

i∈e−e′

f(w(i)− 1)

>
∑

i∈e′−e

f(w(i))−
∑

i∈e−e′

f(w(i))

as e− e′ �= ∅ and f is strictly increasing

= fw(e′)− fw(e) ≥ 0

Using Proposition 2.1, Ta-Shma gave a simple lower bound on |Z(H,

M, f)|:

Proposition 2.2 ([11]). For all M,H, f we have

|Z(H,M, f)| ≥ (M − 1)n

Proof. We construct an injective map Ψ from {2, . . . ,M}n to Z(H,M, f), as

follows. Given any w ∈ {2, . . . ,M}n, arbitrarily select one min-weight edge

e, and map Ψ(w) = w − χe. By Proposition 2.1 the images of this map are

all isolating. Also, this map is injective: given some w ∈ image(Ψ), it has an

isolated edge e and its pre-image is Ψ−1(w) = w + χe.

The next proposition is at the heart of our improvement over Ta-Shma’s

work:
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Proposition 2.3. Suppose that w ∈ [M ]n and e ∈ H is a min-weight edge
for f . Suppose there is some � ∈ [n] such that all min-weight edges contain
�, and that w(i) ≥ 2 for i �= �.

Then w − χe−{�} is isolating for f,H, and e is its isolated edge.

Proof. Let e′ ∈ H, e′ �= e and let w′ = w−χe−{�}. There are two cases. First,
suppose that � ∈ e′. Then

fw′(e′)− fw(e) =
∑

i∈e′−e

f(w′(i))−
∑

i∈e−e′

f(w′(i))

=
∑

i∈e′−e

f(w(i))−
∑

i∈e−e′

f(w(i)− 1)

>
∑

i∈e′−e

f(w(i))−
∑

i∈e−e′

f(w(i)) = fw(e′)− fw(e) ≥ 0

Next, suppose that � /∈ e′. Then fw(e′) > fw(e) and so

fw′(e′)− fw′(e) =
∑

i∈e′−e

f(w′(i))−
∑

i∈e−e′

f(w′(i))

=
∑

i∈e′−e

f(w(i))− f(w(�))−
∑

i∈(e−{�})−e′

f(w(i)− 1)

≥
∑

i∈e′−e

f(w(i))− f(w(�))−
∑

i∈(e−{�})−e′

f(w(i))

= fw(e′)− fw(e) > 0

2.1. The conjectured extremal case: the singleton hypergraph

We define the singleton hypergraph Sn, which has vertex set [n] and n single-
ton edges {1}, . . . , {n}. We likewise define its complement graph S̄n, which
has all n edges of cardinality n− 1.

Observation 2.1. For any M, f we have

|Z(Sn,M, f)| = |Z(S̄n,M, f)| = n

M−1∑
i=1

in−1

Proof. Any isolating weight for Sn has the following form: one vertex i is
assigned weight w(i) = j, and the other vertices are assigned weights > j.

Any isolating weight for S̄n has the following form: one vertex i is as-
signed weight w(i) = j, and the other vertices are assigned weights < j.
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We conjecture that this bound is tight.

Conjecture 2.4.

Y (M,n) = n

M−1∑
i=0

in−1

One strategy that will be useful is to categorize weights in terms of their
lowest value vertex. More formally, for any weight w, we define the layer of
w to be

L(w) = min
x∈[n]

w(x).

For j = 1, . . . ,M , we define Zj(H,M, f) to be the set of isolating weights
w with the property that L(w) = j. Similarly we define a universal lower
bound Yj(M,n) such that |Zj(H,M, f)| ≥ Yj(M,n).

Observe that Z1(Sn,M, f) = n(M − 1)n−1 for any choice of f . We again
conjecture that this bound is tight.

Conjecture 2.5.

Y1(M,n) = n(M − 1)n−1

Although Conjecture 2.5 involves only Y1, it implies bounds for all
Y2, . . . , YM .

Proposition 2.6. For all M,n, j we have Yj(M,n) = Y1(M − j + 1, n).

Proof. For any M, j define WM,j to be the set of weights w ∈ [M ]n with
L(w) = j.

Suppose H, f satisfies |Zj(H,M, f)| = Yj(M,n). Define the function
g : [M − j + 1] → R>0 by g(k) = f(k + j − 1). For w ∈ WM−j+1,j we have
gw(e) = fw′(e) for all edges e, where w′ = w + (j − 1). Also, note that the
function mapping w to w′ = w+(j+1) is a bijection fromWM−j+1,1 toWM,j .
So |Zj(H,M, f)| = |Z1(H,M−j+1, g)| and hence Y1(M−j+1) ≥ Yj(M,n).

Suppose H, f satisfies |Z1(H,M − j + 1, f)| = Y1(M − j + 1, n). Since
the image of f is strictly positive, there is a real number α > 0 such that
αM < f(1). Define the function g : [M ] → R>0 by

g(k) =

{
αk k < j

f(k − j + 1) k ≥ j

This function is strictly increasing and positive. For w ∈ WM,j , note
that gw(e) = fw′(e) for all edges e, where w′ = w − j + 1. Also, note
that function mapping w to w′ = w − j + 1 is a bijection from WM,j to
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WM−j+1,1. So |Z1(H,M − j + 1, f)| = |Zj(H,M, g)| and hence Yj(M,n) ≥
Y1(M + j + 1, n).

Corollary 2.7. We have Y (M,n) ≥
∑M

i=1 Y1(i, n).

Proof. Let H,M, f be given. Then Proposition 2.6 gives

|Z(H,M, f)| =
M∑
j=1

|Zj(H,M, f)| ≥
M∑
j=1

Yj(M,n) =

M∑
j=1

Y1(M−j+1, n).

Corollary 2.8. Conjecture 2.5 implies Conjecture 2.4.

We note that even if one is only interested in bounding |Z(H,M)| (i.e.
the case f = identity), Proposition 2.6 requires bounds on |Z(H,M ′, f ′)| for
f ′ �= identity. This is the main reason we need to consider the generalized
Z(H,M, f), instead of the simpler Z(H,M), in this paper.

2.2. An improved bound on Y1(M,n)

Although we cannot show Conjecture 2.5 in general, in Theorem 2.9 we show
a new lower bound on Y1(M,n), which can be significantly larger than the
estimate of [11]. In the case in which M � n, the estimate provided by
Theorem 2.9 is asymptotically nearly optimal.

Theorem 2.9.

Y1(M,n) ≥ 2(M − 1)n − 2(M − 2)n − n(M − 2)n−1

Proof. Let H, f be given. Let X ⊆ [M ]n denote the set of weights such that
w(v) = 1 for exactly one vertex v. We will define a bipartite graph G, whose
left half corresponds to X and whose right half corresponds to Z1(H,M, f).
To avoid confusion between G and H, we will refer to the vertices of G as
“nodes.”

Suppose we are given a node w ∈ X with w(i) = 1. We construct edges
from w according to three cases:

(A1) If w has at least one min-weight edge e such that i /∈ e, then create
an edge from the left-node labeled w to the right-node labeled w−χe.
As i /∈ e, note that w − χe ∈ [M ]n.

(A2) Suppose that i ∈ e for all min-weight edges e ∈ H. If w is already
isolating for H, then create an edge from the left-node labeled w to
the right-nodes labeled w,w − χe−{i}.
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(A3) Otherwise, suppose that i ∈ e for all min-weight edges e, and there
are at least two such edges e1, e2. Then create edges from the left-node
labeled w to the two right-nodes w − χe1−{i} and w − χe2−{i}.

In case (A1), Proposition 2.1 ensures that the corresponding right-node
is isolating. In cases (A2) and (A3), Proposition 2.3 ensures that the corre-
sponding right-nodes are isolating. So all the right-nodes of G with at least
one neighbor are isolating. We count such nodes using the following simple
identity:

#right-nodes u with a neighbor =
∑

edges (w, u) of G

1/deg(u)

For any w ∈ X, we define R(w) as

R(w) =
∑

edges (w, u) of G

1/deg(u).

Thus, we aim to show a lower bound on
∑

w∈X R(w).
First, suppose that w falls into case (A1). Then the resulting right-node

u = w−χe has exactly one vertex i such that u(i) = 1 and i is not contained
in the min-weight edge e. Thus, w is the sole neighbor of u and R(w) = 1.

Next, suppose that w falls into case (A2) or case (A3), and |w−1(2)| = j.
There are two neighbors of w; let us consider one such node x, with min-
weight edge e.

Let I denote the set of entries i such that x(i) = 1. It must be that
I ⊆ e. If I = {i}, then x has at most two neighbors x and x+ χe−{i}.

On the other hand, if |I| = {v1, . . . , vk} for k > 1, then x has at most k
neighbors x+ χe−v1

, . . . , x+ χe−vk
. Also observe that k ≤ j + 1.

Thus, in either case (A2) or (A3), we see that w has two neighbors,
and each of these neighbors has degree at most max(2, j + 1). So R(w) ≥
min(1, 2

j+1). This is also true for case (A1).
Putting all these cases together and summing over w:

∑
w∈X

R(w) ≥
∑
w∈X

min(1,
2

|w−1(2)|+ 1
)

= n(M − 2)n−1 +
2

j + 1

n−1∑
j=1

n

(
n− 1

j

)
(M − 2)n−1−j

= 2(M − 1)n − 2(M − 2)n − n(M − 2)n−1
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Corollary 2.10.

Y (M,n) ≥ 2(M − 1)n − n

M−2∑
i=1

in−1

Proof. We have Y (M,n) ≥
∑M

j=1 Y1(j, n) ≥
∑M

j=2 2(j − 1)n − 2(j − 2)n −
n(j − 2)n−1. This telescopes to 2(M − 1)n − n

∑M−2
i=1 in−1.

A slight modification of Theorem 2.9 can be used when we have an upper
bound on the size of an edge of H.

Proposition 2.11. Suppose that all the edges in H have cardinality at most
r, where r ≥ 2. Then

|Z1(H,M, f)| ≥ (2/r)n(M − 1)n−1

Proof. We construct the same bipartite graph as in Theorem 2.9. However,
we will estimate R(w) differently. As in Theorem 2.9, for any right-node x,
we let I denote the set of entries i with x(i) = 1. As before, x has at most
max(2, |I|) neighbors; also, since I ⊆ e, we have |I| ≤ r. So, in case (A2) or
case (A3), we have R(w) ≥ min(1, 2r ). By our assumption that r ≥ 2, this
implies that R(w) ≥ 2

r .
So, summing over w:

∑
w∈X

R(w) ≥ 2

r
|X| = (2/r)n(M − 1)n−1

3. Graph transformations

In this section, we describe certain graph transformations which allow us to
reduce the calculation of Z1(H,M, f) to the behavior of smaller subgraphs.
These transformations do not allow us to compute Z1(H,M, f) in full gen-
erality, but they can show certain restrictions on minimal counter-examples
to Conjecture 2.5.

For any hypergraph H and vertex v ∈ [n], we define by H − v the
subgraph induced on the vertices [n]− {v}.
Proposition 3.1. Suppose H has a vertex v of degree zero. Then

|Z1(H,M, f)| ≥ M |Z1(H − v,M, f)|+
M∑
j=2

|Zj(H − v,M, f)|
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Proof. For each w ∈ Z1(H − v,M, f), we can extend it to Z1(H,M, f) by
assigning any value to w(v). Also, for each w ∈ Zj(H − v,M, f) for j > 1,
we can extend it to Z1(H,M, f) by assigning w(v) = 1.

Proposition 3.2. Suppose that v ∈ H has degree one (that is, exactly one
edge of H contains v). Then

|Z1(H,M, f)| ≥ (M − 1)|Z1(H − v,M, f)|+ (M − 1)n−1

Proof. Suppose without loss of generality that v = 1 and that ẽ is the sole
edge containing v.

We will construct two classes of isolating weights for H. To construct
the first class A1, begin with some w′ ∈ Z1(H − v,M, f). Extend this to
w ∈ [M ]n by assigning some value to w(1). Observe that w will fail to be
isolating if and only if the unique min-weight edge ofH−v has the same value
as ẽ. Thus, there is at most one value of w(1) such that w /∈ Z1(H,M, f).

First, suppose that there is some choice of w(1) such that w /∈ Z1(H,
M, f). In this case, w′ extends to w in M − 1 ways, which are all placed
into A1.

Second, suppose that w ∈ Z1(H,M, f) for all M choices of w(1). In this
case, we extend w′ to Z1(H,M, f) by assigning values w(1) = 2, . . . , n and
placing these into A1. Even though assigning w(1) = 1 would also lead to
an isolating weight, we do not place this into A1.

Thus, each w′ ∈ Z1(H − v,M, f) corresponds to exactly M − 1 elements
in A1, so that |A1| = (M − 1)|Z1(H − v,M, f)|.

We construct the next class A2 as the image of an injective function Ψ :
[M − 1]n−1 → Z1(H,M, f), as follows. Given w : {2, . . . , n} → {2, . . . ,M},
extend it to [M ]n by assigning w(1) = 1. If ẽ is the unique min-weight edge
for w, then set Ψ(w) = w. Otherwise, let e ∈ H−v be a min-weight edge for
w, and let Ψ(w) = w−χe; by Proposition 2.1 we have Ψ(w) ∈ Z1(H,M, f).

We first claim that Ψ is injective. For, given w ∈ image(Ψ), let e denote
its unique min-weight edge. If e = ẽ, then Ψ−1(w) = w; otherwise Ψ−1(w) =
w + χe.

Next, we claim that A2 is disjoint from A1. For, suppose that w ∈
image(Ψ) and e is its unique min-weight edge. As w ∈ A2 we have w(1) = 1.

If e = ẽ, then w(2) > 1, . . . , w(n) > 1, so that 〈w(2), . . . , w(n)〉 /∈ Z1(H−
v,M, f). But, for all x ∈ A1 we have 〈x(2), . . . , x(n)〉 ∈ Z1(H − v,M, f).

If e �= ẽ, then observe that e will remain the unique min-weight edge even
if we increment w(1) from its initial value of 1 to an arbitrary value. Thus,
even if we had started with 〈w(2), . . . , w(n)〉 ∈ Z1(H− v,M, f) to construct
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an element of A1, we would not have been allowed to assign w(1) = 1. Thus,
w /∈ A1.

Thus, we see that |A2| = (M − 1)n−1 and A2 is disjoint from A1. So
|Z1(H,M, f)| ≥ |A1|+ |A2| = (M − 1)|Z1(H − v,M, f)|+ (M − 1)n−1.

Corollary 3.3. Suppose that H is 1-degenerate. Then |Z1(H,M, f)| ≥
n(M − 1)n−1

Proof. Let v1, . . . , vn be an ordering of the vertices such that vi has degree ≤
1 in H[vi, . . . , vn]. By induction for i = n, . . . , 1, observe that |Z1(H[v1, . . . ,
vn])| ≥ (n−i)(M−1)n−i−1; the inductive step follows from Propositions 3.1,
3.2.

Proposition 3.4. Suppose that H1 is a hypergraph on vertex set V1 and H2

is a hypergraph on vertex set V2, where V1, V2 are disjoint. Then

|Z1(H1 �H2,M, f)| ≥ (M − 1)|V2||Z1(H1,M, f)|+(M − 1)|V1||Z1(H2,M, f)|

Proof. Let n1 = |V1|, n2 = |V2|, n = n1 + n2. Suppose without loss of gener-
ality that V1 = {1, . . . , n1} and V2 = {n1 + 1, . . . , n} and let H = H1 �H2.
We will construct two classes of isolating weights for H.

The first class is constructed as the image of an injective function Ψ1 :
Z1(H1,M, f) × {2, . . . ,M}n2 → Z1(H,M, f) as follows. Given u ∈ Z1(H1,
M, f) and v ∈ [M −1]n2 , define w ∈ [M ]n by w = 〈u(1), . . . , u(n1), v(1), . . . ,
v(n2)〉. Suppose that w has some min-weight edge e ∈ H2; in this case,
define Ψ1(u, v) = w−χe. If w has no min-weight edges from H2, then as u is
isolating for H1, necessarily w is isolating for H, and we define Ψ1(u, v) = w.

We claim that Ψ1 is injective. For, given w = 〈u(1), . . . , u(n1), v(1), . . . ,
v(n2)〉 ∈ image(Ψ1), let e be its unique min-weight edge. If e ∈ H2, then
Ψ−1

1 (u, v) = (u, v + χe); otherwise, if e ∈ H1, then Ψ−1
1 (u, v) = (u, v).

We define Ψ2 : {2, . . . ,M}n1 ×Z1(H2,M, f) → Z1(H,M, f) in the same
fashion, interchanging the roles of H1 and H2.

We now claim that the images of Ψ1 and Ψ2 are disjoint. For, suppose
that (u, v) is simultaneously in the image of Ψ1 and Ψ2. Let e2 be its unique
min-weight edge in H; suppose without loss of generality that e2 ∈ H2.

So Ψ−1
1 (u, v) = (u, v+χe2). In particular, u ∈ Z1(H1,M, f) so L(u) = 1.

Also, we have Ψ−1
2 (u, v) = (u, v). In particular, u ∈ {2, . . . ,M}n1 so L(u) >

1. This is a contradiction.
Thus, the images of Ψ1 and Ψ2 are disjoint so

|Z1(H,M, f)| ≥ |image(Ψ1)|+ |image(Ψ2)|
= |Z1(H1,M, f)|(M − 1)n2 + |Z1(H2,M, f)|(M − 1)n1
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Corollary 3.5. Suppose that H is a counter-example to Conjecture 2.5,
and among all such counter-examples it minimizes the number of vertices n.
Then H is connected and all the vertices of H have degree strictly greater
than 1.

4. The case of M = 2

In this section, we will prove Conjecture 2.5 for M = 2. The basic idea of this
proof is to identify a class of isolating weights which we refer to as special
isolating weights. We will show that there are at least n(M − 1)n−1 = n
special isolating weights. See [3] for a more detailed analysis of structural
properties of the isolating weights in this case.

Definition 4.1. Suppose H is a non-empty hypergraph. We say w : [n] → [2]
is a special isolating weight for H if there is an edge e satisfying the following
conditions:

1. For all i ∈ e, j /∈ e we have w(i) ≤ w(j).
2. For all e′ �= e, e′ ∈ H we have w(e′) > w(e).

The objective function f plays no part in this definition. We define Z ′(H)
to be the set of special isolating weights for H. (If H contains no edges, then
we define Z ′(H) = [2]n). The following key result shows why special isolating
weights are simpler to deal with:

Proposition 4.2. Let H be a hypergraph, and let r denote the minimum
cardinality of the edges of H. Let Hr denote the subgraph of H consisting of
the edges of cardinality exactly r.

Then, for any objective function f , we have

Z ′(Hr) ⊆ Z(H, 2, f)

Proof. Let w ∈ Z ′(Hr), with min-weight edge e. We will show that e remains
the unique min-weight edge for fw in H.

It is either the case that w(i) = 1 for all i ∈ e, or w(i) = 2 for all i /∈ e.
The proofs are similar so we only deal with the first case.

First, consider some other edge e′ of cardinality r. Then by hypothesis
e′ contains a point i with w(i) = 2 so that fw(e′) ≥ f(2) + (r − 1)f(1) >
rf(1) = fw(e).

Next, suppose e′ has cardinality strictly greater than r. Then

fw(e′)− fw(e) =
∑

i∈e′−e

fw(i)−
∑

i∈e−e′

fw(i)

≥
∑

i∈e′−e

f(1)−
∑

i∈e−e′

f(1) = f(1)(|e′| − |e|) > 0
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Proposition 4.3. Suppose every edge of H has cardinality exactly r. Then
|Z ′(H)| ≥ n.

Proof. We will suppose for this proof that r ≤ n/2; when r > n/2, then the
same argument applies, interchanging the roles of e and [n]− e.

Suppose that H has m edges. For an edge e ∈ H, let H1(e) = {e − e′ |
e′ ∈ H} and let H2(e) = {e′ − e | e′ ∈ H}. Let C1(e) be a minimum vertex
cover of H1(e) and C2(e) be a minimum vertex cover of H2(e). We define
S(e) to be the number of special isolating edges whose min-weight edge is e.

There are two types of special isolating weights we can form with min-
weight edge e: we may assign w(i) = 1 for i ∈ e and w(i) = 2 for i ∈ C2(e)
and w(i) arbitrary otherwise; or we may assign w(i) = 2 for i /∈ e and w(i) =
1 for i ∈ C1(e) and w(i) arbitrary otherwise. There is an overlap between
these classes if we set w(i) = 1 for i ∈ e and w(i) = 2 for i /∈ e. Thus (taking
into account double-counting), we have S(e) ≥ 2n−r−|C2(e)| + 2r−|C1(e)| − 1.

Now, clearly |C1(e)| ≤ m − 1 and |C2(e)| ≤ m − 1 (we may select one
vertex from each of the other edges). Thus, we have S(e) ≥ 2n−r−m+1 and
hence |Z ′(H)| ≥ m2n−r−m+1. If m ≤ n− r, then simple calculus shows that
this is at least 2(n− r) ≥ n, and we are done.

Also, observe that |C1(e)| ≤ r and |C2(e)| ≤ n − r (e is a vertex cover
of H1(e) and [n]− e is a vertex cover of H2(e)). So S(e) ≥ 1. If m ≥ n, then
|Z ′(H)| ≥ m ≥ n and we are again done.

So, let us suppose that n−r < m < n. We would like to show that there
are many edges that have the property |C2(e)| < n− r or |C1(e)| < r. Such
edges will have S(e) ≥ 2. We say that such edges are rich. If there are a rich
edges, then

|Z ′(H)| ≥ 2a+ (m− a)

Now consider any non-rich edge e, that is |C2(e)| = n−r and |C1(e)| = r.
Consider any v ∈ [n] − e. Since the set [n] − e − {v} is not a vertex cover
of H2(e), it must be that H2(e) contains a singleton edge {v}. (Note that
H2(e) cannot contain the edge ∅.) As every edge of H has cardinality r,
this in turn implies that H contains an edge obtained by swapping a single
element of e with v, that is, an edge of the form e ⊕ {v, u} where u ∈ e.
Similarly, in order to have |C1(e)| = r, then for each v ∈ e there must be an
edge of the form e⊕ {v, u} where u ∈ [n]− e.

If all the edges are rich, then |Z ′(H)| ≥ 2m ≥ 2(n − r) ≥ n and we
are done. So fix some non-rich edge ẽ ∈ H. For each i ∈ ẽ, j /∈ ẽ, define
the indicator variable Kij which is equal to one if ẽ ⊕ {i, j} ∈ H, and zero
otherwise. We have shown that ∀i

∑
j Kij ≥ 1, ∀j

∑
iKij ≥ 1. Also, observe

that m ≥ 1 +
∑

i,j Ki,j .
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Define the set L = {j ∈ [n] − ẽ |
∑

iKij = 1}. For each j ∈ L, let

ej be the (unique) edge of the form ej = ẽ ⊕ {ij , j} with ij ∈ ẽ. We have∑
iKi,j ≥ 1 for all j ∈ [n]− ẽ and

∑
iKi,j ≥ 2 for j ∈ [n]− ẽ−L. Summing

over j ∈ [n]− ẽ gives
∑

i,j Ki,j ≥ |L|+ 2(n− r− |L|). As
∑

i,j Ki,j ≤ m− 1,

we have

|L| ≥ 2(n− r)−m+ 1

We next claim that for each j ∈ L the edge ej is rich. For, consider an

edge of the form e′ = ẽ ⊕ {i′, j′} with i′ �= ij . So e′ ⊕ ej = {ij , j} ⊕ {i′, j′}.
If j = j′ then there would be two edges obtained from ẽ by swapping j,

contradicting that j ∈ L. Thus, j �= j′ and so |ej ⊕ e′| = 4. Thus, e′ is not

equal to ej or a swap of ej (as in those cases we would have |ej ⊕ e′| ≤ 2.)

So there are at least 1 +
∑

i′∈e−{ij}
∑

j′ /∈eKi′j′ ≥ r edges which are not

swaps of ej . But, in order for ej to be non-rich, there must at least n − r

edges obtained by swaps of ej . So, a necessary condition for ej to be non-rich

is m− r ≥ n− r; this contradicts our assumption that m < n.

Thus for each j ∈ L there is an rich edge ej . Furthermore, if j �= j′

then ej �= ej′ , and so a ≥ |L| ≥ 2(n − r) − m + 1. This implies |Z ′(H)| ≥
2a+ (m− a) ≥ 2(n− r) + 1 ≥ n+ 1.

Corollary 4.4.

Y1(2, n) ≥ n

Proof. Consider any hypergraph H and objective function f . Let r denote

the minimum edge size of H and let Hr denote the set of edges of H with

cardinality r.

By Proposition 4.2 we have Z(H, 2, f) ⊇ Z ′(Hr).

Suppose that Hr contains more than one edge. By Proposition 4.3 we

have |Z ′(Hr)| ≥ n. Also, note that 〈2, 2, . . . , 2〉 /∈ Z ′(Hr) (since this weight

would cause all edges of Hr to be min-weight) and so Z ′(Hr) ⊆ Z1(H, 2, f).

Suppose that Hr contains a single edge. Then one can easily see that

|Z ′(Hr)| = 2r + 2n−r − 1 ≥ 21+n/2 − 1. Hence |Z(H, 2, f)| ≥ 21+n/2 − 1 and

|Z1(H, 2, f)| ≥ 21+n/2 − 2; this is at least n for n ≥ 2.

5. Linear hypergraphs

A linear hypergraph H is a hypergraph with the property that |e ∩ e′| ≤ 1

for any distinct edges e, e′ ∈ H. An ordinary graph is a linear hypergraph.

In this section, we prove that Conjecture 2.5 holds for linear hypergraphs.
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Definition 5.1. For any edge e ⊆ [n] and i ∈ e, we define the next vertex

of e as follows. If there is some vertex j ∈ e such that j > i, then Next(i, e)

is defined to be the smallest such j. Otherwise, if i is the largest element of

e, then we define Next(i, e) to be the smallest element of e.

Recall that X is the set of weights w such that w(i) = 1 for exactly one

i ∈ [n].

Proposition 5.2. Suppose w ∈ X satisfies w(i) = 1, and all min-weight

edges under w contain vertex i and have cardinality strictly greater than 1.

For any e, define

g(w, e) = w − χ{Next(i,e)}.

If any edge e is a min-weight edge of w, then e is the unique min-weight

edge for g(w, e).

Proof. Let j = Next(i, e), w′ = g(w, e) and let e′ ∈ H be another edge. If

j ∈ e′, then as H is linear i �∈ e′, and so fw(e′) > fw(e). Both e, e′ contain
vertex j so fw′(e′) > fw′(e).

Otherwise, suppose j /∈ e′. Then fw′(e) < fw(e) ≤ fw(e′) = fw′(e′).

Proposition 5.3. Let H be a linear hypergraph all of whose edges have

cardinality at least two. Then for any objective function f we have

|Z1(H,M, f)| ≥ n(M − 1)n−1

Proof. As in Theorem 2.9, we will construct a bipartite graph G, whose

left half corresponds to X and whose right half corresponds to Z1(H,M, f).

Suppose w ∈ X has w(i) = 1. We construct edges from w according to three

cases:

(B1) If w has at least one min-weight edge e with i /∈ e, then create an edge

from the left-node labeled w to the right-node labeled w−χe. As i /∈ e,

note that w − χe ∈ [M ]n.

(B2) Suppose that i ∈ e for all min-weight edges e. If w is already isolating

for H with min-weight edge e, then create edges from the left-node

labeled w to the two right-nodes labeled w, g(w, e).

(B3) Otherwise, suppose that i ∈ e for all min-weight edges e, and there

are at least two such edges e1, e2. Then create edges from the left-node

labeled w to the two right-nodes g(w, e1), g(w, e2).



Tight bounds and conjectures for the Isolation Lemma 463

In case (B1), Proposition 2.1 ensures that the corresponding right-node

is isolating. In cases (B2) and (B3), Proposition 5.2 ensures that the corre-

sponding right-nodes are isolating. So all the right-nodes which have at least

one neighbor are isolating. We again use the identity

#right-nodes u with a neighbor =
∑

edges (w, u)

1/deg(u)

and for w ∈ X we define R(w) =
∑

edges (w, u) 1/deg(u).

Now consider some right-node x, with a unique min-weight edge e. We

examine the potential ways in which x can have a neighbor.

If there is i /∈ e with x(i) = 1 then necessarily x has only a single

neighbor w = x+ χe coming from case (B1).

So, suppose that x(i) > 1 for all i /∈ e. Let I denote the set of entries

i ∈ e with x(i) = 1. Since x could only have a neighbor from cases (B2) or

(B3), it must be that 1 ≤ |I| ≤ 2.

If |I| = {i}, then the neighbors of x could arise either when w = x and

case (B2) occurred or w = x+ χ{Next(i,e)} and (B2) or (B3) occurred.

If |I| = {i1, i2}, then the only possible neighbors of x are w1 = x+χ{i1}
and w2 = x+ χ{i2}.

Now, consider some left-node w. We see that in case (B1), w has a single

neighbor x, which in turn has only a single neighbor w. So R(w) = 1. In

case (B2) or (B3), then w has two neighbors, each of which has at most 2

neighbors, so R(w) ≥ 1. Putting all these cases together and summing over

w: ∑
w∈X

R(w) ≥ 1× |X| = n(M − 1)n−1

Corollary 5.4. Suppose that H is a linear hypergraph. Then |Z1(H,M, f)| ≥
n(M − 1)n−1

Proof. We prove this by induction on n. If all the edges ofH have cardinality

> 1, then this follows from Proposition 5.3. Otherwise, let {v} be a singleton

edge inH. We may assume thatH contains no other edge containing v. Then

observe that H−v is a linear hypergraph on n−1 vertices and by induction

hypothesis |Z1(H − v,M, f)| ≥ (n− 1)(M − 1)n−2. By Proposition 3.2

|Z1(H,M, f)| ≥ (M − 1)|Z1(H − v,M, f)|+(M − 1)n−1 ≥ n(M − 1)n−1
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6. Algorithmic applications and asymptotics

As we have discussed, the main use of the Isolation Lemma in the context
of algorithms is the following: we have a hypergraph H (which may not be
presented explicitly), and we wish to find some w : [n] → [M ] such that w is
isolating on H, where M is as small as possible. Since we do not have access
to H in any convenient way, the usual way to find w is to simply choose one
from [M ]n uniformly at random. When we do so, the resulting w is isolating
with probability p = |Z(H,M, f)|/Mn.

In these settings, we will typically have n → ∞ and M ≥ n, and we
make the following useful estimate for p:

Proposition 6.1. Let φ = n/M . Define

h1(φ) =
φ

eφ − 1
, h2(φ) =

2(eφ − 1)− φ

eφ(eφ − 1)
.

We have p ≥ h2(φ) − O(1/M). Furthermore, if Conjecture 2.5 holds,
then p ≥ h1(φ)−O(1/M).

By contrast, using the cruder bound |Z(H,M, f)| ≥ (M −1)n, we would
be able to show only that

p ≥ h0(φ)−O(1/M) where h0(φ) = e−φ.

In light of our analysis in terms of layers, we propose a slightly different
method for selecting w. Instead of selecting w uniformly from [M ]n, suppose
we instead select w uniformly from [M ]n − {2, . . . , n}n. In this case, the
resulting w is isolating with probability

q =
|Z1(H,M, f)|

Mn − (M − 1)n
.

We bound q using either Theorem 2.9 or Conjecture 2.5. Note that these
estimates avoid the O(1/M) error term of Proposition 6.1.

Proposition 6.2. Let φ = n/M ≤ 1. Then q ≥ h2(φ). Furthermore, if
Conjecture 2.5 holds, then q ≥ h1(φ).

In the limit as φ → 0, we have simpler estimates:

Corollary 6.3. We have

h0(φ) = 1− φ+O(φ2)
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h1(φ) = 1− φ

2
+

φ2

12
−O(φ4)

h2(φ) = 1− φ

2
− φ2

12
+O(φ3)

Thus, the estimates provided by Theorem 2.9 and Conjecture 2.5 are
asymptotically equivalent (up to second order) for φ → 0, and improve by
a factor of roughly 2 over the estimate of [11]. From an algorithmic point
of view, this means that, in order for an algorithm to achieve a given high
success probability (i.e. small probability that w fails to be isolating), we
need roughly one less bit of accuracy in the size of the weights as compared
to the estimate of [11].

6.1. Allowing zero-weight vertices

In our definition of the objective function f , we have restricted the range
of f to be strictly positive real numbers. In some algorithmic applications,
zero-weight vertices have been allowed [6]. It is natural to ask what bounds
on |Z(H,M, f)| can be shown when the function f is allowed to take on the
value zero. Let us define the quantity Y ′(M,n) as

Y ′(M,n) = min
H,f

|Z(H,M, f)|

where H ranges over all hypergraphs on n vertices and f ranges over all
functions f : [M ] → R≥0. Note that in this case, we can no longer assume
without loss of generality that H is inclusion-free.

In this setting, the bound of [11] is exactly tight.

Proposition 6.4. We have

Y ′(M,n) = (M − 1)n

Proof. First, we show that for all M,H, f we have |Z(H,M, f)| ≥ (M−1)n,
via a slight modification of Proposition 2.1. We construct an injective map
Ψ from {2, . . . ,M}n to Z(H,M, f), as follows. Given any w ∈ {2, . . . ,M}n,
we let Ew denote the set of min-weight edges. Arbitrarily select some e ∈ Ew

which is inclusion-wise maximal ; that is, there is not any other e′ ∈ Ew with
e � e′. Then set Ψ(w) = w−χe. One can easily verify that Ψ(w) is isolating.

Next, we construct a hypergraph H with |Z(H,M, f)| ≤ (M − 1)n. Let
H be the full power-set of n elements and define f : {1, . . . ,M} → R≥0 by
f(i) = i − 1. Observe that if w(i) = 1 for any i ∈ [n], then ∅, {i} are both
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min-weight edges, and so w is not isolating. So an isolating weight w must
have w(i) ∈ {2, . . . ,M} and so |Z(H,M, f)| ≤ (M − 1)n.

We emphasize that for most applications of the isolation method, one
can choose the objective function f in order to maximize |Z(H,M, f)|. Thus,
Proposition 6.4 shows that it is more efficient to choose the range of f to be
strictly positive.

7. Further problems

In addition to the main Conjecture, there are several other interesting ques-
tions one may ask:

1. Are there any simple graph parameters (such as edge cardinality, num-
ber of edges, etc.) such that Z(H) or Z1(H) is significantly larger than
our conjectured lower bound?

2. One may extend the type of objective functions, for example, one may
allow distinct functions fi for each vertex i (and so the value of an edge
e is

∑
i∈e fi(wi)). This generalization is needed in [8], for instance. One

may even further extend the objective function to be non-linear. Do
similar bounds apply?

3. We have seen that there is a higher probability that w is isolating if
w is forced to contain at least one entry of value 1. Are there any
other restrictions that we may place on w to increase this probability
(without taking advantage of knowledge of H)? We conjecture that
this is not the case, i.e. if X is any subset of [M ]n then we have

min
H,f

|Z(H,M, f) ∩X|
|X| ≥ n(M − 1)n−1

Mn − (M − 1)n−1
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