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Shifted dual equivalence and Schur P -positivity

Sami Assaf
∗

By considering type B analogs of permutations and tableaux, we
extend abstract dual equivalence to type B in two directions. In
one direction, we define involutions on shifted tableaux that give
a dual equivalence, thereby giving a new combinatorial proof of
the Schur positivity of Schur Q- and P -functions. In another di-
rection, we define an abstract shifted dual equivalence parallel to
dual equivalence and prove that it can be used to establish Schur
P -positivity of a function expressed as a sum of shifted fundamen-
tal quasisymmetric functions. As a first application, we give a new
combinatorial proof that the product of Schur P -functions is Schur
P -positive.

1. Introduction

Symmetric function theory can be harnessed by other areas of mathematics
to answer fundamental enumerative questions. For example, multiplicities of
irreducible components, dimensions of algebraic varieties, and various other
algebraic constructions that require the computation of certain integers may
often be translated to the computation of the coefficients of a given function
in a particular basis. Often the chosen basis is the Schur functions, which
arise as Frobenius characters of irreducible representations of the symmetric
group and as Schubert polynomials for the cohomology ring of the Grass-
mannian. Thus a quintessential problem in symmetric functions is to prove
that a given function has nonnegative integer coefficients when expressed as
a sum of Schur functions.

In [Ass15], the author introduced dual equivalence graphs as a universal
tool by which one can approach such problems. This tool has been ap-
plied to various important classes of symmetric functions, including LLT
and Macdonald polynomials [Ass], k-Schur functions [AB12], and products
of Schubert polynomials [ABS].

In this paper, we give a further application of dual equivalence to Schur
Q- and P -functions [Sch11]. These functions arise in the study of projec-

∗Work supported in part by NSF grant DMS-1265728.

279

http://www.intlpress.com/JOC/


280 Sami Assaf

tive representation of the symmetric group [Ste89] as well as the coho-

mology classes dual to Schubert cycles in isotropic Grassmannians [Józ91,

Pra91]. These functions enjoy many nice properties parallel to Schur func-

tions [Mac95]. In particular, they form dual bases for an important subspace

of symmetric functions. While they have long been known to be Schur posi-

tive [Sag87] and to have positive structure constants [Ste89], the new proofs

we provide lay the foundation for a stronger extension of dual equivalence to

type B. We define an abstract notion of shifted dual equivalence that offers

a tool by which one can show that a given function has nonnegative coeffi-

cients when expanded in terms of Schur P -functions. As a first application,

we consider the Schur P -expansion of a product Schur P -functions. Related

work by [BHRY] holds further applications.

This paper is organized as follows. In Section 2, we introduce the classic

combinatorial objects and their type B analogs. We connect the combina-

torics with symmetric and quasisymmetric functions in Sections 3 and 4. In

Section 5, we review abstract dual equivalence, and we give an application

to type B combinatorial objects in Section 6 proving that Schur P -functions

are Schur positive. In Section 7, we generalize the definitions and theorems

of dual equivalence to the type B setting and define an abstract notion of

shifted dual equivalence. Our main result, Theorem 7.5, is that this provides

a universal tool for establishing Schur P -positivity. In Section 8, we apply

this new theory to give a new proof that the product of Schur P -functions

is Schur P -positive.

2. Partitions and tableaux

The main combinatorial objects we study are partitions, tableaux, and per-

mutations, with their type B analogs being strict partitions, shifted tableaux,

and signed permutations.

A partition λ is a non-increasing sequence of positive integers, λ =

(λ1, λ2, . . . , λ�), where λ1 ≥ λ2 ≥ · · · ≥ λ� > 0. A strict partition γ is a

partition whose parts are strictly decreasing, i.e. γ1 > γ2 > · · · > γ� > 0.

The size of a partition is the sum of its parts, i.e. λ1 + λ2 + · · ·+ λ�.

We identify a partition λ with its Young diagram, the collection of left-

justified cells with λi cells in row i. For a strict partition γ, the shifted Young

diagram is the Young diagram with row i shifted �(γ)− i cells to the left. It

will often be useful to consider the shifted symmetric diagram for γ, which

is obtained by adjoining the reflection of the shifted diagram. For examples,

see Figure 1.
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Figure 1: The Young diagram for (5, 4, 4, 1), and the shifted Young diagram
and shifted symmetric diagram for (6, 4, 3, 1).

A semi-standard Young tableau of shape λ is a filling of the Young di-
agram for λ with positive integers such that entries weakly increase along
rows and strictly increase up columns. For example, see Figure 2.

Figure 2: The semi-standard Young tableaux of shape (3, 1) with entries in
{1, 2}.

A semi-standard shifted tableau of shape γ is a filling of the shifted
Young diagram for γ with marked or unmarked positive integers such that
entries weakly increase along rows and columns according to the ordering
1′ < 1 < 2′ < 2 < · · · , each row has at most one marked entry i′ for each i
and each column has at most one unmarked entry i for each i. For examples,
see Figure 3.

Figure 3: The semi-standard shifted tableaux of shape (3, 1) with entries in
{1′, 1, 2′, 2} and no marked entries on the main diagonal.

Note that these latter conditions allow any entry along the main diag-
onal to be marked or unmarked without changing the allowed entries for
other positions. If one considers instead the shifted symmetric diagram and
leaves unmarked letters in place while reflecting the marked letters, then
the conditions for a semi-standard tableau are the same for straight and for
shifted shapes. For example, see Figure 4.
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Figure 4: The semi-standard shifted symmetric tableaux of shape (3, 1) with
entries in {1, 2} and no reflected entries on the main diagonal.

The reading word of a semi-standard tableau T , denoted w(T ), is the
word obtained by reading the rows of T left to right, from top to bottom.
For example, the reading words for the tableaux in Figure 2 from left to
right are 2111, 2112, 2122, and the reading words for the shifted symmetric
tableaux in Figure 4 from left to right are 2111, 2112, 2211, 2212.

A permutation of n is an ordering of the numbers {1, 2, . . . , n}. A semi-
standard tableau T is standard if its reading word is a permutation. For
example, see Figures 5 and 6.

Figure 5: The standard Young tableaux of shape (3, 1).

A semi-standard shifted symmetric tableau is a standard marked tableau
if its reading word is a permutation and it has entries in the reflected side.
For example, each of the two standard shifted tableaux in Figure 6 has 24

marked analogs of which 22 have no signs on the main diagonal; see Figure 9.

Figure 6: The standard shifted tableaux of shape (3, 1).

The descent set of a permutation is given by

(2.1) Des(w) = {i | i right of i+ 1} .

When w is a permutation of length n, we have Des(w) ⊆ {1, 2, . . . , n − 1}.
When we wish to emphasize n, we write Desn. Note that there are 2n−1

possible descent sets for permutations of length n. The descent set of a
standard tableau or a marked standard tableau is the descent set of its
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reading word. For the tableaux in Figure 5, the descent sets from left to
right are {1}, {2}, {3}, and for the tableaux in Figure 6, the descent sets
from left to right are {2}, {3}.

In addition to the descent set, we will often be interested in the peak set
and the spike set, which can be derived directly from the descent set. For a
set D, we have

Spike(D) = {i | i− 1 �∈ D and i ∈ D or i− 1 ∈ D and i �∈ D},(2.2)

Peak(D) = {i | i− 1 �∈ D and i ∈ D}.(2.3)

Note that if D ⊆ {1, 2, . . . , n− 1}, then Spike(D),Peak(D) ⊆ {2, 3, . . . , n−
1}. Furthermore, peak sets are characterized as subsets containing no con-
secutive entries. Thus there are 2n−2 possible spike sets and Fn, the nth
Fibonacci number, possible peak sets for permutations of length n. As with
descents, when we wish to emphasize n, we write Spiken or Peakn.

3. Symmetric functions

We follow notation from [Mac95] for the classic bases for Λ, the ring of
symmetric functions. The space Λn of symmetric functions homogeneous of
degree n has dimension equal to the number of partitions of n, and so bases
for Λn are naturally indexed by partitions of n. The most fundamental basis
for Λn is the Schur function basis, which may be defined by

(3.1) sλ(X) =
∑

T∈SSYT(λ)

XT ,

where SSYT(λ) denotes the set of all semi-standard Young tableaux of shape
λ, and XT is the monomial where xi occurs in XT with the same multiplic-
ity with which i occurs in T . For example, the three tableaux in Figure 2
contribute x31x2 + x21x

2
2 + x1x

3
2 to the Schur function s(3,1)(X).

The irreducible characters of the symmetric group map under the Frobe-
nius isomorphism to Schur functions. Therefore Schur functions are funda-
mental to understanding representations of the symmetric group.

Schur Q-functions, indexed by strict partitions, are given by

(3.2) Qγ(X) =
∑

S∈SSShT(γ)

X |S|,

where SSShT(γ) denotes the set of all semi-standard shifted tableaux of
shifted shape γ, and X |S| is the monomial where xi occurs in X |S| with
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the same multiplicity with which i and i′ occur in S. For example, the four
tableaux in Figure 3 contribute x31x2+2x21x

2
2+x1x

3
2 to the Schur Q-function

Q(3,1)(X).
Schur P -functions indexed by strict partitions are given by

(3.3) Pγ(X) = 2−�(γ)Qγ(X) =
∑

S∈SSShT∗(γ)

X |S|,

where SSShT∗(γ) denotes the set of all semi-standard shifted tableaux of
shifted shape γ where the main diagonal has no marked entries, and X |S|

is again the monomial where xi occurs in X |S| with the multiplicity with
which i and i′ occur in S. The second equality follows easily from the first
if one notes that the rules for which entries may be marked never precludes
a marked entry along the main diagonal.

Schur P -functions are fundamental to understanding projective repre-
sentations of the symmetric group [Ste89] similar to the role of Schur func-
tions for linear representations.

Let Γ ⊂ Λ denote the subspace of symmetric functions generated by the
odd power sum symmetric functions. The graded component Γn = Γ∩Λn has
dimension equal to the number of strict partitions of n. The Schur Q- and
P -functions may be realized as specializations of Hall-Littlewood functions
at t = −1 [Mac95]. For λ a nonstrict partition, the specialization Qλ(X;−1)
vanishes, but for λ strict these specializations form dual bases for Γn.

Since the SchurQ- and P -functions are symmetric, they can be expanded
in the Schur basis. Since the Schur P -functions form a basis for Γ, the prod-
uct of two Schur P -functions may be expanded in the Schur P -function
basis. The machinery we develop in this paper reproves the following posi-
tivity results.

Theorem 3.1. For γ, δ strict partitions, if
(3.4)

Pγ(X) =
∑

λ

gγ,λsλ(X) and Pγ(X)Pδ(X) =
∑

ε

f ε
γ,δPε(X),

then gγ,λ, f
ε
γ,δ are nonnegative integers.

Stanley conjectured the positivity of gγ,λ, which follows as a corollary
to Sagan’s shifted insertion [Sag87] independently developed by Worley
[Wor84]. These ideas were extended by Stembridge [Ste89] in his study of
projective representations of the symmetric group to give a proof of the pos-
itivity of f ε

γ,δ. More recently, Cho built on work of Serrano [Ser10] to give
another positivity proof.



Shifted dual equivalence and Schur P -positivity 285

One of the main results of this paper is to give another combinatorial
proof of Theorem 3.1 using dual equivalence and shifted dual equivalence,
respectively.

4. Quasisymmetric functions

The space of quasisymmetric functions contains Λ and provides nice inter-
mediate bases for (3.1) and for (3.2), (3.3). The subspace of quasisymmetric
functions homogeneous of degree n has dimension 2n−1 and, as such, is nat-
urally indexed by subsets of {1, 2, . . . , n− 1}. Gessel’s fundamental basis for
quasisymmetric functions [Ges84] is given by

(4.1) FD(X) =
∑

i1≤···≤in
j∈D⇒ij<ij+1

xi1 · · ·xin .

Implicit in our notation is that D is regarded as a descent set for objects of
size n. When we wish to make this explicit, we write Fn,D or FDn

.
One great advantage of quasisymmetric functions is that they facilitate

the use of standard in place of semi-standard objects, allowing us to use
a finite number of terms in the expression even when there is an infinite
number of variables. For example, we have the following expansion for Schur
functions due to Gessel[Ges84].

Theorem 4.1 ([Ges84]). For λ a partition of n, we have

(4.2) sλ(X) =
∑

T∈SYT(λ)

FDes(T )(X),

where SYT(λ) denotes the set of all standard Young tableaux of shape λ.

For example, for n = 4, we have

s(3,1) = F{1} + F{2} + F{3}
s(2,2) = F{1,3} + F{2}

s(2,1,1) = F{1,2} + F{1,3} + F{2,3}

Analogously, we may express the Schur P -functions in terms of the fun-
damental basis.

Proposition 4.2. For γ a strict partition of n, we have

Qγ(X) =
∑

S∈SShT±(γ)

FDes(S)(X) = 2�(γ)
∑

S∈SShT′
±(γ)

FDes(S)(X)(4.3)
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Pγ(X) =
∑

S∈SShT′
±(γ)

FDes(S)(X),(4.4)

where SShT±(γ) denotes the set of all marked standard tableaux of shape γ,

and SShT′
±(γ) denotes the subset where no entry on the main diagonal is

marked.

Proof. The formula follows from (3.3) by standardizing the reading word

while maintaining the positions of the marked letters. This is well-defined

given the chosen total order.

For example, signing the entries in Figure 6, in all possible ways gives

P(3,1) = F{1} + 2F{2} + F{3} + F{1,2} + 2F{1,3} + F{2,3}.

The similarity between (4.2) and (4.4) is the key to our proof of The-

orem 3.1. In particular, it is easy to compute from the above expansion

that

P(3,1) = s(3,1) + s(2,2) + s(2,1,1).

However, notice that the summation in (4.4) is not over standard objects

for type B. For this, we need a new family of quasisymmetric functions.

For P ⊆ {2, 3, . . . , n− 1} with no consecutive entries, define the shifted

fundamental quasisymmetric function GP (X) by

(4.5) GP (X) =
∑

P⊆Spike(D)

FD(X),

where the sum is over all subsets D ⊆ {1, 2, . . . , n − 1} for which Spike(D)

contains P . Again, when we wish to emphasize n, we may write Gn,P or

GPn
. For example, for n = 4, we have

G{2}(X) = F{1}(X) + F{2}(X) + F{1,3}(X) + F{2,3}(X),

G{3}(X) = F{2}(X) + F{3}(X) + F{1,2}(X) + F{1,3}(X).

The shifted fundamental quasisymmetric functions of degree n form a

basis for a subspace of quasisymmetric functions of degree n of dimension the

nth Fibonacci number. The shifted fundamental quasisymmetric functions

allow us to rewrite the Schur P -functions as follows.

Theorem 4.3. For γ a strict partition of n, we have
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Qγ(X) =
∑

S∈SShT(γ)

2|Peak(S)|+1GPeak(S)(X)(4.6)

Pγ(X) = 2−�(γ)
∑

S∈SShT(γ)

2|Peak(S)|+1GPeak(S)(X),(4.7)

where SShT(γ) denotes the set of all standard shifted tableaux of shape γ,
and Peak(S) = Peak(Des(S)).

Note that for any S ∈ SShT(γ), |Peak(S)| ≥ �(γ)−1, so the expansion of
Pγ in terms of the shifted fundamental quasisymmetric functions is integral.

Proof. Fix S ∈ SShT(γ), and suppose T ∈ SShT±(γ) is such that removing
the markings on T gives S. If i − 1 �∈ Des(S), then i − 1 ∈ Des(T ) if and
only if i is marked, and if i− 1 ∈ Des(S), then i− 1 ∈ Des(T ) if and only if
i− 1 is unmarked.

First we claim that any T ∈ SShT±(γ) that gives S when the markings
are removed satisfies Peak(S) ⊆ Spike(Des(T )). To see this, note that i ∈
Peak(S) if and only if both i− 1 �∈ Des(S) and i ∈ Des(S). By the previous
analysis, if i is marked in T , then i − 1 ∈ Des(T ) and i �∈ Des(T ), and
if i is unmarked in T , then i − 1 �∈ Des(T ) and i ∈ Des(T ). Therefore
i ∈ Spike(Des(T )).

Next we claim that for any D ⊂ [n− 1] for which Peak(S) ⊆ Spike(D),
there are exactly 2|Peak(S)|+1 standard marked tableaux T that give S when
the markings are removed for which Des(T ) = D. Indeed, for i ∈ Peak(S),
set h = min{k|k < i and k �∈ Des(S)} and set j = max{k|k > i and k ∈
Des(S)}. Then, by the analysis above, D determines the markings for all
h < k ≤ i and all i ≤ k < j, but toggling the marking for h or j does not
change D. If i < i′ are consecutive entries of Peak(S), then the j for i and
the h for i′ coincide. Thus there are exactly |Peak(S)| + 1 letters that can
be marked or unmarked without affecting D.

These two claims prove the expansion for Qγ , and the result for Pγ

follows by (3.3).

For example, using Figure 6, we compute

P(3,1) = G{2} +G{3}.

5. Dual equivalence and Schur positivity

Haiman [Hai92] defined elementary dual equivalence involutions on permu-
tations as follows. If a, b are two consecutive letters of the word w, and c
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is also consecutive with a, b and appears between a and b in w, then in-
terchanging a and b is an elementary dual equivalence move. In this case,
we refer to c as the witness for the dual equivalence interchanging a and b.
When {a, b, c} = {i − 1, i, i + 1}, we denote this involution by di, and we
regard words with c not between a and b as fixed points for di. For examples,
see Figure 7.

Figure 7: The dual equivalence classes of permutations of length 4.

Two permutations w and u are dual equivalent if there exists a sequence
i1, . . . , ik such that u = dik · · · di1(w). Haiman [Hai92] showed that the dual
equivalence involutions extend to standard Young tableaux via their reading
words and that dual equivalence classes correspond precisely to all standard
Young tableaux of a given shape, e.g. see Figure 8.

Figure 8: Three dual equivalence classes of SYT of size 4.

Given this, we may rewrite (4.2) in terms of dual equivalence classes as

(5.1) sλ(X) =
∑

T∈[Tλ]

FDes(T )(X),

where [Tλ] denotes the dual equivalence class of some fixed Tλ ∈ SYT(λ).
This paradigm shift to summing over objects in a dual equivalence class

is the basis for the universal method for proving that a quasisymmetric
generating function is symmetric and Schur positive [Ass15]. Motivated by
(5.1), we have the abstract notion of dual equivalence for any set of objects
endowed with a descent set.

Given involutions ϕ2, . . . , ϕn−1 on a set A of combinatorial objects, for
1 < h < i < n we consider the restricted dual equivalence class [T ](h−1,i+1)
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generated by ϕh, . . . , ϕi. In addition, we consider the restricted and shifted
descent set Des(h,i)(T ) obtained by intersecting Des(T ) with {h − 1, . . . , i}
and subtracting h− 2 from each element so that Des(h,i)(T ) ⊆ [i− h+ 2].

Definition 5.1 ([Ass15]). Let A be a finite set, and let Des be a map on A
such that Des(T ) ⊆ [n− 1] for all T ∈ A. A dual equivalence for (A,Des) is
a family of involutions {ϕi}1<i<n on A such that

i. For all i− h ≤ 3 and all T ∈ A, there exists a partition λ of i− h+ 3
such that ∑

U∈[T ](h,i)

FDes(h,i)(U)(X) = sλ(X).

ii. For all |i− j| ≥ 3 and all T ∈ A, we have

ϕjϕi(T ) = ϕiϕj(T ).

By (5.1), dual equivalence classes of tableaux precisely correspond to
Schur functions. Definition 5.1 was formulated so that the same property
holds true for dual equivalence classes for any pair (A,Des).

Theorem 5.2 ([Ass15]). If {ϕi} is a dual equivalence for (A,Des), and
U ∈ A, then

(5.2)
∑

T∈[U ]

FDes(T )(X) = sλ(X)

for some partition λ. In particular, the quasisymmetric generating function
for A is symmetric and Schur positive.

Our first goal, undertaken in Section 6, is to construct dual equivalence
involutions for the set SShT±(γ) of marked standard shifted tableaux of
shifted shape γ with descent function given by Des. Our second goal, un-
dertaken in Section 7, is to give a version of Theorem 5.2 that proves Schur
P -positivity.

6. Dual equivalence for marked tableaux

The objects for which we will construct a dual equivalence are the marked
standard tableaux, identified as shifted symmetric tableaux, with the asso-
ciated descent function given by applying (2.1) to the reading word. Define
the diagonal of a cell to be its row index minus its column index. In par-
ticular, the main diagonal of the unreflected shifted shape is zero, with the
cells below positive and the reflected cells above negative.



290 Sami Assaf

Definition 6.1. Let S be a marked standard tableau. For 1 < i < n, let
a ≤ b ≤ c be the diagonals on which i−1, i, i+1 reside. Then ψi(w) is given
by the following rule:

• if i lies on diagonal b, then ψi(S) = S;
• else if a = b (respectively b = c), then reflect the occupant on diagonal
c (respectively a) to lie on diagonal −c (respectively −a);

• else if ||a| − |c|| = 1, then reflect the occupant on diagonals a and c to
lie on diagonal −a and −c, respectively;

• else swap the occupants of diagonals a and c.

For examples of ψ on marked standard tableaux, see Figure 9.

Figure 9: Dual equivalence for SShT±(3, 1).

Proposition 6.2. The maps {ψi} give well-defined involutions on the set
of marked standard tableaux. Furthermore, if S has no marked entries along
the main diagonal, then neither does ψi(S) for any i.

Proof. Clearly when S is a fixed point for ψi, it remains so after doing
nothing. Suppose, then, that this is not the case. There are three cases to
consider based on how ψi acts. A key observation in what follows is that two
of a, b, c are equal in absolute value if and only if both i− 1 and i+ 1 have
diagonal 0. Indeed, if this is not the case then there is a cell southeast of the
diagonal in question containing an entry x that lies strictly between two of
i− 1, i, i+1. This forces x = i, so the entries of the two cells in question are
i− 1 and i+ 1. Moreover, if this is not the main diagonal, then there exists
a cell northwest of the diagonal in question containing an entry y �= i with
i− 1 < y < i+ 1, which is not possible.

First, suppose that a = b < c. From the observation above, we must
have 0 = a = b < c, in which case −c < a = b < c. Therefore ψi toggles
the marking on the entry in c, and so is an involution for this case and the
related case a < b = c.
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Second, suppose a < b < c and ||a| − |c|| = 1. The latter constraint

means that in the standard shifted tableau obtained by removing markings,

the entries corresponding to a and c form a vertical or horizontal domino.

In particular, the former assumption ensures that neither a nor c can be 0.

Therefore we have a < 0 < c, and so −c < b < −a. Again, ψi preserves the

case and acts as an involution.

Finally, suppose a < b < c and ||a| − |c|| > 1. In this case, ψi clearly

preserves the case, so we need only show that the result is a marked standard

tableau. Since i does not have diagonal b, the entries being swapped are

consecutive, implying that the only potential row or column violation is

with the two swapped entries. The latter condition above ensures that, in the

standard shifted tableau obtained by removing the markings, the swapped

entries do not lie in the same row or column, and so no violations can

result.

Theorem 6.3. The maps {ψi}1<i<n give a dual equivalence for marked

standard tableaux. In particular, the Schur Q- and P -functions are Schur

positive.

Proof. The definition of ψi depends only on the positions of the entries

i− 1, i, i+ 1. If |i− j| ≥ 3, then the relevant entries are disjoint, and so ψi

and ψj must commute. Therefore by Definition 5.1, it is enough to show that

the equivalence classes are single Schur functions for all marked standard

tableaux of skew shape γ\δ, where δ ⊂ γ and |γ|−|δ| ≤ 6. From the definition

of ψ, if two consecutive diagonals have no cells, then we may collapse them

to one empty diagonal without changing the structure of the equivalence

class. In particular, we may assume γ ⊂ (11, 9, 7, 5, 3, 1). More precisely, the

number of skew shapes to check for n = 3, 4, 5, 6 is 10, 31, 98, 307, respec-

tively. These cases can be (and have been) checked by a patient hand or by

a computer.

The first half of Theorem 3.1 now follows from Theorems 5.2 and 6.3.

Corollary 6.4. For γ a strict partition, we have

(6.1) Pγ(X) =
∑

λ

gγ,λsλ(X),

where gγ,λ is the number of dual equivalence classes of marked standard

tableaux of shape γ under the action of {ψi} that are isomorphic to SYT(λ).

In particular, gγ,λ ∈ N.
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7. Shifted dual equivalence graphs

Haiman [Hai92] also defined elementary shifted dual equivalence involutions
on permutations as follows. If a, b are two consecutive letters of the word w,
c is also consecutive with a, b and appears between a and b in w, and d is also
consecutive with a, b, c and appears left of c in w, then interchanging a and
b is an elementary shifted dual equivalence move. In this case, we again refer
to c as the witness, and we refer to d as the bystander for the shifted dual
equivalence interchanging a and b. When {a, b, c, d} = {i− 1, i, i+ 1, i+ 2},
we denote this involution by bi, and we regard words with c not between a
and b or with d right of c as fixed points for bi. This rule is illustrated in
Figure 10.

Figure 10: The shifted dual equivalence classes of permutations of length 4.

Haiman [Hai92] showed that the shifted dual equivalence involutions
extend to standard shifted tableaux via their reading words and that dual
equivalence classes correspond precisely to all standard shifted tableaux of
a given shape. For examples, see Figures 11 and 12.

Figure 11: The shifted dual equivalence classes of SShT of size 5.

Comparing Figure 11 with Figure 8, it might seem that shifted dual
equivalence classes are the same as dual equivalence classes. However, shifted
classes can have triple edges, whereas dual equivalence classes can have at
most double edges, so the equality is an artifact of small numbers. To make
this statement precise, we introduce the notion of a morphism between dual
equivalences.
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Definition 7.1. Let A,B be two sets of combinatorial objects, and let DesA
and DesB be descent maps on each. Given involutions αi on A and βi on B,
a morphism from (A,DesA, α) to (B,DesB, β) is a map φ : A → B such that

for every a ∈ A, we have DesA(a) = DesB(φ(a)) and φ(αi(a)) = βi(φ(a)). A
morphism is an isomorphism if it is a bijection from A to B.

To avoid cumbersome notation, we omit the subscript for Des when it
is clear from context.

Since dual equivalence pertains to descent sets and shifted dual equiv-
alence pertains to peak sets, we also need to shift a peak set as follows.

Given a subset D of positive integers greater than 1, let D−1 be the subset
obtained by subtracting 1 from each element of D.

Proposition 7.2. For nonnegative integers r > s, the shifted dual equiv-
alence for (SShT((r, s)),Peak − 1) given by {bi} is isomorphic to the dual

equivalence on (SYT((r − 1, s)),Des) given by {di}. For γ a strict partition

with more than 2 parts, the shifted dual equivalence on (SShT(γ),Peak− 1)
given by {bi} is not isomorphic to (SYT(λ),Des) given by {di} for any par-

tition λ.

Proof. Consider the map φ from SShT((r, s)) to SYT((r − 1, s)) given by

removing the cell containing 1, subtracting 1 from each entry. On the level of
sets, φ is clearly a bijection. One easily checks that, in addition, Peak(T )−
1 = Des(φ(T )), and φ(bi+1(T )) = di(φ(T )). Therefore φ is an isomorphism
of dual equivalences.

The shifted tableau T of shape γ = (3, 2, 1) with reading word 645123
has b2 = b3 = b4. Any strict partition with at least 3 parts must contain

γ, and so it contains an element that restricts to T . In particular, such an
element has b2 = b3 = b4, and so the equivalence cannot be isomorphic to

any dual equivalence on standard Young tableaux.

Completely analogous to the unshifted case, for γ a strict partition, we
may rewrite (4.7) in terms of dual equivalence classes as

Qγ(X) =
∑

T∈[Tγ ]

2|Peak(T )|+1GPeak(T )(X)(7.1)

Pγ(X) = 2−�(γ)
∑

T∈[Tγ ]

2|Peak(T )|+1GPeak(T )(X),(7.2)

where [Tγ ] denotes the shifted dual equivalence class of some fixed Tγ ∈
SShT(γ).
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By (7.2), shifted dual equivalence classes of standard shifted tableaux
precisely correspond to Schur Q-functions or Schur P -functions, depending
on the chosen scaling. Following the analogy, our goal is to use this paradigm
shift to summing over objects in a shifted dual equivalence class to give a
universal method for proving that a quasisymmetric generating function is
symmetric and Schur Q-positive or Schur P -positive.

Since the subset statistic for this case is the peak set instead of the
descent set, we make the following notation. Given involutions ϕ2, . . . , ϕn−2,
for 1 < j < i < n − 1 on a set A of combinatorial objects, we consider the
restricted shifted dual equivalence classes [T ](j,i) generated by ϕj , . . . , ϕi.
In addition, we consider the restricted and shifted peak sets Peak(j,i)(T )
obtained by intersecting Peak(T ) with {j − 1, . . . , i + 1} and subtracting
j − 2 from each element so that Peak(j,i)(T ) ⊆ [i− j + 1].

Definition 7.3. Let A be a finite set, and let Peak be a peak map on A such
that Peak(T ) ⊆ {2, . . . , n− 1} with no consecutive entries for all T ∈ A. A
shifted dual equivalence for (A,Peak) is a family of involutions {ϕi}1<i<n−1

on A such that

i. For all |i − j| ≤ 5 and all T ∈ A, there exists a strict partition γ of
|i− j|+ 4 such that

∑

U∈[T ](j,i)

2|Peak(j,i)(U)|+1GPeak(j,i)(U)(X) = Qγ(X).

ii. For all |i− j| ≥ 4 and all T ∈ A, we have

ϕjϕi(T ) = ϕiϕj(T ).

Definition 7.3 completely characterizes shifted dual equivalence classes
in the same sense that Definition 5.1 characterizes dual equivalence classes.

Proposition 7.4. For γ a strict partition of n, the involutions {bi}1<i<n−1

give a shifted dual equivalence for SShT(γ) with peak function given by (2.3).

Proof. Condition (i) holds by (7.2), and condition (ii) follows from the fact
that bi depends only on the relative positions of i− 1, i, i+ 1, i+ 2 and for
|i− j| ≥ 4 these sets are disjoint.

The real purpose of Definition 7.3 is to establish the following analog of
Theorem 5.2.
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Theorem 7.5. If {ϕi} is a shifted dual equivalence for (A,Des) and U ∈ A,
then

(7.3)
∑

T∈[U ]

2|Peak(T )|+1GPeak(T )(X) = Qγ(X)

for some strict partition γ. In particular, the quasisymmetric generating
function for A is symmetric and Schur Q-positive.

We prove Theorem 7.5 along the same lines as the structure theorem for
dual equivalence given in [Ass15]. To begin, we show that the shifted dual
equivalences for standard shifted tableaux are pairwise nonisomorphic with
no nontrivial automorphisms. This is the shifted analog of [Ass15][Proposi-
tion 3.9].

Figure 12: The standard shifted dual equivalences of size 7.

Proposition 7.6. For γ, δ strict partitions, if φ : SShT(γ) → SShT(δ) is
an isomorphism of shifted dual equivalences, then γ = δ and φ = id.

Proof. Let Tγ be the standard shifted tableau obtained by filling the num-
bers 1 through n into the rows of γ from left to right, bottom to top. For
any standard shifted tableau T such that Peak(T ) = Peak(Tγ), the numbers
1 through λ1 must form a horizontal strip since 1 �∈ Des(Tγ) and λ1 is the
smallest element of Peak(Tγ). Similarly, λ1 + 1 through λ1 + λ2 must form
a horizontal strip, and so on. In particular, if Peak(T ) = Peak(Tγ) for some
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T of shape δ, then γ ≤ δ in dominance order with equality if and only if
T = Tγ .

Suppose φ : SShT(γ) → SShT(δ) is an isomorphism. Let Tγ be as
above for γ, and let Tδ be the corresponding tableau for δ. Then since
Peak(φ(Tγ)) = Peak(Tγ), γ ≤ δ. Conversely, since Peak(φ−1(Tδ)) =
Peak(Tδ), δ ≤ γ. Therefore γ = δ. Furthermore, φ(Tγ) = Tγ . For T ∈
SShT(γ) such that bi(Tγ) = T , we have φ(T ) = bi(Tγ) = T . Extending
this, every shifted tableau connected to a fixed point by some sequence of
elementary shifted dual equivalences is also a fixed point for φ, hence φ = id
on each SShT(γ).

Thus far we have avoided using the language of signed, colored graphs to
describe shifted dual equivalence. The following result is characterizing the
local structure of shifted dual equivalence classes analogous to the original
definition of dual equivalence graphs in [Ass15].

Lemma 7.7. Let {ϕi}1<i<n−1 be a shifted dual equivalence for (SShT(γ),
Peak) for some strict partition γ of n with n ≤ 7. Then ϕi = bi. In partic-
ular, there is a unique shifted dual equivalence for standard shifted tableaux
of size at most 7.

Proof. Given γ a strict partition of size n ≤ 7, no two standard shifted
tableaux of shape γ have the same peak set. This is easy to observe from
Figure 12, for example. The result is trivial for γ = (n) or for n ≤ 3 since
there are no nontrivial involutions, so we have four cases to consider, and
we may assume γ �= (n).

For n = 4 (see Figure 6), the only case left to consider is γ = (3, 1)
which has two standard shifted tableaux which must necessarily be paired
by ϕ2 to ensure they lie in a single equivalence class. By condition (i) for
degree 4, this is enough to characterize fixed points for ϕi as those elements
T with i, i + 1 �∈ Peak(T ) (cf. [Ass15][Definition 3.2, axiom 1]). Moreover,
i ∈ Peak(T ) if and only if i + 1 ∈ Peak(ϕi(T )) (cf. [Ass15][Definition 3.2,
axiom 2]). Armed with this, the result now follows for γ = (n − 1, 1) since
each standard shifted tableaux has a unique peak.

For n = 5 (see Figure 11), the only case left to consider is γ = (3, 2)
which has two standard shifted tableaux which must necessarily be paired
by ϕ2 and by ϕ3 to ensure they lie in a single equivalence class. In partic-
ular, condition (i) for degree 5 now implies that when ϕi(T ) = ϕi+1(T ) the
cardinality of Peak(T ) ∩ {i, i + 1, i + 2} changes (cf. [Ass15][Definition 3.2,
axiom 3]).

For n = 6, there are two cases to consider. For γ = (3, 2, 1), there are
two standard shifted tableaux, neither of which is a fixed point for ϕi for i =
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2, 3, 4. Therefore they must be connected by a triple edge. For γ = (4, 2), the
five standard shifted tableaux have peak sets {3}, {2, 4}, {2, 5}, {3, 5}, {4}.
Thus for each i = 2, 3, 4, exactly one of the five standard shifted tableaux
is a fixed point for ϕi, so given the toggling condition on peak sets, there
are two possible pairing for each ϕi, i = 2, 3, 4. If ϕ3 pairs the tableaux with
peak sets {3} and {4}, then it must also pair the tableaux with peak sets
{3, 5} and {2, 4}. By the analysis for n = 5 and condition (i) for degree 5,
this means that both ϕ2 and ϕ4 pair the tableaux with peak sets {3, 5} and
{2, 4} as well. But then these two tableaux are in an equivalence class of
their own, contradicting that classes are (locally) Schur Q-positive. Thus ϕ3

pairs tableaux with peak sets {3} and {2, 4} and also tableaux with peak
sets {3, 5} and {4}. By the same logic, the former case is also paired by ϕ2,
and the latter by ϕ4. This correctly constrains the structure.

Finally, for n = 7 (see Figure 12), there are three cases to consider, and
the analysis is analogous to the case for n = 6, where now we may appeal
to the case n = 6 as well.

Lemma 7.7 states that the shifted dual equivalence on standard shifted
tableaux of size up to 7 is unique. This result is tight since there exist
standard shifted tableaux of size 8 with the same shape and the same peak
set.

Given strict partitions γ, δ with γ ⊂ δ, fix a filling of the cells of δ \ γ
with |γ|+ 1, . . . , |δ|, say B. Let SShT(γ,B) ⊂ SShT(δ) be subset of shifted
standard tableaux that restrict to B when skewed by γ. The resulting shifted
dual equivalence on SShT(γ,B) has the same involutions as SShT(γ), but
the Peak function has now been extended. With this in mind, we show that
for γ a partition of n, any extension of the peak function for SShT(γ) can
be modeled by SShT(γ,B) for some augmenting tableau B. The following
result is the shifted analog of [Ass15][Lemma 3.11].

Lemma 7.8. Let {ϕi}1<i<n be a shifted dual equivalence for (A,Peak). Let
T ∈ A such that there exists an isomorphism φ from ([T ](2,n−2),Peak ∩
{2, 3, . . . , n− 1}) to (SShT(γ),Peak) for some strict partition γ of n. Then
there exists a unique standard shifted tableau B of shape δ/γ, δ a strict par-
tition of size n+1, such that φ gives an isomorphism from ([T ](2,n−2),Peak)
to (SShT(γ,B),Peak).

Proof. The result follows for n ≤ 6 by Lemma 7.7, so assume n ≥ 6.
The restricted equivalence classes of SShT(γ) under b2, . . . , bn−3 may each
be identified with a strict partition of n − 1 contained in γ, or, equiva-
lently, with the unique outer corner of γ containing the entry n for each
tableau of the restricted equivalence class. Therefore the isomorphism from
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([T ](2,n−2),Peak∩ {2, 3, . . . , n− 1}) to (SShT(γ),Peak) allows us to identify
each restricted equivalence classes of [T ](2,n−2) under the maps ϕ2, . . . , ϕn−3

with an outer corner of γ. Given a restricted class C ⊆ [T ](2,n−2), mark C
with a − if some element of C has a peak at n, and mark C with a + if no
element of C has a peak at n. We claim that if C and D are two restricted
equivalence classes with the corner of C above the corner of D, then if C is
marked −, so is D, and if D is marked + then so is C. That is to say, we
have the situation depicted in Figure 13. This being the case, letting B be
the augmenting tableau of shape γ with n + 1 added to the inner corner
above which n cannot be a peak and below which n can be a peak, we have
that ([T ](2,n−2),Peak) is isomorphic to (SShT(γ,B),Peak).

Figure 13: Identifying the unique position for n+ 1 based on the peak set.

To prove the claim, assume for contradiction that the corner of C is
above the corner of D and that C is marked − and D is marked +. We
subclaim that the corner of C cannot be on the main diagonal. For U ∈ C
with a peak at n, Lemma 7.7 ensures that the restricted class [U ](n−4,n−1)

is isomorphic to SShT(ε) for a unique strict partition ε of size 7. If U maps
to A ∈ SShT(ε) under this isomorphism, then [U ](n−4,n−2) is isomorphic to
[A](2,4). In particular, A has a peak at 6, ensuring that 5 is weakly above
6 in A. By the uniqueness in Lemma 7.7, the image of U in SShT(γ) must
also map isomorphically to A when restricted to entries n − 5, . . . , n and
maps bn−4, bn−3, bn−2. In particular, the two must have the same descent
set, forcing n − 1 to be weakly above n. Thus n cannot be in a top row of
length 1.

Choose a shifted tableau D of shape γ with specified positions for n, n−
1, . . . , n− 5 as follows. Put n in the outer corner corresponding to D, n− 1
in the outer corner corresponding to C, and n−2 between these two corners.
This placement for n− 2 is always possible since there must be at least one
cell that is both left of n − 1 and below n in order for both to be outer
corners. Furthermore, by the prior assertion that the corner for C is not on
the main diagonal, we may place n−3 left of n−1. Therefore if we removed
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n− 1 and n, then n− 3 and n− 2 would both occupy outer corners. Given
this, we may place n−4 below n−3 and left of n−2. Finally, since γ is still
strict, there is at least one cell left of n − 4, so we may place n − 5 there.
See Figure 14.

Figure 14: Relative positions for n−5, . . . , n in D (far left) and C (far right).

With D as described, bn−2 acts on D by interchanging n − 1 and n
with witness n − 2 and bystander n − 3. Then bn−4 acts on bn−2(D) by
interchanging n− 3 and n− 2 with witness n− 4 and bystander n− 5. Set
C = bn−3bn−4bn−2(D), where bn−3 acts by interchanging n − 2 and n − 1
with witness n−3 and bystander n−4. Thus the element of D that maps to
D, say d, and the element of C that maps to C, say c, lie in the same class
under ϕn−4, ϕn−3, ϕn−2. Finally, we use the assumption on peak sets and
Lemma 7.7 for [c](n−4,n−1) = [d](n−4,n−1) to see that d must correspond to
degree 7 shape (5, 2) whereas c must correspond to degree 7 shape (4, 2, 1),
which are not the same.

The main result that will establish Theorem 7.5 is the following shifted
analog of [Ass15][Theorem 3.12].

Theorem 7.9. Let {ϕi}1<i<n be a shifted dual equivalence for (A,Peak)
with a single equivalence class, and suppose that for each T ∈ A there exists
an isomorphism from ([T ](2,n−2),Peak∩{2, 3, . . . , n−1}) to (SShT(γ),Peak)
for some strict partition γ of n. Then there exists a morphism from (A,Peak)
to (SShT(ε),Peak) for a unique strict partition ε of n+ 1 containing γ.

Proof. For n < 7, the result follows from Lemmas 7.8 and 7.7. If ϕn−1 acts
trivially on the entire equivalence class, then Peak ≡ ∅ and ε = (n + 1).
Therefore we proceed by induction on n and assuming that A has at least
one element (thus two elements) not fixed by ϕn−1.

By Lemma 7.8, the isomorphism from ([T ](2,n−2),Peak∩{2, 3, . . . , n−1})
to (SShT(γ),Peak) extends to an isomorphism from ([T ](2,n−2),Peak) to
(SShT(γ,B),Peak) for a unique augmenting shifted tableau B, say with
shape ε/γ. We will show that for any [T ](2,n−2), the shape ε is the same and
that we may glue these isomorphisms together to obtain a morphism from
(A,Peak) to (SShT(ε),Peak).

Suppose d = ϕn−1(c). Let C = [c](2,n−2) and D = [d](2,n−2). Let φ (resp.
ψ) be the isomorphism from C (resp. D) to SShT(γ) (resp. SShT(δ)), and
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Figure 15: An illustration of the gluing process.

set C = φ(c); see Figure 15. We will show that ψ(d) = bn−1(C), and hence
if γ,B has shape ε, then so does δ,B, and the maps φ and ψ glue together
to give a morphism from C ∪ D to SShT(ε) that commutes with ϕn−1 and
bn−1. There are two cases to consider, based on the relative positions of
n− 1, n, n+ 1 in C, regarded as a shifted tableau of shape ε.

First suppose that bn−1 fixes n + 1. We will show that, in this case,
C = D. There are three subcases to consider based on how bn−1 acts on C
and D. For each, the idea is to use b2, . . . , bn−5 to move to a tableau C ′

for which bn−1(C
′) = bn−2(C

′) = D′, and then move from D′ back to D by
reversing the sequence of b2, . . . , bn−5 using condition (ii) of Definition 7.3;
see Figure 16.

If bn−1 interchanges n−2 and n−1, then n must be the witness and n+1
the bystander, so there must exist a cell between n− 2 and n− 1 containing
an entry at most n−3. Let C ′ be the shifted tableau with n−2, n−1, n, n+1
in the same position as in C and with n− 3 between n− 2 and n− 1. Then
ϕn−2 also acts on C ′ by exchanging n− 2 and n− 1, where n− 3 and n are
the witness and bystander in some order.

If bn−1 interchanges n− 1 and n with n− 2 as the witness and n+1 the
bystander, then there must be a cell between n+ 1 and n− 2 that contains
an entry at most n−3. Let C ′ be the shifted tableau with n−2, n−1, n, n+1
in the same position as in C and with n− 3 between n− 2 and n+ 1. Then
ϕn−2 also acts on C ′ by exchanging n − 1 and n, where n − 2 is again the
witness and n− 3 is the bystander.

If bn−1 interchanges n − 1 and n with n + 1 as the witness and n − 2
the bystander, then again there must be a cell between n + 1 and n − 2
that contains an entry at most n − 3. Let C ′′ be the shifted tableau with
n−2, n−1, n, n+1 in the same position as in C and with n−3 between n−2
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and n+1. Now we go further, noting that there must be a cell between n−2
and n− 3 containing an entry at most n− 4, and we insist that n− 4 lie in
this cell in C ′′ as well. Finally, there must be a cell left of this that contains
an entry at most n − 5, and we insist that n − 5 lie in this cell in C ′′ as
well. Observe that the positions of n− 5, . . . , n+1 ensure that [C ′′](n−4,n−1)

is isomorphic to SShT(4, 3); see Figure 12. In particular, in this case bn−4

commutes with bn−1. Thus we may set C ′ = bn−4(C
′′), which interchanges

n − 3 and n − 2. In this case, ϕn−2 acts on C ′ by exchanging n − 1 and n,
where n− 2 has been positioned as the witness and n− 3 as the bystander.

Figure 16: The path from C to D in SShT(γ) and its lift in C.

In all cases, we have shown that D ∈ [C]2,n−2. Therefore we can lift
this to A to conclude that d ∈ [c]2,n−2 = C. Set c′ = φ−1(C ′) and d′ =
ψ−1(D′). By Lemma 7.7, there is a unique shifted dual equivalence structure
on [c′]n−4,n−1 and on [C ′]n−4,n−1, which forces ϕn−1(c

′) = φ−1(bn−1(C
′)) =

φ−1(D′) = d′. Thus we may invoke condition (ii) of Definition 7.3 to conclude
that d = ϕn−1(c) = φ−1(bn−1(C)) = φ−1(D). In this case C = D and, by
Proposition 7.6, ψ = φ.

For the second case, we may assume bn−1 acts on C by interchanging n
and n + 1 with n − 1 as the witness and n − 2 as the bystander. Consider
the subset of SShT(γ,B) with n and n + 1 fixed in the same position as
in C and n − 1 lying anywhere between them and n − 2 anywhere left of
n−1. In terms of the equivalences, for n−1 in a fixed position, these are all
tableaux reachable using bh with h ≤ n − 5 and certain instances of bn−4.
We will return soon to the question of which instances these are. For now,
let [C] denote the union of the equivalence classes [C ′](2,n−5), where C ′ has
n − 1 between n and n + 1 and n − 2 somewhere left of n − 1. The range
of positions for n − 2 determines the range of positions for n − 1, which in
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turn uniquely determines the cells containing n and n + 1, and so this set
uniquely determines ε. Furthermore, which of n, n + 1 occupies which cell
is determined by whether or not n is a peak. Therefore φ−1 lifts [C] to a
subset of C that completely determines ε as well as the positions of n and
n+1 in the image of this set under φ. We will show that the corresponding
lifted subset for D is isomorphic but with n toggled into or out of the peak
set.

Figure 17: Illustration of bn−4 on [C] ∪ [D] and their lifts in C ∪ D.

To prove the assertion, we return to the question of which instances of
ϕn−4 are allowed in generating [C]. For this, we may consider the struc-
ture of the degree 7 equivalence class generated by ϕn−4, . . . , ϕn−1 which,
by Lemma 7.7, have the structure of one of the components depicted in Fig-
ure 12. Examining the possibilities, it follows that whenever ϕn−4 keeps n−2
left of n − 1, the map also commutes with ϕn−1, as depicted in Figure 17.
By condition (ii) of shifted dual equivalences, ϕh also commutes with ϕn−1

for h ≤ n− 5. Therefore all involutions used to generate [C] commute with
ϕn−1. Thus ϕn−1 gives an isomorphism from φ−1([C]) to a subset of D. Let
D = ψ(d). Then [D] = ψ(ϕn−1(φ

−1([C]))). Since φ, ψ and ϕn−1 are isomor-
phisms, [D] is isomorphic to [C], though exactly one has n as a peak. By
the earlier characterization of [C], this implies that the tableaux in [D] have
shape ε, with the cells containing n and n+ 1 reversed from that in [C]. In
particular, [D] = bn−1([C]), that is to say, φ and ψ glue to give a morphism
from C ∪D ⊂ A to SShT(γ,A)∪ SShT(δ,B) ⊂ SShT(ε) that respects ϕn−1.
Therefore this map lifts to a morphism from A to SShT(ε).

Thus far we have used condition (i) of shifted dual equivalence only for
restricted equivalence classes of degree up to 7. If this weaker condition is
all that is used, then Theorem 7.9 proves that there is a morphism from
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(A,Peak) to SShT(ε). While this morphism is always surjective, in order to

show that it is injective we must invoke condition (i) for degree 9.

Theorem 7.10. Given any shifted dual equivalence {ϕi}1<i<n for (A,Peak)

with a single equivalence class, there exists a unique strict partition γ of size

n+1 such that there is an isomorphism of shifted dual equivalences between

(A,Peak) under {ϕi}1<i<n and (SShT(γ),Peak) under {bi}1<i<n.

Proof. We proceed by induction on n + 1, noting that the result follows

from Lemma 7.7 for n + 1 ≤ 7. The involutions {ϕi}1<i<n−1 give a shifted

dual equivalence for any restricted equivalence class [T ](2,n−2), and so, by

induction, each such class is isomorphic to (SShT(δ),Peak) for a unique strict

partition δ of n. By Theorem 7.9, there exists a morphism, say φ, from A
to SShT(γ) for a unique strict partition γ of n+1. Surjectivity follows from

the fact that A has a single equivalence class under {ϕi}1<i<n and that φ

commutes with ϕi and bi. To prove that φ is injective, we first claim that

the fiber over each standard shifted tableau has the same cardinality.

To prove the claim, we show that for any restricted equivalence class C
under {ϕi}1<i<n−1, say with φ(C) = SShT(δ), and any strict partition ε ⊂ γ

of size n, there is a unique restricted equivalence class D under {ϕi}1<i<n−1

with φ(D) = SShT(ε) such that d = ϕn−1(c) for some c ∈ C and some d ∈ D.

Once established, this gives a bijective correspondence between equivalence

classes in φ−1(SShT(δ)) and in φ−1(SShT(ε)), thus proving the result.

To prove existence, if ε �= δ, let C be a shifted standard tableau of shape

γ with n + 1 in position γ/δ, n in position γ/ε, n − 1 lying between, and

n − 2 lying left of n − 1. Otherwise let C be a standard shifted tableau

with n + 1 in position γ/δ and n and n − 1 lying on opposite sides, again

with n − 2 left of n − 1. Let c be the unique element in φ−1(C) ∩ C. Then
φ(ϕn−1(c)) = ϕn−1(φ(c)) ∈ SShT(ε).

To prove uniqueness, let d = ϕn−1(c) with c ∈ C and d ∈ D. If n + 1

lies between n and n − 1 in φ(C), then δ = ε, and just as in the proof of

Theorem 7.9, we concluded that D = C as desired. Alternately, assume n−1

lies between n and n+1 in φ(c), and suppose ϕn−1(c
′) = d′ with C ′ ∈ C and

d′ ∈ D′ where φ(D′) = SShT(ε). Since φ(c) and φ(c′) have the same shape,

and ϕn−1(φ(c)) = φ(ϕn−1(c)) = φ(d) and ϕn−1(φ(w
′)) = φ(ϕn−1(w

′)) =

φ(d′) have the same shape as well. Just as in the proof of Theorem 7.9,

φ(c) and φ(c′) must lie in the same equivalence class under b2, . . . , bn−5 and

those instances of bn−4 that commute with bn−1. Lifting this class via φ, c

and c′ must lie in the same equivalence class under ϕ2, . . . , ϕn−5 and those

instances of ϕn−4 that commute with ϕn−1. Therefore applying ϕn−1, d and
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d′ lie in the same equivalence class under ϕ2, . . . , ϕn−5 and those instances
of ϕn−4 that commute with ϕn−1. In particular, d′ ∈ D, and so D = D′.

Since each fiber has the same cardinality, say k, the generating func-
tion for A is kQλ. When n ≤ 9, condition (i) ensures k = 1 and the
map to SShT(γ) is an isomorphism. In particular, we may assume the re-
stricted equivalence classes under ϕn−6, . . . , ϕn−1 are isomorphic to some
SShT(δ). Given two standard shifted tableaux C,D of the same shape,
there exist tableaux C ′, D′ such that C ′ ∈ [C](2,n−2), D

′ ∈ [D](2,n−2), and
C ′ = ϕn−1(D

′) (cf. axiom 6 for dual equivalence graphs in [Ass15][Definition
3.2]).

Suppose T, U, V,X ∈ A, with U = ϕn−1(T ), V = ϕn−1(X), and U and
V lie in the same restricted equivalence class under ϕ2, . . . , ϕn−2. We will
show that there exist T ′, X ′ in the same restricted equivalence classes as
T,X, respectively, such that T ′ and X ′ lie in the same degree 9 equivalence
class under ϕn−6, . . . , ϕn−1; see Figure 18. By the earlier remark and the
result for degree up to 9, this implies that there exist T ′′, X ′′ such that
T ′′ ∈ [T ′](n−6,n−2) ⊆ [T ](2,n−2), X

′′ ∈ [X ′](n−6,n−2) ⊆ [X](2,n−2), and T ′′ =
ϕn−1(X

′′). In particular, we must have k = 1.

Figure 18: Establishing injectivity from degree 9.

By the inductive hypothesis and Theorem 7.9, we may identify T, U, V,X
with shifted tableaux of shape γ, |γ| = n+1, and, when restricted to entries
up to n, T, U, V,X have shapes δ, ε, ε, ζ, respectively, with δ, ε, ζ distinct
strict partitions contained in γ. Then γ/ρ must be a corner (end of row,
top of column) for ρ = δ, ε, ζ. Assume these cells appear with γ/δ northeast
of γ/ζ northeast of γ/ε, noting that the other orders can be resolved in a
similar way. Let T ′ be any shifted standard tableaux of shape γ with n+ 1
in position γ/δ, n in position γ/ε, n−1 in position γ/ζ, n−2 between n+1
and n− 1, n− 3 left of n− 2 (which is possible since γ is a shifted shape),
n − 4 between n − 1 and n, n − 5 between n − 2 and n − 4, n − 6 between
n− 3 and n− 5, and n− 7 left of n− 6 (which is possible since γ is a shifted
shape). See Figure 19 for an illustration.
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Figure 19: Relative positions for n − 7, . . . , n + 1 in T ′ (top left) and X ′

(bottom left).

Set U ′ = bn−1(T
′). Since the shape of U ′ restricted to entries up to n is ε,

we have U ′ ∈ [U ](2,n−2) where U = bn−1(T ), and V ′ ∈ [V ](2,n−2) where V =

bn−2bn−4bn−6bn−4bn−2(U
′); again, see Figure 19. Set X ′ = bn−1(V

′). Since
the shape of X ′ restricted to entries up to n is ζ, we have X ′ ∈ [X](2,n−2)

where X = bn−1(V ). Moreover, since X ′ = bn−1bn−2bn−4bn−6bn−4bn−2 ×
bn−1(T

′), we have that X ′ ∈ [T ′](n−6,n−1) as desired.

Theorem 7.5 now follows as a corollary to Theorem 7.10 and (7.2).

8. Products of Schur P -functions

We now present a first application of shifted dual equivalence. For γ ⊆
ε strict partitions, we define the shifted skew diagram ε/γ to be the set

theoretic difference between ε and γ. For example, the shifted skew diagram

for (6, 4, 3, 1)/(5, 2) is given in Figure 20.

Figure 20: The shifted Young diagram and shifted symmetric diagram for
(6, 4, 3, 1).

The combinatorial definitions for Schur Q-functions extend to skew

shifted diagrams [Mac95], and the quasisymmetric expansions in Section 4

hold for the shifted case as well. Precisely, we have
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(8.1) Qε/γ(X) =
∑

S∈SShT(ε/γ)

2|Peak(S)|+1GPeak(S)(X)

where SShT(ε/γ) denotes the set of all standard shifted tableaux of skew
shifted shape ε/γ.

Schur Q and P -functions have the same relationship as before, though
one must take care to track how many cells now live on the main diagonal.
The relation in (3.3) becomes

(8.2) Pε/γ(X) = 2�(ε)−�(γ)Qε/γ(X).

Recall that the product of two Schur P -functions may be expanded in
the Schur P -function basis, so we may define integers f ε

γ,δ by

(8.3) Pγ(X)Pδ(X) =
∑

ε

f ε
γ,δPε(X).

Since the Schur Q- and P -functions form dual bases and the operation of
skewing is adjoint to multiplication [Mac95](I.5), these integers may also be
defined by

(8.4) Qε/γ(X) =
∑

δ

f ε
γ,δQδ(X).

Using the machinery of shifted dual equivalence, the second half of The-
orem 3.1 now follows.

Corollary 8.1. For γ ⊆ ε strict partitions, f ε
γ,δ is the number of shifted

dual equivalence classes of standard shifted tableaux of skew shifted shape
ε/γ under the action of {bi}1<i<|ε|−|γ|−1 that are isomorphic to SShT(δ). In
particular, f ε

γ,δ is a nonegative integer.
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[Józ91] Tadeusz Józefiak. Schur Q-functions and cohomology of isotropic

Grassmannians. Math. Proc. Cambridge Philos. Soc., 109(3):471–

478, 1991. MR1094746

[Mac95] I. G. Macdonald. Symmetric functions and Hall polynomials. Ox-

ford Mathematical Monographs. The Clarendon Press Oxford Uni-

versity Press, New York, second edition, 1995. With contributions

by A. Zelevinsky, Oxford Science Publications. MR1354144

[Pra91] Piotr Pragacz. Algebro-geometric applications of Schur S- and Q-

polynomials. In Topics in invariant theory (Paris, 1989/1990),

volume 1478 of Lecture Notes in Math., pages 130–191. Springer,

Berlin, 1991. MR1180989

[Sag87] Bruce E. Sagan. Shifted tableaux, Schur Q-functions, and a conjec-

ture of R. Stanley. J. Combin. Theory Ser. A, 45(1):62–103, 1987.

MR0883894
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