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A non-backtracking Pólya’s theorem

Mark Kempton
∗

Pólya’s random walk theorem (or recurrence theorem) states that
a random walk on a d-dimensional grid is recurrent for d = 1, 2 and
transient for d ≥ 3. We prove a version of Pólya’s random walk the-
orem for non-backtracking random walks. Namely, we prove that a
non-backtracking random walk on a d-dimensional grid is recurrent
for d = 2 and transient for d = 1, d ≥ 3. Along the way, we prove
several useful general facts about non-backtracking random walks
on graphs. In addition, our proof includes an exact enumeration of
the number of closed non-backtracking random walks on an infinite
2-dimensional grid. This enumeration suggests an interesting com-
binatorial link between non-backtracking random walks on grids,
and trinomial coefficients.

1. Introduction

Pólya’s celebrated random walk theorem, first proven by Goerge Pólya in
1921 in [14], characterizes the behavior of random walks on infinite grids of
all dimensions. We say that a random walk on an infinite graph is recurrent
if the random walk is guaranteed (with probability 1) to return to its starting
point, and is called transient if there is a positive probability that the random
walk never returns to its starting point.

Pólya’s Theorem. A simple random walk on the infinite grid Z
d is recur-

rent for d = 1, 2 and transient for d ≥ 3.

Since Pólya’s paper in 1921, this theorem has become a standard exam-
ple in probability theory and has motivated considerable work in random
walks, including numerous generalizations and variations. See in particular
[12] and [15].

Our goal is to prove an analogous result for non-backtracking random
walks, which are random walks with the extra condition that they are not
permitted to return to the vertex from the immediately previous step (see
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Section 2 for more precise definitions of random walks and non-backtracking
random walks). Extensive research has been done recently in the study of
non-backtracking random walks. The convergence and mixing rate of non-
backtracking random walks are studied in [1, 4, 8] and [9]. The distribution
of the number of visits of a random walk to a vertex is studied in [2], and [3]
studies non-backtracking random walks on the universal cover of a graph. In
[10], non-backtracking random walks are used to study spectral clustering
algorithms. A non-backtracking random walk on a graph is not a Markov
chain when the state space is taken to be the vertex set of the graph, but
can be turned into a Markov chain by thinking of the walk as moving along
directed edges of the graph. In particular, [3, 9] and [10] take this approach.

The main result of this paper is to characterize recurrence and transience
of non-backtracking random walks on infinite grids of all dimensions (i.e.,
the non-backtracking version of Pólya’s theorem). Our result is as follows.

Theorem 1 (Non-backtracking Pólya’s theorem). A non-backtracking ran-
dom walk on the infinite grid Z

d is recurrent for d = 2 and transient for
d = 1 and d ≥ 3.

Our proof involves two main sections: proving transience for d ≥ 3 and
proving recurrence for d = 2. We remark that for the case d = 1, it is trivial
to see that a non-backtracking random walk is transient, since, after the first
step, the walk is forced into a single direction.

For d ≥ 3, we are able to compare the probability of a non-backtracking
walk returning to its starting point with the probability of a simple random
walk returning to its starting point, which will give transience. Along the
way, we record several general facts about non-backtracking random walks
that may be useful for future work in studying this topic. In particular,
Lemmas 2.2, 3.1, and 3.2, as well as equation (1) are likely to be of general
interest to anyone wishing to study non-backtracking random walks.

For d = 2, the situation is more complicated, and we produce an exact
expression for the number of closed non-backtracking random walks of a
given length, and analyze this expression. In doing this, we discover an in-
teresting combinatorial connection between non-backtracking random walks
in the 2-d grid, and central trinomial coefficients.

The remainder of this paper is organized as follows. In Section 2, we
will give background on Pólya’s theorem and aspects of its proof that will
be useful to us later, as well as background on non-backtracking random
walks, including some facts of general interest about them. Section 3 will
develop some general techniques for non-backtracking random walks on reg-
ular graphs, from which we will be able to deduce the main result for d ≥ 3
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via comparison with simple random walks. Finally, in Section 4, we will
finish the proof of Theorem 1 by covering the d = 2 case.

2. Preliminaries

Let G be a graph. A random walk on G of length k is a sequence of ver-
tices (v0, v1, ..., vk) in which the vertex vi+1 is chosen uniformly at random
from among the neighbors of vi. We will use the terminology simple random
walk to specify the usual, unrestricted random walk (as opposed to a non-
backtracking random walk). See [11] for a good introduction to the theory
of random walks on graphs.

2.1. Pólya’s theorem

Suppose G is a graph with infinitely many vertices. Consider a random
walk on G starting at some initial vertex v0. The random walk on G is
called recurrent if the probability that the walk eventually returns to v0 is
1. If this probability is less than one, the random walk is called transient.
As mentioned, Pólya’s Theorem says that a simple random walk on Z

d is
transient for d ≥ 3 and recurrent for d = 1, 2.

Pólya’s Theorem is well known, and numerous proofs exist in the lit-
erature. For instance, [14] has the original proof by Pólya, various proofs
coming from the theory of electrical networks and random walks can be
found in [5, 6, 18], and [13] has a proof involving methods from special func-
tion theory. In this section, we will sketch some the ideas of a classical proof
of Pólya’s Theorem based on enumerating walks on the grid. We mention
this proof here because some of the ideas therein will be useful to us later on.

Let p(k) denote the probability that a random walk returns to its starting
vertex after k steps. The key to the proof of Pólya’s Theorem is the following
lemma, which is well-known (see [16], for example).

Lemma 2.1. If the sum
∞∑
k=0

p(k)

is convergent, then the random walk is transient. Otherwise, it is recurrent.

This lemma is a version of the Borel–Cantelli lemma. The intuition be-
hind this lemma is that

∑
k p(k) represents the expected number of times a

random walk returns to the origin. If this is infinite, then the expected num-
ber of returns is infinite, which means that at any given time, the random
walk is guaranteed to return; if it is finite, then we expect only finitely many
returns, so that it is possible that at some point it never returns. Hence a
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divergent series corresponds to a recurrent random walk, and a convergent
series to a transient random walk. Therefore, to prove recurrence or tran-
sience, one approach is to enumerate the total number of walks of length
k on the graph, and enumerate the total number of walks of length k that
return to the initial vertex at step k, then from this obtain the probability
p(k), and analyze the series.

For d = 1, it is not hard to see that there are
(
2n
n

)
closed walks of length

2n on Z, choosing n steps in one direction, the other n being fixed in the
other direction. There are 22n total walks of length 2n, so that

p(2n) =
1

22n

(
2n

n

)
.

(Note that it is clear that p(2n + 1) = 0.) Using Stirling’s formula, we can
see that p(2n) ∼ 1√

πn
, so the series from Lemma 2.1 is divergent, and thus

the random walk is recurrent.
For d = 2, in a similar manner we have

p(2n) =
1

42n

n∑
k=0

(2n)!

k!k!(n− k)!(n− k)!
=

1

42n

(
2n

n

) n∑
k=0

(
n

k

)2

=
1

42n

(
2n

n

)2

using the basic combinatorial fact that
∑

k

(
n
k

)2
=

(
2n
n

)
. Again, Stirling’s

formula gives p(2n) ∼ 1
πn so the series from Lemma 2.1 diverges, and the

random walk is recurrent.
For d ≥ 3, similar combinatorial formulas can be obtained, and more

involved manipulation of these shows that

p(2n) ∼ c

(πn)d/2
.

Therefore, for d ≥ 3 the series from Lemma 2.1 is convergent, so the walk
is transient. The details will not be needed here, but can be found in many
probability texts (see [7, 16] for example).

2.2. Non-backtracking random walks

A non-backtracking random walk on a graph G is a sequence of vertices
(v0, v1, ...vk) such that vi+1 is chosen randomly among the neighbors of vi
such that vi+1 �= vi−1.

Define the matrix Ã(k) = Ã(k)(G) by setting Ã(k)(u, v) to be the number
of non-backtracking walks of length k from vertex u to vertex v. Let A de-
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note the adjacency matrix of G. It is well-known that the entries of Ak count

walks on a graph, and similarly, the entries of Ã(k) count non-backtracking

walks on the graph. Let D be the degree matrix of G, that is, D is diago-

nal with D(v, v) = dv for each vertex v of G. In [1], a recurrence is given
for Ã(k) for the case of regular graphs. Here we generalize it for arbitrary

graphs.

Lemma 2.2. The matrices Ã(k) satisfy the recurrence

⎧⎪⎪⎨
⎪⎪⎩
Ã(1) = A

Ã(2) = A2 −D

Ã(k+2) = AÃ(k+1) − (D − I)Ã(k)

Proof. Since the non-backtracking condition puts no restriction on the first
step, it is clear that Ã(1) = A. For Ã(2), note that A2 counts all walks of

length 2, so we must simply subtract those that backtrack. The only walks

of length 2 that backtrack are those that move from a vetex to a neighbor,

then return immediately. For a vertex x, there are clearly dx such walks, so

this is what must be subtracted from the diagonal.

For ease of notation, we will use the symbol Ã
(k)
x (u, v) to denote the

number of non-backtracking walks of length k starting at vertex u and ending

at vertex v that pass through vertex x at step k− 1. To obtain Ã(k+2)(u, v),

we add the number of non-backtracking walks of length k+1 from u to each

neighbor of v, and then subtract those that backtracked, that is, those that

visited v at step k. More specifically,

Ã(k+2)(u, v) =
∑
x∼v

(
Ã(k+1)(u, x)− Ã(k+1)

v (u, x)
)

=
∑
x∼v

(
Ã(k+1)(u, x)−

(
Ã(k)(u, v)− Ã(k)

x (u, v)
))

=
[
A · Ã(k+1)

]
(u, v)− dv · Ã(k)(u, v) + Ã(k)(u, v).

It follows that

Ã(k+2) = AÃ(k+1) − (D − I)Ã(k)

as claimed.

For convenience we will define Ã(0) = I. Define the matrix-valued gen-

erating function
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F (x) =

∞∑
k=0

Ã(k)xk,

then from Lemma 2.2 we can determine the generating function

(1) F (x) = (1− x2)
(
I − xA+ x2(D − I)

)−1
.

3. Transience for d ≥ 3

3.1. Regular graphs

In this section, we will assume G is a regular graph, with constant degree
that we will call r. Note that for the infinite grid Z

d, we have r = 2d. We
will start with some general results on non-backtracking random walks for
any regular graphs, and then we will apply these to grids in view of proving
Theorem 1.

Lemma 3.1. For G an r-regular graph with r ≥ 2, then using notation from
the previous section, we can express the number of non-backtracking random
walks on G starting from u and ending at v of length n as

Ã(n)(u, v) =

�n/2�∑
i=0

(−1)i
(
n− i

i

)
(r − 1)iAn−2i(u, v)

−
�n/2−1�∑

i=0

(−1)i
(
n− i− 2

i

)
(r − 1)iAn−2i−2(u, v).

Proof. From (1), we can expand the expression as a geometric sum to obtain

F (x) = (1− x2)

∞∑
k=0

(A− (D − I)x)k xk.

Now, we are assuming G is r-regular, so D− I = (r−1)I, and the above
can be further expanded, yielding

F (x) = (1− x2)

∞∑
k=0

k∑
i=0

(−1)i
(
k

i

)
(r − 1)iAk−ixk+i.

Recalling that F (x) =
∑

Ã(n)xn, a general formula for Ã(n) can be obtained
by extracting the xn coefficient.
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Ã(n) = [xn]F (x) =

�n/2�∑
i=0

(−1)i
(
n− i

i

)
(r − 1)iAn−2i

−
�n/2−1�∑

i=0

(−1)i
(
n− i− 2

i

)
(r − 1)iAn−2i−2.

Taking the u, v entry of the matrix gives the statement of the lemma.

We remark that the expression An(u, v) is simply the total number of
walks of length n from u to v, so we have expressed the number of non-
backtracking walks in terms of the total number of simple walks.

For r-regular graphs, it will be useful to work directly with the transition
probability matrix. Denote P = D−1A, which is the transition probability
matrix for a simple random walk on G, so that P k(u, v) is the probability
that a simple random walk starting a vertex u ends at vertex v after k
steps. Similarly, we will let P̃ (k) denote the transition probability matrix for
a non-backtracking random walk on G. That is, P̃ (k)(u, v) is the probability
that a non-backtracking random walk starting at u will be at v after k
steps. Observe that, because of the non-backtracking condition, it is not the
case that P̃ (k) is simply the kth power of P̃ (1). Indeed, a non-backtracking
random walk, viewed on the vertices, is not a Markov chain since at each
step we must remember the step taken previously. We will let P̃ (0) = I, and
observe that P̃ (1) = P since the non-backtracking restriction does not apply
to the first step. Then it is straightforward to adapt Lemma 2.2 to obtain a
recurrence relation for P̃ (k), namely⎧⎪⎨

⎪⎩
P̃ (0) = I

P̃ (1) = P

P̃ (k+2) = r
r−1PP̃ (k+1) − 1

r−1 P̃
(k) k ≥ 2.

As a side note, we remark that, although a non-backtracking random
walk on the vertex set of a graph is not a Markov chain (as noted above),
it is possible to turn a non-backtracking random walk into a Markov chain
by changing the state space to the set of directed edges of the graph (one
directed edge in each direction for each edge of the graph), thus viewing the
walk as moving along these directed edges. The current paper will not need
this technique, as the Markov property will not be important in what we do.
We refer the reader to [9] for a thorough exposition of this point of view.

In order to understand the matrix P̃ (k) via the above recurrence, we will
study the polynomials that are defined by the same recurrence. That is, let us
define the polynomials ρr,k(x) = ρk(x) according to the recurrence relation
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⎧⎪⎨
⎪⎩
ρ0(x) = 1

ρ1(x) = x

ρk+2(x) =
r

r−1xρk+1(x)− 1
r−1ρk(x) k ≥ 2

and observe that P̃ (k) = ρk(P ), the polynomial evaluated at the matrix P . It
follows therefore that if λ is an eigenvalue of P , then ρk(λ) is an eigenvalue
of P̃ (k).

As a side note, we observe that for r = 2, the ρk’s become the well-
known Chebyshev polynomials of the first kind. Thus we may view these
polynomials as a sort of generalized Chebyshev polynomial.

Lemma 3.2. Let λ be an eigenvalue of P . Then ρk(λ) is an eigenvalue of
P̃ (k) and satisfies

|ρk(λ)| ≤ |λ|k for |λ| > 2
√
r − 1

r

|ρk(λ)| ≤ Crk

(
1√
r − 1

)k

for |λ| ≤ 2
√
r − 1

r

for r ≥ 2, and for all k, where Cr is a constant depending only on r (not on
λ or k).

Proof. Of course, we can obtain an explicit expression for ρk as a polynomial
in the same way that we found the formula in Lemma 3.1, however, this
will not be as illuminating in terms of the asymptotics of the probabilities.
Instead, we will apply techniques from the theory of difference equations to
obtain an alternative explicit expression for ρk. Note that the recurrence for
ρk(x) has characteristic equation

ρ2 − r

r − 1
xρ+

1

r − 1

whose roots are

r
r−1x±

√
r2

(r−1)2x− 4
r−1

2
=

rx±
√

r2x2 − 4(r − 1)

2(r − 1)
.

To make this easier to write down, let us denote Δ = r2x2− 4(r− 1) for
the discriminant of the characteristic equation for the recurrence, and let θ
denote an angle satisfying cos θ = rx/2

√
r − 1. Then standard techniques

for solving difference equations lead us to
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(2) ρk(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

[(
1 + x r−2√

Δ

)(
rx+

√
Δ

2(r−1)

)k
+
(
1− x r−2√

Δ

)(
rx−

√
Δ

2(r−1)

)k
]

for |x| > 2
√
r−1
r ,(

1√
r−1

)k (
cos(θk) + (r−2)x√

−Δ
sin(θk)

)
for |x| < 2

√
r−1
r ,(

1√
r−1

)k (
1 + r−2

r k
)

for |x| = 2
√
r−1
r .

Each of these follows from a straightforward induction argument.
Let λ be an eigenvalue of P and observe that since P is a transition

probability matrix for a random walk, then we have −1 ≤ λ ≤ 1. A direct
computation shows us that∣∣∣∣∣rλ±

√
r2λ2 − 4(r − 1)

2(r − 1)

∣∣∣∣∣ ≤ |λ| for
2
√
r − 1

r
< |λ| ≤ 1.

Therefore, (2) gives the lemma for this case.
For the other cases, (2) immediately gives the lemma for |λ|=2

√
r − 1/r.

For |λ| < 2
√
r − 1/r, looking at (2), we observe that the cos(θk) and sin(θk)

terms remain bounded, so the only problem that could arise would be the
fraction becoming unbounded as λ approaches 2

√
r − 1/r, (since the denom-

inator,
√
−Δ, goes to 0). However, observe that since cos θ = rx/2

√
r − 1,

computation gives sin θ =
√
−Δ/2

√
r − 1. Basic calculus gives us that as θ

goes to 0, sin(θk) becomes asymptotic to k sin θ. Therefore we obtain the
result.

3.2. Grids

In this section, we will apply the tools that we have developed to grids.
Fix a dimension d ≥ 3 and observe that Z

d is an infinite r-regular graph
with r = 2d. Let p(k) denote the probability that a random walk on Z

d

returns to its starting point after k steps, and p̃(k) the probability that
a non-backtracking random walk on Z

d returns to its starting point after
k steps. Note that on a grid, it is clear that if k is odd, then we have
p(k) = p̃(k) = 0 since any walk that returns to its starting point must have
an equal number of steps going away from the starting point as towards it in
any of the coordinate directions. Thus we need only concern ourselves with
even length walks. That is, we are only concerned with p(2k) and p̃(2k).
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Proposition 3.1. With the notation defined above, we have

∞∑
k=0

p̃(2k) < ∞.

Proof. From Lemma 2.1, since the random walk on Z
d is transient, we have

∞∑
k=0

p(2k) < ∞.

We will proceed by comparing p̃(2k) to p(2k) by way of the tools from the
last section.

In order to take advantage of eigenvalues, rather than look at the walks
on the infinite grids, we will look at a finite quotient of the grid, namely

the d-dimensional torus. We will let T
(d)
n denote the d-dimensional torus of

length n. More specifically, let G�H denote the cartesian product of graphs
G and H, with vertex and edge sets

V (G�H) = V (G)× V (H)

E(G�H) =
{
{(u, u′), (v, v′)} : u = v and u′ ∼ v′, or u′ = v′ and u ∼ v

}
.

Let Cn denote the cycle on n vertices. Then T
(d)
n is formed by taking the

cartesian product Cn�Cn of the cycle with itself d times. Locally, T
(d)
n is

indistinguishable from Z
d. In particular, T

(d)
n is still a 2d-regular graph.

Define pT (d)
n

(2k) to be the probability that a random walk on T
(d)
n returns to

its starting point after 2k steps, and likewise, p̃T (d)
n

(2k) the probability that

a non-backtracking random walk on T
(d)
n returns to its starting point after

2k steps. Then note that for n > 2k, it is clear that pT (d)
n

(2k) = p(2k) and
that p̃T (d)

n
(2k) = p̃(2k). From here on, we will simply denote each of these

by p(2k) and p̃(2k) respectively. More precisely, given a k, we will choose an

nk > 2k, and look at the walks on T
(d)
nk .

Since nk > 2k, then by symmetry, the probability of a random walk
(or non-backtracking random walk) returning to its starting point after 2k

steps is the same for any starting vertex in T
(d)
n . Thus, the diagonal entries

of P 2k and P̃ (2k) are all identical, and equal to p(2k) and p̃(2k) respec-

tively. Let Nk denote the total number of vertices of T
(d)
nk , and then we can

express

p(2k) =
1

Nk
Trace(P 2k) =

1

Nk

Nk∑
i=0

λ2k
i
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where λ1, ..., λNk
denote the eigenvalues of P , the transition probability ma-

trix for T
(d)
nk . Since the simple random walk is transient, from Lemma 2.1 we

obtain

(3)

∞∑
k=0

(
1

Nk

Nk∑
i=0

λ2k
i

)
< ∞.

Now, recall that the eigenvalues of P̃ (2k) are ρ2k(λ1), ..., ρ2k(λNk
), where

ρ2k(x) is the polynomial defined in the previous section. In a similar manner
to the above, we have

p̃(2k) =
1

Nk
Trace(P̃ (2k)) =

1

Nk

Nk∑
i=0

ρ2k(λi).

In view of Lemma 3.2, we will consider eigenvalues above and below
the threshold 2

√
r − 1/r. Let us suppose that the eigenvalues are ordered

so that λ0, ..., λm have absolute value below 2
√
r − 1/r and λm+1, ..., λNk

those above 2
√
r − 1/r. Then by Lemma 3.2, recalling that our graph is

2d-regular, we certainly have

p̃(2k) =
1

Nk

m∑
i=0

ρ2k(λi) +
1

Nk

Nk∑
i=m+1

ρ2k(λi)

≤ C2dk

(
1√

2d− 1

)k

+
1

Nk

Nk∑
i=0

λ2k
i .

Therefore

∞∑
k=0

p̃(2k) ≤ C2d

∞∑
k=0

k

(
1√

2d− 1

)k

+

∞∑
k=0

(
1

Nk

Nk∑
i=0

λ2k
i

)
.

The first term on the right is clearly a convergent series, and the second
term is convergent by (3). This gives the lemma.

Applying Lemma 2.1, this proposition immediately gives us the follow-
ing.

Corollary 3.1. A non-backtracking random walk on Z
d with d ≥ 3 is tran-

sient.

Thus, to finish the proof of Theorem 1, we need only handle the case of
d = 2, which we will do in the next section.
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We remark that this proof of Corollary 3.1 does not use the specific
structure of the grid Z

d. Indeed, all we needed was Lemma 3.2, which ap-
plies to non-backtracking random walks on any regular graph, and the prior
knowledge that a simple random walk on Z

d for d ≥ 3 is transient, and
then the ability to examine the trace of a finite quotient of Zd, for which
the probability would be the same for each vertex, allowing us to make the
appropriate comparison. Thus, we have actually proven the more general
statement as follows.

Proposition 3.2. Let G be any infinite vertex transitive graph with finite
vertex transitive quotients of any given size. Then if a simple random walk on
G is transient, then a non-backtracking random walk on G is also transient.

We remark further that it seems intuitively clear that

p̃(k) ≤ p(k)

for all k, in any infinite regular graph. Numerical computation gives consid-
erable evidence for this, and we strongly suspect that this is true. However,
the above is sufficient for our purposes.

4. Recurrence on Z
2

We remark that our proof for transience of a non-backtracking random walk
on Z

d when d ≥ 3 relied on the fact that the simple random walk is transient.
In the d = 2 case, the simple random walk is recurrent, so that the series
from Lemma 2.1 diverges, and thus the comparison from Lemma 3.2 is not
informative. Therefore we take a different approach that will more precisely
nail down the asymptotic growth rate of p̃(2k) in this case.

In Section 2.1, in our sketch of the proof of Pólya’s Theorem, we enu-
merated the total number of closed simple walks on Z

2 and found it to
be (

2n

n

)2

.

We therefore know that, if A is the adjacency operator on Z
2, then any

diagonal entry of A2n is
(
2n
n

)2
. Thus if we wish to count the number of

closed non-backtracking walks of length 2n on Z
2 from a vertex to itself,

then we can use Lemma 3.1, setting r = 4 since Z
2 is 4-regular, and obtain

the diagonal entry of Ã(2n).

Lemma 4.1. The total number of closed non-backtracking walks of length
2n from a vertex to itself in Z

2 is
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n∑
i=0

(−3)i
(
2n− i

i

)(
2n− 2i

n− i

)2

−
n−1∑
i=0

(−3)i
(
2n− i− 2

i

)(
2n− 2i− 2

n− i− 1

)2

.

Changing the indices, this can alternatively be expressed as

n∑
k=0

(−3)n−k

(
n+ k

2k

)(
2k

k

)2

−
n−1∑
i=0

(−3)n−1−k

(
n+ k − 2

2k − 2

)(
2(k − 1)

k − 1

)2

.

It so happens that the expression

n∑
k=0

(−3)n−k

(
n+ k

2k

)(
2k

k

)2

shows up

in the study of the central trinomial coefficients, Tn, which are defined to be

the largest coefficient in the expansion of (1 + x+ x2)n. Formally, that is

Tn = [xn](1 + x+ x2)n.

From the definition, one can derive the formula

Tn =

�n/2�∑
k=0

(
n

2k

)(
2k

k

)
.

In a paper of Zhi-Wei Sun ([17]), it is proven that Tn satisfy the following

relationship with the above sum.

Lemma 4.2 (Lemma 4.1 of [17]). For any n ∈ N we have

T 2
n =

n∑
k=0

(
n+ k

2k

)(
2k

k

)2

(−3)n−k.

From this we obtain an expression for the number of closed walks from

a vertex to itself on Z
2 in terms of the squares of the central trinomial

coefficients.

Corollary 4.1. For any n ∈ N and any vertex v ∈ Z
2, we have

Ã(2n)(v, v) = T 2
n − T 2

n−1.

The asymptotics of the numbers Tn are investigated in [19] using singu-

larity analysis of the generating function for a generalization of the numbers

Tn. A special case of their main result gives the following.
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Lemma 4.3 ([19]). The asymptotics for the numbers Tn are given by

Tn =

√
3

2
√
nπ

3n
(
1− 3

16n
+O

(
1

n2

))
.

Corollary 4.2. Asymptotically, the number of closed non-backtracking walks
from a vertex to itself on the grid Z

2 is given by

Ã(2n)(v, v) ∼ 2

πn
32n−1.

Proof. Using Corollary 4.1 and Lemma 4.3, we have

Ã(2n)(v, v) = T 2
n − T 2

n−1

=
3

4πn
32n

(
1 +O

(
1

n

))
− 3

4π(n− 1)
32n−2

(
1 +O

(
1

n

))

=
24n− 27

4πn(n− 1)
32n−2

(
1 +O

(
1

n

))

=
2

πn
32n−1

(
1 +O

(
1

n

))

and the result follows.

We are now ready to show recurrence for a non-backtracking random
walk on Z

2.

Corollary 4.3. A non-backtracking random walk on the infinite grid Z
2 is

recurrent.

Proof. Let p̃(k) denote the probability that a non-backtracking random walk
on Z

2 returns to its starting point after k steps. Note that the total number
of non-backtracking random walks of length k is

4 · 3k−1

since there are 4 choices for the first step, and then 3 choices for each sub-
sequent step since we must exclude the edge that would backtrack. Note
also that p̃(k) = 0 for k odd since a walk on Z

2 returning to its starting
point must contain an equal number of steps up as down, and an equal
number of steps to the left as to the right. So we need only consider p̃(2k).
The total number of non-backtracking walks of length 2k returning to their
starting vertex v is given by Ã(2k)(v, v), so by Corollary 4.2, we obtain p̃(2k)
asymptotically given by
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p̃(2k) ∼
2
πk3

2k−1

4 · 32k−1
=

1

2πk
.

Therefore
∞∑
k=0

p̃(2k) ∼
∞∑
k=0

1

2πk

which is divergent. Therefore, by Lemma 2.1, the random walk is recur-
rent.

With this, we have finished the proof of Theorem 1.
As a final remark, we observe that Corollary 4.1 gives an exact enu-

meration of closed non-backtracking walks on Z
2 in terms of a well-known

combinatorial object, the central trinomial coefficients. There are numerous
sets enumerated by central trinomial coefficients. For example, Tn counts
the number of length n paths from the point (0, 0) to the point (n, 0) that
take steps to the right, diagonally up and to the right, or diagonally down
and to the right. Thus, this suggests some kind of combinatorial connection
between such paths and closed non-backtracking walks on the Z

2. It would
be of interest to come up with a bijective proof of this fact, or to otherwise
illuminate this combinatorial connection.
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