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Bounded monochromatic components for random
graphs

Nicolas Broutin and Ross J. Kang
∗

We consider vertex partitions of the binomial random graph Gn,p.
For np → ∞, we observe the following phenomenon: in any parti-
tion into asymptotically fewer than χ(Gn,p) parts, i.e. o(np/ log np)
parts, one part must induce a connected component of order at
least roughly the average part size.

Stated another way, we consider the t-component chromatic
number, the smallest number of colours needed in a colouring of
the vertices for which no monochromatic component has more than
t vertices. As long as np → ∞, there is a threshold for t around
Θ(p−1 lognp): if t is smaller then the t-component chromatic num-
ber is nearly as large as the chromatic number, while if t is greater
then it is around n/t.

For 0 < p < 1 fixed, we obtain more precise information. We
find something more subtle happens at the threshold t = Θ(logn),
and we determine that the asymptotic first-order behaviour is char-
acterised by a non-smooth function. Moreover, we consider the t-
component stability number, the maximum order of a vertex subset
that induces a subgraph with maximum component order at most
t, and show that it is concentrated in a constant length interval
about an explicitly given formula, so long as t = O(log logn).

We also consider a related Ramsey-type parameter and use
bounds on the component stability number of Gn,1/2 to describe
its basic asymptotic growth.

MSC 2010 subject classifications: 05C80, 05C15, 05A16.
Keywords and phrases: Graph colouring, random graphs, component
colouring, component stability.

1. Introduction

For t a positive integer, the t-component stability number αt
c(G) of a graph G

is the maximum order of a t-component set — a vertex subset that induces
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a subgraph with maximum component order at most t. The t-component

chromatic number χt
c(G) is the smallest number of colours needed in a t-

component colouring — a colouring of the vertices such that colour classes

are t-component sets. Note that χt
c(G) ≥ |V (G)|/αt

c(G) for any graph G and

any positive integer t.

We study the t-component chromatic and stability numbers of Gn,p,

where Gn,p as usual denotes the Erdős–Rényi random graph with vertex set

[n] = {1, . . . , n} and edges included independently at random with proba-

bility p, 0 < p < 1. We say that a property An of Gn,p holds asymptotically

almost surely (a.a.s.) if P(An) → 1 as n → ∞. We use standard notational

conventions: q = 1 − p and b = 1/q. Unless specified otherwise, the base of

logarithms is natural.

If t = 1, then χt
c(Gn,p) coincides with the notion of the chromatic number

χ(Gn,p) of Gn,p, a parameter of intensive study in random graph theory. For

fixed 0 < p < 1, Grimmett and McDiarmid [25] conjectured that χ(Gn,p) ∼
n/(2 logb n) a.a.s. This remained a major open problem in random graph

theory for over a decade, until Bollobás [5] used martingale techniques to

establish the conjecture; earlier, Matula [41] had devised an independent

method that was later proved to also confirm the conjecture [42]. �Luczak [37]

used martingale concentration to extend Matula’s method to sparse random

graphs and showed that, for any fixed ε > 0, there exists d0 such that

(1− ε)np

2 lognp
≤ χ(Gn,p) ≤

(1 + ε)np

2 log np

a.a.s. if np ≥ d0. This reviews classic work in the area, but there has been

tremendous further activity from many perspectives, cf. e.g. [11, 12]; for

further background on colouring random graphs, see [6, 28, 31].

We begin with some basic observations about the t-component chromatic

number. Let G be a graph and t a positive integer. Since a t-component set

is a (t+1)-component set, it follows that χt
c(G) ≥ χt+1

c (G). Also, each colour

class of a t-component colouring can be properly coloured with at most t

colours, and it follows that χt
c(G) ≥ χ(G)/t. Moreover, any partition of the

vertex set into t-sets is a t-component colouring. We thus have the following

range of values for χt
c(G).

Proposition 1.1. For any graph G and positive integer t,

χ(G)

t
≤ χt

c(G) ≤ min

{⌈
|V (G)|

t

⌉
, χ(G)

}
.
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Roughly, we prove that χt
c(Gn,p) is likely to be close to the upper end of

the range implied by Proposition 1.1: a.a.s. it is close to χ(Gn,p) if t(n) =
o(logb np) and to n/t if t(n) = ω(logb np). This has a compact qualitative
interpretation: in any partition of the vertices of Gn,p into asymptotically
fewer than χ(Gn,p) parts, one part must induce a subgraph having a large
sub-component, about as large as the average part size. This statement,
made more precise in Theorem 5.1 below, concerns Gn,p with np → ∞ as
n → ∞. For most of the paper however, we focus on the dense case, i.e. with
p fixed between 0 and 1.

An interesting question is how to characterise χt
c(Gn,p) at the threshold

t = Θ(log n). At this point, the two trivial upper bounds in Proposition 1.1
are of the same asymptotic order, and we see that something more subtle
takes place. Our main result is an explicit determination of χt

c(Gn,p) assum-
ing that t/ log n is convergent as n → ∞. We find it convenient to set some
notation: given τ, κ > 0, define

ι(τ, κ) =
1

2

((
κ− τ

⌊κ
τ

⌋)(
κ− τ

⌊κ
τ

⌋
− τ
)
− κ(κ− τ − 2)

)
.(1)

The following technical lemma is crucial; its proof can be found in the
appendix. See also Figure 1.

Lemma 1.2. Let κ = κ(τ) be defined by the implicit equation ι(τ, κ) = 0,
for ι as defined in (1). Then κ : (0,∞) → R is a well-defined function with
the following properties.

(i) Over all of (0,∞), the function κ is positive, increasing, piecewise
convex, and continuous.

(ii) If τ ∈ (0, 2], then κ is close to τ + 2, with equality for τ = 2/i, i ∈ N;
otherwise κ = τ + τ/(τ − 1). Moreover, τ + 1 < κ ≤ τ + 2 always.

We may now state our main result.

Theorem 1.3. Fix 0 < p < 1. Suppose t = t(n) ∼ τ logb n as n → ∞
for some τ > 0 and let κ = κ(τ) be the unique positive real guaranteed by
Lemma 1.2. Then a.a.s.

χt
c(Gn,p) ∼

n

κ logb n
.

Lemma 1.2 implies that κ → 2 as τ ↓ 0, and so we may view The-
orem 1.3 as a non-trivial extension of the aforementioned result of Bol-
lobás [5] on the chromatic number. We shall see in Section 2 that the ex-
pected number of t-component (κ logb n)-sets is dominated by those with
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nearly all components of the maximum order t. It is thus the remainder
term, κ logb n − t	(κ logb n)/t
, that explains the non-smooth behaviour of
κ as a function of τ . Theorem 1.3 follows from a first moment method, us-
ing a general asymptotic count of set partitions and an optimisation of the
non-edge count, together with an involved second moment argument.

Figure 1: Plots of ι(x, y) = 0, a function determining the behaviour in The-
orem 1.3, and y = x+ 1.

We also obtain an explicit, precise formulation for αt
c(Gn,p) when t is

bounded above by a slowly growing function of n. The formula in Theo-
rem 1.4 can be viewed as extending (up to the Θ(1) additive error term)
the explicit formulation of the stability number α(Gn,p) of Gn,p obtained by
Matula [39, 40] (cf. also Bollobás and Erdős [7]).

Theorem 1.4. Fix 0 < p < 1. If t = t(n) ≤ log logb n, then a.a.s.

αt
c(Gn,p) = 2 logb n+ t− 2 logb t−

2 logb logb np

t
+Θ(1).

The proof of this theorem is by way of bounds from enumerative com-
binatorics on the number of set partitions with bounded block size, and a
second moment argument using a large deviations inequality. The condition
t(n) ≤ log logb n marks roughly when specific set partition bounds are su-
perseded by a generic bound, and our lower and upper estimates on the
first moment diverge. We wonder how sharp this condition is with respect
to constant-width concentration of αt

c(Gn,p). Such concentration is impossi-
ble when t = Ω(

√
log n), due to a term in the first moment that fluctuates
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unpredictably based on the value of k/t − 	k/t
. (This rounding term has

less impact when t and k have the same asymptotic order.)

Incidental to our sharp determination of the component stability number

in Theorem 1.4, we obtain a good estimate of the component chromatic

number for t(n) ≤ log logb n. This is a small modification of Theorem 1.4 for

stronger concentration with slightly smaller sets, and then a close adaptation

of the arguments in Section 5 of [23] or in earlier work [43]. This adaptation

is left to the reader.

Theorem 1.5. Fix 0 < p < 1. If t = t(n) ≤ log logb n, then a.a.s.

χt
c(Gn,p) =

n

2 logb n+ t− 2 logb t−
2 logb logb np

t +Θ(1)
.

Last, in a simpler application of our determination of the component sta-

bility number, we introduce a related Ramsey-type parameter and find its

basic asymptotic behaviour. Recall that the (diagonal, two-colour) Ramsey

number is the smallest integer R(k) for which any graph on R(k) vertices

contains a set of k vertices that induces either a stable set or a clique as a

subgraph. The development of bounds for R(k) as k → ∞ is an important

and difficult area of mathematics with over eight decades of history [17, 19].

We now consider a generalisation of R(k) where the notion of t-component

set replaces that of stable set. The t-component Ramsey number is the small-

est integer Rt(k) for which any graph on Rt(k) vertices must contain a set

of at least k vertices that is a t-component set in either the graph or its

complement. We treat t as a function of k. Clearly, the 1-component Ram-

sey number R1(k) coincides with R(k), and by classic arguments (that use

bounds on α(Gn,1/2)) [17, 46] has exponential growth in k. At the other

extreme, Rk(k) is trivially k. So we expect to see a dramatic decrease in

Rt(k) by increasing t from 1 to k. Note also that Rt(k) is non-increasing

in t. The next result uses bounds on αt
c(Gn,1/2) and shows that Rt(k) is at

least exponential in k in nearly the entire range of t, i.e. the change from

exponential to polynomial growth occurs in a narrow interval near t = k.

Proposition 1.6. Fix 0 ≤ ε < 1/2. Then, as k → ∞,

R�(1−ε)k�(k) ≥ (1 + o(1))
k

3e
2ε(1−ε)k.

As we discuss in Section 6, this result can be complemented by a Kővári–

Sós–Turán-type result.
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Further remarks:

	 Both the t-component chromatic number [1, 2, 3, 15, 20, 21, 27, 32, 33,
34, 35, 36, 38] and the t-component stability number [14, 16, 26, 29, 44]
have been actively considered from several viewpoints, especially in
graph theory and theoretical computer science.

	 Note that αt
c(G) has often been studied in the following form: given G

and t, the t-fragmentability of G is essentially (|V (G)|−αt
c(G))/|V (G)|.

This for instance has been considered in sparse random graphs as a
watermark for feasibility of vaccination protocols in networks [10, 29].

	 It is worth mentioning related work (involving the second author),
where instead of component order we bound the (average) degree [23,
24, 30]. Macroscopically, these parameters exhibited a similar thresh-
old. However, the behaviour at the threshold was smooth and the
magnitude of the threshold was of a different order in sparse random
graphs. In Section 5 we discuss this latter difference.

	 When t is fixed, the property of being a t-component set is a hereditary
property —that is, it is a graph property that is closed under vertex-
deletion— whereupon broad results on hereditary colourings apply [8,
9, 45]. However, it is important here that we allow t to grow as a
function of n.

	 Bounded monochromatic components of random graphs are also con-
sidered in the separate context of partitions of the edge set [4, 47],
a problem related to Achlioptas processes that control the growth of
several “giants” simultaneously.

Plan of the paper. In Section 2, we conduct an analysis of the expected
number of t-component k-sets in Gn,p, mainly via asymptotic set partition
and non-edge counts. We prove Theorem 1.3 in Section 3 with a three-part
second moment argument. In Section 4, we use an easier second moment
argument that applies a large deviations inequality in order to prove The-
orem 1.4. In Section 5, we discuss results for random graphs with smaller
edge density. In Section 6, we study the Ramsey-type problem.

2. The expected number of t-component k-sets

Let Sn,t,k be the collection of t-component k-sets in Gn,p. This section is
devoted to analysing the expected behaviour of |Sn,t,k|: this governs the
asymptotic behaviour of χt

c(Gn,p). We divide our analysis into lower and
upper bounds on E(|Sn,t,k|), partly because these bounds have different
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scopes. These bounds depend mostly on sharp non-edge counts, and asymp-
totic estimates on the number of set partitions with bounded block size. We
often analyse set partitions with the help of some analytic combinatorics.
An important remark is that our expectation estimates naturally divide with
respect to the value of k/t, either less than or greater than 2, as in the former
case the count of set partitions is much simpler.

Understanding the expectation computations may provide some insight
into the formulas in Theorems 1.3 and 1.4. For those readers who prefer to
skip or skim over the rest of this section, the main results we require later
are the following two propositions and Lemma 2.3.

Proposition 2.1 (First-order estimate for t = Θ(log n)). Suppose 0 < p < 1
is fixed and ε > 0 is a small enough constant. Suppose t = t(n) ∼ τ logb n
as n → ∞ for some τ > 0 and let κ be the unique positive real satisfying
ι(τ, κ) = 0, for ι as defined in (1).

(i) If k = k(n) ∼ (κ + ε) logb n as n → ∞, then E(|Sn,t,k|) ≤ exp((1 +
o(1))ι(τ, κ+ ε)(log n)2/ log b).

(ii) If k = k(n) ∼ (κ − ε) logb n as n → ∞, then E(|Sn,t,k|) ≥ exp((1 +
o(1))ι(τ, κ− ε)(log n)2/ log b).

Proposition 2.2 (Constant-width estimate for t ≤ log logb np). Fix 0 <
p < 1. Suppose t = t(n) satisfies t ≤ log logb np.

(i) If k = k(n) satisfies as n → ∞ that

k ≥ 2 logb n+ t− 2 logb t−
2 logb logb np

t
+

10

log b
,

then E(|Sn,t,k|) ≤ exp(−k) for n large enough.
(ii) If k = k(n) satisfies as n → ∞ that k ≥ logb n and

k ≤ 2 logb n+ t− 2 logb t−
2 logb logb np

t
− 2

log b
,

then E(|Sn,t,k|) ≥ exp(k) for n large enough.

We use Proposition 2.1 in Section 3 for the t = Θ(log n) regime, and
Proposition 2.2 in Section 4 for the proof of Theorem 1.4. Proposition 2.1
follows from Propositions 2.5, 2.9, 2.12, and 2.14. Proposition 2.2 follows
from Lemmas 2.7 and 2.13.

The following calculations will be useful when dealing with bounds in-
volving ι as defined in (1). The proof is found in the appendix.
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Lemma 2.3. For τ > 0, let κ be the unique positive real satisfying ι(τ, κ) =
0, for ι as defined in (1).

(i) If 0 ≤ ε < τ
(⌊

κ
τ

⌋
+ 1
)
− κ, then ι(τ, κ+ ε) = −ε

(
τ
⌊
κ
τ

⌋
− 1
)
< −ε.

(ii) If τ |κ and 0 < ε < τ , then ι(τ, κ− ε) = ε.
(iii) If τ � |κ and 0 ≤ ε ≤ κ− τ

⌊
κ
τ

⌋
, then ι(τ, κ− ε) = ε

(
τ
⌊
κ
τ

⌋
− 1
)
> ε.

2.1. Upper bounds on E(|Sn,t,k|)

Lemma 2.4. Suppose p = p(n) satisfies 0 < p < 1 and np → ∞ as n → ∞.
Suppose t = t(n) and k = k(n) satisfy that t, k → ∞ as n → ∞. Furthermore
assume t = O(logb np), t ≥ k/2 (so that 1 ≤ k/t ≤ 2) and

k ≥ t+
k

t
logb

np

pt+ log np
+

6

log b
.

Then E(|Sn,t,k|) ≤ exp(−t) for n large enough.

Proof. We estimate the probability contribution of all t-component k-sets
by classifying them according to partitions of [k] so that there are no edges
between any pair of parts. Naturally, we could first consider the component
structure as such a partition (ignoring what happens inside each compo-
nent). However, we find it convenient to simplify our accounting by taking
coarser partitions. For a given t-component k-set, we group the connected
components into possibly larger vertex subsets as follows. We form a first
such set X1 by including just the largest component, unless it has at most
t/2 vertices, in which case we add just the second largest component to the
group, unless the resulting group has at most t/2 vertices, and so on. Then
we form a second set X2 in a similar way with the remaining components.
After this second grouping, all the remaining components (if there are any)
are grouped into a third set X3. By construction, t/2 ≤ |X1|, |X2| ≤ t and
since t ≥ k/2 we have that |X3| ≤ k − t ≤ t.

From the above discussion, to upper bound the expectation of |Sn,t,k|
it suffices to upper bound that of the number k-sets of [n] that induce a
partition of [k] with part sizes k1 (possibly 0), k2 and k3 such that 0 ≤ k1 ≤
k2 ≤ k3 ≤ t, k1 ≤ k − t and k2 ≥ t/2, and with no edges between any two
parts. Since k3 = k − k1 − k2, the total number of non-edges between parts
is expressed by

f(k1, k2) := k1k2 + (k1 + k2)(k − k1 − k2) = k(k1 + k2)− k21 − k1k2 − k22.

In the following optimisation, we show that under the above constraints
f(k1, k2) ≥ t(k − t) always. For k1 fixed with 0 ≤ k1 ≤ k − t, f(k1, k2) is
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non-negative and concave in k2 for 0 ≤ k2 ≤ k − k1, and so minimised by
evaluating at extreme values for k2. The properties of the partition imply
that max{k1, t/2, k − t− k1} ≤ k2 ≤ (k − k1)/2.

Consider the three-term maximisation for the lower extreme of k2. Using
t ≥ k/2, observe that k − 3t/2 ≤ k/2 − t/2 ≤ t/2. Note k1 ≥ k − t − k1
is equivalent to k1 ≥ k/2 − t/2, while t/2 ≥ k − t − k1 is equivalent to
k1 ≥ k − 3t/2. These observations imply that the maximisation is attained
by

(i) k − t− k1 if k1 ≤ k − 3t/2,
(ii) t/2 if k − 3t/2 ≤ k1 ≤ t/2, and
(iii) k1 if k1 ≥ t/2.

For case (i), f(k1, k − t − k1) = t(k − t) + (k − t)k1 − k21 is concave in
k1 and so minimised over 0 ≤ k1 ≤ k − 3t/2 at k1 = 0 or k1 = k − 3t/2.
In the former case we have f(0, k − t) = t(k − t). In the latter we get
f(k− 3t/2, t/2) = t(k− t) + (2k− 3t)/4, which is at least t(k− t) as long as
k − 3t/2 ≥ 0 (and otherwise case (i) is vacuous).

For case (ii), f(k1, t/2) = (k− t/2)t/2+(k− t/2)k1−k21 is concave in k1
and so minimised over max{k−3t/2, 0} ≤ k1 ≤ t/2 at k1 = max{k−3t/2, 0}
or k1 = t/2. In the former case we already checked f(k−3t/2, t/2) ≥ t(k−t)
as long as k − 3t/2 ≥ 0; otherwise, we have f(0, t/2) = (k − t/2)t/2, which
is at least t(k − t) for k − 3t/2 ≤ 0. In the latter case we get f(t/2, t/2) =
(k − 3t/4)t > t(k − t).

For case (iii), f(k1, k1) = 2kk1 − 3k21 is concave in k1 and so minimised
over t/2 ≤ k1 ≤ k/3 at k1 = t/2 or k1 = k/3. In the former case we already
checked that f(t/2, t/2) > t(k − t). In the latter case we get f(k/3, k/3) =
k2/3 > t(k − t).

For the upper extreme of k2, we evaluate f(k1, (k − k1)/2) = k2/4 +
(k/2)k1− (3/4)k21. This is concave in k1 and so minimised over 0 ≤ k1 ≤ k/3
when k1 = 0 or k1 = k/3. In the former case we have f(0, k/2) = k2/4 ≥
t(k − t). In the latter case we get f(k/3, k/3) > t(k − t).

This completes the optimisation to check that in all such partitions the
total number f(k1, k2) of non-edges between parts is at least t(k − t). As
there are crudely at most 3k such partitions of [k], we obtain

E(|Sn,t,k|) ≤
(
n

k

)
3kqt(k−t) ≤

(en
k

)k
· 3kqt(k−t),(2)

using
(
x
y

)
≤ (ex/y)y. Taking the logarithm and dividing by t, we get for n

large enough that
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log E(|Sn,t,k|)
t

≤ k

t
log
(en
k

)
+

k

t
log 3− (k − t) log b

≤ k

t
log np− k

t
log pk + 4.2− (k − t) log b,

since k/t ≤ 2 and log 2/t → 0. Now, the assumed lower bound on k implies

both that

(k − t) log b ≥ k

t
lognp− k

t
log(pt+ log np) + 6

and pk ≥ pt + log np. (The last inequality can be seen by first noting that

k ≥ t + (1 + o(1)) logb np, so that k/t − 1 = Ω(1), and then applying the

inequality again to obtain pk ≥ pt + (1 + o(1))kt log
np

lognp ≥ pt + log np for

n large enough.) We then have log E(|Sn,t,k|) ≤ −t for n large enough, as

required.

Moreover, the following holds by a similar argument. Note that it can

be verified in the case τ > 2, corresponding to 	κ/τ
 = 	1+ 1/(τ − 1)
 = 1,

that ι(τ, κ+ ε) = κ+ ε− τ(κ+ ε− τ) provided that ε > 0 is small enough.

Proposition 2.5. Suppose p = p(n) satisfies 0 < p < 1 and np → ∞
as n → ∞, and ε > 0 is a small enough constant. Suppose t = t(n) and

k = k(n) satisfy as n → ∞ that t ∼ τ logb np and k ∼ (κ + ε) logb np,

where τ, κ > 0 satisfy τ > 2 and ι(τ, κ) = 0. Then E(|Sn,t,k|) ≤ exp((1 +

o(1))ι(τ, κ+ ε)(log np)2/ log b).

Proof. Since ε > 0 can be chosen small and n taken large enough, we may

assume based on τ > 2 and ι(τ, κ) = 0 that t ≥ k/2. Following the proof of

Lemma 2.4, and since log b = Θ(p), we obtain

log E(|Sn,t,k|) ≤ k log
(en
k

)
+ k log 3− t(k − t) log b

= k log np− t(k − t) log b+ o(k log np)

∼ (κ+ ε− τ(κ+ ε− τ))
(log np)2

log b
= ι(τ, κ+ ε)

(log np)2

log b
.

For the next first moment upper bounds, we require a bound on the

number SPt,k of set partitions of [k] with block sizes at most t. An easy

application of the saddle-point method from analytic combinatorics, cf. Fla-

jolet and Sedgewick [22], suffices. The proof of the following can be found

in the appendix.
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Proposition 2.6. If t ≤ log k, then for k large enough

SPt,k ≤ exp

(
k log k − k

t
log k − k log t+ 3k

)
.

Note that the size of a largest part in a randomly chosen set partition
of [k] is (1 + o(1)) log k, cf. [22]. Thus, if t > log k, we instead appeal to
a general asymptotic bound for set partitions, cf. [22, Proposition VIII.3],
which implies that

SPt,k ≤ SPk,k

≤ (1 + o(1))
k!

(log k)k

= exp(k log k − k log log k − k + o(k)).(3)

The following two bounds are consequences of these set partition estimates.

Lemma 2.7. Suppose p = p(n) satisfies 0 < p < 1. Suppose t = t(n) and
k = k(n) satisfy as n → ∞ that t ≤ log logb np and

k ≥ 2 logb n+ t− 2 logb t−
2 logb logb np

t
+

10

log b
.

Then E(|Sn,t,k|) ≤ exp(−k) for n large enough.

Lemma 2.8. Suppose p = p(n) satisfies 0 < p < 1. Suppose t = t(n) and
k = k(n) satisfy as n → ∞ that t = o(logb n) and

k ≥ 2 logb n+ t− 2 logb log logb n+
3

log b
.

Then E(|Sn,t,k|) ≤ exp(−k) for n large enough.

Proof of Lemma 2.7. Let us define k̂ = t	k/t
. Any t-component k-set in-
duces a set partition of [k] into blocks of size at most t, such that there is no
edge between vertices of two different blocks. The total number of non-edges
among the blocks is minimised by having the least number k̂/t+1 of blocks
with all but one of the blocks having size exactly t. Such a partition has at

least
(
k̂/t
2

)
t2 + k̂(k − k̂) non-edges.

We have t ≤ log logb np ≤ log k. (To see this, note that it holds for t = 1,
then use monotonicity in t of the bound on k.) Thus, using Proposition 2.6
and

(
x
y

)
≤ (ex/y)y, we have for n large enough
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E(|Sn,t,k|) ≤
(
n

k

)
q(

k̂/t

2 )t
2+k̂(k−k̂)SPt,k

≤
(en
k

)k
q

k̂(k̂−t)

2
+k̂(k−k̂) exp

(
k log k − k

t
log k − k log t+ 3k

)
.

Taking the logarithm, dividing by k/2, substituting log k ≥ log logb np, and

simplifying, we get

2 log E(|Sn,t,k|)
k

≤ 2 log n−
(
k − t+

(k − k̂)(t− (k − k̂))

k

)
log b− 2 log logb np

t
− 2 log t+8

≤ 2 log n− (k − t) log b− 2 log logb np

t
− 2 log t+ 8.

The second inequality above follows from the fact that 0 ≤ k − k̂ < t.

Substituting the assumed lower bound on k, we obtain the desired result.

Proof of Lemma 2.8. We follow the previous proof, but we substitute the

general bound of (3) instead of Proposition 2.6. If k̂ = t	k/t
, this yields

E(|Sn,t,k|) ≤
(en
k

)k
q

k̂(k̂−t)

2
+k̂(k−k̂) exp(k log k − k log log k − k + o(k)),

and then (since log k ≥ log logb n)

2 log E(|Sn,t,k|)
k

≤ 2 log n−
(
k − t+

(k − k̂)(t− (k − k̂))

k

)
log b− 2 log log logb n+ o(1)

≤ 2 log n− (k − t) log b− 2 log log logb n+ 1.

Then substitution of the assumed lower bound on k yields the result.

By a similar argument, we see moreover that the following is true.

Proposition 2.9. Suppose 0 < p < 1 and ε > 0 are fixed. Suppose t = t(n)

and k = k(n) satisfy as n → ∞ that t ∼ τ logb n and k ∼ (κ + ε) logb n,

where τ, κ > 0 satisfy τ ≤ 2 and ι(τ, κ) = 0. Then E(|Sn,t,k|) ≤ exp((1 +

o(1))ι(τ, κ+ ε)(log n)2/ log b).
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Proof. Following the last proof, if k̂ = t	k/t
, then we obtain

2 log E(|Sn,t,k|)
k

≤ (2 + o(1)) logn−
(
k − t+

(k − k̂)(t− (k − k̂))

k

)
log b

∼ −
(
κ+ ε− τ − 2 +

(
κ+ ε− τ

⌊
κ+ε
τ

⌋) (
τ − κ− ε+ τ

⌊
κ+ε
τ

⌋)
κ+ ε

)
log n,

whereupon we have derived

log E(|Sn,t,k|) ≤ (1 + o(1))ι(τ, κ+ ε)
(log n)2

log b
.

2.2. Lower bounds on E(|Sn,t,k|)

We now establish lower bounds for E(|Sn,t,k|). First we remind the reader
of the following.

Proposition 2.10 (Erdős and Rényi [18]). For any 0 < p < 1 and positive
integer t satisfying tp ≥ 2 log t, there exists η = η(t, p) > 2/3 such that
P(Gt,p is connected) ≥ η for all t sufficiently large.

Lemma 2.11. Suppose p = p(n) satisfies 0 < p < 1 and np → ∞ as
n → ∞. Suppose t = t(n) and k = k(n) satisfy that t, k → ∞ as n → ∞.
Furthermore assume t > k/2 (so that 1 ≤ k/t < 2),

k ≤ t+
k

t
logb

np

pt+ log np
− 1

t
logb

4

η
− 1

log b
,

where η = η(t, p) is as in Proposition 2.10. Then E(|Sn,t,k|) ≥ exp(t) for n
large enough.

Proof. For this, we count t-component k-sets formed by the disjoint union
of a connected t-set and a connected (k − t)-set. Given a set of k vertices,
we construct such a set by taking an arbitrary vertex subset with t vertices,
forming an arbitrary connected graph on those t vertices, and forming an
arbitrary graph on the remaining k− t vertices. The choices of graph formed
on the two parts can be made independently. We have not double-counted
any graph by this construction. It follows by Proposition 2.10 that

E(|Sn,t,k|) ≥
(
n

k

)(
k

t

)
qt(k−t)η.
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Since
(
x
y

)
≥ (x/y)y, it then follows that

log E(|Sn,t,k|) ≥ k log
n

k
+ t log

k

t
− t(k − t) log b+ log η

≥ k log np− k log pk − t(k − t) log b+ log η.

The conditions on k and t imply both that pk < 2(pt+ lognp) and

t(k − t) log b ≤ k log np− k log(pt+ log np)− log
4

η
− t

≤ k log np− k log pk + 2 log 2− log
4

η
− t.

Therefore,

log E(|Sn,t,k|)
t

≥ log η − 2 log 2

t
+

1

t
log

4

η
+ 1 = 1,

as required.

Moreover, a similar argument shows that the following holds. Recall
that in the case τ > 2, corresponding to 	κ/τ
 = 1, we have ι(τ, κ − ε) =
κ− ε− τ(κ− ε− τ) if ε is small enough.

Proposition 2.12. Suppose 0 < p < 1 is fixed and ε > 0 is a small enough
constant. Suppose t = t(n) and k = k(n) satisfy as n → ∞ that t ∼ τ logb n
and k ∼ (κ − ε) logb n, where τ, κ > 0 satisfy τ > 2 and ι(τ, κ) = 0. Then
E(|Sn,t,k|) ≥ exp((1 + o(1))ι(τ, κ− ε)(log n)2/ log b).

Proof. For p fixed, the conditions of Proposition 2.10 are easily satisfied.
Moreover, based on τ > 2 and ι(τ, κ) = 0, we may assume t > k/2 for n
large enough. Following the proof of Lemma 2.11, we obtain

log E(|Sn,t,k|) ≥ k log
n

k
+ t log

k

t
− t(k − t) log b+ log η

= k log n− t(k − t) log b+ o((log n)2)

∼ (κ− ε− τ(κ− ε− τ))
(log n)2

log b
= ι(τ, κ− ε)

(log n)2

log b
.

For the next lower bound, we need an expression for the number EPt,k

of set partitions of [k] having the maximum number of parts of size exactly
t. For this, define k̂ = t	k/t
. We can then write
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EPt,k =
k!

(k̂/t)!(t!)k̂/t(k − k̂)!
.

By Stirling’s approximation, we obtain that

EPt,k ≥
√
2πkk+1/2e−k

(e(k̂/t)k̂/t+1/2e−k̂/t)(ett+1/2e−t)k̂/t(e(k − k̂)k−k̂+1/2e−(k−k̂))

= Ω(1)
kk+1/2tk̂/(2t)+1/2

k̂k̂/t+1/2tk̂(k − k̂)k−k̂+1/2

= Ω(1)
kktk̂/(2t)

k̂k̂/ttk̂(k − k̂)k−k̂

k1/2t1/2

k̂1/2(k − k̂)1/2

≥ Ω(1)
kk

√
t
k̂/t

kk/ttk
.(4)

Lemma 2.13. Suppose p = p(n) satisfies 0 < p < 1 and np → ∞ as

n → ∞. Suppose t = t(n) and k = k(n) satisfy as n → ∞ that t → ∞,

t ≤ 2 logb np, k ≥ logb np and

k≤ 2 logb n+ t− t2

4 logb np
− 2 logb t−

2 logb logb np

t
+

2 log(η
√
t/3)

3 log np
− 1

log b
,

where η = η(t, p) is as in Proposition 2.10. Then E(|Sn,t,k|) ≥ exp(k) for n

large enough.

Proof. For this lower bound, it suffices to count t-component k-sets formed

based on the disjoint union of k̂/t connected t-sets. We construct such sets by

taking set partitions of [k] of the form counted by EPt,k, and independently

forming an arbitrary connected graph on each block of size t (and an arbi-

trary graph on the remainder block, if necessary). Note that the number of

non-edges for such a t-component k-set is bounded below by
(
k̂/t
2

)
t2+k̂(k−k̂)

(where k̂ = t	k/t
). Each set constructed in this way is a t-component k-set

and no set is double-counted. It follows from Proposition 2.10 and (4) that

E(|Sn,t,k|) ≥
(
n

k

)
q(

k̂/t

2 )t
2+k̂(k−k̂)ηk̂/tEPt,k

≥
(
n

k

)
q

k̂(k̂−t)

2
+k̂(k−k̂)ηk̂/t exp

(
k log k − k

t
log k − k log t+

k̂

t
log

√
t+ o(k)

)
.
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The assumed upper bound on k implies that k ≤ 3 logb np. Now, using(
x
y

)
≥ (x/y)y, taking the logarithm, dividing by k/2, substituting log k ≤

log logb np+ log 3, we obtain for n large enough

2 log E(|Sn,t,k|)
k

≥ 2 log n−
(
k − t+

(k − k̂)(t− (k − k̂))

k

)
log b

− 2 log k

t
− 2 log t+

2 log(η
√
t)

k
+ o(1)

≥ 2 log n−
(
k − t+

t2

4 logb np

)
log b

− 2 log t− 2 log logb np

t
+

2 log(η
√
t/3)

k
− 1.

The result follows upon substitution of the assumed upper bound on k (and

k ≤ 3 logb np).

By a similar argument, we see moreover that the following holds.

Proposition 2.14. Suppose 0 < p < 1 and ε > 0 are fixed. Suppose t = t(n)

and k = k(n) satisfy as n → ∞ that t ∼ τ logb n and k ∼ (κ − ε) logb n,

where τ, κ > 0 satisfy τ ≤ 2 and ι(τ, κ) = 0. Then E(|Sn,t,k|) ≥ exp((1 +

o(1))ι(τ, κ− ε)(log n)2/ log b).

Proof. For p fixed, the conditions of Proposition 2.10 are satisfied. Following

the proof of Lemma 2.13,

2 log E(|Sn,t,k|)
k

≥ 2 log n−
(
k − t+

(k − k̂)(t− (k − k̂))

k

)
log b− 2 log k

t
− 2 log t

+
2 log(η

√
t)

k
+ o(1)

= (2 + o(1)) logn−
(
k − t+

(k − k̂)(t− (k − k̂))

k

)
log b

∼ −
(
κ− ε− τ − 2 +

(
κ− ε− τ

⌊
κ−ε
τ

⌋) (
τ − κ+ ε+ τ

⌊
κ−ε
τ

⌋)
κ− ε

)
log n.
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Then, as desired, we have derived

log E(|Sn,t,k|) ≥ (1 + o(1))ι(τ, κ− ε)
(log n)2

log b
.

3. The threshold: t = Θ(logn)

This section is devoted to carrying out a second moment estimate to prove
the following lemma.

Lemma 3.1. Suppose 0 < p < 1 is fixed and ε > 0 is a small enough
constant. Suppose t = t(n) ∼ τ logb n as n → ∞ for some τ > 0, and let
κ = κ(τ) be the unique positive real guaranteed by Lemma 1.2. If k = k(n) ∼
(κ− ε) logb n as n → ∞, then P(αt

c(Gn,p) < k) ≤ exp(−n2/(log n)5).

Let us first see how this lemma implies our main theorem. This same
approach was core to determining the asymptotic behaviour of χ(Gn,p) in [5].

Proof of Theorem 1.3. Let ε > 0 be some arbitrary small constant. It follows
from Propositions 2.1(i) and Lemma 2.3(i) that

P

(
χt
c(Gn,p) ≤

n

(κ+ ε) logb n

)
≤ P

(
αt
c(Gn,p) ≥ (κ+ ε) logb n

)
≤ E(|Sn,t,k|) = exp(−Ω((log n)2))

(where Sn,t,k is the collection of t-component k-sets in Gn,p); thus χ
t
c(Gn,p) ≥

n/((κ+ ε) logb n) a.a.s. The remainder of the proof is devoted to obtaining
a closely matching upper bound.

For this, set k = (κ− ε/2) logb n. Let An denote the set of graphs G on
[n] such that αt

c(G[S]) ≥ k for all S ⊆ [n] with |S| ≥ n/(log n)2. Then, by
Lemma 3.1, assuming ε is small enough,

P (Gn,p /∈ An) ≤ 2n P
(
αt
c

(
G�n/(logn)2�,p

)
< k
)

≤ exp
(
O(n)− Ω

(
n2/(log n)9

))
→ 0

as n → ∞. Therefore, Gn,p ∈ An a.a.s.
But for a graph G in An the following procedure yields a colouring as

desired. Let S′ = [n]. While |S′| ≥ n/(log n)2, form a colour class from an
arbitrary t-component k-subset T of S′ and let S′ = S′ \ T . At the end of
these iterations, |S′| < n/(log n)2 and we may just assign each vertex of S′

to its own colour class. The resulting partition is a t-component colouring of
Gn,p and the total number of colours used is less than n/((κ− ε/2) logb n)+
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n/(log n)2 ≤ n/((κ − ε) logb n) for large enough n. As ε > 0 was chosen
arbitrarily small, this completes the proof.

Proof of Lemma 3.1. Throughout the proof, we always assume a choice of
ε > 0 that is small enough for our purposes — for the application of
Lemma 2.3 we certainly need at least that ε < min

{
τ, κ− τ

⌊
κ
τ

⌋}
. Then

from Proposition 2.1(ii) we have as n → ∞ that

E(|Sn,t,k|) ≥ exp

(
(1 + o(1))ι(τ, κ− ε)

(log n)2

log b

)

≥ exp

(
(1 + o(1))ε

(log n)2

log b

)
.(5)

We use Janson’s Inequality (Theorem 2.18(ii) in [28]):

P(αt
c(Gn,p) < k) = P(|Sn,t,k| = 0) ≤ exp

(
− (E(|Sn,t,k|))2

E(|Sn,t,k|) + Δ

)
,(6)

where

Δ =
∑

A,B⊆[n],1<|A∩B|<k

P(A,B ∈ Sn,t,k).

We split Δ into separate sums according to the size � of A∩B. In particular,
let p(k, �) be the probability that two k-subsets of [n] that overlap on exactly
� vertices are both in Sn,t,k. Thus

Δ =
∑

2≤�<k

f(�), where f(�) =

(
n

k

)(
k

�

)(
n− k

k − �

)
p(k, �).

Set �1 = λ1 logb n and �2 = λ2 logb n, for some 0 ≤ λ1 ≤ λ2 ≤ κ which
are chosen to satisfy the inequalities (8), (9) and (10) below. Now we write
Δ = Δ1+Δ2+Δ3 where �1, �2 determine the ranges of the sums into which
we decompose Δ:

Δ1 =
∑

2≤�<�1

f(�), Δ2 =
∑

�1≤�<�2

f(�), Δ3 =
∑

�2≤�<k

f(�).

It suffices to show that Δi = O((log n)5/n2)(E(|Sn,t,k|))2 for each i ∈
{1, 2, 3} for the result to follow from (6). To bound each Δi we consider
two arbitrary k-subsets A and B of [n] that overlap on exactly � vertices,
i.e. |A ∩B| = �. Moreover, we write

p(k, �) = P(A,B ∈ Sn,t,k) = P(A ∈ Sn,t,k

∣∣ B ∈ Sn,t,k)P(B ∈ Sn,t,k)
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and focus on bounding the conditional factor. We remark here that, although
rounding is indeed quite important to the form of this result, we shall several
times in optimisation procedures below take the liberty of discarding floor
and ceiling symbols, wherever this causes no confusion.

Bounding Δ1. The property of having component order at most t is mono-
tone decreasing, so the conditional probability that A ∈ Sn,t,k is maximised
when E[A ∩B] = ∅. Thus

P(A ∈ Sn,t,k

∣∣ B ∈ Sn,t,k) ≤ P(A ∈ Sn,t,k

∣∣ E[A ∩B] = ∅)

≤ P(A ∈ Sn,t,k)

P(E[A ∩B] = ∅) = b(
�

2) P(A ∈ Sn,t,k),

implying that p(k, �) ≤ b(
�

2)(P(A ∈ Sn,t,k))
2.

We have though that for n large enough(
k
�

)(
n−k
k−�

)
(
n
k

) ≤ 2

(
k
�

)
nk−�/(k − �)!

nk/k!
≤ 2

(
k2

n

)�

.

Thus

Δ1 ≤
((

n

k

)
P(A ∈ Sn,t,k)

)2 ∑
2≤�<�1

2

(
k2

n

)�

b(
�

2) = (E(|Sn,t,k|))2
∑

2≤�<�1

s�,

where

s� := 2

(
k2

n

)�

b(
�

2).(7)

We now show that the summation
∑

s� is o(1). To this end, note that
s�+1/s� = k2b�/n and so the sequence {s�} is convex in �. So s� is maximised
over � ∈ {2, . . . , �1} at either � = 2 or � = �1. We have that s2 = 2bk4/n2 =
Θ((log n)4/n2), but

s�1 ≤ 2

(
k2

n
nλ1/2

)λ1 logb n

= exp(−Ω((log n)2)),

provided that λ1 is chosen so that

0 < λ1 < 2.(8)
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Therefore, with this choice,

Δ1 ≤ �1s2(E(|Sn,t,k|))2 = O

(
(log n)5

n2

)
(E(|Sn,t,k|))2.

Bounding Δ3. In this case, we implicitly use the assumption that λ2 > τ ,
but as we shall see this is automatic from the requirement (9) below. Given
that B ∈ Sn,t,k, let us lower bound the number of non-edges accounted for
by A\B with the event A ∈ Sn,t,k. (So we count those non-edges induced by
A \B plus those induced between A \B and A∩B.) In this event, we know
that each vertex of A \B has maximum degree less than t in A. The overall
contribution of such vertices to the number of non-edges will be smallest if
each neighbourhood is strictly contained in A ∩ B. We conclude that the
number of non-edges accounted for is at least (k − �)(� − t + 1) +

(
k−�
2

)
≥

(k − �)(�− t) + (k − �)2/2. From this, and also using a crude bound for the
number of set partitions of A, we get

P(A ∈ Sn,t,k

∣∣ B ∈ Sn,t,k) ≤ kkq
1

2
(k−�)(�+k−2t).

Thus, since
(
k
�

)(
n−k
k−�

)
≤ (kn)k−�, we have

Δ3 ≤ E(|Sn,t,k|)
∑

�2≤�<k

s�, where s� := kk
(
kn · b− 1

2
(�+k)+t

)k−�
.

We now show that the summation
∑

s� is o(E(|Sn,t,k|)). To this end, note
that

s�+1

s�
=

b�−t+1/2

kn

and so the sequence {s�} is convex in �. So s� is maximised over � ∈
{�2, . . . , k − 1} at either � = �2 or � = k − 1. We have that ksk−1 =
kk+2nb−k+t+1/2 = kO(k). On the other end,

s�2 ≤ kk
(
kn · b− 1

2
(�2+k)+t

)k−�2

= exp

((
1− 1

2
(λ2 + κ− ε) + τ + o(1)

)
(κ− λ2)

(log n)2

log b

)
.

Therefore, comparing with (5), we may conclude that we have
∑

s� ≤ ks�2 =
o(E(|Sn,t,k|)) provided we choose

λ2 ≥ 2 + 2τ − κ+ ε− ε̂(9)
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for any 0 < ε̂ < ε satisfying ε̂(κ − τ − 1 − (ε − ε̂)/2) < ι(τ, κ − ε). Since
κ ≤ τ + 2, this automatically implies λ2 > κ. Moreover, with any choice
satisfying (9), we may conclude that Δ3 = O((log n)5/n2)(E(|Sn,t,k|))2. Note
that ι(τ, κ−ε) ≥ ε by Lemma 2.3, guaranteeing a choice for ε̂. The reason for
the restriction ε̂ < ε is that, if we are in the case of Lemma 2.3(ii) and choose
both ε̂ = ε and λ2 = 2+2τ−κ, then ε̂(κ−τ−1−(ε− ε̂)/2) = ε = ι(τ, κ−ε)
so that s�2 cannot be guaranteed to be smaller than the expression in (5).
Since κ > τ + 1, we can also guarantee that the choice of λ2 satisfies

λ2 < κ,(10)

provided ε is small enough.

Bounding Δ2. In first bounding Δ1 and Δ3, we have derived appropriate
conditions on the choice of λ1 and λ2, in inequalities (8), (9) and (10).
Before beginning our analysis of Δ2, we note that κ > 2τ for all 0 < τ < 2;
otherwise, τ	κ/τ
 < 2 and it follows from ι(τ, κ) = 0 that κ > 2(τ + 4)/3
which is greater than τ +2 for 0 < τ < 2, a contradiction to Lemma 1.2. We
may therefore assume that τ ≥ 2, or else the summation Δ2 can be made
empty with a small enough choice of ε and a choice of λ1 close enough to 2.

Note that every t-component k-set induces a bipartition so that one part
has at least k − t vertices, the other has at least t/2 vertices, and there are
no edges between the two parts. (To build such a partition, we form one
of the parts by including just the largest component, unless it has at most
t/2 vertices, in which case we add just the second largest component to
the part, unless the resulting set has at most t/2 vertices, and so on.) For
each such bipartition corresponding to A being a t-component set, there is a
corresponding bipartition of A \B (one part possibly being empty). We can
thus estimate P(A ∈ Sn,t,k

∣∣ B ∈ Sn,t,k) by conditioning on the bipartition
of A\B, and consider its extensions to bipartitions of A. Taking into account
the non-edges between the parts, and by deeming the part of at least k − t
vertices to be composed of i vertices from A \B and j vertices from A ∩B,
we obtain

P(A ∈ Sn,t,k

∣∣ B ∈ Sn,t,k)

≤ max
0≤i≤k−�

(
k − �

i

)min{�,k−t/2−i}∑
j=k−t−i

(
�

j

)
qi(k−i−j)+(k−�−i)(i+j)−i(k−�−i)

≤ kO(k) max
0≤i≤k−�

min{�,k−t/2−i}∑
j=k−t−i

qi(k−i)+j(k−�−2i).
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We break this maximisation in half with cases i ≤ (k−�)/2 and i ≥ (k−�)/2,
corresponding to different signs for k − �− 2i.

In the lower half, the sum is maximised by minimising j, so

min{�,k−t/2−i}∑
j=k−t−i

qi(k−i)+j(k−�−2i) ≤ kqi(k−i)+(k−t−i)(k−�−2i)

= kqi
2−(2(k−t)−�)i+(k−t)(k−�).

Note that the convex quadratic in the exponent of this last expression is
minimised at i = k − t − �/2. It can be checked that this value of i is no
larger than (k− �)/2, since τ > 1; however, if � > 2(k− t), then this value of
i is smaller than 0, in which case the minimum of the quadratic is at i = 0.
We conclude that

max
0≤i≤(k−�)/2

min{�,k−t/2−i}∑
j=k−t−i

qi(k−i)+j(k−�−2i) ≤
{
kqt(k−t)−�2/4 if � ≤ 2(k − t)

kq(k−t)(k−�) otherwise
.

(11)

In the upper half, the sum is maximised by maximising j. First consider
when k − t/2− i is the minimum in the upper delimiter for j, and so

min{�,k−t/2−i}∑
j=k−t−i

qi(k−i)+j(k−�−2i) ≤ kqi(k−i)+(k−t/2−i)(k−�−2i)

= kqi
2−(2(k−t/2)−�)i+(k−t/2)(k−�).

Note the convex quadratic in the exponent of this last expression is min-
imised at i = k−t/2−�/2. It can be checked that this value of i is no smaller
than (k − �)/2, since k ≥ t; however, if � > t, then this value of i is larger
than k − �, in which case the minimum of the quadratic is at i = k − �. We
conclude that

max
(k−�)/2≤i≤k−�

min{�,k−t/2−i}∑
j=k−t−i

qi(k−i)+j(k−�−2i)≤
{
kq

1

2
t(k−t/2)−�2/4 if � ≤ t

kq
1

2
t(k−�) otherwise

.

(12)

Otherwise � ≤ k−t/2−i and so in this case one concludes from a comparison
of the extreme values of i, namely i = (k − �)/2 and i = k − � − t/2, that
� ≤ k− t. This scenario is ruled out by a choice of λ1 > 2− ε/2 > κ− ε− τ
(using that τ ≥ 2).
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For the final stage of our estimate of Δ2, it will suffice to assume that
� ∼ λ logb n for some λ1 ≤ λ ≤ λ2. Since

(
k
�

)(
n−k
k−�

)
≤ kO(k)nk−�, we can write

log
f(�)

E(|Sn,t,k|)
≤ (1+ o(1))(κ− ε−λ)

(log n)2

log b
+ log P(A∈Sn,t,k

∣∣ B ∈Sn,t,k),

(13)

and shall show the expression is at most any fixed positive fraction of (log n)2

(and indeed could be negative) using (11) and (12).
If we are in the first subcase of (11), then λ ≤ 2(κ − ε − τ), and so we

can conclude that

log
f(�)

E(|Sn,t,k|)
≤ (1 + o(1))

(
κ− ε− λ− τ(κ− ε− τ) +

1

4
λ2

)
(log n)2

log b

∼
(
λ2 − 4λ+ 4ε(τ − 1)

) (log n)2
4 log b

,

where we used ι(τ, κ) = 0 and κ = τ + τ/(τ − 1). Consider the polynomial
in λ in brackets in the above expression. It has roots 2 ± 2

√
1− ε(τ − 1).

So, since λ1 is arbitrarily close to 2 independently of ε, the entire expression
above is bounded above by any fixed fraction of (logn)2 provided

2 + 2
√

1− ε(τ − 1) ≥ 2(κ− ε− τ) =
2τ

τ − 1
− 2ε.

Since τ ≥ 2, this inequality is guaranteed by a small enough choice of ε.
If we are in the second subcase of (11), then by (13)

log
f(�)

E(|Sn,t,k|)
≤ (1 + o(1)) (κ− ε− λ− (κ− ε− τ)(κ− ε− λ))

(log n)2

log b

∼ ((1− κ+ ε+ τ)(κ− ε− λ))
(log n)2

log b
.

which is at most any fixed fraction of (log n)2 with a small enough choice of
ε, since κ > τ + 1 and λ2 < κ (by (10)).

If we are in the first subcase of (12), then λ ≤ τ , and we deduce using (13)
that

log
f(�)

E(|Sn,t,k|)
≤ (1 + o(1))

(
κ− ε− λ− 1

2
τ

(
κ− ε− 1

2
τ

)
+

1

4
λ2

)
(log n)2

log b

∼
((

1− 1

2
τ

)
κ− ε− λ+

1

2
ετ +

1

4
τ2 +

1

4
λ2

)
(log n)2

log b
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=

(
λ2 − 4λ− τ2

(
1− 2

τ − 1

)
+ 2ε(τ − 2)

)
(log n)2

4 log b

where in the last two lines we used ι(τ, κ) = 0 and κ = τ2/(τ − 1). Consider
the polynomial in λ in brackets in the last line. It has roots

2±
√

4 + τ2
(
1− 2

τ − 1

)
− 2ε(τ − 2),

and so the expression in the last line above is at most any fixed fraction of
(log n)2 provided

2 +

√
4 + τ2

(
1− 2

τ − 1

)
≥ τ,

since ε can be made arbitrarily small. This inequality holds by the fact that
τ ≥ 2.

If we are in the second subcase of (12), then by (13)

log
f(�)

E(|Sn,t,k|)
≤ (1 + o(1))

(
κ− ε− λ− 1

2
τ(κ− ε− λ)

)
(log n)2

log b

∼
(
1− 1

2
τ

)
(κ− ε− λ)

(log n)2

log b
,

which is at most any fixed fraction of (log n)2 with a small enough choice of
ε, since τ ≥ 2 and λ2 < κ.

We have succeeded in proving that f(�) ≤ E(|Sn,t,k|) · exp(o((logn)2))
if � ∼ λ logb n and λ1 ≤ λ ≤ λ2. Since E(|Sn,t,k|) ≥ exp(Ω((log n)2)) by (5),
this implies that Δ2 =

∑
�1≤�<�2

f(�) ≤ O((log n)5/n2)(E(|Sn,t,k|))2, as de-
sired.

Having obtained the desired estimates of Δ1, Δ2 and Δ3, we have com-
pleted the proof.

4. Constant-width concentration: t ≤ log logb np

In this section, we prove Theorem 1.4. We require a specialised Chernoff-type
bound. We define

Λ∗(x) =

⎧⎨
⎩ x log

x

p
+ (1− x) log

1− x

q
for x ∈ [0, 1]

∞ otherwise
,
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where Λ∗(0) = log b and Λ∗(1) = log(1/p). This is the Fenchel–Legendre
transform of the logarithmic moment generating function for the Bernoulli
distribution with probability p.

Lemma 4.1 (Lemma 3.3 of [30]). Let n1 and n2 be positive integers, let
0 < p < 1, and let X and Y be independent random variables with X ∼
Bin(n1, p) and Y/2 ∼ Bin(n2, p). Note that E(X + Y ) = (n1 + 2n2)p. Then
for 0 ≤ x ≤ p

P(X + Y ≤ (n1 + 2n2)x) ≤ exp

(
−1

2
(n1 + 2n2)Λ

∗(x)

)
.

Proof of Theorem 1.4. Due to Proposition 2.2(i), this proof reduces to prov-
ing a lower bound on αt

c(Gn,p). Let us note that, with the choice

k ≤ 2 logb n+ t− 2 logb t−
2 logb logb np

t
− 2

log b
,

Proposition 2.2(ii) implies E(|Sn,t,k|) ≥ exp(k) for n large enough.
As in the course of the proof of Theorem 1.3 (p. 428) we use Janson’s

Inequality. The setting here is similar and the proof naturally follows similar
lines. We have

P(αt
c(Gn,p) < k) = P(|Sn,t,k| = 0) ≤ exp

(
− (E(|Sn,t,k|))2

E(|Sn,t,k|) + Δ

)
,(14)

where

Δ =
∑

A,B⊆[n],1<|A∩B|<k

P(A,B ∈ Sn,t,k)

(and Sn,t,k is the collection of t-component k-sets in Gn,p). Recall that p(k, �)
denotes the probability that two k-subsets of [n] that overlap on exactly �
vertices are both in Sn,t,k. Thus

Δ =
∑

2≤�<k

f(�), where f(�) =

(
n

k

)(
k

�

)(
n− k

k − �

)
p(k, �).

One difference from the proof of Theorem 1.3 is that here we split Δ into
only two sums: we set �1 = 2 logb n− 6 logb k and write Δ = Δ1 +Δ2 where
�1 determines the split of the sum:

Δ1 =
∑

2≤�≤�1

f(�), and Δ2 =
∑

�1<�<k

f(�).
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It suffices to show that Δi = o((E(|Sn,t,k|))2) for each i ∈ {1, 2} for the
result to follow from (14). To bound each Δi we consider two arbitrary k-
subsets A and B of [n] that overlap on exactly � vertices, i.e. |A ∩ B| = �,
and estimate p(k, �) by conditioning on the set E[A ∩ B] of edges induced
by A∩B. In order to bound p(k, �), we focus on the conditional probability
P(A ∈ Sn,t,k

∣∣ B ∈ Sn,t,k).
It is worth noting the basic estimates, k ≤ (2+ o(1)) logb n and k− �1 =

O(log log n). Furthermore, we may safely assume that k is chosen so that
k ≥ logb n. We also ignore some rounding below, where it is unimportant.

Bounding Δ1. Our bound on Δ1 follows the same argument as for Δ1 in the
proof of Theorem 1.3, and only differs at the very end when replacing �1 by
its value. We refer the reader to the arguments on page 429 for more details.
The convex sequence (s�) defined there in (7) is such that s2 = 2bk4/n2, and

s�1 ≤ 2

(
k2

n
b�1/2

)�1

=
1

k�1
= o(s2).

Therefore, by convexity (proved on page 429),

∑
2≤�≤�1

s� ≤ �1s2 = O

(
k5

n2

)
= o(1).

Bounding Δ2. Note that

P(A ∈ Sn,t,k

∣∣ B ∈ Sn,t,k) ≤ P(∀v ∈ A \B, degA(v) ≤ t),

where degS(v) denotes the number of neighbours of v in S. It therefore
follows that

P(A ∈ Sn,t,k

∣∣ B ∈ Sn,t,k) ≤ P

⎛
⎝ ∑

v∈A\B
degA(v) ≤ t(k − �)

⎞
⎠

= P

(
Bin(�(k − �), p) + 2Bin

((
k − �

2

)
, p

)
≤ t(k − �)

)
.

We shall employ Lemma 4.1 with n1 = �(k−�), n2 =
(
k−�
2

)
, and x = t/(k−1).

Note that n1 + 2n2 = (k − 1)(k − �) and so (n1 + 2n2)x = t(k − �). Since
x = o(p), it follows from Taylor expansion calculations found in the first
paragraph of the appendix of [24] that
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Λ∗
(

t

k − 1

)
= log b− (1 + o(1))

t

k
log

pk

t
= log b− (1 + o(1))

t

k
log log n.

Hence we conclude by Lemma 4.1 that

P(A ∈ Sn,t,k

∣∣ B ∈ Sn,t,k) ≤ exp

(
−1

2
(k − 1)(k − �)Λ∗

(
t

k − 1

))

= exp

(
−(1 + o(1))

(
1− t

k
logb log n

)
(k − �) logn

)

=

(
(log n)t/2

n

)(1+o(1))(k−�)

.

Since
(
k
�

)(
n−k
k−�

)
≤ (kn)k−�, k ≤ (2 + o(1)) logb n and k − �1 = O(log logn),

we obtain that

Δ2 ≤
(
n

k

)
P(B ∈ Sn,t,k)

∑
�1<�<k

(
(log n)1+t/2

)(1+o(1))(k−�)

= E(|Sn,t,k|) · exp(O(t(log log n)2)).

That this last expression is o((E(|Sn,t,k|))2) follows by noting that
E(|Sn,t,k|) = exp(Ω(logn)) and t = O(log log n).

We have appropriately bounded Δ1 and Δ2, concluding the proof.

5. Sparse random graphs

We do not have a complete understanding of χt
c(Gn,p) and αt

c(Gn,p) for
p → 0 as n → ∞. Nonetheless, we can observe the phenomenon described
at the beginning of the paper: in any partition of the vertices of Gn,p into
asymptotically fewer than χ(Gn,p) parts, one of the parts must induce a
subgraph having a large component, about as large as the average part size.
This follows directly from the next result.

Theorem 5.1. Suppose p = p(n) satisfies 0 < p < 1 and np → ∞ as
n → ∞. Then the following hold.

(i) If t(n) = o(log np), then χt
c(Gn,p) ∼ n/(2 logb np) a.a.s.

(ii) If t(n) = o(logb np), then (1 − o(1))n/(4 logb np) ≤ χt
c(Gn,p) ≤ (1 +

o(1))n/(2 logb np) a.a.s.
(iii) If t(n) = Θ(logb np) and t(n) = o(n), then χt

c(Gn,p) = Θ (n/ logb np) =
Θ (n/t) a.a.s.
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(iv) If t(n) = ω(logb np) and t(n) = o(n), then χt
c(Gn,p) ∼ n/t a.a.s.

(v) If t(n) ∼ n/x, where x > 0 is fixed and not integral, then χt
c(Gn,p) =

�x� a.a.s.

Proposition 2.5 immediately implies the following.

Proposition 5.2. Suppose p = p(n) satisfies 0 < p < 1 and np → ∞ as
n → ∞. If t(n) ∼ τ logb np for some τ > 2, then αt

c(Gn,p) ≤ (τ +1+1/(τ −
1) + o(1)) logb np a.a.s.

Let us see how this upper bound on αt
c(Gn,p) is used to obtain Theo-

rem 5.1.

Proof of Theorem 5.1. The upper bounds of Theorem 5.1 follow from Propo-
sition 1.1, and previously mentioned results for χ(Gn,p). For the lower bounds,
we use that χt

c(Gn,p) ≥ n/αt
c(Gn,p), and apply Proposition 5.2 with τ ar-

bitrarily close to 2 for (ii), τ fixed for (iii), or τ arbitrarily large for (iv)
and (v). The case (i) is implied by Theorem 1.3 of [30].

Note that in the setting of Theorem 1.3 of [30], i.e. colourings with
bounded monochromatic average degree, the analogous threshold is t =
Θ(log np) which is asymptotically smaller than the t = Θ(p−1 log np) thresh-
old implicit in Theorem 5.1. We remark that Lemma 2.8 does not suffice to
completely narrow the gap in Theorem 5.1(ii). Moreover, in the intermediate
case (iii), one might expect an analogue of Theorem 1.3 to hold. However,
we leave these two problems to future study.

6. Component Ramsey numbers

In this section, we consider the Ramsey-type numbers based on bounded
sized components. The next proof closely follows [17]. A constant-factor im-
provement would be available here using the Lovász Local Lemma, as in [46],
but we expect that further improvements would be much more difficult to
obtain.

Proof of Proposition 1.6. For any δ > 0 and some large enough integer k, let

n =

⌊
1

1 + δ

k

3e
2ε(1−ε)k

⌋
.

Let G be distributed as Gn,1/2. Given a subset S ⊆ [n] of k vertices, let
AS be the event that S is a 	(1 − ε)k
-component set in G or its comple-
ment. By exactly the same arguments used to obtain (2) in Lemma 2.4 (with
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t = 	(1− ε)k
), since ε < 1/2, we see that

P(AS) ≤ 2 · 3k · 2−ε(1−ε)k2

.

So the probability that AS holds for some S is at most

∑
S⊆[n],|S|=k

P(AS) ≤ 2

(
n

k

)
3k · 2−ε(1−ε)k2

≤ 2

(
en · 3
k

· 2−ε(1−ε)k

)k

≤ 2(1 + δ)−k < 1.

Thus, for k large enough, there exists a graph on n vertices in which no
k-subset is a 	(1− ε)k
-component set in the graph or its complement. We
proved this for all δ > 0, so the result follows.

We contrast Proposition 1.6 with upper bounds of the following form.
The first of these compares with Proposition 1.6 when ε is near 1/2, while
the second of these when ε is near 0. Both show that there is limited room
for improvement in Proposition 1.6.

Proposition 6.1. As k → ∞,

R
1

2
(k+log2 k−1)(k) ≤ (1 + o(1))

√
k2

1

2
(k−1).

Fix 0 < c < 1. Then, as k → ∞,

Rk− c

1−c
log2 k+1(k) ≤ (1 + o(1))k1/(1−c).

Proof. These bounds follow directly from a Kővári–Sós–Turán result,
Lemma 2 in [13], which guarantees complete bipartite subgraphs in dense
graphs. Specifically, the lemma states, “If a graph on n vertices has εn2

edges and t < εn, then it contains the complete bipartite graph Ks,t with
s = εtn.” Note that complete bipartite graphs and their induced subgraphs
have bounded components in the complement. For the first bound, we apply
the lemma, either to a given graph on n vertices or to its complement, with
ε = 1/2 and t = log2 n− log2 log2 n to obtain Klog2 n,log2 n−log2 log2 n. For the
second we use ε = 1/2 and t = c log2 n to obtain Kc log2 n,n

1−c .

Appendix A. Proofs of auxiliary technical results

Proof of Lemma 1.2. To show that the function κ is well-defined, fix τ , κ > 0
satisfying ι(τ, κ) = 0 and write 	κ/τ
 = i. Then the implicit equation is
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equivalent to

κ =
τ2i(i+ 1)

2iτ − 2
.

Note that if 2iτ − 2 = 0, then for ι(τ, κ) = 0 to hold it must be that

(κ−1)(κ−1−τ) = κ(κ−τ−2) and so τ = −1, contradicting our assumption

on τ . Now, for 	κ/τ
 = i to hold, we must also have

(15) 0 ≤ τi(i+ 1)

2iτ − 2
− i < 1.

It follows from this that i ∈ ( 2τ , 1 +
2
τ ]. There is precisely one integer in this

interval, and so at most one solution to ι(τ, κ) = 0. One also verifies easily,

by taking the above expression for κ and i = 	1 + 2
τ 
, that ι(τ, κ) = 0 is

indeed satisfied, and so there is exactly one solution. We conclude that κ is

defined by

(16) κ =
τ2i(i+ 1)

2iτ − 2
where i =

⌊
1 +

2

τ

⌋
.

(i) On each interval of the form [2j ,
2

j−1), over which i is invariant (and

equals j), it is routine to check that κ is a positive, continuous, in-

creasing, convex function of τ . The continuity on (0,∞) follows from

the fact that, for every i ≥ 1,

lim
τ↑2/i

τ2(i+ 1)(i+ 2)

2(i+ 1)τ − 2
= 2 +

2

i
= lim

τ↓2/i

τ2i(i+ 1)

2iτ − 2
.

(ii) The second part follows readily from the formula for κ in (16) together

with part (i).

Proof of Lemma 2.3. First note, for parts (i) and (iii), that it is routine to

check that τ
⌊
κ
τ

⌋
− 1 > 1.

(i) In this case, observe that
⌊
κ+ε
τ

⌋
=
⌊
κ
τ

⌋
. Using ι(τ, κ) = 0, we write

2ι(τ, κ+ ε) = 0 + ε
(
κ− τ

⌊κ
τ

⌋
− τ
)
+ ε
(
κ− τ

⌊κ
τ

⌋)
+ ε2 − ε(κ− τ − 2)− εκ− ε2

= −ε
(
2τ
⌊κ
τ

⌋
− 2
)
.
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(ii) First observe that in this case
⌊
κ−ε
τ

⌋
=
⌊
κ
τ

⌋
−1 = κ

τ −1. Using this and

the assumption ι(τ, κ) = 0, we can write 0 = 2ι(τ, κ) = −κ(κ− τ − 2)

and

2ι(τ, κ− ε) = (τ − ε)(−ε)− (κ− ε)(κ− ε− τ − 2)

= −ε(τ − ε) + 0 + ε(κ− τ − 2) + εk − ε2 = 2ε(κ− τ − 1).

The equality follows from checking that κ = τ + 2 if τ |κ.
(iii) Observe in this case that

⌊
κ−ε
τ

⌋
=
⌊
κ
τ

⌋
. Using ι(τ, κ) = 0, we write

2ι(τ, κ− ε) = 0− ε
(
κ− τ

⌊κ
τ

⌋
− τ
)
− ε
(
κ− τ

⌊κ
τ

⌋)
+ ε2 + ε(κ− τ − 2) + εκ− ε2

= ε
(
2τ
⌊κ
τ

⌋
− 2
)
.

Proof of Proposition 2.6. Recall that SPt,k is the number of set partitions

of [k] with blocks of size at most t. Following Note VIII.12 of [22], observe

that SPt,k is bounded by the product of k! and the zk coefficients of the

following exponential generating function:

SPt(z) ≡ exp

(
t∑

i=1

zi

i!

)
.

We have as k → ∞ (cf. Flajolet and Sedgewick [22, Corollary VIII.2])

[zk]SPt(z) ∼
1√
2πλ

SPt(r)

rk
where λ =

(
r
d

dr

)2 t∑
i=1

ri

i!

and r is given implicitly by the saddle-point equation

r
d

dr

t∑
i=1

ri

i!
= k.

We need to perform a few routine estimates. First, we obviously have

λ = r2
d2

dr2

(
t∑

i=1

ri

i!

)
+ r

d

dr

(
t∑

i=1

ri

i!

)
≥ k.
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Next, the implicit formula for r is

k = r

t∑
i=1

ri−1

(i− 1)!
=

t−1∑
i=0

ri+1

i!
.

So clearly

rt

(t− 1)!
≤ k ≤ ek and log k ≤ r ≤ k1/t((t− 1)!)1/t.

Now, since t ≤ log k ≤ r, we see that the maximum of ri+1/i! in the range
i ∈ {0, . . . , t− 1} is at i = t− 1. Thus we have

k ≤ rt

(t− 2)!
and k1/t((t− 2)!)1/t ≤ r.

Therefore, we also obtain, using Stirling’s approximation,

rk ≥ kk/t((t− 2)!)k/t ≥ exp

(
k

t
log k + k

(
t− 2

t
log(t− 2)− 1

))

≥ exp

(
k

t
log k + k log t− 1.9k

)
.

Furthermore,

SPt(r) = exp

(
t∑

i=1

ri

i!

)
≤ exp

(
t∑

i=1

ri

(i− 1)!

)
= ek

Substituting these inequalities, we obtain

[zk]SPt(z) ≤ (1 + o(1))
1√
2πk

exp

(
k − k

t
log k − k log t+ 1.9k

)
.

The result follows from an application of Stirling’s approximation to k! and
a choice of k large enough.
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distributions, simple epidemics, and local vaccination strategies. Adv.
in Appl. Probab., 39(4):922–948, 2007. MR2381582

[11] A. Coja-Oghlan. Upper-bounding the k-colorability threshold by count-
ing covers. Electron. J. Combin., 20:Paper 32, 28, 2013. MR3104530

[12] A. Coja-Oghlan and D. Vilenchik. The chromatic number of random
graphs for most average degrees. Int. Math. Res. Not., 2016(19):5801–
5859, 2016. MR3567260

[13] D. Conlon, J. Fox, and B. Sudakov. Large almost monochromatic sub-
sets in hypergraphs. Israel J. Math., 181:423–432, 2011. MR2773050

http://www.ams.org/mathscinet-getitem?mr=1957474
http://www.ams.org/mathscinet-getitem?mr=2325804
http://www.ams.org/mathscinet-getitem?mr=2497374
http://www.ams.org/mathscinet-getitem?mr=2768882
http://www.ams.org/mathscinet-getitem?mr=0951992
http://www.ams.org/mathscinet-getitem?mr=1864966
http://www.ams.org/mathscinet-getitem?mr=0498256
http://www.ams.org/mathscinet-getitem?mr=1370970
http://www.ams.org/mathscinet-getitem?mr=1767020
http://www.ams.org/mathscinet-getitem?mr=2381582
http://www.ams.org/mathscinet-getitem?mr=3104530
http://www.ams.org/mathscinet-getitem?mr=3567260
http://www.ams.org/mathscinet-getitem?mr=2773050


444 Nicolas Broutin and Ross J. Kang

[14] K. Edwards and G. Farr. Fragmentability of graphs. J. Combin. Theory
Ser. B, 82(1):30–37, 2001. MR1828433

[15] K. Edwards and G. Farr. On monochromatic component size for
improper colourings. Discrete Appl. Math., 148(1):89–105, 2005.
MR2132063

[16] K. Edwards and G. Farr. Planarization and fragmentability of some
classes of graphs. Discrete Math., 308(12):2396–2406, 2008. MR2410446

[17] P. Erdös. Some remarks on the theory of graphs. Bull. Amer. Math.
Soc., 53:292–294, 1947. MR0019911
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[42] D. W. Matula and L. Kučera. An expose-and-merge algorithm and the
chromatic number of a random graph. In Random Graphs ’87 (Poznań,
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