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Characterization of B(∞) using marginally large
tableaux and rigged configurations in the An case

via integer sequences

Roger Tian

Marginally large tableaux are semi-standard Young tableaux of
special form that give a combinatorial realization of the crystals
B(∞). Rigged configurations are combinatorial objects prominent
in the study of solvable lattice models, and give combinatorial re-
alizations of the crystals B(λ) and B(∞) in simply-laced and affine
Kacs-Moody types. However, B(∞) rigged configurations have not
yet been characterized explicitly at the time of this writing.

We introduce certain nice integer sequences, called cascading
sequences, to characterize marginally large tableaux. Then we use
cascading sequences and a known non-explicit crystal isomorphism
between marginally large tableaux and rigged configurations to
give an explicit characterization of the latter set in the An case,
revealing interesting structural properties of rigged configurations
along the way, and then to give an explicit bijection between the
two sets.

Keywords and phrases: Crystal, marginally large tableau, rigged con-
figuration, Kashiwara operator.

1. Introduction

Kashiwara introduced the crystal B(∞), which is the crystal base of the
negative part U−

q (g) of a quantum group, in [4], and used it to study the
Demazure crystals that were conjectured by Littelmann [5]. As B(∞) reveals
much about the structure of the quantum group Uq(g) itself, it is an active
topic of research. By the work of Hong and Lee [3], B(∞) can be realized as
crystals consisting of combinatorial objects called marginally large tableaux,
which are a special class of semi-standard Young tableaux.

Schilling [11] gave an explicit Uq(g)-crystal structure to combinatorial
objects called rigged configurations, which naturally serve as indexes for
the eigenvalues and eigenvectors of the Hamiltonian in the Bethe Ansatz.
A crystal model for B(∞) in terms of rigged configurations was given [9]
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by Salisbury and Scrimshaw for affine simply-laced types, who also estab-

lished [10] an isomorphism between rigged configurations and marginally

large tableaux as crystals. However, this isomorphism is not explicit, and

the B(∞) rigged configurations have not yet been explicitly characterized at

the writing of this paper.

The purpose of this paper is to characterize the rigged configurations of

the An type in B(∞) and to give an explicit bijection between marginally

large tableaux and B(∞) rigged configurations of the An type. We will

achieve this by introducing special integer sequences that will be called

cascading sequences. Any element of a highest weight crystal is obtained

by acting on the highest weight vector via a sequence of Kashiwara opera-

tors, though this sequence is not necessarily unique. A cascading sequence

can be viewed as the “canonical” sequence of Kashiwara operators leading to

any crystal from the highest weight crystal. The desired bijection will be ob-

tained by first establishing a bijection between the marginally large tableaux

and the cascading sequences, and then establishing a bijection between the

cascading sequences and the rigged configurations.

This paper is organized as follows. In Subsection 2.1, we recall the defini-

tion of marginally large tableaux. In Subsection 2.2, we introduce cascading

sequences and use them to characterize marginally large tableaux. In Sub-

section 2.3, we introduce an aspect of cascading sequences called lanes that

will later be used in the characterization of rigged configurations. In Sub-

section 3.1, we recall the definition of B(∞) rigged configurations in the An

case. In Subsection 3.2, we show in Lemma 3.2.4 that Kashiwara operators

for rigged configurations act nicely when arranged in a cascading sequence,

which allows us to obtain an interesting structural property Theorem 3.2.7

of rigged configurations. In Subsection 3.3, we show that lanes of a cascad-

ing sequence correspond to columns of rigged partitions in the corresponding

rigged configuration, and we obtain the first half of the characterization of

rigged configurations Theorem 3.3.11. In Subsection 3.4, we give the rough

idea of our growth algorithm for characterizing rigged configurations. In

Subsection 3.5, we introduce special cascading sequences called p-plateaus

that will be used in the growth algorithm. In Subsection 3.6, we show how

to modify a cascading sequence to achieve the effect of adding boxes to

a rigged partition in the corresponding rigged configuration. In Subsection

3.8, we give two formulations (Theorem 3.8.16 and Theorem 3.8.18) of our

growth algorithm for characterizing rigged configurations. In Subsection 3.9,

we give an algorithm for obtaining the cascading sequence of any rigged con-

figuration in Theorem 3.9.1.
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2. Marginally large tableaux and cascading sequences

We give a bijection between the set of An marginally large tableaux and a
special set of integer sequences that we call cascading n-sequences.

2.1. Marginally large tableaux

In this subsection, we recall the definition of marginally large tableaux for
type An, as given in [3].

Definition 2.1.1. We call a semi-standard tableau T large if it has exactly
n nonempty rows, and the ith row has strictly more i-boxes than the total
number of boxes in the (i+ 1)st row, for each 1 ≤ i < n.

Definition 2.1.2. By a marginally large tableau in the An case we will
mean a Young tableau with exactly n rows whose entries come from the al-
phabet J = {1 < 2 < · · · < n < n+1} that satisfies the following conditions:

1. The ith row of the leftmost column is a single i-box, for each 1 ≤ i ≤ n.
2. Entries increase weakly as we go from left to right along each row.
3. The number of i-boxes in the ith row exceeds by exactly one the total

number of boxes in the (i+ 1)st row, for each 1 ≤ i < n.

Let T (∞) denote the set of An marginally large tableaux. As shown in
[3], T (∞) has a crystal structure, given as follows.

Procedure 2.1.3. We describe how to apply the Kashiwara operator fi to
any marginally large tableau:

1. Apply fi to this tableau in the usual way, by writing the tableau as a
tensor product, applying the tensor product rule, and assembling the
result back into tableau form.

2. We are done if the result we obtain is a large tableau, as it will be
marginally large automatically.

3. If the result we obtain is not a large tableau, then fi must have acted
on the rightmost i-box of the ith row. Insert a single column of height
i to the left of this box that fi acted upon. For 1 ≤ k ≤ i, the kth row
of the added column must be a k-box.

Example 2.1.4. Given the marginally large tableau

S =

1 1 1 1
2 2 2
3 4 ,
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we have

f2(S) =

1 1 1 1 1
2 2 2 3
3 4 .

Procedure 2.1.5. We describe how to apply the Kashiwara operator ei to any
marginally large tableau:

1. Apply ei to this tableau in the usual way.
2. We are done if the result we obtain is zero or a marginally large tableau.
3. Otherwise, the result is a large tableau that is not marginally large.

ei must have acted on the box to the right of the rightmost i-box of
the ith row. Remove the column that contains this changed box. This
column will have height i, and its kth row consists of a single k-box,
for 1 ≤ k ≤ i.

Example 2.1.6. Given the marginally large tableau

S =

1 1 1 1
2 2 2
3 4 ,

we have

e3(S) =

1 1 1
2 2
3 .

2.2. Cascading sequences and a bijection

For any m ∈ [n] = {1, 2, . . . , n}, we will call any subinterval [a,m] =
{a, a + 1, . . . ,m} of [n] an m-lower subinterval. For example, [3, 5] is a
5-lower subinterval of [6]. By an m-component, we will mean a sequence
of finitely many (allowed to be zero) m-lower subintervals of [n] ordered by
nonincreasing length.

Definition 2.2.1. By a cascading n-sequence we will mean an integer
sequence formed by concatenating an n-component, an (n − 1)-component,
an (n−2)-component, . . . , in that order. Let Ān denote the set of cascading
n-sequences.

Example 2.2.2. (1, 2, 3, 4, 5, 3, 4, 5, 3, 4, 5, 5, 2, 3, 4, 3, 4, 2, 3, 3, 2, 2, 1) is an ele-
ment of Ā5 where the lower subintervals (written as tuples) are (1, 2, 3, 4, 5),
(3, 4, 5), (3, 4, 5), (5), (2, 3, 4), (3, 4), (2, 3), (3), (2), (2), (1).
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We will follow the English notation for the Young tableau, with weakly
increasing row length as we move up the tableau. Let MAn denote the set
of marginally large tableaux (MLT) in the An case. We now define a map
Φ : MAn → Ān which will be shown to be a bijection. Given a marginally
large tableau T , we will give an f -string (sequence of Kashiwara operators
f1, f2, . . . , fn; also called Lusztig data [6]) with nice properties that gives rise
to T upon acting on the highest weight MLT. We will write this f -string as
its corresponding sequence of indices, and we will see that this sequence is
an element of Ān. Let T (i) denote the portion of the ith row of T without
the i boxes.

Define Φ(T ) as follows. The f -string that we give will add the (n + 1)-
boxes, the n-boxes, the (n−1)-boxes, and so on in that order. Let xi,j denote
the number of (j + 1)-boxes in the ith row of T . The n-component of Φ(T )
consists of xi,n copies of (i, i + 1, . . . , n) for i = 1, 2, . . .. In general, the m-
component of Φ(T ) consists of xi,m copies of (i, i+1, . . . ,m) for i = 1, 2, . . .;
each copy of (i, i+ 1, . . . ,m) adds an (m+ 1)-box to the ith row.

Remark 2.2.3. The cascading sequences can actually be rewritten as BZL
data (in [1], [2]) for the reduced word

(s1)(s2s1) . . . (sn . . . s2s1).

However, to the best of our knowledge, the use of such sequences for the
purpose of characterization given in this paper is new.

Example 2.2.4. Given

T =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 3 6
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 4 4 5 5 6 6 6
4 4 4 4 4 5
5 6 6 6

in MA5 , we have

Φ(T ) = (1, 2, 3, 4, 5, 3, 4, 5, 3, 4, 5, 3, 4, 5, 5, 5, 5, 3, 4, 3, 4, 4, 3, 3, 1, 2, 1, 2, 1,

2, 1, 1, 1)

where the lower subintervals (1, 2, 3, 4, 5), (3, 4, 5), (3, 4, 5), (3, 4, 5), (5), (5),
(5) add all the 6-boxes of T , the lower subintervals (3, 4), (3, 4), (4) add all
the 5-boxes of T , the lower subintervals (3), (3) add all the 4-boxes of T , the
lower subintervals (1, 2), (1, 2), (1, 2) add all the 3-boxes of T , and the lower
subintervals (1), (1), (1) add all the 2-boxes of T .
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Proposition 2.2.5. The map Φ : MAn → Ān defined above is a bijection.

Remark 2.2.6. Thus, we can take the cascading n-sequences to be “canoni-
cal” f -strings for MAn .

Proof. The inverse map Φ−1 can be described as follows. Given an f -string
α ∈ Ān, we can read off all its lower subintervals in left-right order. Each
such lower subinterval [i,m] gives an (m+1)-box in the ith row of the MLT
resulting from α acting on the highest weight element. Thus, each such lower
subinterval [i,m] specifies that there must be an (m+1)-box in the ith row
of Φ−1(α). In this way, the MLT Φ−1(α) is completely determined, since
Φ−1(α)(i) is completely determined for each row i.

Remark 2.2.7. Notice that the elements α of An are particularly convenient
as f -strings for MLT’s, as we can obtain the corresponding MLT Φ−1(α)
(which is the same MLT obtained by having α act on the highest weight
element) by simply reading off the lower subintervals of α, without having to
apply the Kashiwara operators on the highest weight element. For instance,
we see in Example 2.2.4 that we can immediately obtain T from the f -string
by noting that T has exactly one 6-box in the first row specified by the lower
subinterval (1, 2, 3, 4, 5), exactly two 5-boxes in the third row specified by
the lower subintervals (3, 4), (3, 4), and so on.

Finally, we mention that the cascading sequence characterization in this
section can also be applied to regular Young tableaux, with slight modifica-
tion.

2.3. Lanes of cascading sequences

As already shown in [9], the marginally large tableaux are isomorphic to
the rigged configurations as crystals, so we can use cascading sequences
to characterize the latter objects (which are in bijection with cascading
sequences), which have not yet been characterized explicitly.

Given two tuples u = (u1, . . . , ui), v = (v1, . . . , vj) we define

u⊕ v = (u1, . . . , ui, v1, . . . , vj).

If u, v are lower subintervals, we define their intersection u∩v in the natural
way. For example, we have (3, 5, 2)⊕ (5) = (3, 5, 2, 5) and we have (7, 8, 9)∩
(6, 7, 8) = (7, 8).

We first introduce the aspects of cascading n-sequences that will be
useful in describing An rigged configurations. Let α ∈ An be a cascading
n-sequence.
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For the remainder of this subsection, we partition α into subsequences
that we will call lanes. As subsequences, lanes will be written as tuples. For
any tuple, the first entry will be called the head of the tuple and the last
entry will be called the tail of the tuple. Also, for any lane L of α, let |L| de-
note the length of L. Formation of these lanes will reflect the way Kashiwara
operators act on rigged configurations in Lemma 3.2.4. Furthermore, we will
show that the ith l-lane corresponds to the ith column of the lth partition
in the corresponding rigged configuration. Label the lower subintervals of α
as I1, I2, . . . , IP from left to right. Denote by Ii(j) the jth entry of Ii, and
by Ii(j) the integer value (in [n]) of Ii(j); in Example 2.2.2, I5 = (2, 3, 4)
and I5(3) = 4. Lanes will be formed, via the following iterative procedure,
for each integer in α; i.e. for m ∈ [n] there will be lanes L1(m), L2(m), . . . at
the end of the procedure. The lane forming procedure builds the lanes
in stages, as follows:

At the outset, we form lanes using entries of I1, by setting L1(I1(j)) :=
(I1(j)) for each j. In general, suppose a collection of lanes M1,M2, . . . ,Ma

has been formed from the lower subintervals I1, I2, . . . , Ib−1. Set Lp(q) := ∅
for any Lp(q) /∈ {M1,M2, . . . ,Ma}. We will form new lanes using entries
of Ib. First, pick the maximal d1 such that Ld1

(Ib(1)) ∈ {M1,M2, . . . ,Ma},
and set Ld1+1(Ib(1)) := (Ib(1)); if no such d1 exists, take d1 = 0. In gen-
eral, for any entry Ib(k) with k > 1, pick the maximal dk ≤ dk−1 such
that |Ldk

(Ib(k))| > |Ldk+1(Ib(k))|, and set Ldk+1(Ib(k)) := Ldk+1(Ib(k)) ⊕
(Ib(k)); take dk = 0 if no such dk exists. Finally, we fix all other preexisting
lanes. At the end of this iterative procedure, we obtain the lanes partitioning
α.

Example 2.3.1. Consider the cascading 10-sequence

(8, 9, 10, 8, 9, 10, 7, 8, 9, 7, 8, 9, 7, 8, 9, 8, 9, 6, 7, 8, 7, 8),

whose lower subintervals are I1 = (8, 9, 10), I2 = (8, 9, 10), I3 = (7, 8, 9), I4 =
(7, 8, 9), I5 = (7, 8, 9), I6 = (8, 9), I7 = (6, 7, 8), I8 = (7, 8). The lanes are
formed in the following processes (with exactly one entry added to the lane
at each stage):

1. L1(8) : (I1(1)) → (I1(1), I3(2)) → (I1(1), I3(2), I7(3))
2. L1(9) : (I1(2)) → (I1(2), I3(3))
3. L1(10) : (I1(3))
4. L2(8) : (I2(1)) → (I2(1), I4(2))
5. L2(9) : (I2(2)) → (I2(2), I4(3))
6. L2(10) : (I2(3))
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7. L1(7) : (I3(1)) → (I3(1), I7(2))
8. L2(7) : (I4(1))
9. L3(7) : (I5(1))
10. L3(8) : (I5(2)) → (I5(2), I8(2))
11. L3(9) : (I5(3))
12. L4(8) : (I6(1))
13. L4(9) : (I6(2))
14. L1(6) : (I7(1))
15. L4(7) : (I8(1))

Written another way, the lower subintervals and lanes are I1 = (81, 91, 101),
I2 = (82, 92, 102), I3 = (71, 81, 91), I4 = (72, 82, 92), I5 = (73, 83, 93), I6 =
(84, 94), I7 = (61, 71, 81), I8 = (74, 83), where lane i has been marked with a
superscript i.

Example 2.3.2. Let us now look at a more complex example. The cascading
10-sequence

(6, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 8, 9, 10, 6, 7, 8, 9, 6, 7, 8, 9, 7, 8, 9, 5, 6, 7, 8,

5, 6, 7, 8, 5, 6, 7, 8, 6, 7, 8)

has lower subintervals with lanes I1 = (61, 71, 81, 91, 101), I2 = (72, 82, 92,
102), I3 = (73, 83, 93, 103), I4 = (84, 94, 104), I5 = (62, 71, 81, 91), I6 =
(63, 72, 82, 92), I7 = (74, 83, 93), I8 = (51, 61, 71, 81), I9 = (52, 62, 72, 82),
I10 = (53, 63, 73, 83), I11 = (64, 74, 84), where lane i has been marked with a
superscript i.

We now show with more detail the formation of lanes at the stage where
I6 is acting.

The lanes formed before I6 are:
L1(6) = (I1(1))
L1(7) = (I1(2), I5(2))
L1(8) = (I1(3), I5(3))
L1(9) = (I1(4), I5(4))
L1(10) = (I1(5))
L2(6) = (I5(1))
L2(7) = (I2(1))
L2(8) = (I2(2))
L2(9) = (I2(3))
L2(10) = (I2(4))
L3(7) = (I3(1))
L3(8) = (I3(2))
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L3(9) = (I3(3))

L3(10) = (I3(4))

L4(8) = (I4(2))

L4(9) = (I4(3))

L4(10) = (I4(4))

Lastly, we have L3(6) = L3(7) = L3(8) = L3(9) = L4(7) = L1(5) =

L2(5) = L3(5) = L4(6) = ().

Assignment of entries of I6:

We have L3(6) := ()⊕ (I6(1)) = (I6(1)), since d1 = 2 for integer value 6.

We have L2(7) := (I2(1)) ⊕ (I6(2)) = (I2(1), I6(2)), since d2 = 1 for

integer value 7.

We have L2(8) := (I2(2)) ⊕ (I6(3)) = (I2(2), I6(3)), since d3 = 1 for

integer value 8.

We have L2(9) := (I2(3)) ⊕ (I6(4)) = (I2(3), I6(4)), since d4 = 1 for

integer value 9.

3. Cascading sequences and rigged configurations

We use cascading sequences to give an explicit characterization (with a

growth algorithm) of B(∞) rigged configurations in the An case, and we

give an explicit bijection between these rigged configurations and cascading

sequences. This results in an explicit bijection between the marginally large

tableaux and An rigged configurations.

3.1. Rigged configurations

The definition of B(∞) rigged configurations in the An case is given in [9],

based on work done in [11]. We now recall this definition. Let g be a simply-

laced Kac-Moody algebra with index set I, and let H := I × Z>0. Fix a

multiplicity array

L = (L
(a)
i ∈ Z>0 : (a, i) ∈ H).

We typically define a partition to be a multiset of integers sorted in decreas-

ing order. Define a rigged partition to be a multiset of integer pairs (i, x)

with i > 0, with these pairs sorted in decreasing lexicographic order. We

will call each (i, x) a string, with i the size or length of the string and x the

quantum number, label, or rigging of the string. By a rigged configuration

we will mean a pair (ν, J) where ν = {ν(a) : a ∈ I} is a sequence of rigged
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partitions and J = (J
(a)
i )(a,i)∈H where each J

(a)
i is the weakly increasing se-

quence of riggings of strings in ν(a) whose length is i. The vacancy number

of ν is defined as

p
(a)
i = p

(a)
i (ν) = −

∑
(b,j)∈H

Aabmin(i, j)m
(b)
j ,

where m
(b)
j is the number of parts in the partition ν(b) with length j. The

coquantum number or colabel of a string (i, x) is defined to be p
(a)
i − x.

The ath part of (ν, J) is often denoted by (ν, J)(a) for brevity.

To give the definition of B(∞) rigged configurations, denoted RC(∞), let

ν∅ be the multipartition with all parts empty; that is, set ν∅ = (ν(1), . . . , ν(n))

where ν
(a)
i = ∅ for all (a, i) ∈ H. Therefore the rigging J∅ of ν∅ must be

J
(a)
i = ∅ for all (a, i) ∈ H.

Definition 3.1.1. The Kashiwara operators ea and fa act on elements

(ν, J) ∈ RC(∞) as follows: Fix a ∈ I, and let x denote the smallest la-

bel of (ν, J)(a), assuming (ν, J)(a) 	= ∅.

1. Set ea(ν, J) = 0 if x ≥ 0. Otherwise, let l denote the smallest length of

all strings which have label x in (ν, J). We obtain the rigged configu-

ration ea(ν, J) by replacing the string (l, x) with (l−1, x+1) and then

changing all the other labels to ensure that all colabels are preserved.

2. Add the string (1,−1) to (ν, J)(a) if x > 0. Otherwise, let l denote the

greatest length of all strings which have label x in (ν, J)(a). Replace the

string (l, x) by (l+1, x− 1), then change all the other labels to ensure

that all colabels are preserved. The result is fa(ν, J).

If (ν, J)(a) is empty, then fa adds the string (1,−1) to (ν, J)(a).

RC(∞) is the graph generated by (ν∅, J∅) using ea and fa, for a ∈ I.

We now give the remaining part of the crystal structure:

εa(ν, J) = max{k ∈ Z≥0 : e
k
a(ν, J) 	= 0},

φa(ν, J) = εa(ν, J) + 〈hα,wt(ν, J)〉,
wt(ν, J) = −

∑
(a,i)∈H

im
(a)
i αa = −

∑
a∈I

|ν(a)|αa,

where {αa}a∈I denotes the simple roots.
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3.2. Kashiwara operators acting in a cascading sequence

arrangement

We show in this section that RC(∞) Kashiwara operators act in a nice way

when arranged in a cascading sequence. Let R = (ν1, ν2, . . . , νn) be a B(∞)

rigged configuration of An type where νi is the ith rigged partition whose

jth row has rigging rigji .

Notation 3.2.1. Whenever we write a rigged configuration in the form

R = (ν1, ν2, . . . , νn),

it is understood that each νi is a rigged partition carrying the riggings in-

formation rigji .

Fix rigged partition νm. If νm = ∅, then we regard νm as a single empty

row r1 whose length is zero and whose rigging is zero. Generally, if we label

the rows of νm from top to bottom by r1, r2, . . . , rk, then we regard νm has

having an “empty row” rk+1 beneath rk, where rk+1 is understood to have

zero length and a rigging of zero.

Let α denote the cascading sequence of R. Recall how the vacancy num-

ber changes when a Kashiwara operator acts on R:

If the Kashiwara operator fa adds a box to a row of length l in νa, then

the vacancy numbers of R are changed using the formula

p
(b)
i =

{
p
(b)
i if i ≤ l

p
(b)
i −Aab if i > l

where p
(b)
i denotes the vacancy number of a row of length i in νb, and

Aab =

⎧⎨⎩
−1 if b = a± 1
2 if b = a
0 otherwise

For each partition λ, we will denote by λb the bth part (row) of λ and

by λ̃b the portion of λb that has no boxes beneath it; we call λ̃b the stretch

of λb. For instance, T in Example 2.2.4 has T̃ 4 = 4 5 . If λ is a rigged

partition, by the rigging of the stretch λ̃b we will always mean the rigging

of the row λb. Also, letting λt denote the transpose of λ, l(λ) := max(λt) is

then the number of rows λ has.
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By an integer sequence γ = (γ1, γ2, . . . , γp) acting on a rigged con-
figuration R′ we will always mean the corresponding sequence of Kashi-
wara operators {fi|i ∈ γ} acting on R′. More precisely, γ acts on R′ by
fγR

′ = fγp
fγp−1

· · · fγ1
R′.

When working with cascading sequences, we can rely on the following
useful lemmas:

Let I = (a, a + 1, . . . ,m) be an m-lower subinterval of the cascad-
ing sequence α. Denote by αI the subsequence of α before I. Let RI =
(μ1, μ2, . . . , μn) denote the preexisting rigged configuration corresponding
to αI . Whenever I acts on RI , it adds one box to each of the partitions
μa, μa+1, . . . , μm−1, μm. As will be proven below, the box added to any μj is
of two forms: contributing and noncontributing. A contributing box is a
single box

−1

which contributes −1 to the rigging of the row to which this box is added,
contributes −1 to the rigging of any row of μj longer than the row to which
it is added, and contributes +1 to the rigging of any row of μj+1 longer
than the row to which it is added, but does not change the riggings of μb

for b 	= j, j + 1. A noncontributing box is a single box

0

with rigging 0, which does not change the riggings of any rigged partition.

Remark 3.2.2. The contributing and noncontributing boxes describe the
cumulative effect of the action of fI , demonstrated in Lemma 3.2.4.

Let us analyze in more detail how I acts on the preexisting rigged config-
uration RI corresponding to αI . For any partition λ let λ denote the portion
of λ beneath the top row.

Lemma 3.2.3. Let λ1, λ2 be two partitions satisfying λ2 ⊂ λ1 ⊂ λ2. Fix a
positive integer p. Let u1 be the uppermost row of λ1 with length p and u2
be the uppermost row of λ2 with |u2| ≤ p. Then every row of λ1 below u1 is
no longer than u2.

Proof. Suppose u1 = λb
1 and u2 = λc

2. Since λ1 ⊂ λ2, we must have c ≥ b.
Since λ2 ⊂ λ1, we must have c ≤ b + 1. If c = b, then we have |u1| = |u2|,
and the claim follows immediately. Suppose c = b+ 1. Then we have |λd

1| ≤
|λb+1

2 | = |u2| for any d ≥ b+ 1, since λ1 ⊂ λ2.

Lemma 3.2.4 (Main Lemma). For I = (a, a+ 1, . . . ,m), RI = (μ1, μ2, . . .,
μn) satisfies the following properties. Let ra be the top row of μa, and ri be
the uppermost row of μi with |ri| ≤ |ri−1|.
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1. The partitions μ1, μ2, . . . , μm−1 have all riggings equal to zero. For
l ∈ [m − 1] we have μl+1 ⊂ μl ⊂ μl+1. By Lemma 3.2.3 it follows in
particular that:
Fix a positive integer p. For l ∈ [m− 1] let ul be the uppermost row of
μl with length p, and let ul+1 be the uppermost row of μl+1 such that
|ul+1| ≤ p. Then every row of μl below ul must be no longer than ul+1.

2. The rows of the rigged partition μm above rm have the same rigging
as rm, and this rigging is non-positive and minimal in μm.

3. I acts on RI by adding a noncontributing box to the rows ra, ra+1, . . .,
rm−1 and a contributing box to the row rm.

Proof. Induction. RI clearly satisfies these properties if I is the first or
second lower subinterval of α. Now consider the general case, assuming that
RI satisfies these properties.

Let R′
I = (μ′

1, μ
′
2, . . . , μ

′
n) denote the rigged configuration corresponding

to α′
I := αI ⊕ I. We apply I to RI to obtain R′

I and prove that it satisfies
these properties as well.

We first check Property 3 and the first statement of Property 1 for R′
I .

By Property 1 for RI , Kashiwara operator fa adds a box to the first row ra
of μa, adding −1 to its rigging, adding +1 to the vacancy number as well as
the rigging of rows of μa+1 longer than ra, and not changing the riggings of
μ1, . . . , μa−1. fa+1 then adds a box to the uppermost row ra+1 of μa+1 with
|ra+1| ≤ |ra|, adding −1 to its rigging, adding −2 to the vacancy number as
well as the rigging of rows of μa+1 longer than ra+1 (so these rows end up
with a rigging of 1 − 2 = −1), adding +1 to the vacancy number and the
rigging of rows of the ath partition longer than ra+1 (which by Property 1
gives μ′

a with zero riggings), and adding +1 to the vacancy number as well
as the rigging of rows of μa+2 longer than ra+1. fa+2 then adds a box to the
uppermost row ra+2 of μa+2 with |ra+2| ≤ |ra+1|, adding −1 to its rigging,
adding −2 to the vacancy number and the rigging of rows of μa+2 longer
than ra+2 (so these rows end up with a rigging of 1−2 = −1), adding +1 to
the vacancy number and the rigging of rows of the (a+1)st partition longer
than ra+2 (which by Property 1 gives μ′

a+1 with zero riggings), and adding
+1 to the vacancy number as well as the rigging of rows of μa+3 longer than
ra+2. Iterating this process, for j = 0, 1, . . . ,m − a − 2 we obtain μ′

a+j by
adding a noncontributing box to row ra+j of μa+j so μ′

a+j has zero riggings.

Now, after fm−1 added a box to row rm−1 of μm−1, all rows of the
resulting (m−1)st partition with length at least |rm−1|+1 have rigging −1.
By Property 2 for RI , this action of fm−1 must have contributed +1 to the
vacancy number and the rigging of all rows of μm longer than rm−1, and



358 Roger Tian

consequently these rows of μm now have greater rigging than rm does, so
rm is now the longest row of μm with the smallest rigging. Finally, fm adds
a box to rm, adding −1 to its rigging, adding +1 to the vacancy number
and the rigging of rows of the (m−1)st partition longer than |rm| (which by
Property 1 gives μ′

m−1 with zero riggings), adding −2 to the vacancy number
and the rigging of rows of the mth partition longer than rm (so these rows
now have the same rigging as rows of length |rm| + 1), and adding +1 to
the vacancy number as well as the rigging of rows of μm+1 longer than |rm|.
This shows that μ′

m−1 is obtained from μm−1 by adding a noncontributing
box to rm−1, and that μ′

m is obtained from μm by adding a contributing box
to rm.

Now we verify Property 2 for R′
I = (μ′

1, μ
′
2, . . . , μ

′
n). By above, we con-

clude that rows of μ′
m with length at least |rm| + 1 have identical rigging,

and this rigging is minimal and non-positive. Let a′ ≥ a. Let r′a′ be the top
row of μ′

a′ , and let r′k be the uppermost row of μ′
k with |r′k| ≤ |r′k−1|, for

k = a′+1, a′+2, . . . ,m. Notice that we have |r′a′ | = |ra|+1 if a′ = a and we
have |r′a′ | ≥ |ra|+ 1 if a′ > a. Since μ′

k contains a row with length |rk|+ 1,
we have |r′k| ≥ |rk|+ 1, for k = a′, a′ + 1, . . . ,m. It follows that the rows of
μ′
m above r′m have the same rigging as r′m, and this rigging is non-positive

and minimal in μ′
m.

Finally, we verify the second statement of Property 1 for R′
I = (μ′

1, μ
′
2,

. . . , μ′
n). If l, l + 1 < a, then the claim follows by hypothesis. If l = a − 1,

then the claim follows since μ′
l+1 = μ′

a is obtained from μa by adding a
single box to the first row. Now suppose l ∈ [a,m − 1]. μ′

l and μ′
l+1 are

obtained from μl and μl+1, respectively, by adding a box via Property 3.
Let rl = μc

l and rl+1 = μd
l+1 be the rows of μl and μl+1, respectively, to

which the box was added. Then rl+1 is the uppermost row of μl+1 no longer
than rl. Since μl ⊂ μl+1, we must have d ≥ c. Since μl+1 ⊂ μl, we must have
d ≤ c+1. Thus, either d = c or d = c+1. Suppose d = c. Then |rl| = |rl+1|,
and it follows immediately that μ′

l ⊂ μ′
l+1. If rl+1 is the first row, then

μ′
l+1 ⊂ μ′

l by hypothesis. If rl+1 is not the first row, we still have μ′
l+1 ⊂ μ′

l

since |(μ′
l)
c−1| = |μc−1

l | ≥ |rl+1|+ 1 = |(μ′
l+1)

c−1|. Suppose d = c+ 1. Then
we must have |rl| < |μc

l+1|, so |(μ′
l)
c| = |rl| + 1 ≤ |μc

l+1| = |(μ′
l+1)

c| and
thus μ′

l ⊂ μ′
l+1. Since |rl+1| = |μc+1

l+1 | ≤ |μc
l | = |rl|, we have |(μ′

l+1)
c+1| =

|rl+1| + 1 ≤ |μc
l | + 1 = |(μ′

l)
c|, and thus we have μ′

l+1 ⊂ μ′
l. This completes

the induction.

Remark 3.2.5. It is easy to see that the first containment μl+1 ⊂ μl holds
for all l ∈ [n−1], since no more boxes will be added to the (l+1)st partition
once all the (l + 1)-lower subintervals have acted.

It follows immediately from Lemma 3.2.4 that
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Lemma 3.2.6. The following are true.

1. If α ends in a p-lower subinterval, then νq of R has zero riggings for
all q ≤ p− 1.

2. All contributing boxes (and hence negative riggings) to the νm of R are
added by m-lower subintervals of α.

3. All positive contributions to the riggings of νm are added by (m− 1)-
lower subintervals of α, which add no boxes to νm.

4. Suppose I1, I2 are m-lower subintervals of α with I1 preceding I2. If I1
adds a contributing box to column i1 and I2 adds a contributing box to
column i2 of the mth partition, then we have i1 < i2.

Proof. The first three items follow immediately from the lemma. For the
fourth item, note that I1 = (a1, . . . ,m) and I2 = (a2, . . . ,m), where a1 ≤ a2.
Let ra1

be the top row of μa1
, and ri be the uppermost row of μi with

|ri| ≤ |ri−1|. Let r′a2
be the top row of μa2

, and r′i be the uppermost row
of μi with |r′i| ≤ |r′i−1|. Notice that |r′k| > |rk| for k = a2, a2 + 1, . . . ,m.
Applying Property 3 of Lemma 3.2.4, we deduce that the contributing box
added by I2 must be strictly to the right of the contributing box added by
I1.

We thus obtain the following interesting result.

Theorem 3.2.7. Identical rows of νm of R have equal riggings, for any
m ∈ [n].

Proof. Before any m-lower subinterval has acted, the mth partition has zero
riggings. After the first m-lower subinterval adds a contributing box to row
r, every row with length at least |r| + 1 has rigging −1, while the rigging
of every row with length at most |r| remains unchanged. In general, assume
that the jth m-lower subinterval has added a box to row r′ of the mth
partition, so that rows with length at least |r′| + 1 have equal rigging, and
that identical rows with length at most |r′| have equal rigging. By the fourth
item of Lemma 3.2.6, the (j + 1)st m-lower subinterval adds a contributing
box to row r′′ with |r′′| ≥ |r′| + 1. In the resulting mth partition, rows of
length at most |r′′| have unchanged riggings, which is the same for identical
rows, while the new row with length |r′′| + 1 and other rows with length
at least |r′′| + 1 receive a −1 contribution to their identical riggings. This
shows that the riggings of identical rows remain equal after all the m-lower
subintervals have acted.

Similarly, each time an (m − 1)-lower subinterval acts, all the rows of
νm no longer than a certain length k experience no change in rigging, while
all the rows of νm longer than k receive +1 contribution to the rigging.



360 Roger Tian

Therefore, the riggings of identical rows remain equal after all the (m− 1)-
lower subintervals have acted.

3.3. Obtaining the rigged configuration from the cascading
sequence

Now we relate the concepts in Subsection 2.3 to the B(∞) rigged configura-
tions in the An case. Let R = (ν1, ν2, . . . , νn) be an An rigged configuration.
Let α denote the cascading sequence of R. We can obtain any partition in
the corresponding rigged configuration without doing explicit calculation via
the Kashiwara operators involved. This is done by partitioning α into lanes
and then analyzing the relevant lanes.

Each column of νl ends in exactly one of the stretches of νl. We denote by
col(ν̃l

b) the set of columns of νl ending in the stretch ν̃l
b, and letW l

b := {lanes
Li(l)||Li(l)| = b}.

By Lemma 3.2.4, the l-lanes correspond precisely to the columns of νl,
and we have the following useful facts:

Lemma 3.3.1. The set col(ν̃l
b) corresponds to the set W l

b . In fact, under
the definition of lanes, Li(l) corresponds exactly to the ith column of νl, with
the height of the column given by |Li(l)|.

Proof. Adding a box to the longest row r with |r| ≤ c is the same as adding
a box to the dth column for maximal d ≤ c+ 1 whose height is strictly less
than that of the (d− 1)st column.

Remark 3.3.2. In particular, the number of columns of height b in νl is
given by the number of l-lanes Li(l) with |Li(l)| = b in the corresponding
cascading n-sequence.

Roughly speaking, the riggings of νl are determined by the number of
l-lanes that contain the right endpoint of some lower subinterval and by
the number of (l − 1)-lanes that contain the right endpoint of some lower
subinterval. In Example 2.3.2, if we fix l = 9, then the 9-lane L2(9) is an
example of the former because it contains the right endpoint of I5, and the 8-
lane L3(8) is an example of the latter because it contains the right endpoint
of I9.

Lemma 3.3.3. Suppose r is a row of νl. Let V l
r denote the set of l-lanes

Li(l) ending at a right endpoint, where i ≤ |r|. Let V l−1
r denote the set of

(l − 1)-lanes Li(l − 1) ending at a right endpoint, where i ≤ |r|. Then the
rigging of r is given by −|V l

r |+ |V l−1
r |.
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Proof. Lemma 3.2.6 gives us that at most one contributing box can be added
to a column. The rigging of r is determined by the number of contributing
boxes (negative contribution) that were added to the columns of the lth
partition occupied by r and the number of contributing boxes (positive con-
tribution) that will have been added to the same columns of the (l − 1)st
partition; the former number corresponds to the term −|V l

r |, while the latter
number corresponds to the term |V l−1

r |.
For any entry χ of α with value |χ|, if χ is the vth entry of the lane

Lu(|χ|), we say that χ has lane depth v, χ has lane number u, and we
also refer to u as the lane number of Lu(|χ|). In Example 2.3.2, the entry
8 of I9 has lane number 2 and depth 3.

Lemma 3.3.4. νl has at most maxrl := min(n−l, l−1)+1 = min(n−l+1, l)
rows.

Proof. It suffices to consider L1(l), which corresponds to the first column of
νl. Each entry of L1(l) is an entry of some lower subinterval I with min I ∈ [l]
and max I ∈ [l, n]. Suppose that L1(l)(j) and L1(l)(j+1) are contained in an
m1-lower subinterval and an m2-lower subinterval, respectively. By Lemma
3.2.6 Property 4, we must have m1 	= m2. Since the m1-lower subintervals
must precede the m2-lower subintervals, it follows that m2 < m1. Hence we
have |L1(l)| ≤ |[l, n]| = n− l+1. On the other hand, notice that ν1 can only
be a single row, by Lemma 3.2.4. By Lemma 3.2.4, for any lower subinterval
I ′, the lane depth of entry b+1 of I ′ exceeds the lane depth of entry b of I ′

by at most one. Thus, inductively we have |L1(l)| ≤ |[l]| = l as well.

Lemma 3.3.5. If l > n+1
2 , then maxrl = n − l + 1. If l ≤ n+1

2 , then
maxrl = l.

Proof. If l > n+1
2 , then n − l + 1 < n − n+1

2 + 1 = n+1
2 < l. If l ≤ n+1

2 ,
then n− l + 1 ≥ n− n+1

2 + 1 = n+1
2 ≥ l. The claims then follow by Lemma

3.3.4.

Lemma 3.3.6. We have maxrl ≤ maxrl−1 if and only if l − 1 > n − l
(equivalently l > n+1

2 ).

Example 3.3.7. Consider the element

(7, 8, 9, 10, 7, 8, 9, 10, 8, 9, 10, 6, 7, 8, 9, 6, 7, 8, 9, 7, 8, 9, 5, 6, 7, 8, 5, 6, 7, 8, 7, 8)

of A10, whose lower subintervals are (71, 81, 91, 101), (72, 82, 92, 102), (83, 93,
103), (61, 71, 81, 91), (62, 72, 82, 92), (73, 83, 93), (51, 61, 71, 81), (52, 62, 72, 82),
(74, 84), where the lanes have been marked with superscripts. From this
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information, we can tell, for example, that the 9th partition of this rigged
configuration has exactly three columns of height 2, the 8th partition has
exactly one column of height 2, and the 7th partition has height 1 for both
its third and fourth columns.

We can apply Lemmas 3.3.1 and 3.3.3 to obtain the lth partition in the
rigged configuration as well as its riggings, given the corresponding cascading
n-sequence. We illustrate this in the following

Example 3.3.8. In the corresponding rigged configuration in Example 2.3.1,
the 10th partition is

with rigging −2 + 2 = 0, since L1(10), L2(10) end at right endpoints (con-
tributing −1 − 1 to the rigging) and since L1(9), L2(9) also end at right
endpoints (contributing +1 + 1 to the rigging).

The 9th partition is

with rigging −1 for the second row and rigging −2 for the first row, since
L1(9), L2(9), L3(9), L4(9) all end at right endpoints (contributing −1 − 1
to the rigging of the second row and −1 − 1 − 1 − 1 to the rigging of the
first row) with |L1(9)| = |L2(9)| = 2 and L3(9) = L4(9) = 1, and since
L1(8), L4(8) end at right endpoints (contributing +1 to the rigging of the
second row and +1 + 1 to the rigging of the first row).

Similarly, the 8th partition is

with riggings −1 for the third row, −2 for the second row, and −2 for the
first row.

Example 3.3.9. In Example 2.3.2, the cascading 10-sequence

(6, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 8, 9, 10, 6, 7, 8, 9, 6, 7, 8, 9, 7, 8, 9, 5, 6, 7, 8,

5, 6, 7, 8, 5, 6, 7, 8, 6, 7, 8)

has lower subintervals with lanes I1 = (61, 71, 81, 91, 101), I2 = (72, 82, 92,
102), I3 = (73, 83, 93, 103), I4 = (84, 94, 104), I5 = (62, 71, 81, 91), I6 =
(63, 72, 82, 92), I7 = (74, 83, 93), I8 = (51, 61, 71, 81), I9 = (52, 62, 72, 82),
I10 = (53, 63, 73, 83), I11 = (64, 74, 84), where lane i has been marked with a
superscript i.
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Looking at these lanes, we can tell that

1. ν10 has four columns of length one, with rig110 = −4 + 3 = −1, since
L1(10), . . ., L4(10) end at right endpoints, and since L1(9), L2(9), L3(9)
end at right endpoints

2. ν9 has three columns of length two, and one column of length one, with
rig29 = −3+ 3 = 0 and rig19 = −3+ 3+ 1 = 1, since L1(9), L2(9), L3(9)
end at right endpoints but L4(9) does not, and since L1(8), . . . , L4(8)
end at right endpoints

3. ν8 has three columns of length three and one column of length two,
with rig38 = −3 and rig28 = rig18 = −3− 1 = −4, since L1(8), . . . , L4(8)
end at right endpoints

The rigged configuration (with νi in top-bottom order) in its entirety is

∅
∅
∅
∅

0 0

−1 0
−1 0

−2 0
0

−2 0

−5 −4
−4

−4 −3

1 1
0 0

−1 −1

Lastly, the following theorem imposing constraints (in a recursive man-
ner, starting from the last partition) on the range of possible legitimate
B(∞) rigged configurations of type A also follows from Lemma 3.2.4 (which
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states that at most one noncontributing box can be added to each column),

Lemma 3.2.6 Property 4 (which states that at most one contributing box

can be added to each column), and Lemma 3.3.4. This result is the first half

of our classification of rigged configurations. For convenience of description,

we will regard νm as having |ν1m| − |ν2m| columns of height zero to the right

of its first row (i.e. νm has an empty row of length |ν1m| − |ν2m| to the right

of its first row).

Theorem 3.3.10. νm−1 is obtained from νm in three stages:

1. Add at most one noncontributing box to each column of νm, resulting

in a partition ν̂m−1.

2. Add at most one contributing box to each column of ν̂m−1, resulting in

a partition ν̂m−1
′
.

3. Finally add a number of contributing boxes to the first row of ν̂m−1
′
.

In this process, any column of νm with height max((νm)t) must receive at

most min(maxrm−1 −max((νm)t), 2) boxes.

We will use the following restatement extensively.

Theorem 3.3.11 (Restatement of Theorem 3.3.10). νm−1 is obtained from

νm by adding at most two boxes to each column of νm, the first box being

noncontributing and the second box being contributing. Moreover, we have

the following constraints:

1. At most min(maxrm−1 − max((νm)t), 2) boxes can be added to any

column of height max((νm)t).

2. At most one box can be added to the dth column for d > |ν1m|, and this

box must be contributing.

3. In any row of νm−1, no contributing box precedes a noncontributing

box.

Remark 3.3.12. Item 1 simply states that the resulting (m− 1)st partition

cannot have more rows than maxrm−1. Any box added to a column of νm
with height zero will be in the first row of the resulting partition. Needless

to say, there cannot be any gaps between the boxes added to any row, as

the result would not be a valid partition.

Even though we have not specified the rigging of νm here, this theorem

gives us the “at most two boxes to each column” constraint. Precisely how

the rigging of νm constrains νm−1 will be handled in later sections.



Characterizing B(∞) rigged configurations of type A 365

3.4. Rough idea of the algorithm

Given an m-lower subinterval I = (a, a + 1, . . . ,m), we say that the lower
subinterval I+ = (a − 1, a, a + 1, . . . ,m) is the lengthening of I, and we
say that we lengthen I to obtain I+.

Our characterization for the An rigged configurations will be an algo-
rithm for growing rigged configurations starting from the last (nth) rigged
partition; this growth algorithm can determine whether any given n-tuple
of rigged partitions is a legitimate An rigged configuration. In other words,
given the last partition (which consists of a row with any number of boxes),
we can give the range of all possible (n− 1)st partitions and its riggings. In
general, given the nth, (n − 1)st, ..., (n − i)th partitions, we can give the
range of all possible (n− i− 1)st partitions and its riggings.

Growing the rigged configuration in our algorithm corresponds to grow-
ing its corresponding cascading n-sequence. Note that any cascading n-
sequence can be constructed by first adding copies of n to the (initially
empty) string, then copies of n− 1 to the string, then copies of n− 2 to the
string, and so on, such that we have a cascading n-sequence at each stage.
It follows a fortiori that any cascading n-sequence can be constructed by
first adding copies of i ≤ n to the (initially empty) string, then copies of
i ≤ n−1 to the string, then copies of i ≤ n−2 to the string, and so on, such
that we have a cascading n-sequence at each stage. Hence any An rigged
configuration can be constructed (by applying the Kashiwara operators in
the order of the cascading n-sequence at each stage) via this type of iterative
process, which constructs the nth partition, (n − 1)st partition, (n − 2)nd
partition, and so on, in that order. What we need to do is to fine tune this
process so that the already constructed nth, (n−1)st, ..., (n−i)th partitions
and their riggings do not change when we construct the (n− i− 1)st parti-
tion. More precisely, at the ith stage, we will add all the copies of n− i+ 1
along with minimal copies of j < n − i + 1 necessary to preserve the pre-
viously constructed rigged partitions; we will elaborate on this in the next
few subsections.

Remark 3.4.1. We mention that, by Lemma 3.3.1, if ν is the lth parti-
tion in the rigged configuration, then the stretch ν̃b corresponds to the set
{Li(l)||Li(l)| = b}. In other words, the stretch ν̃b corresponds to the set of
l-lanes of length b, or equivalently the set of columns of ν with height b.

Let R = (ν1, ν2, . . . , νn) be a rigged configuration we want to construct
by our growth algorithm. To construct the compatible rigged partition νi−1

given that we have already constructed νi, νi+1, . . . , νn, where the riggings of
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νi, νi+1, . . . , νn are fixed, we will add noncontributing boxes and contribut-

ing boxes beneath the stretches of νi (which has zero riggings by default).

Roughly speaking, at most two rows of boxes will be added beneath each

stretch of νi, with the first row consisting of noncontributing boxes and the

second row consisting of contributing boxes. This is justified by Theorem

3.3.11. Of course, the contributing boxes added beneath each stretch of νi
must account for the riggings of νi, by Lemma 3.3.3. Before describing how

to add boxes to νi, we need the notion of plateaus to delineate the stretches

of a rigged partition to which boxes can be added.

3.5. Plateaus as base for construction

Definition 3.5.1. We say that a cascading sequence β (as well as its cor-

responding rigged configuration) is a (p, q, r)-plateau if it satisfies the fol-

lowing property:

1. For every i for which Li(p) exists, we have |Li(p − 1)| = |Li(p)| − 1

whenever |Li(p− 1)| < q.

2. For every (p − 1)-lane Li(p − 1) with |Li(p − 1)| ≤ r, Li(p − 1) does

not end at a right endpoint.

3. For any k < p− 1 no k-lane ends at a right endpoint.

If the above property holds for q = ∞ and r = ∞, then we call β a p-plateau.

If β is an m-plateau for every m ∈ [p], then we call β a p∗-plateau; here
(and in what follows) we will exclude the case m = 1 from consideration, as

the letter 0 does not occur in β.

Lemma 3.5.2. If β is a p∗-plateau corresponding to the rigged configuration

(μ1, μ2, . . ., μn), then μl−1 = μl with zero riggings for l ∈ [p].

Proof. First we show that a right endpoint can only exist at the end of a

lane. Suppose a right endpoint occurs in an l-lane Lj(l), and let I denote

the lower subinterval containing this right endpoint. By the definition of

cascading sequences, the only lower subintervals after I containing l as an

entry must have l as a right endpoint. However, any lower subinterval after

I that contains l as a right endpoint must add its right endpoint to a lane

Lk(l) where k > j, by Lemma 3.2.6.

Since right endpoints can only occur at the end of a lane, we have μl−1 =

μl by the definition of p∗-plateau, and we have that μl has zero riggings by

Lemma 3.3.3, for l ∈ [p]



Characterizing B(∞) rigged configurations of type A 367

Example 3.5.3. The cascading sequence consisting of lower subintervals (71,
81, 91), (82, 92), (83, 93), (94), (61, 71, 81), (72, 82), (84) is a 7∗-plateau and a
(8, 2,∞)-plateau. The cascading sequence consisting of the lower subinter-
vals (71, 81, 91, 101), (72, 82, 92, 102), (83, 93, 103), (84, 94, 104), (85, 95, 105),
(61, 71, 81, 91), (73, 82, 92), (51, 61, 71, 81), (62, 72, 82), (63, 73, 83), (52, 62, 72)
is a 7∗-plateau and an (8, 2, 2)-plateau.

Remark 3.5.4. As a start, notice that the cascading sequence consisting of
the (singleton) lower subintervals (n), (n), . . . , (n) is an n∗-plateau.

We now present procedures for adding at most two boxes to each column
of the (p − 1)st partition of a rigged configuration that is both a (p, q, r)-
plateau and a (p − 1)∗-plateau, generating all possible (p − 1)st partitions
compatible with the predetermined pth, (p+1)st, . . . , nth partitions. Rigged
configurations that are both a (p, q, r)-plateau and a (p − 1)∗-plateau will
serve as the “skeletons” upon which boxes are added in our growth algo-
rithm.

3.6. Adding boxes to a stretch

Since any stretch s of a partition λ corresponds to all columns of some fixed
height ht(s), we will also refer to ht(s) as the height of the stretch s.

Convention 3.6.1. For any An rigged configuration R′ = (ν1, ν2, . . . , νn), by
Remark 3.2.5 we already know that νi−1 ⊃ νi. If we label the stretches of
νi from bottom to top by g1, g2, . . . , gk, and the stretches of νi from bottom
to top by g′1, g

′
2, . . . , g

′
k, then clearly g′i is identical to gi for i ∈ [k − 1]. Here

g′k is identical to gk if |ν1i | = |ν2i |, and is empty if |ν1i | > |ν2i |. In the case
|ν1i | > |ν2i |, we will refer to g′k as an “invisible” stretch above the first row
of νi, with |g′k| = |gk|. Thus, in either case, we will regard νi as having
identical copies of all the stretches of νi; this will be convenient for when we
talk about adding boxes to νi to form νi−1, where a box added beneath g′k
will be in the first row of the resulting partition in the case |ν1i | > |ν2i |.

Now, fix cascading sequence β that is both a (p − 1)∗-plateau and a
(p, q, r)-plateau, with its corresponding rigged configuration R = (μ1, μ2, . . .,
μn). We give two procedures for adding respectively noncontributing boxes
and contributing boxes beneath the stretches z1, z2, . . . , za of μp−1 (ordered
from bottom to top, following Convention 3.6.1), which fixes μx for all x > p
and also fixes the shape of μp (though not necessarily the rigging, which will
depend on the resulting (p−1)st partition). Assume that ht(z1) < maxrp−1;
otherwise no boxes can be added beneath z1. Both procedures output both
the desired cascading sequence and its corresponding rigged configuration,
and can be applied repeatedly to add boxes to multiple stretches sequentially.
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Procedure 3.6.2 (Adding Noncontributing Boxes to a Given Stretch). Sup-
pose ht(zi) < min(q, r). The following algorithm adds ni noncontributing
boxes beneath zi, where 0 ≤ ni ≤ |zi|:

We will add ni copies of p − 1, ni copies of p − 2, . . ., ni copies of
p− (ht(zi) + 1) to β as follows. Let Bv denote the set of lower subintervals
with head v. We will delete a number of elements from each Bv before
lengthening the first ni of the remaining elements.

Label from left to right by Ĭ
p−ht(zi)−1
1 , Ĭ

p−ht(zi)−1
2 , . . ., Ĭ

p−ht(zi)−1
w the el-

ements of Bp−ht(zi)−1. Then delete the element Ĭ
p−ht(zi)
1 ∈ Bp−ht(zi) nearest

Ĭ
p−ht(zi)−1
1 left of Ĭ

p−ht(zi)−1
1 , delete the element Ĭ

p−ht(zi)
2 ∈ Bp−ht(zi) near-

est Ĭ
p−ht(zi)−1
2 left of Ĭ

p−ht(zi)−1
2 , . . ., delete the element Ĭ

p−ht(zi)
w ∈ Bp−ht(zi)

nearest Ĭ
p−ht(zi)−1
w left of Ĭ

p−ht(zi)−1
w . Let Bp−ht(zi) denote the subset ob-

tained from Bp−ht(zi) after performing this sequence of deletions. Next,

delete the element Ĭ
p−ht(zi)+1
1 ∈ Bp−ht(zi)+1 nearest Ĭ

p−ht(zi)
1 left of Ĭ

p−ht(zi)
1 ,

delete the element Ĭ
p−ht(zi)+1
2 ∈ Bp−ht(zi)+1 nearest Ĭ

p−ht(zi)
2 left of Ĭ

p−ht(zi)
2 ,

. . ., delete the element Ĭ
p−ht(zi)+1
w ∈ Bp−ht(zi)+1 nearest Ĭ

p−ht(zi)
w left of

Ĭ
p−ht(zi)
w . Let Bp−ht(zi)+1 denote the subset obtained from Bp−ht(zi)+1 af-
ter performing this sequence of deletions. In general, delete the element

Ĭ
p−ht(zi)+c
1 ∈ Bp−ht(zi)+c nearest Ĭ

p−ht(zi)+c−1
1 left of Ĭ

p−ht(zi)+c−1
1 , delete the

element Ĭ
p−ht(zi)+c
2 ∈ Bp−ht(zi)+c nearest Ĭ

p−ht(zi)+c−1
2 left of Ĭ

p−ht(zi)+c−1
2 ,

. . ., delete the element Ĭ
p−ht(zi)+c
w ∈ Bp−ht(zi)+c nearest Ĭ

p−ht(zi)+c−1
w left of

Ĭ
p−ht(zi)+c−1
w . Let Bp−ht(zi)+c denote the subset obtained from Bp−ht(zi)+c

after performing this sequence of deletions.
Finally, lengthen the first ni elements (in left-right order as usual) of

Bp−ht(zi)+d in β, for d = 0, 1, . . . , ht(zi).

Notation 3.6.3. Let Cht(zi) denote the set of lower subintervals Ĭ
p−ht(zi)+c
j

of β deliberately fixed (i.e. not lengthened) in Procedure 3.6.2. We will call
Cht(zi) the set of deleted elements of β, or the set of fixed elements of β.

Remark 3.6.4. In Procedure 3.6.2, we say that the element Ĭ
p−ht(zi)+c
u is

paired with the element Ĭ
p−ht(zi)+c−1
u , for each u ∈ [w]. This pairing process

used to obtain Cht(zi) is in fact the same pairing/bracketing process in the
definition of the Kashiwara operator.

A rough illustration of the pairing/bracketing in Procedure 3.6.2: If we
let a denote any lower subinterval with head j and b denote any lower
subinterval with head j − 1 (a and b will be used as shorthand here; the
a’s (resp. b’s) are not necessarily identical), and if aaabbaabbabaa is the
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cascading subsequence of β whose lower subintervals have only j or j − 1
as head, then the pairing and deletion process in Procedure 3.6.2 works as
follows.

aaabbaabbabaa → aa(ab)ba(ab)b(ab)aa → a(ab)(ab)aa → aaa

(this means that only the remaining lower subintervals aaa can be length-
ened in β)

That Procedure 3.6.2 works as described will be proven in Section 3.7.
Meanwhile, let us look at some examples of how this procedure works.

Example 3.6.5. Consider the cascading sequence α (with lanes marked by
superscripts as usual) consisting of the lower subintervals (81, 91, 101, 111),
(82, 92, 102, 112), (83, 93, 103, 113), (71, 81, 91, 101), (72, 82, 92, 102), (84, 94,
104), (61, 71, 81, 91), (73, 83, 93), which is an 8∗-plateau. We have

μ7 =
0 0
0 0

.

To add two noncontributing boxes to the second stretch of μ7, we add two
copies of 7 and two copies of 6 to α; C1 in this case consists of the lower
subintervals (61, 71, 81, 91), (72, 82, 92, 102), (83, 93, 103, 113). The resulting
cascading sequence α′ (where the added copies are in bold) consisting of the
lower subintervals (71, 81, 91, 101, 111), (72, 82, 92, 102, 112), (83, 93, 103, 113),
(61, 71, 81, 91, 101), (73, 82, 92, 102), (84, 94, 104), (62, 72, 81, 91), (63, 73, 83, 93)
corresponds to the resulting rigged configuration whose seventh partition is

−2 0
0

.

Example 3.6.6. Consider the cascading sequence α (with lanes marked by su-
perscripts as usual) consisting of the lower subintervals (71, 81, 91, 101, 111),
(82, 92, 102, 112), (83, 93, 103, 113), (61, 71, 81, 91, 101), (72, 82, 92, 102), (84, 94,
104), (62, 72, 81, 91), (73, 83, 93), which is a 7∗-plateau and an (8, 2, 3)-plateau.
We have

μ7 = −1 0
−1 0

and

μ8 = −2 0
−2 0
−1 0

.
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To add one noncontributing box to the third stretch (which has length 1,
since |μ1

8| − |μ1
7| = 1) of μ7, we add one copy of 7 to α; C0 in this case con-

sists of the lower subintervals (72, 82, 92, 102), (73, 83, 93), (83, 93, 103, 113),
(84, 94, 104). The resulting cascading sequence α′ (where the added copies are
in bold) consisting of the lower subintervals (71, 81, 91, 101, 111), (72, 82, 92,
102, 112), (83, 93, 103, 113), (61, 71, 81, 91, 101), (73, 82, 92, 102), (84, 94, 104),
(62, 72, 81, 91), (74, 83, 93) corresponds to the resulting rigged configuration
whose seventh partition is

−2 0
−1 0

.

Example 3.6.7. Consider the cascading 11-sequence consisting of the lower
subintervals (81, 91, 101, 111), (82, 92, 102, 112), (83, 93, 103, 113), (84, 94, 104,
114), (71, 81, 91, 101), (72, 82, 92, 102), (73, 83, 93, 103), (85, 95, 105), (61, 71, 81,
91), (62, 72, 82, 92), (63, 73, 83, 93), (74, 84, 94), (75, 85, 95), (51, 61, 71, 81), (64,
74, 84).

To add boxes to the stretch of height two, notice that C2 consists of the
lower subintervals (51, 61, 71, 81), (63, 73, 83, 93), (73, 83, 93, 103), (84, 94, 104, 114).
If we add three boxes to the stretch of height two, we obtain (71, 81, 91, 101,
111), (72, 82, 92, 102, 112), (73, 83, 93, 103, 113), (84, 94, 104, 114), (61, 71, 81,
91, 101), (62, 72, 82, 92, 102), (74, 83, 93, 103), (85, 95, 105), (51, 61, 71, 81, 91),
(52, 62, 72, 82, 92), (63, 73, 83, 93), (64, 74, 84, 94), (75, 85, 95), (53, 63, 73, 81),
(54, 64, 74, 84).

To add boxes to the stretch of height one, notice that C1 consists of the
lower subintervals (63, 73, 83, 93), (64, 74, 84, 94), (61, 71, 81, 91, 101), (62, 72, 82, 92,
102), (74, 83, 93, 103), (71, 81, 91, 101, 111), (72, 82, 92, 102, 112), (73, 83, 93, 103,
113), (84, 94, 104, 114). If we add one box to the stretch of height one, we
get (71, 81, 91, 101, 111), (72, 82, 92, 102, 112), (73, 83, 93, 103, 113), (84, 94, 104,
114), (61, 71, 81, 91, 101), (62, 72, 82, 92, 102), (74, 83, 93, 103), (75, 85, 95, 105),
(51, 61, 71, 81, 91), (52, 62, 72, 82, 92), (63, 73, 83, 93), (64, 74, 84, 94), (65, 75, 85,
95), (53, 63, 73, 81), (54, 64, 74, 84).

Procedure 3.6.8 (Adding Contributing Boxes to a Given Stretch). Suppose
ht(zi) < r.

1. To add ni contributing boxes beneath zi, where 0 ≤ ni ≤ |zi|: Add ni

copies of the lower subinterval (p− ht(zi)− 1, p− ht(zi), . . . , p− 1) to
the right of β.

2. Exceptional Case: We can add any number N ∈ Z≥0 of contributing
boxes to the top row of μp−1 by adding N singleton lower subintervals
(p− 1) to the right of β.

That Procedure 3.6.8 works as described will be proven in Section 3.7.
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3.7. Proof of the procedures for adding boxes

We now show that the two procedures for adding boxes to a stretch works
as described.

Lemma 3.7.1. Suppose α is a (p, q, r)-plateau and a (p− 1)∗-plateau, with
corresponding rigged configurations R′ = (ν1, . . . , νp−1, νp, . . . , νn). Then R′

(and hence α) is completely determined once we know the rigged partitions
νp−1, νp, . . . , νn.

Proof. Follows from Lemma 3.5.2.

Remark 3.7.2. Hence, if we keep νp, . . . , νn fixed, the range of all possible
such α is completely determined by the range of all possible νp−1 (obtained
by adding boxes to the allowed stretches of νp).

For any cascading sequence α with corresponding rigged configuration
R, let α[i] denote the sub-cascading sequence formed by the first i lower
subintervals of α, and let R[i] denote the rigged configuration corresponding
to α[i]; we call α[i] the initial i-segment of α. For any lower subinterval
I of α, let αI denote the portion of α preceding I, and let RI denote the
rigged configuration corresponding to αI . The following lemmas show that,
if α is an l-plateau, then it has certain nice properties, which we will use in
the proof of the main lemma of this section.

Lemma 3.7.3. Suppose that α is a cascading sequence with corresponding
rigged configuration R such that R[i] = (μ1, μ2, . . . , μn) has the property that
the jth column of μk is shorter than the jth column of μk−1 for all j ≥ b
for some b. Then R[i + 1] = (μ′

1, μ
′
2, . . . , μ

′
n) has the property that the jth

column of μ′
k is shorter than the jth column of μ′

k−1 for all j ≥ c for some
c ≥ b.

Remark 3.7.4. This lemma is used to prove Lemma 3.7.5.

Proof. Let I denote the lower subinterval after α[i]. We may assume that I
has head at most k. If I has head k, then it adds a box to the first row of
μk, and the conclusion is still true for c = b. Suppose I has head less than k.
Suppose I adds a box to the pth column of μk−1. Then it must add a box to
the qth column of μk, where p ≥ q. If q < b, then the conclusion is still true
for c = b. Suppose that q ≥ b. Then the conclusion is true for c = p.

Lemma 3.7.5. Suppose that α is an l-plateau with corresponding rigged
configuration R = (λ1, λ2, . . . , λn). Then no lower subinterval of α with head
less than l can contain the head of some l-lane.
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Proof. Suppose for a contradiction that α has a lower subinterval J with
head less than l containing the head of some l-lane. Without loss of gener-
ality assume that J is the leftmost such lower subinterval. Let α[i] denote
the portion of α preceding J , and let R[i] = (μ1, μ2, . . . , μn) denote the cor-
responding rigged configuration. By definition, J adds a box to the top row
of μl. By Lemma [18], we have μl−1 ⊂ μl, so J must add a box to the top
row of μl−1 as well; in fact, the top rows of μl−1 and μl must be identical.
Then, again by Lemma [18], R[i+1] = (ν1, ν2, . . . , νn) has the property that
the jth column of νl is shorter than the jth column of νl−1 for all j ≥ m,
where m is the length of the top row of νl−1. Repeatedly applying Lemma
3.7.3, we conclude that the dth column of λl is shorter than the dth column
of λl−1, for some d. This contradicts the l-plateau assumption on α.

Lemma 3.7.6. Suppose that α is an l-plateau. Then the following hold:

1. α[i] is also an l-plateau for any i.
2. For any lower subinterval I of α[i], the entries l − 1 and l of I have

the same lane number.

Proof. Notice that, by definition, I must contain l whenever it contains an
entry less than l. The two items are vacuously true if every lower subinterval
of α[i] has head greater than l. In the base case that α[i] ends in J , where
J is the first lower subinterval of α with head at most l, J must contain the
head of some l-lane, so J must have head l by Lemma 3.7.5, and hence the
two items hold for α[i]. Now we suppose that the two items hold for α[i], and
prove them for α[i+ 1]. Let I denote the lower subinterval following α[i]. If
I has head at least l, clearly the two items hold true (vacuously true for the
second item). Suppose I has head less than l. By Lemma 3.7.5, I must add
a box beneath the top row of the lth partition. Since the first item holds for
α[i], the (l−1)st partition is exactly the portion of the lth partition beneath
the first row, in the corresponding rigged configuration. If I adds a box to
row rl−1 of the (l − 1)st partition (where rl−1 is the uppermost row of its
length), then it must add a box to row rl of the lth partition, where rl is
the uppermost row of the lth partition with length |rl−1|. This shows that
α[i + 1] is still an l-plateau, and that the entries l − 1 and l of I have the
same lane number |rl−1|+ 1, completing the induction.

Lemma 3.7.7. Suppose that α is an l-plateau. For any i and any j < l,
α[i] has no fewer lower subintervals with head l than lower subintervals with
head j. We say that α satisfies the Lyndon property for letter l.

Remark 3.7.8. In particular, α can be considered as a left Lyndon word in
the letters l and j.
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Proof. Fix i and j < l. By Lemma 3.7.6, α[i] is also an l-plateau. Let R[i] =
(ν1, ν2, . . . , νn) denote the rigged configuration corresponding to α[i]. By
Lemma 3.2.4 and by the definition of an l-plateau, we have νj ⊂ νj+1 ⊂
. . . ⊂ νl. By Lemma 3.7.5, any lower subinterval that adds a box to the first
row of the lth partition must have head l. Since any lower subinterval of α[i]
with head j adds a box to the top row of the jth partition and any lower
subinterval of α[i] with head l adds a box to the top row of the lth partition,
it follows that α[i] has no fewer lower subintervals with head l than lower
subintervals with head j.

Lemma 3.7.9. Suppose that α satisfies the Lyndon property for all letters
at most l. If I is a lower subinterval of α with head j ≤ l, then all entries of
I at most l have the same lane number, and the depth of entry l′ is l′− j+1
for any j ≤ l′ ≤ l.

Proof. The claim is obvious for the base case of the initial segment α[i1]
ending in the first lower subinterval with head l. Now suppose that I is a
lower subinterval of α with head j ≤ l, and suppose that the claim holds for
αI . We show that I satisfies the desired properties. Let I ′ denote the lower
subinterval of αI with head j nearest I; if I ′ does not exist, then αI has no
lower subinterval with head smaller than j + 1, so all entries of I at most l
have lane number one and the claim follows immediately (by the inductive
hypothesis, the depth of entry c ≤ l of I is one more than the depth of entry
c of a lower subinterval with head j + 1). By the inductive hypothesis, all
entries of I ′ at most l have the same lane number k, and the depth of entry
l′ is l′−j+1 for any j ≤ l′ ≤ l. Fix j ≤ l′ ≤ l. We show that entry l′ of I has
lane number k+1 and depth l′ − j +1. Let I ′′ denote any lower subinterval
of αI after I ′. By definition, I ′′ has head j′′ 	= j. Let j ≤ d ≤ l′. If j′′ < j,
then entry d of I ′′ has depth greater than that of entry d of I ′ by inductive
hypothesis. If j′′ > j, then entry d of I ′′ has depth less than that of entry d
of I ′ by inductive hypothesis. It follows that the number of d-lanes of length
at least d − j + 1 in αI is k; equivalently, the dth partition of the rigged
configuration corresponding to αI has exactly k columns of height at least
d−j+1. Recall that d−j+1 is the depth of entry d of I ′. Moreover, since αI

has more lower subintervals with head j + 1 than those with head j by the
Lyndon property, αI has some d-lanes of length d− (j+1)+1 = d− j. Since
the head j of I clearly has lane number k+1, we deduce that the entry d of
I must also have lane number k+1 and depth d−j+1, for d = j, j+1, . . . , l′

in that order, by Lemma 3.2.4. This completes the induction.

We now complete the proof of the two procedures for adding boxes. If a
cascading sequence γ has entry g and lanes L,L′ such that L′ = L⊕ (g), we
say that L′ is the lengthening of L, and that we lengthen L to obtain L′.
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Lemma 3.7.10 (Main Lemma). Let β be both a (p − 1)∗-plateau and a
(p, q, r)-plateau, whose corresponding rigged configuration is R = (μ1, μ2, . . .,
μn). Label the stretches of μp−1 from bottom to top as z1, z2, . . . , za. Then
the following is true.

1. Suppose ht(zi) < min(q, r). Let β@ denote the cascading sequence ob-
tained from β via Procedure 3.6.2. β@ thus obtained is a (p−1)∗-plateau
and a (p, ht(zi), r)-plateau, and β@ corresponds to the rigged configura-
tion obtained after adding ni noncontributing boxes beneath zi, where
0 ≤ ni ≤ |zi|, and fixing μx for all x ≥ p.

2. Suppose ht(zi) < min(q, r), and let 0 < a′ ≤ ht(zi) be an integer.

(a) There exists j1 such that β[j1] contains all the lower subintervals
with head p−1 containing the head of some p-lane, and that β[j1]
contains no more lower subintervals with head p − 1 than lower
subintervals with head p− 2. Let such j1 be minimal. Then there
exists j2 ≥ j1 such that β[j2] contains no more lower subintervals
with head p−2 than lower subintervals with head p−3. Let such j2
be minimal. Then there exists j3 ≥ j2 such that β[j3] contains no
more lower subintervals with head p − 3 than lower subintervals
with head p−4. This continues until, for minimal ja′−1 there exists
ja′ ≥ ja′−1 such that β[ja′ ] contains no more lower subintervals
with head p− a′ than lower subintervals with head p− a′ − 1.

(b) If I is an element of Bp−h outside β[jp−(p−h)] = β[jh] where
1 ≤ h ≤ ht(zi), then I has entry p of depth p−(p−h)+1 = h+1,
entry p − 1 of depth p − 1 − (p − h) + 1 = h, and one common
lane number for all entries not exceeding p.

(c) If Î is an element of Bp−1 containing the head of some p-lane,
then all elements of Bp in βÎ are elements of Cht(zi).

3. Suppose ht(zi) < r.

(a) Suppose β! is the cascading sequence obtained from β via the
Procedure 3.6.8(1). β! thus obtained is a (p − 1)∗-plateau and
a (p, q, ht(zi))-plateau, and β! corresponds to the rigged configu-
ration obtained after adding ni contributing boxes beneath zi in
μp−1, where 0 ≤ ni ≤ |zi|, and fixing μx for all x > p as well as
fixing the shape of μp.

(b) Suppose β! is the cascading sequence obtained from β via the Pro-
cedure 3.6.8(2). Then β! thus obtained is a (p − 1)∗-plateau and
a (p, q, 0)-plateau, and corresponds to the rigged configuration ob-
tained after adding any number N ∈ Z≥0 of contributing boxes to
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the top row of μp−1, and fixing μx for all x > p as well as fixing
the shape of μp.

Remark 3.7.11. Keep the following in mind for the proof that follows.

1. Item 2 is a technical fact about β that will be used in the proof of
Procedure 3.6.2 (i.e. Item 1) in an induction argument.

2. Although adding boxes beneath zi changes the partition, it does not
change the stretches zx for any x > i, so we will continue referring
to the stretches zx even though they may well belong to a partition
different from μp−1.

3. Convention: Let α and α′ be cascading sequences with corresponding
rigged configurations S and S′, respectively. We say that α[i] and α′[i]
have the same l-lanes or have identical l-lanes if the following holds:
l appears as an entry in α[i] the same number of times as l appears as
an entry in α′[i], and the jth occurrence of l in α[i] has the same lane
number as the jth occurrence of l in α′[i]. In particular, this implies
that the lth partitions of S[i] and S′[i] are identical.

Proof. We prove these items by induction on i (i.e. one stretch at a time
by decreasing height); observe that conditions on β become less restrictive
with smaller q and r, while the number of stretches beneath which boxes
can be added decreases. In the base case where β is a p∗-plateau, Item 2
holds vacuously with j1 = 0, by Lemma 3.7.9.

In the general case, suppose β is both a (p− 1)∗-plateau and a (p, q, r)-
plateau. We will prove Item 3, executability of Procedure 3.6.2, Item 1, and
finally Item 2, in that order.

Proof of Item 3
We first prove Item 3, that Procedure 3.6.8 works as stated. Suppose

ht(zi) < r. By Lemma 3.7.9, if I is a lower subinterval whose entry p − 1
has depth ht(zi−1), then I ∈ Bp−ht(zi−1). Since p − ht(zi−1) ≤ p − ht(zi) −
1, and since β is a (p − 1)∗-plateau, the entry p − 1 of any of the added
(p − ht(zi) − 1, p − ht(zi), . . . , p − 1) has depth not exceeding p − 1 − (p −
ht(zi−1))+1 = ht(zi−1). Notice that β has |Bp−ht(zi)| = |Bp−ht(zi−1)|+|zi| and
|Bp−ht(zi)−1| = |Bp−ht(zi−1)| by definition. Since |Bp−ht(zi)| = |Bp−ht(zi)−1|+
|zi|, and since β is a (p − 1)∗-plateau, the entry p − 1 of any of the added
(p−ht(zi)−1, p−ht(zi), . . . , p−1) has depth exceeding p−1−(p−ht(zi))+
1 = ht(zi). By Lemma 3.2.6, the entries p − 1 of the ni added copies of
(p − ht(zi) − 1, p − ht(zi), . . . , p − 1) must occupy ni distinct columns, so
it follows that these entries p − 1 must have depth ht(zi) + 1, as desired.
Clearly, β! is a (p− 1)∗-plateau as well.
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That Part 2 of this procedure works for adding boxes to the top row is
obvious from Lemma 3.2.4. Finally, the property of Item 2 is clearly pre-
served by Procedure 3.6.8. This concludes our proof of Item 3.

Now assume that ht(zi) < min(q, r), for which Item 2 holds for β. We
show that Items 1 and 2 hold for β@. Let B̂p−1 denote the set of elements
of Bp−1 containing the head of some p-lane. Let B@

v denote the number of

lower subintervals of β@ with head v. Let B̂@
p−1 denote the set of elements

of B@
p−1 containing the head of some p-lane.

Proof of Executability
We first prove that Procedure 3.6.2 is executable. By Lemma 3.7.7, it

immediately follows that the deletions (recall that a deleted lower subin-
terval is ultimately fixed by the procedure) and lengthening specified in
Procedure 3.6.2 are executable for all pairs Bp−j , Bp−j−1 for all j ≥ 1.
More precisely, by Lemma 3.7.9, after deleting all the elements of Cht(zi)

from Bp−ht(zi), there will be exactly |zi| elements of Bp−ht(zi) remaining;
after deleting all the elements of Cht(zi) from Bp−ht(zi)+1, there will be at
least |zi| elements of Bp−ht(zi)+1 remaining; after deleting all the elements
of Cht(zi) from Bp−ht(zi)+2, there will be at least |zi| elements of Bp−ht(zi)+2

remaining; and so on.
We now verify that the deletion and lengthening are executable for the

pair Bp, Bp−1. By Item 2 and Lemma 3.7.7, all elements of B̂p−1 are elements
of Cht(zi). By Lemma 3.7.9, no element of Bl contains the head of some p-
lane or the head of some (p − 1)-lane, for any l < p − 1. Hence only the
elements of B̂p−1 and Bp contain the head of some p-lane. It follows that
any initial segment of β contains no fewer elements of Bp than elements

of Bp−1 − B̂p−1; if an initial segment contained fewer elements of Bp than

elements of Bp−1 − B̂p−1, then some of the latter elements would have to

belong to B̂p−1, a contradiction.

Let Ĩ ∈ B̂p−1. By Lemma 3.2.4, βĨ has the same number of p-lanes and

(p − 1)-lanes. By Item 2, every I1 ∈ Bp in βĨ belongs to Cht(zi). If Ĩ is the

leftmost element of B̂p−1, then clearly every I1 ∈ Bp in βĨ must be paired

with an I ′1 ∈ Bp−1− B̂p−1 in βĨ . In general, suppose that Ī ∈ B̂p−1 precedes

Ĩ in β, where every I1 ∈ Bp in βĪ is paired with an I ′1 ∈ Bp−1 − B̂p−1 in
βĪ . Since βĨ has the same number of p-lanes and (p− 1)-lanes, and since no

elements of B̂p−1 exist after Ī in βĨ , Bp has the same number of elements
after Ī in βĨ as those of Bp−1 after Ī in βĨ . Hence every I1 ∈ Bp after Ī

in βĨ must be paired with an I ′1 ∈ Bp−1 − B̂p−1 after Ī in βĨ . Therefore,
inductively we conclude that every element of Bp ∩ Cht(zi) must be paired
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with exactly one element of Bp−1− B̂p−1. This shows that, after deleting all
the elements of Cht(zi) from Bp, there are at least |zi| elements remaining

in Bp that can be lengthened, because Bp−1 − B̂p−1 ⊃ Bp−1 − Cht(zi). This
shows that Procedure 3.6.2 is executable.

β@ satisfies the Lyndon property
We first show that β@ satisfies the Lyndon property for all letters l ≤

p − 1, so that we can apply Lemma 3.7.9 to β@ later on. Since β@ clearly
satisfies the Lyndon property for all letters l ≤ p− ht(zi)− 1, we only need
to consider l > p − ht(zi) − 1. Let m be any positive integer. We analyze
β@[m] using β[m].

Suppose p− ht(zi)− 1 < l′ ≤ p− 1. By Lemma 3.7.7, β[m] has no fewer
elements of Bl′ than elements of Bl′−1.

Claim 3.7.12. β[m] has no fewer elements of Bl′ − Cht(zi) than elements of
Bl′−1 − Cht(zi).

Proof. Suppose not. Then we must have |Bl′ ∩ Cht(zi)| > |Bl′−1 ∩ Cht(zi)|
in β[m]. Pick the minimal m′ such that |Bl′ ∩ Cht(zi)| = |Bl′−1 ∩ Cht(zi)|
in β[m + m′]. By definition, any element of Bl′ in β[m + m′] outside β[m]
must be an element of Cht(zi) and must be paired with an element of Bl′−1∩
Cht(zi) to its right in β[m +m′], and β[m +m′] must end in an element of
Bl′−1 ∩Cht(zi). Notice that |Bl′ ∩Cht(zi)| = |Bl′−1 ∩Cht(zi)| in β[m+m′] but
|Bl′ − Cht(zi)| < |Bl′−1 − Cht(zi)| in β[m + m′] due to the assumption that
|Bl′ − Cht(zi)| < |Bl′−1 − Cht(zi)| in β[m]. This implies that β[m + m′] has
fewer elements of Bl′ than elements of Bl′−1, which contradicts the Lyndon
property for β, and the claim is proved.

Suppose l′ = p− 1. By Item 2, we have B̂p−1 ⊂ Cht(zi), so by definition

only elements of Bp−1 − Cht(zi) ⊂ Bp−1 − B̂p−1 can be lengthened by Pro-
cedure 3.6.2. By Lemma 3.2.4 and Lemma 3.7.5, any lower subinterval of β
whose entry p has depth one must have either p or p− 1 as head. It follows
that β[j] has no fewer elements of Bp than elements of Bp−1−B̂p−1 for any j.

Claim 3.7.13. β[m] has no fewer elements of Bp − Cht(zi) than elements of
Bp−1 − Cht(zi).

Proof. Suppose not. Then we must have |Bp ∩ Cht(zi)| > |(Bp−1 − B̂p−1) ∩
Cht(zi)| in β[m]. Pick the minimal b′ such that |Bp ∩ Cht(zi)| = |(Bp−1 −
B̂p−1) ∩ Cht(zi)| in β[m + b′]. By Item 2, all of B̂p−1 is contained inside
β[j1], and β[j1] contains no elements of Bp−1 − Cht(zi). Thus, we must

have j1 < m, and there are no elements of B̂p−1 outside β[m]. By defi-
nition, any element of Bp in β[m + b′] outside β[m] must be an element of
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Cht(zi) and must be paired with an element of Bp−1 ∩ Cht(zi) to its right in

β[m+b′]. Notice that |Bp∩Cht(zi)| = |(Bp−1−B̂p−1)∩Cht(zi)| in β[m+b′] but

|Bp−Cht(zi)| < |(Bp−1− B̂p−1)−Cht(zi)| in β[m+ b′] due to the assumption
that |Bp−Cht(zi)| < |Bp−1−Cht(zi)| in β[m]. This implies that |Bp| < |Bp−1−
B̂p−1| in β[m+ b′], which is a contradiction, and the claim is proved.

Now let p−ht(zi)−1 < l′′ ≤ p−1. By Lemma 3.7.7 and definition of pair-
ing, |Bl′′ ∩Cht(zi)| ≥ |Bl′′−1 ∩Cht(zi)| in β[m]. By Claim 3.7.12 for l′′ < p− 1
or Claim 3.7.13 for l′′ = p− 1, we have |Bl′′+1−Cht(zi)| ≥ |Bl′′ −Cht(zi)| and
|Bl′′ −Cht(zi)| ≥ |Bl′′−1−Cht(zi)| in β[m]. After running Procedure 3.6.2, we

compare |Bl′′ | in β[m] with |B@
l′′ | in β@[m] and |Bl′′−1| in β[m] with |B@

l′′−1|
in β@[m]. If |Bl′′−1−Cht(zi)| ≥ ni in β[m], then Procedure 3.6.2 forms β@[m]
by lengthening ni elements of Bl′′+1 − Cht(zi), ni elements of Bl′′ − Cht(zi),

and ni elements of Bl′′−1 − Cht(zi) in β[m], and thus Bl′′ in β[m], B@
l′′ in

β@[m] are equinumerous and Bl′′−1 in β[m], B@
l′′−1 in β@[m] are equinumer-

ous. If |Bl′′−1 − Cht(zi)| < ni in β[m], then Procedure 3.6.2 forms β@[m] by
lengthening a1 elements of Bl′′+1 −Cht(zi), a2 elements of Bl′′ −Cht(zi), and
all elements of Bl′′−1−Cht(zi) in β[m], where a2 ≤ a1. Therefore, in all cases

we have |B@
l′′ | ≥ |B@

l′′−1| in β@[m]. Since m was arbitrary, this completes the

proof that β@ satisfies the Lyndon property for all letters l ≤ p− 1.

Proof of Item 1
We show inductively that l-lanes of β and β@ are identical for all l ≥ p,

by comparing β and β@ one lower subinterval at a time, from left to right. In
this case, given a lower subinterval or a portion of β, it will be obvious what
we mean by the corresponding lower subinterval or corresponding portion of
β@, and vice versa.

Let G1 denote the first lower subinterval of β to be lengthened, and let
g′1 be the lane number of the head p of G1. By definition, the lanes of β@

(G1)+

are identical to those of βG1
. To determine the number of (p − 1)-lanes in

βG1
, we need only determine the number of elements of Bp−1 in βG1

, since
β@
(G1)+

and βG1
are identical, and since βG1

is a (p− 1)-plateau. By Lemma

3.2.4, any lower subinterval of β@
(G1)+

whose entry p has depth one must

have either p or p−1 as head, since β@
(G1)+

is a (p−1)-plateau. Let J denote

the rightmost element of B̂p−1 in βG1
. The entries p − 1, p of J have the

same lane number, by Lemma 3.2.4. All elements of Bp in βG1
right of J

must be elements of Cht(zi) by definition, so they must be paired with the
same number of elements of Bp−1 ∩ Cht(zi) in βG1

(which by definition do
not contain the head of any p-lane). Since βG1

has the same number g′1 − 1
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of elements of Bp−1 as those of Bp, it follows that (G1)+ has entry p − 1
with lane number g′1, so its entry p has lane number g′1 as well.

Let Gd be a lower subinterval of β
@ and let G′

d denote the lower subinter-
val of β corresponding to Gd. For our inductive hypothesis suppose that the
l-lanes of β@

Gd
are identical to those of βG′

d
for all l ≥ p. We show that the ac-

tion of Gd preserves this property; in fact, it suffices to show that entry p has
the same lane number in Gd and G′

d. We treat separately the case that G′
d,

Gd are identical and the case that Gd = (G′
d)+. Recall that both β and β@

contain a copy of Cht(zi), the context will make it clear which copy we refer to.
Consider the case that Gd = (G′

d)+ and minG′
d = p. Let g∗d be the lane

number of the head p of G′
d. Since β

@ satisfies the Lyndon property, β@
Gd

is a

(p−1)∗-plateau by Lemma 3.7.9, so the number of (p−1)-lanes in β@
Gd

is the

number of elements of Bp−1 in β@
Gd

. By Lemma 3.2.4, any lower subinterval

of β@
Gd

whose entry p has depth one must have either p or p−1 as head, since

β@
Gd

is a (p − 1)∗-plateau. Let Jd denote the rightmost element of B̂@
p−1 in

β@
Gd

. The entries p− 1, p of Jd have the same lane number, by Lemma 3.2.4.

All elements of B@
p in β@

Gd
right of Jd must be elements of Cht(zi) by defini-

tion (since they were fixed by Procedure 3.6.2), so they must be paired with
the same number of elements of Bp−1∩Cht(zi) in β@

Gd
(which by definition do

not contain the head of any p-lane). Since β@
Gd

has the same number g∗d−1 of
(p− 1)-lanes as p-lanes, it follows that Gd has entry p− 1 with lane number
g∗d, so its entry p has lane number g∗d as well by the inductive hypothesis.

Consider the case that Gd = (G′
d)+ and minG′

d ≤ p − 1. Let gd be the
lane number of the head of G′

d. Since β@ satisfies the Lyndon property, β@
Gd

is a (p − 1)∗-plateau by Lemma 3.7.9, so the number of (minG′
d − 1)-lanes

in β@
Gd

is the number of elements of BminGd
in β@

Gd
. Similarly, the number

of (minG′
d)-lanes in βG′

d
is the number of elements of BminG′

d
in βG′

d
. The

elements of BminG′
d
−Cht(zi) in βG′

d
are lengthened by Procedure 3.6.2, while

the elements of BminG′
d
∩Cht(zi) in β@

Gd
are paired with the same number of

elements of BminG′
d−1∩Cht(zi) in β@

Gd
by definition. In addition, all elements

of BminG′
d−1 − Cht(zi) in βG′

d
are lengthened by Procedure 3.6.2 by Claim

3.7.12, since |BminG′
d
−Cht(zi)| < ni in βG′

d
. Since β@

Gd
has the same number

gd− 1 of elements of B@
minG′

d−1 as elements of BminG′
d
in βG′

d
, it follows that

Gd has entry minGd = minG′
d− 1 with lane number gd, so its entry minG′

d

has lane number gd as well by the inductive hypothesis.
Consider the case that G′

d, Gd are identical and minGd < p−ht(zi)− 1.
Since Procedure 3.6.2 lengthens no lower subintervals with head smaller than
p− ht(zi), the (minGd)-lanes are identical in β@

Gd
and βG′

d
. Thus, the entry

minGd has the same lane number hd in Gd and G′
d. By Lemma 3.7.9, all
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entries of Gd not exceeding p− 1 have lane number hd, and all entries of G′
d

not exceeding p− 1 have lane number hd. Since the p-lanes are identical in
β@
Gd

and βG′
d
by the inductive hypothesis, entry p has the same lane number

in Gd and G′
d.

Consider the case that G′
d, Gd are identical and minGd ≥ p−ht(zi)− 1.

By the inductive hypothesis, the l-lanes are identical in β@
Gd

and βG′
d
for all

l ≥ p, so we only need to consider the case minGd ≤ p − 1. We now apply
Item 2, with a′ = ht(zi).

If minG′
d = p − 1, then entry p of G′

d must have depth one or two, by
Lemma 3.2.4. Suppose that minG′

d = p−1 and entry p has depth one. Then
G′

d must lie inside β[jp−minG′
d
], and by Item 2 no element of Bp ∪ Bp−1 in

βG′
d
can be lengthened by Procedure 3.6.2, so the entry p− 1 has the same

lane number in Gd and G′
d, and hence the entry p also has the same lane

number in Gd and G′
d by the inductive hypothesis.

Suppose that minG′
d = p − 1 and entry p has depth two. Then βG′

d

must have fewer (p−1)-lanes than p-lanes. By Claim 3.7.13, |Bp−Cht(zi)| ≥
|Bp−1 −Cht(zi)| in βG′

d
. If |Bp−1 −Cht(zi)| ≥ ni in βG′

d
, then Procedure 3.6.2

lengthens ni elements of Bp and ni elements of Bp−1 in βG′
d
, so the number

of (p − 1)-lanes in β@
Gd

equals that of (p − 1)-lanes in βG′
d
and remains less

than that of p-lanes in β@
Gd

, and hence entry p of Gd has depth two. In the

case |Bp−1 − Cht(zi)| < ni in βG′
d
, we must have G′

d ∈ Cht(zi). If G
′
d ∈ B̂p−1,

then no element of Bp in βG′
d
is lengthened, by Item 2, so the number of

(p− 1)-lanes does not increase. Suppose G′
d ∈ (Bp−1 ∩Cht(zi))− B̂p−1. Since

each I ∈ B̂p−1 in βG′
d
contributes a new (p − 1)-lane and a new p-lane, we

can exclude B̂p−1 from consideration. Procedure 3.6.2 fixes the elements of
Cht(zi), and lengthens all elements of Bp−1−Cht(zi) in βG′

d
and some elements

of Bp −Cht(zi) in βG′
d
, and we have |(Bp−1 ∩Cht(zi))− B̂p−1| < |Bp ∩Cht(zi)|

in βG′
d
since G′

d ∈ Cht(zi) lies outside βG′
d
. It follows that the number of

(p−1)-lanes in β@
Gd

is again less than that of p-lanes in β@
Gd

, and hence entry
p of Gd has depth two. Thus, in both cases entry p of Gd has depth two, so
it has the same lane number in Gd and G′

d by the inductive hypothesis.
Suppose minG′

d < p − 1 and all elements of BminG′
d+1 in βG′

d
belong

to Cht(zi). Then all elements of BminG′
d
in βG′

d
must belong to Cht(zi) as

well, by Claim 3.7.12. It follows that no element of BminG′
d+1 in βG′

d
can

be lengthened by Procedure 3.6.2, and no element of BminG′
d
in βG′

d
can be

lengthened by Procedure 3.6.2, so the number of elements of BminG′
d
is the

same in β@
Gd

and βG′
d
. Thus, the entries minG′

d ≤ l ≤ p − 1 have the same
lane number kd in Gd and G′

d by Lemma 3.7.9, so the entry p also has the
same lane number in Gd and G′

d by the inductive hypothesis.
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Suppose minG′
d < p−1 and βG′

d
contains some element H ∈ BminG′

d+1−
Cht(zi). Let H∗ be the element of BminG′

d+1 left of G′
d. By Item 2, H

must lie outside β[jp−(minG′
d+1)] = β[jp−minG′

d−1], so H∗ must lie outside
β[jp−minG′

d−1] as well. Applying the second part of Item 2, we know that all
entries of H∗ not exceeding p have the same lane number d∗, H∗ has entry p
of depth p− (minG′

d+1)+1 = p−minG′
d, and H∗ has entry p−1 of depth

p−minG′
d − 1. By Lemma 3.7.9, all entries of G′

d not exceeding p− 1 have
a common lane number l1, and all entries of Gd not exceeding p− 1 have a
common lane number l2. By Lemma 3.7.7, we have l1 ≤ d∗, so l1 < d∗+1. By
Lemma 3.2.4, inG′

d the depth of entry p exceeds that of entry p−1 by at most
one, meaning that entry p of G′

d has depth at most (p−minG′
d)+1 (since G′

d
has entry p−1 of depth (p−minG′

d−1)+1 = p−minG′
d by Lemma 3.7.9).

By Claim 3.7.12, Procedure 3.6.2 lengthens no fewer elements of BminG′
d+1

than elements of BminG′
d
in βG′

d
. Looking at β@

Gd
, this means that l2 ≥ l1,

and hence the entry p of Gd has depth not exceeding that of the entry p of
G′

d, by the inductive hypothesis. On the other hand, we now show that entry
p of Gd has depth at least p−minG′

d + 1. If |BminG′
d
−Cht(zi)| ≥ ni in βG′

d
,

then Procedure 3.6.2 lengthens ni elements of BminG′
d+1 and ni elements of

BminG′
d
in βG′

d
, so we must have l2 = l1 ≤ d∗. If |BminG′

d
− Cht(zi)| < ni

in βG′
d
, then G′

d ∈ Cht(zi), |(BminG′
d
∩ Cht(zi))| < |BminG′

d+1 ∩ Cht(zi)| in
βG′

d
since G′

d lies outside βG′
d
, and Procedure 3.6.2 lengthens all elements

of BminG′
d
− Cht(zi) in βG′

d
and some elements of BminG′

d+1 − Cht(zi) in βG′
d
,

so we must have l2 − 1 < d∗ as well. Thus, in both cases the entry p of Gd

has depth exceeding p−minG′
d. This shows that entry p has depth exactly

p −minG′
d + 1 in both G′

d and Gd, so its lane number is the same in both
G′

d and Gd by the inductive hypothesis. This completes the proof that the
l-lanes are identical in β and β@ for all l ≥ p.

Since β@ satisfies the Lyndon property, β@ is a (p−1)∗-plateau. We now
show that β@ is indeed obtained from β by lengthening ni (p − 1)-lanes of
length ht(zi). Any initial segment β@[j] contains no fewer lower subintervals
with head l than those with head l−1, for all l ≤ p−1. Notice that, compared
to β, β@ has the same number of elements of Bm for all m > p− ht(zi) and
m < p− ht(zi)− 1, but has ni more elements of Bp−ht(zi)−1 and ni fewer el-

ements of Bp−ht(zi). By Lemma 3.7.9, this shows that β@ corresponds to the
rigged configuration obtained after adding ni noncontributing boxes beneath
zi. It follows that in particular β@ is a (p, ht(zi), r)-plateau.

Proof of Item 2
Finally, we prove that Item 2 holds for β@ for any integer 0 < s′ <

min(ht(zi), r). Since β is a (p− 1)∗-plateau, any lower subinterval contain-
ing the head of some p-lane must have head p or p− 1. By Claim 3.7.13, if
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j@1 ≥ j1 is minimal such that β@[j@1 ] contains all ni added copies of p − 2,
then β@[j@1 ] contains all the lower subintervals with head p − 1 containing
the head of some p-lane, and β@[j@1 ] contains no more lower subintervals
with head p− 1 than lower subintervals with head p− 2; by definition, any
I1 ∈ Bp−1 ∩ Cht(zi) inside β[j@1 ] must be paired with an I2 ∈ Bp−2 ∩ Cht(zi)

after I1 in β[j@1 ], so that β@[j@1 ] contains both I1, I2. By Claim 3.7.12, for all
1 < d ≤ s′, if j@d ≥ max(jd, j

@
d−1) is minimal such that β@[j@d ] contains all ni

added copies of p− d− 1, then β@[j@d ] contains no more lower subintervals
with head p−d than lower subintervals with head p−d−1; by definition, any
J1 ∈ Bp−d ∩Cht(zi) inside β[j@d ] must be paired with a J2 ∈ Bp−d−1 ∩Cht(zi)

after J1 in β[j@d ], so that β@[j@d ] contains both J1, J2.
Let I ′ be an element of B@

p−h outside β@[j@h ], where 1 ≤ h ≤ s′. Denote
by I∗ the lower subinterval of β corresponding to I ′. By definition, Procedure
3.6.2 must have added all ni copies of p− h and all ni copies of p− h− 1 to
β[j@h ], so I ′ must be identical to I∗ (since I ′ was not obtained by lengthening
I∗). Since I∗ must lie outside β[jh], I

∗ has entry p of depth p− (p−h)+1 =
h+1, entry p−1 of depth p−1−(p−h)+1 = h, and one common lane number
i∗ for all entries not exceeding p, by Item 2 for β. As already shown, β@ is a
(p−1)∗-plateau with identical l-lanes to those of β, for all l ≥ p. Since β@[j@h ]
contains the same number of newly added copies of p − h as newly added
copies of p − h − 1, the elements of B@

p−h in β@[j@h ] must be equinumerous

with the elements of Bp−h in β[j@h ], so min I ′ has the same lane number i∗

as min I∗. By Lemma 3.7.9 for β@, all entries of I ′ not exceeding p− 1 have
lane number i∗ and entry p − 1 has depth h. Entry p of I ′ also has lane
number i∗ and has depth h+ 1 because β@

I′ and βI∗ have identical p-lanes.

Lastly, let Ĩ denote the rightmost element of B̂p−1 in β. Let C@
a′′ denote

the set of deleted elements of β@, in the context of applying Procedure 3.6.2
to β@, where the smallest entry to be added to β@ is p− a′′− 1 ≥ p− s′− 1.
By Item 2 for β, no element of Bp left of Ĩ can be lengthened by Procedure
3.6.2. It follows that Procedure 3.6.2 must lengthen the first ni elements
of Bp − Cht(zi) after Ĩ. Therefore, if I ′′ ∈ B@

p−1 contains the head of some

p-lane, then all elements of B@
p in β@

I′′ must be elements of C@
a′′ ; we have

Bp ∩ Cht(zi) ⊂ B@
p ∩ C@

a′′ , because B@
p−a′′−1 ⊂ C@

a′′ , Bp−a′′−1 ∩ Cht(zi) ⊂
B@

p−a′′−1, Bb′′ ∩ Cht(zi) ⊂ B@
b′′ ∩ C@

a′′ for all p − a′′ − 1 < b′′ ≤ p − 1, and

B@
p ⊂ Bp. This completes the proof of Item 2.

3.8. Growth algorithm

Convention 3.8.1. Given any partition ν, we will label its stretches from left
to right by S[ν, 1], S[ν, 2], S[ν, 3], . . .. Let s[ν, i] ∈ N such that the row νs[ν,i]
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contains the stretch S[ν, i]; in other words, the (s[ν, i])th row of ν contains
the ith stretch of ν.

Let R′ = (μ1, μ2, . . . , μn) be a B(∞) rigged configuration of type An.
Here we introduce notations and conventions that will be used in the growth
algorithm.

Recall that μd−1 ⊃ μd. Following Convention 3.6.1, we label the stretches
of μd by S[μd, 1], S[μd, 2], S[μd, 3], . . ., where S[μd, i] is identical to S[μd, i].
By Theorem 3.3.11, μd−1 has at most two rows beneath each stretch S[μd, j],
where the first row consists of noncontributing boxes and contributing boxes,
while the second row can consist of only contributing boxes.

Preliminaries 1: constraints imposed by riggings The following lem-
ma determines how the riggings of μd constrain μd−1. By Theorem 3.2.7, to
determine the riggings of μd it suffices to determine only the riggings of the

rows μ
s[μd,i]
d . If z is a stretch of μj intersecting the mth column ym of μj ,

we say that z spans ym. If y′m is the mth column of any other partition, we
also say that z spans y′m.

Lemma 3.8.2. The rigging r[μd,l] of the row μ
s[μd,l]
d containing S[μd, l] can

be written as

r[μd,l] =

l∑
i=1

−cb[μd, i] + acon[μd, i],

where cb[μd, i] is the number of contributing boxes in S[μd, i], and 0 ≤
acon[μd, i] ≤ |S[μd, i]| is the number of columns of μd−1 spanned by the
stretch S[μd, i] that end in a contributing box.

Proof. Follows from Lemma 3.3.3. To be precise, the rigging of the row

μ
s[μd,l]
d is determined by the number of contributing boxes added to the

first |μs[μd,l]
d | columns of the dth partition and the number of contributing

boxes that will be added to the corresponding columns of the (d − 1)st
partition; the former number corresponds to the sum

∑l
i=1−cb[μd, i], while

the latter number corresponds to the sum
∑l

i=1 acon[μd, i]. The bounds 0 ≤
acon[μd, i] ≤ |S[μd, i]| follow because μd and μd have identical stretches.

Convention 3.8.3. As before, we follow the convention (used in Sage) of
expressing R′ by listing μ1, μ2, . . . , μn from top to bottom, and we refer to
μd−1 as the rigged partition above μd. We will call the aforementioned
positive integer acon[μd, i] the above contribution to S[μd, i] from μd−1,
and we will call cb[μd, i] the contribution number of S[μd, i].
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If given that μd has already been constructed (so in particular all cb[μd, i]

have been fixed), then fixing the riggings of μd is the same as fixing all

acon[μd, i]. Once we fix acon[μd, i] for all i ≤ l, then the number of columns

of μd−1 spanned by S[μd, i] ending in a contributing box is completely de-

termined (and must equal acon[μd, i]), for all i ≤ l. In what follows, we will

always write the rigging of a given row in the form shown in Lemma 3.8.2,

where we have partitioned the rigging r[μd,l] by stretches S[μd, 1], S[μd, 2],

. . ., S[μd, l].

Preliminaries 2: rows allowed beneath a stretch

Lemma 3.8.4. Fix a stretch S[μd, j] of μd. μd−1 has at most two rows η
[μd,j]
1 ,

η
[μd,j]
2 beneath S[μd, j], where 0 ≤ |η[μd,j]

1 | ≤ |S[μd, j]| and 0 ≤ |η[μd,j]
2 | ≤

|η[μd,j]
1 |.

Proof. Immediate from Theorem 3.3.11.

Convention 3.8.5. We will always denote the first row of μd−1 beneath

S[μd, j] by η
[μd,j]
1 , and the second row of μd−1 beneath S[μd, j] by η

[μd,j]
2 .

Lemma 3.8.6. η
[μd,j]
2 consists of |η[μd,j]

2 | = cb2[μd, j] contributing boxes,

while η
[μd,j]
1 consists of ncb[μd, j] noncontributing boxes followed by cb1[μd, j]

contributing boxes, where 0 ≤ ncb[μd, j] ≤ |S[μd, j]|, 0 ≤ cb2[μd, j] ≤
ncb[μd, j], 0 ≤ cb1[μd, j] ≤ |S[μd, j]|−ncb[μd, j], and cb2[μd, j]+cb1[μd, j] =

acon[μd, j].

Proof. We must have cb2[μd, j]+cb1[μd, j] = acon[μd, j] by the definition of

acon[μd, j], because S[μd, j] and S[μd, j] span the same columns. The rest

follow immediately from Theorem 3.3.11.

Convention 3.8.7. We call ncb[μd, j] the noncontribution number be-

neath S[μd, j], cb1[μd, j] the first contribution number beneath S[μd, j],

and cb2[μd, j] the second contribution number beneath S[μd, j].

Convention 3.8.8. After the two new rows η
[μd,j]
1 , η

[μd,j]
2 have been added

beneath S[μd, j], at most three new stretches are formed:

1. η
[μd,j]
2 , which we denote by S2[μd, j]

2. the last |η[μd,j]
1 | − |η[μd,j]

2 | boxes of η[μd,j]
1 , which we denote by S1[μd, j]

3. the last |S[μd, j]|−|η[μd,j]
1 | boxes of S[μd, j], which we denote by S∗[μd, j]

Convention 3.8.9. In the same vein as Convention 3.8.3,
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1. denote by acon2[μd, j] the number of columns of μd−2 spanned by

S2[μd, j] ending in a contributing box

2. denote by acon1[μd, j] the number of columns of μd−2 spanned by

S1[μd, j] ending in a contributing box

3. denote by acon∗[μd, j] the number of columns of μd−2 spanned by

S∗[μd, j] ending in a contributing box

Example 3.8.10. Here we illustrate some of our introduced notations, by

marking certain boxes in tableaux. Suppose that

μd =

and

μd−1 =

∗ ∗ ∗
∗ 1 1

2 .

μd consists of the boxes marked with * in μd−1. η
[μd,2]
1 consists of the boxes

marked with 1 in μd−1. η
[μd,2]
2 consists of the box marked with 2 in μd−1,

which must be a contributing box.

Definition 3.8.11. The inner cover of μd, denoted μ̃d, is the parti-

tion obtained from μd by adding η
[μd,j]
1 beneath S[μd, j] such that |η[μd,j]

1 | =
acon[μd, j] for all j ≥ 2, and adding min(maxrd−1 − max((μd)

t), 1) rows

beneath S[μd, 1] (set η
[μd,1]
1 = ∅ if no rows are allowed).

Definition 3.8.12. The outer cover of μd, denoted μ̂d, is the partition

obtained from μd by adding the rows η
[μd,j]
1 , η

[μd,j]
2 beneath S[μd, j] such that

|η[μd,j]
2 | = acon[μd, j] and |η[μd,j]

1 | = |S[μd, j]| for all j, such that exactly

min(maxrd−1−max((μd)
t), 2) rows are added beneath S[μd, 1] (set η

[μd,1]
2 = ∅

or η
[μd,1]
1 = ∅ if only one or zero rows is allowed, respectively) and exactly

min(|[(μ̂d)
t]|S[μd,1]|| − s[μd, 2], 2) rows are added beneath S[μd, 2].

Example 3.8.13. Suppose that

μd =

with min(maxrd−1 − max((μd)
t), 2) = 0, acon[μd, 1] = 0, acon[μd, 2] = 1,
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acon[μd, 3] = 1. Then we have

μd =

and

μ̃d =

a

a

and

μ̂d =

a a
a

a a ,

where “a” marks the added boxes.

Characterization by growth algorithm

Convention 3.8.14. For any rigged partition ν and any a ∈ N let U[ν, a]
denote the uppermost row of ν with length at most a, and let rν,a denote
the rigging of U[ν, a].

Example 3.8.15. Suppose

ν =

and a = 3. Then U[ν, a] is the second row consisting of two boxes.

Here we give an algorithm for growing all An rigged configurations, which
can be used to check inductively (starting with the last partition and going
backward) whether a given tuple of rigged partitions is a legitimateAn rigged
configuration. Given μd and all acon[μd, i] fixed (equivalently, all riggings
fixed), this algorithm produces μd−1 by utilizing Procedures 3.6.2 and 3.6.8
to add noncontributing boxes and contributing boxes beneath the stretches
of μd, one stretch at a time, from left to right. We will always follow Conven-
tion 3.6.1 on labeling the stretches of μd and the stretches of μd. By combin-
ing Theorem 3.3.11, Lemma 3.3.4, Lemma 3.8.2, and Lemma 3.7.10, we have
our growth algorithm characterizing all An rigged configurations. Below,
we give two versions of this growth algorithm. Version 1 is more explicit
though technical. Version 2 is concise though less explicit regarding riggings.

Theorem 3.8.16 (Version 1). Let Λ = (λ1, λ2, . . . , λn) be a tuple of rigged
partitions. Then Λ is a B(∞) rigged configuration of A-type if and only if Λ
satisfies the following:
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1. λn must consist of a single row with rigging r[λn,1] = −|λn|+acon[λn, 1],

where 0 ≤ acon[λn, 1] ≤ |λn|.
2. In general, given that λn, λn−1, . . . , λn−i have already been determined,

we give the range of possible λn−i−1. Label the stretches of λn−i as

S[λn−i, 1], S[λn−i, 2], . . ., S[λn−i, kn−i] where kn−i ∈ N. Write the rig-

ging of λ
s[λn−i,j]
n−i as r[λn−i,j] =

∑j
m=1−cb[λn−i,m] + acon[λn−i,m].

To begin with, we have λn−i−1 ⊃ λn−i. For j ∈ [kn−i] let Yj :=∑j−1
u=1 |S[λn−i, u]|. If η[λn−i,j]

1 , η
[λn−i,j]
2 exist, then we have |η[λn−i,j]

1 | =
ncb[λn−i, j] + cb1[λn−i, j] and |η[λn−i,j]

2 | = cb2[λn−i, j], where we have

0 ≤ ncb[λn−i, j] ≤ |S[λn−i, j]|, 0 ≤ cb2[λn−i, j] ≤ ncb[λn−i, j], 0 ≤
cb1[λn−i, j] ≤ |S[λn−i, j]|−ncb[λn−i, j], and cb2[λn−i, j]+cb1[λn−i, j] =

acon[λn−i, j]. We determine λn−i−1 by specifying the exact number of

rows allowed beneath S[λn−i, j] and the riggings, for each j ∈ [kn−i].

(a) First define δ(λn−i−1) := maxrn−i−1 − max((λn−i)
t). At most

min(δ(λn−i−1), 2) rows can exist beneath S[λn−i, 1] in λn−i−1.

Any row of length |η[λn−i,1]
2 | has rigging r

[λn−i,1]
2 := cb2[λn−i, 1] +

acon2[λn−i, 1], any row of length |η[λn−i,1]
1 | has rigging r

[λn−i,1]
1 :=

r
[λn−i,1]
2 −cb1[λn−i, 1]+acon1[λn−i, 1], and any row whose length is

|S[λn−i, 1]| has rigging r
[λn−i,1]
∗ := r

[λn−i,1]
1 + acon∗[λn−i, 1], where

0 ≤ acon2[λn−i, 1] ≤ cb2[λn−i, 1], 0 ≤ acon1[λn−i, 1] ≤ |η[λn−i,1]
1 |−

|η[λn−i,1]
2 |, and 0 ≤ acon∗[λn−i, 1] ≤ Υ[λn−i, 1] where

Υ[λn−i, 1] =

{
0 if δ(λn−i−1) = 0

|S[λn−i, 1]| − |η[λn−i,1]
1 | otherwise

(b) Let 2 ≤ m ≤ kn−i. Assume we have already determined the rows

and riggings allowed beneath S[λn−i, l] for all l ≤ m − 1. At

most min(|[(λn−i−1)
t]Ym | − s[λn−i,m], 2) rows can exist beneath

S[λn−i,m]. There are three cases:

i. If |U[λn−i−1, Ym]| < Ym and |η[λn−i,m]
2 | 	= 0, then any row

of length Ym + |η[λn−i,m]
2 | has rigging r

[λn−i,m]
2 := rλn−i−1,Ym −

cb1[λn−i,m− 1]− cb2[λn−i,m] + acon2[λn−i,m] and any row

of length Ym + |η[λn−i,m]
1 | has rigging r

[λn−i,m]
1 := r

[λn−i,m]
2 −

cb1[λn−i,m] + acon1[λn−i,m], where 0 ≤ acon2[λn−i,m] ≤
Ym + |η[λn−i,m]

2 | − |U[λn−i−1, Ym]| and 0 ≤ acon1[λn−i,m] ≤
|η[λn−i,m]

1 | − |η[λn−i,m]
2 |.
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ii. If |U[λn−i−1, Ym]| < Ym and |η[λn−i,m]
2 | = 0, then any row

of length Ym + |η[λn−i,m]
1 | has rigging r

[λn−i,m]
1 := rλn−i−1,Ym −

cb1[λn−i,m] + acon1[λn−i,m], where 0 ≤ acon1[λn−i,m] ≤
Ym + |η[λn−i,m]

1 | − |U[λn−i−1, Ym]|.
iii. Otherwise, any row of length Ym + |η[λn−i,m]

2 | has rigging

r
[λn−i,m]
2 := rλn−i−1,Ym−cb2[λn−i,m]+acon2[λn−i,m] and any

row of length Ym+|η[λn−i,m]
1 | has rigging r[λn−i,m]

1 := r
[λn−i,m]
2 −

cb1[λn−i,m] + acon1[λn−i,m], where 0 ≤ acon2[λn−i,m] ≤
cb2[λn−i,m] and 0 ≤ acon1[λn−i,m] ≤ |η[λn−i,m]

1 |−|η[λn−i,m]
2 |.

In all cases, any row whose length is Ym+ |S[λn−i,m]| has rigging
r
[λn−i,m]
∗ := r

[λn−i,m]
1 +acon∗[λn−i,m], where 0 ≤ acon∗[λn−i,m] ≤

|S[λn−i,m]| − |η[λn−i,m]
1 |.

(c) Finally, we determine the first row λ1
n−i−1 and its rigging.

i. If |η[λn−i,kn−i]
1 | < |S[λn−i, kn−i]| and |λ1

n−i| > |λ2
n−i|, then

|λ1
n−i−1| = |λ2

n−i|+ |η[λn−i,kn−i]
1 |, with rigging r

[λn−i,kn−i]
1 .

ii. Otherwise, we have |λ1
n−i−1| = |λ1

n−i|+cb![λn−i, kn−i], where

cb![λn−i, kn−i] can be any nonnegative integer. Let r(λ2
n−i−1)

denote the rigging of λ2
n−i−1.

A. If |λ1
n−i| = |λ2

n−i|, then λ1
n−i−1 has rigging r

[λn−i,kn−i]
! :=

r(λ2
n−i−1)− cb![λn−i, kn−i] + acon![λn−i, kn−i].

B. If |λ1
n−i| > |λ2

n−i|, then the first row λ1
n−i−1 has rigging

r
[λn−i,kn−i]
! := r(λ2

n−i−1)−cb1[λn−i, kn−i]−cb![λn−i, kn−i]+

acon![λn−i, kn−i].

In both cases 0 ≤ acon![λn−i, kn−i] ≤ |λ1
n−i−1| − |λ2

n−i−1|.
Remark 3.8.17. In short, this theorem states that the full range of boxes
allowed under Theorem 3.3.11 can indeed be added to λn−i to form the
(n− i− 1)st partition, as long as the fixed above contributions acon[·, ·] are
respected; in other words, the constraints imposed by Theorem 3.3.11 are
tight.

Proof. Starting with the empty rigged configuration R∅, the construction of
Λ using Procedures 3.6.2 and 3.6.8 is described item by item as follows.

1. By Lemma 3.7.10, λn can be formed by using Procedure 3.6.8 to add
|λn| contributing boxes to the empty nth partition, and the resulting
(n− 1)st partition is λn = ∅.
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2. The base case of λn justifies the inductive hypothesis that the (n −
i − 1)st partition is λn−i (with riggings of zero) after the partitions
λn, λn−1, . . . , λn−i have been constructed, in that order, by Proce-
dures 3.6.2 and 3.6.8. Lemma 3.7.10 ensures that Procedures 3.6.2 and
3.6.8 can add all the boxes Theorem 3.3.11 allows under S[λn−i, j].
To be precise, Procedure 3.6.2 will be used to add the ncb[λn−i, j]
noncontributing boxes to the first row beneath S[λn−i, j], Procedure
3.6.8 will be used to add the cb1[λn−i, j] contributing boxes after
these ncb[λn−i, j] noncontributing boxes in the same row, and Pro-
cedure 3.6.8 will be used to add the cb2[λn−i, j] contributing boxes
beneath these ncb[λn−i, j] noncontributing boxes. Finally, by Lemma
3.8.2, a total of acon[λn−i, j] contributing boxes must be added be-
neath S[λn−i, j] to account for the positive contribution to S[λn−i, j].
In the cases (a) and (b), Theorem 3.3.11 determines how many rows
can be added beneath S[λn−i, j] and how many contributing boxes
can be added beneath the corresponding stretch of the (n − i − 2)nd
partition.

(a) We prove that min(δ(λn−i−1), 2) rows can indeed be added be-
neath S[λn−i, 1]. Notice that, for either of the Procedures 3.6.2
and 3.6.8 to work, we must (using the notation from the state-
ments of these two procedures) have p− ht(z1)− 1 ≥ 1 or equiv-
alently (p − 1) − ht(z1) > 0. Indeed, by Lemma 3.7.9, min((p −
1) − ht(z1), 2) is the number of rows that can be added beneath
the first stretch by Procedures 3.6.2 and 3.6.8.

By Theorem 3.3.11, at most min(δ(λn−i−1), 2) rows can exist be-
neath S[λn−i, 1] in λn−i−1. To prove the converse, let Hl ≤ maxrl
denote the number of rows in λl. Then λn−i has Hn−i−1 = Hn−i−
1 ≤ maxrn−i − 1 rows. By above, min(n − i − 1 − Hn−i−1, 2) =
min(n− i−Hn−i, 2) is exactly the number of rows allowed to be
added beneath S[λn−i, 1] by Procedures 3.6.2 and 3.6.8. Consider
the cases n− i− 1 > n+1

2 and n− i− 1 ≤ n+1
2 . If n− i− 1 ≤ n+1

2 ,
then δ(λn−i−1) = n− i−1−Hn−i−1 since maxrn−i−1 = n− i−1.
Suppose n − i − 1 > n+1

2 . Then n − i − 1 − Hn−i−1 ≥ n −
i − 1 − (maxrn−i − 1) = n − i − 1 − (n − (n − i) + 1 − 1) =
n− i−1− i = n−2i−1 ≥ 2 by Lemma 3.3.5, since i < n−3

2 . Also,
δ(λn−i−1) = maxrn−i−1−Hn−i−1 = n−(n−i−1)+1−Hn−i−1 =
i+ 3−Hn−i ≥ i+ 3−maxrn−i = i+ 3− (i+ 1) = 2 by Lemma
3.3.5. It follows that min(δ(λn−i−1), 2) = 2 = min(n−i−Hn−i, 2)
as well. Thus, in both cases min(δ(λn−i−1), 2) rows can indeed be
added beneath S[λn−i, 1].
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The proof for the rigging formulas is straightforward but techni-
cal. The Examples 3.8.20, 3.8.21, 3.8.22 are more illustrative.

(b) The proof is straightforward but technical. The Examples 3.8.20,
3.8.21, 3.8.22 are more illustrative.

(c) The proof is straightforward but technical. The Examples 3.8.20,
3.8.21, 3.8.22 are more illustrative.

Finally, this procedure can be repeated to determine λn−i−2, because
we have already determined the range for the above contribution to
each stretch of λn−i−1; to repeat this procedure, just fix a number in
each range.

Theorem 3.8.18 (Version 2). Let Λ = (λ1, λ2, . . . , λn) be a tuple of rigged
partitions. Then Λ is a B(∞) rigged configuration of A-type if and only if Λ
satisfies the following:

1. λn must consist of a single row with rigging r[λn,1] = −|λn|+acon[λn, 1],
where 0 ≤ acon[λn, 1] ≤ |λn|.

2. In general, given that λn, λn−1, . . . , λn−i have already been determined,
we give the range of possible λn−i−1. Label the stretches of λn−i as
S[λn−i, 1], S[λn−i, 2], . . ., S[λn−i, kn−i] where kn−i ∈ N. Write the rig-

ging of λ
s[λn−i,j]
n−i as r[λn−i,j] =

∑j
m=1−cb[λn−i,m] + acon[λn−i,m].

λn−i−1 is any partition satisfying λ̃n−i ⊂ λn−i−1 ⊂ λ̂n−i
′
, where λ̂n−i

′

is a partition obtained by adding any nonnegative number of boxes to
the first row of λ̂ni.
After the shape of λn−i−1 has been determined, the number of con-
tributing boxes in each stretch of λn−i−1 can be determined as follows.

Fix any stretch S[λn−i, j] of λn−i in λn−i−1. If η
[λn−i,j]
1 , η

[λn−i,j]
2 exist,

then η
[λn−i,j]
1 consists of ncb[λn−i, j] noncontributing boxes followed by

cb1[λn−i, j] contributing boxes, and η
[λn−i,j]
2 consists of cb2[λn−i, j] con-

tributing boxes, where 0 ≤ ncb[λn−i, j] ≤ |S[λn−i, j]|, 0 ≤ cb2[λn−i, j] ≤
ncb[λn−i, j], 0 ≤ cb1[λn−i, j] ≤ |S[λn−i, j]|−ncb[λn−i, j], and as always
cb2[λn−i, j] + cb1[λn−i, j] = acon[λn−i, j]. We have |λ1

n−i−1| > |λ1
n−i|

if and only if |λ1
n−i| = |λ2

n−i| or |η
[λn−i,kn−i]
1 | = |S[λn−i, kn−i]|, in which

case all boxes in λ1
n−i−1 after S[λn−i, kn−i] are contributing boxes.

Lastly, for any stretch S[λn−i−1, l] of λn−i−1, the above contribution
acon[λn−i−1, l] has range 0 ≤ acon[λn−i−1, l] ≤ |S[λn−i−1, l]|.

Remark 3.8.19. Note that, using this theorem and Lemma 3.8.2, the range
of rigging of any row of λn−i−1 is completely determined once the number
of contributing boxes in each stretch of λn−i−1 has been determined.
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We now look at some examples of obtaining λn−i−1 given predetermined

λn, λn−1, . . . , λn−i. In the Young diagrams, we will mark each added con-

tributing box with a “c” and each noncontributing box with an “n”.

Example 3.8.20. Suppose that

λn−i =

where min(maxrn−i−1−max((λn−i)
t), 2) = 1, acon[λn−i, 1] = 0, acon[λn−i, 2]

= 2, acon[λn−i, 3] = 1, and acon[λn−i, 4] = 1 have been determined. We have

λn−i = .

λn−i−1 is any partition such that λ̃n−i ⊂ λn−i−1 ⊂ λ̂n−i
′
, where

λ̃n−i =

c

c

c c

and

λ̂n−i =

n n
c

n n
c

n n
c c

n .

Recall that λ̂n−i
′
is obtained from λ̂n−i by adding any number of contribut-

ing boxes to the first row of λ̂n−i. One possibility for λn−i−1 is

λn−i−1 =

n c c c c c

n n
c

n c
c
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whose riggings are given by r[λn−i−1,1] = −1 + acon[λn−i−1, 1], r
[λn−i−1,2] =

r[λn−i−1,1] − 1 + acon[λn−i−1, 2], r
[λn−i−1,3] = r[λn−i−1,2] − 1 + acon[λn−i−1, 3],

r[λn−i−1,4] = r[λn−i−1,3] + acon[λn−i−1, 4], and r[λn−i−1,5] = r[λn−i−1,4] − 5 +
acon[λn−i−1, 5], where 0 ≤ acon[λn−i−1, 1] ≤ 2, 0 ≤ acon[λn−i−1, 2] ≤ 1, 0 ≤
acon[λn−i−1, 3] ≤ 1, 0 ≤ acon[λn−i−1, 4] ≤ 1, and 0 ≤ acon[λn−i−1, 5] ≤ 6.

Example 3.8.21. In Example 3.8.20, another possibility for λn−i−1 is

λn−i−1 =

n
c

n c

c c

n

whose riggings are r[λn−i−1,1] = acon[λn−i−1, 1], r
[λn−i−1,2] = r[λn−i−1,1] − 2 +

acon[λn−i−1, 2], r
[λn−i−1,3] = r[λn−i−1,2]− 1+acon[λn−i−1, 3], and r[λn−i−1,4] =

r[λn−i−1,3] − 1 + acon[λn−i−1, 4], where we have 0 ≤ acon[λn−i−1, 1] ≤ 1, 0 ≤
acon[λn−i−1, 2] ≤ 2, 0 ≤ acon[λn−i−1, 3] ≤ 2, and 0 ≤ acon[λn−i−1, 4] ≤ 1.
Note that no contributing boxes can be added to the first row of λn−i−1

in this case, due to the predetermined restriction acon[λn−i, 4] = 1; adding
more contributing boxes would result in acon[λn−i, 4] = 2, which violates
the restriction.

Example 3.8.22. Let

λn =

with rigging −3 + acon[λn, 1], and fix acon[λn, 1] = 2. Then λn is an empty
row of length 3. One possible choice of λn−1 is

λn−1 =
n n n c c
c c ,

where the bottom row has rigging −2 + acon[λn−1, 1] and the top row has
rigging −4 + acon[λn−1, 1] + acon[λn−1, 2].

Suppose we now fix acon[λn−1, 1] = 2 and acon[λn−1, 2] = 2. Then one
possible choice for λn−2 is

λn−2 =

n n c c
n n c
c c

where the third row has rigging −2 + acon[λn−2, 1], second row has rig-
ging −3 + acon[λn−2, 1] + acon[λn−2, 2], and first row has rigging −5 +
acon[λn−2, 1] + acon[λn−2, 2] + acon[λn−2, 3]. Here 0 ≤ acon[λn−2, 1] ≤ 2,
0 ≤ acon[λn−2, 2] ≤ 1, and 0 ≤ acon[λn−2, 3] ≤ 3.
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3.9. Determining the cascading sequence of a rigged
configuration

Based on Theorem 3.8.16, we now give the algorithm for determining the
cascading sequence of a rigged configuration. Assume Λ = (λ1, λ2, . . . , λn)
is a B(∞) rigged configuration of A-type.

Theorem 3.9.1. The following algorithm constructs the cascading sequence
α corresponding to Λ:

1. Start with the empty string α0. Add |λn| copies of lower subintervals
(n) to α0, obtaining α1, which accounts for λn.

2. In general, suppose that we have constructed the cascading sequence αi

which accounts for λn, λn−1, . . . , λn−i. We want to construct αi+1 that
accounts for λn, λn−1, . . ., λn−i, λn−i−1.
Label the stretches of λn−i by S[λn−i, 1], S[λn−i, 2], . . ., S[λn−i, kn−i]

where kn−i ∈ N. Write the rigging of λ
s[λn−i,j]
n−i as

r[λn−i,j] =

j∑
m=1

−cb[λn−i,m] + acon[λn−i,m].

Let S′[λn−i, 1], S
′[λn−i, 2], . . ., S

′[λn−i, kn−i] denote the stretches of the
copy of λn−i sitting inside λn−i−1.

(a) For m = 1, 2, . . . , kn−i, let lm denote the number of boxes in the
second row beneath S′[λn−i,m] and let lm ≤ um ≤ |S′[λn−i,m]|
denote the number of boxes in the first row beneath S′[λn−i,m].
For m ranging through 1, 2, . . . , kn−i in that order, first apply
Procedure 3.6.2 to add lm + um − acon[λn−i,m] noncontribut-
ing boxes beneath S[λn−i,m], then apply Procedure 3.6.8 to add
lm contributing boxes beneath these added noncontributing boxes,
and finally apply Procedure 3.6.8 to add acon[λn−i,m]− lm con-
tributing boxes to the first row beneath S[λn−i,m], updating the
cascading sequence (starting from αi) with each application of
each procedure.

(b) Suppose we have added all the boxes required beneath the stretches
of λn−i. Let g denote the resulting first row. Apply Procedure
3.6.8 to add |λ1

n−i−1| − |g| contributing boxes to g, updating the
cascading sequence. This completes the construction of λn−i−1,
and the resulting cascading sequence is the desired αi+1.
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Proof. By assumption, Λ is a legitimate rigged configuration. This algorithm
works by comparing Λ with the rigged configuration corresponding to the
cascading sequence constructed so far, seeing what boxes need to be added
to construct the next partition of Λ, and then applying Procedure 3.6.2 and
Procedure 3.6.8 to add the boxes required. The full proof is similar to that
of Theorem 3.8.16, and is a matter of bookkeeping.

Now let us look at some examples of how to obtain the cascading se-
quence given a rigged configuration using the algorithm described above.

Example 3.9.2. Consider the following rigged configuration R= (ν1, ν2, . . .,
ν10) (in top-bottom order) of type A10 where νi is the ith rigged partition
whose jth row has rigging rigji :

∅
∅
∅
∅

0 0

−1 0
0 0

−2 0
−3 0

0

−5 −4
−4

−3 −3

1 1
0 0

−1 −1

From the viewpoint of its cascading sequence, R is constructed (by the
growth algorithm) in the following process (where newly added letters or
lower subintervals at each stage are marked with a prime (′)):

(10′)(10′)(10′)(10′) → 1© (9′, 10)(9′, 10)(9′, 10)(9′, 10)
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→ 2© (9, 10)(9, 10)(9, 10)(9, 10)(8, 9)′(8, 9)′(8, 9)′

→ 3© (8′, 9, 10)(8′, 9, 10)(8′, 9, 10)(9, 10)(7′, 8, 9)(7′, 8, 9)

(7′, 8, 9)

→ 4© (8, 9, 10)(8, 9, 10)(8, 9, 10)(9, 10)(7, 8, 9)(7, 8, 9)

(7, 8, 9)(6, 7, 8)′(6, 7, 8)′(6, 7, 8)′

→ 5© (8, 9, 10)(8, 9, 10)(8, 9, 10)(8′, 9, 10)(7, 8, 9)(7, 8, 9)

(7, 8, 9)(6, 7, 8)(6, 7, 8)(6, 7, 8)

→ 6© (8, 9, 10)(8, 9, 10)(8, 9, 10)(8, 9, 10)(7, 8, 9)(7, 8, 9)

(7, 8, 9)(6, 7, 8)(6, 7, 8)(6, 7, 8)(7, 8)′

→ 7© (7′, 8, 9, 10)(7′, 8, 9, 10)(7′, 8, 9, 10)(8, 9, 10)

(6′, 7, 8, 9)(6′, 7, 8, 9)(6′, 7, 8, 9)(5′, 6, 7, 8)(5′, 6, 7, 8)

(5′, 6, 7, 8)(7, 8)

→ 8© (7, 8, 9, 10)(7, 8, 9, 10)(7, 8, 9, 10)(8, 9, 10)(6, 7, 8, 9)

(6, 7, 8, 9)(6, 7, 8, 9)(5, 6, 7, 8)(5, 6, 7, 8)(5, 6, 7, 8)

(6′, 7, 8)

Explanation of the above process: We started out by adding four 10-

boxes, which completes Partition 10. Since rig110 = −1 = −4 + 3, we first

added four noncontributing 9-boxes in 1©, and then added three contributing

9-boxes in 2© beneath these noncontributing boxes, which completes Parti-

tion 9 and adds three noncontributing 8-boxes. Since rig29 = 0 = −3+3 and

rig19 = 1 = −3 + 4, we first added three noncontributing 8-boxes beneath

the first row in 3© (along with three noncontributing 7-boxes), and then

added three contributing 8-boxes beneath the second row in 4© (along with

three noncontributing 7-boxes and three noncontributing 6-boxes), and then

added one noncontributing 8-box to the first row in 5©, and then added one

contributing 8-box beneath the first row in 6© (along with one noncontribut-

ing 7-box to the first row). This completes Partition 8. Now, Partitions 5-7 all

have zero riggings, while the remaining partitions are empty. To complete

Partition 7, we added three noncontributing 7-boxes beneath the second

row in 7© (along with three noncontributing 6-boxes to the second row and

three noncontributing 5-boxes to the first row). Finally, we added one non-

contributing 6-box to the first row in 8© to complete Partition 6. This gives

us the desired rigged configuration.
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Example 3.9.3. Consider the following A10 rigged configuration S = (ν1, ν2,

. . . , ν10) (in top-bottom order) where νi is the ith rigged partition whose jth

row has rigging rigji :

∅
∅
∅
∅

0 0

−1 0
−1 0

−2 0
0

−2 0

−5 −4
−4

−4 −3

1 1
0 0

−1 −1

From the viewpoint of cascading sequences, S is constructed in the fol-

lowing process:

(10′)(10′)(10′)(10′) → 1© (9′, 10)(9′, 10)(9′, 10)(9′, 10)

→ 2© (9, 10)(9, 10)(9, 10)(9, 10)(8, 9)′(8, 9)′(8, 9)′

→ 3© (8′, 9, 10)(8′, 9, 10)(8′, 9, 10)(9, 10)(7′, 8, 9)(7′, 8, 9)

(7′, 8, 9)

→ 4© (8, 9, 10)(8, 9, 10)(8, 9, 10)(9, 10)(7, 8, 9)(7, 8, 9)

(7, 8, 9)(6, 7, 8)′(6, 7, 8)′(6, 7, 8)′

→ 5© (8, 9, 10)(8, 9, 10)(8, 9, 10)(8′, 9, 10)(7, 8, 9)(7, 8, 9)
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(7, 8, 9)(6, 7, 8)(6, 7, 8)(6, 7, 8)

→ 6© (8, 9, 10)(8, 9, 10)(8, 9, 10)(8, 9, 10)(7, 8, 9)(7, 8, 9)

(7, 8, 9)(6, 7, 8)(6, 7, 8)(6, 7, 8)(7, 8)′

→ 7© (7′, 8, 9, 10)(7′, 8, 9, 10)(8, 9, 10)(8, 9, 10)(6′, 7, 8, 9)

(6′, 7, 8, 9)(7, 8, 9)(5′, 6, 7, 8)(5′, 6, 7, 8)(6, 7, 8)(7, 8)

→ 8© (7, 8, 9, 10)(7, 8, 9, 10)(7′, 8, 9, 10)(8, 9, 10)(6, 7, 8, 9)

(6, 7, 8, 9)(7, 8, 9)(5, 6, 7, 8)(5, 6, 7, 8)(6, 7, 8)(6′, 7, 8)

→ 9© (6′, 7, 8, 9, 10)(7, 8, 9, 10)(7, 8, 9, 10)(8, 9, 10)

(6, 7, 8, 9)(6, 7, 8, 9)(7, 8, 9)(5, 6, 7, 8)(5, 6, 7, 8)

(5′, 6, 7, 8)(6, 7, 8)

Explanation of the above process:

We started out by adding four 10-boxes, which completes Partition 10.

Since rig110 = −1 = −4 + 3, we first added four noncontributing 9-boxes in
1©, and then added three contributing 9-boxes in 2© beneath these noncon-

tributing boxes, which completes Partition 9 and adds three noncontributing

8-boxes. Since rig29 = 0 = −3 + 3 and rig19 = 1 = −3 + 4, we first added

three noncontributing 8-boxes beneath the first row in 3© (along with three

noncontributing 7-boxes), and then added three contributing 8-boxes be-

neath the second row in 4© (along with three noncontributing 7-boxes and

three noncontributing 6-boxes), and then added one noncontributing 8-box

to the first row in 5©, and then added one contributing 8-box beneath the

first row in 6© (along with one noncontributing 7-box to the first row). This

completes Partition 8. Since rig38 = −3 + 0 and rig18 = rig28 = −4 + 0, there

are no contributing 7-boxes to add. In 7©, we added two noncontributing

7-boxes to the third row. In 8©, we added a noncontributing 7-box to the

second row. In 9©, we added a noncontributing 6-box to the second row.

This completes Partition 6, and yields the desired rigged configuration.

4. Further discussions

One can try to characterize B(∞) rigged configurations in the types B, C,D,

G, by modifying or extending the methods used in this paper. One can also

try to find a non-recursive characterization of B(∞) rigged configurations,

which describes the ith rigged partition without reference to the (i + 1)st

partition.
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