
Journal of Combinatorics c© Soojin Cho and Stephanie van Willigenburg

Volume 9, Number 2, 401–409, 2018

Chromatic classical symmetric functions
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∗
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†

In this note we classify when a skew Schur function is a positive
linear combination of power sum symmetric functions. We then use
this to determine precisely when any scalar multiple of a skew Schur
function is the chromatic symmetric function of some graph. From
here we are able to prove that of the classical bases for symmetric
functions only certain scalar multiples of the elementary symmetric
functions can be realised as the chromatic symmetric function of
some graph, namely a particular union of complete graphs.
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1. Introduction

The areas of symmetric functions and chromatic functions both have a long
and distinguished history. More recently a chromatic symmetric function
has been defined for any finite simple graph [7]. It naturally generalizes the
chromatic function and its positivity when expanded into elementary sym-
metric functions, for example [3, 4, 6], or Schur functions, for example [2],
has been a keen avenue of research due to connections to other areas such
as representation theory and algebraic geometry. Other avenues in this area
include sufficient conditions for chromatic symmetric function equality [5]
and the recent discovery that chromatic symmetric functions give rise to
infinitely many bases for the algebra of symmetric functions [1]. Regarding
the latter, the question has consequently been frequently raised whether the
classical bases for the algebra of symmetric functions can be realised as chro-
matic symmetric functions, especially the elementary symmetric functions
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or Schur functions. In this note we answer this question comprehensively
(Theorem 2.8) after first establishing which scalar multiples of skew Schur
functions can be realised as chromatic symmetric functions (Theorem 2.7)
that is reliant on establishing when they expand positively in terms of power
sum symmetric functions (Proposition 2.6).

2. Chromatic classical bases

Before we prove our results, for completeness, we first recall classical com-
binatorial and algebraic concepts, which will be necessary later. Readers
familiar with the subject may safely skip to Definition 2.2. A partition
λ = (λ1, . . . , λ�) of n is a list of weakly decreasing positive integers, or
parts, λi whose sum is n, which we denote by λ � n. We denote by ∅ the
empty partition whose sum is 0. Given a partition λ = (λ1, . . . , λ�) its cor-
responding diagram, also denoted by λ, is the array of left-justified boxes
with λi boxes in row i, where we number the rows from top to bottom and
the columns from left to right. Given two partitions λ = (λ1, . . . , λ�) and
μ = (μ1, . . . , μk) where k ≤ � and μi ≤ λi for 1 ≤ i ≤ k we say the skew
diagram λ/μ is the array of boxes

λ/μ = {(i, j) | (i, j) ∈ λ and (i, j) �∈ μ}.

Note that if μ = ∅ then λ/μ is the diagram λ. The number of boxes in λ/μ
is called its size and is denoted by |λ/μ|. The transpose of the skew diagram
λ/μ is the array of boxes

(λ/μ)t = {(j, i) | (i, j) ∈ λ and (i, j) �∈ μ}.

Two skew diagrams that will be of particular interest to us are horizontal
and vertical strips. We say a skew diagram is a horizontal strip if no two
boxes lie in the same column, and is a vertical strip if no two boxes lie in
the same row. For simplicity we will often denote a skew diagram by D.

Given a skew diagram λ/μ we say that a semistandard Young tableau
(SSYT) of shape λ/μ is a filling of the boxes of λ/μ with positive integers
such that the entries in each row weakly increase when read from left to
right, and the entries in each column strictly increase when read from top to
bottom. Given an SSYT, T , with largest entry maxT we define the content
of T to be

c(T ) = (c1(T ), . . . , cmaxT
(T ))

where ci(T ) is the number of times i appears in T .



Chromatic classical symmetric functions 403

Example 2.1. Below on the left is the skew diagram D = (6, 4, 4, 1)/(3, 2)
and on the right its transpose Dt.

Note that D is neither a horizontal nor a vertical strip. Below is an SSYT
of shape D and content (5, 3, 1, 1).

1 1 1

1 2

1 2 2 3

4

Given partitions and tableaux we can now turn our attention to sym-
metric functions, which will be the focus of our study, and whose algebra is
a subalgebra of C[[x1, x2, . . .]]. Given a partition λ = (λ1, . . . , λ�) � n ≥ 1
we define the monomial symmetric function mλ to be

mλ =
∑

xλ1

i1
· · ·xλ�

i�

where the sum is over all �-tuples (i1, . . . , i�) of distinct indices that yield
distinct monomials. We define the r-th power sum symmetric function to be
pr = m(r) from which we define the power sum symmetric function pλ to be

pλ = pλ1
· · · pλ�

.

Meanwhile, we define the renowned Schur function sλ to be

sλ =
∑
μ�n

Kλμmμ

whereKλμ is the number of SSYTs of shape λ and content μ. Schur functions
can further be generalised to skew Schur functions sD for a skew diagram D

(2.1) sD =
∑
ν�|D|

cDνsν
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where cDν is the number of SSYTs, T , of shape D and content ν such that

when the entries of T are read from right to left from the top row to the

bottom row, the number of i’s that have been read is always weakly greater

than the number of (i+1)’s that have been read, for all i ≥ 1. Note that the
SSYT in Example 2.1 satisfies this latter criterion. This rule for computing

cDν is called the Littlewood-Richardson rule. Note that when D = λ/∅ the

Schur function sλ is recovered. We define the r-th complete homogeneous

symmetric function to be hr = s(r), and if D is a horizontal strip with

αi boxes in row i for 1 ≤ i ≤ � such that α1, . . . , α� in weakly decreasing

order yields λ1, . . . , λ� then we define the complete homogeneous symmetric
function hλ to be

(2.2) hλ = sD = hα1
· · ·hα�

= hλ1
· · ·hλ�

.

We define the r-th elementary symmetric function to be er = s(1r) where

(1r) is the partition consisting of r parts equal to 1. Furthermore, Dt is a
vertical strip with αi boxes in column i for 1 ≤ i ≤ � and we define the

elementary symmetric function eλ to be

(2.3) eλ = sDt = eα1
· · · eα�

= eλ1
· · · eλ�

.

Lastly, by convention

e∅ = h∅ = m∅ = p∅ = s∅ = 1.

Note also that

e(1) = h(1) = m(1) = p(1) = s(1)

and

e(1r) = h(1r) = p(1r) e(r) = m(1r) = s(1r)

for r ≥ 1. The algebra of symmetric functions is then the graded algebra

Λ = Λ0 ⊕ Λ1 ⊕ · · ·

where a basis for the n-th graded part is given by any of {eλ}λ�n, {hλ}λ�n,
{mλ}λ�n, {pλ}λ�n, {sλ}λ�n. There exists a scalar product on Λ such that

the power sum symmetric functions form an orthogonal basis, that is, for
partitions λ and μ

〈pλ, pμ〉 = δλμzλ
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while the Schur functions form an orthonormal basis, that is,

〈sλ, sμ〉 = δλμ

where δλμ = 1 if λ = μ and 0 otherwise, and zλ is a positive integer reliant
on λ. A further useful tool is the involution ω that satisfies

ω(sD) = sDt

for any skew diagram D. One last useful fact is that

(2.4) hr =
∑
λ�r

z−1
λ pλ.

The symmetric functions above are not the only ones of interest to us.
In [7] Stanley defined the chromatic symmetric function as follows, which
is reliant on a graph that is finite and simple and the notion of a proper
colouring, where given a graph G with vertex set V a proper colouring κ of
G is a function

κ : V → {1, 2, . . .}
such that if v1, v2 ∈ V are adjacent then κ(v1) �= κ(v2).

Definition 2.2. For a finite simple graph G with vertex set V = {v1, . . . , vn}
and edge set E the chromatic symmetric function of G is defined to be

XG =
∑
κ

xκ(v1) · · ·xκ(vn)

where the sum is over all proper colourings κ of G.

The chromatic symmetric function can equivalently be defined in terms
of power sum or monomial symmetric functions with the aid of some natural
partitions. Given a graphG with vertex set V = {v1, . . . , vn}, edge set E, and
a subset S ⊆ E, let λ(S) be the partition of n whose parts are equal to the
number of vertices in the connected components of the spanning subgraph
of G with vertex set V and edge set S. Meanwhile, a stable partition π of
the vertices of G is a partition of v1, . . . , vn such that each block is totally
disconnected. Let μ(π) be the partition of n whose parts are equal to the
number of vertices in each block of π.

Lemma 2.3. [7, Proposition 2.4, Theorem 2.5] For a finite simple graph G
with vertex set V and edge set E we have the following.
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1. XG =
∑

S⊆E(−1)|S|pλ(S).
2. XG =

∑
π(π1!π2! · · · )mμ(π) where the sum is over all stable partitions

π of G, and πi is the multiplicity of i in μ(π).

The chromatic symmetric function also satisfies the following two crucial
properties, recalling that when we say a function is p-positive (respectively, -
negative) we mean it is a positive (respectively, negative) linear combination
of power sum symmetric functions.

Lemma 2.4. [7, Proposition 2.3] If a finite simple graph G is a disjoint
union of subgraphs G1 ∪ · · · ∪G� then XG =

∏�
i=1XGi

.

Lemma 2.5. [7, Corollary 2.7] For any finite simple graph G, ω(XG) is
p-positive.

We are now close to establishing which classical symmetric functions are
also the chromatic symmetric function of some graph. To this end we first
deduce a natural result on skew Schur functions when expanded as a sum
of power sum symmetric functions.

Proposition 2.6. A skew Schur function sD is p-positive if and only if D
is a horizontal strip.

Proof. Let D be a horizontal strip with � rows and αi boxes in row i for
1 ≤ i ≤ �. Then by Equation (2.2)

sD = hα1
· · ·hα�

.

We know by Equation (2.4) that hr is p-positive, and hence so is

hα1
· · ·hα�

= sD.

Conversely, let D contain two boxes in some column, |D| = n, and

sD =
∑
λ�n

aDλpλ.

By the Littlewood-Richardson rule of Equation (2.1) we have that the coef-
ficient of s(n) in sD is 0, that is,

(2.5) 〈sD, s(n)〉 = 0.

By Equation (2.4) we know that

s(n) = hn =
∑
λ�n

z−1
λ pλ
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and substituting into Equation (2.5) we get

〈
∑
λ�n

aDλpλ,
∑
λ�n

z−1
λ pλ〉 = 0.

Since the power sum symmetric functions are an orthogonal basis for Λ, we
have that aDλ �≥ 0 for all λ � n, and the result follows.

With this proposition we now classify which skew Schur functions can
be realised as the chromatic symmetric function of some graph, and key to
our classification is the complete graph Kn, n ≥ 1 consisting of n vertices,
each pair of which are adjacent.

Theorem 2.7. XG = csD for some graph G and c �= 0 if and only if D is
a vertical strip. In particular, if D is a vertical strip consisting of � columns
with αi boxes in column i for 1 ≤ i ≤ � then

XG =

(
�∏

i=1

αi!

)
sD

where

G = Kα1
∪ · · · ∪Kα�

.

Proof. Let D be a vertical strip with � columns containing αi boxes in col-
umn i for 1 ≤ i ≤ �. Then, since for Kn, n ≥ 1 we have that [1, Theorem 8]

XKn
= n!en,

by Equation (2.3) and Lemma 2.4 we obtain

sD =

�∏
i=1

eαi
=

�∏
i=1

1

αi!
XKαi

=

(
�∏

i=1

1

αi!

)
XKα1∪···∪Kα�

.

Now let D contain two boxes in some row, and assume that there exists
a graph G such that XG = csD for c �= 0. Then by Lemma 2.5

ω(XG) = ω(csD) = csDt

is p-positive. Hence sDt is either p-positive or p-negative and moreover Dt

contains two boxes in some column. By Proposition 2.6 this is not possible,
and hence no such G exists.
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We are now ready to establish which classical symmetric functions can
be realised as the chromatic symmetric function of some graph.

Theorem 2.8. Of the classical symmetric functions {eλ}λ�n≥1, {hλ}λ�n≥1,
{mλ}λ�n≥1, {pλ}λ�n≥1 and {sλ}λ�n≥1 only those that are scalar multiples of
the elementary symmetric functions {eλ}λ�n≥1 can be realised as the chro-
matic symmetric function of some graph. In particular, if λ = (λ1, . . . , λ�) �
n ≥ 1 then

eλ =

(
�∏

i=1

1

λi!

)
XKλ1∪···∪Kλ�

.

Proof. Since e(1n) = h(1n) = p(1n) for n ≥ 1 we consider this to be e(1n)

for convenience, and likewise consider e(n) = m(1n) = s(1n) for n ≥ 1 to
be e(n). The result for {pλ}λ�n≥1 and {mλ}λ�n≥1 follows immediately from
Lemma 2.3. Meanwhile, the result for {sλ}λ�n≥1 and {hλ}λ�n≥1 follows from
Equations (2.1) and (2.2) combined with Theorem 2.7. Equation (2.3) com-
bined with Theorem 2.7 then yields the result for {eλ}λ�n≥1.
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