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Combinatorics of symmetric plabic graphs

Rachel Karpman
∗
and Yi Su

A plabic graph is a planar bicolored graph embedded in a disk,
which satisfies some combinatorial conditions. Postnikov’s bound-
ary measurement map takes the space of positive edge weights of
a plabic graph G to a positroid cell in a totally nonnegative Grass-
mannian. In this note, we investigate plabic graphs which are sym-
metric about a line of reflection, up to reversing the colors of ver-
tices. These symmetric plabic graphs arise naturally in the study of
total positivity for the Lagrangian Grassmannian. We character-
ize various combinatorial objects associated with symmetric plabic
graphs, and describe the subset of a Grassmannian which can be
realized by symmetric weightings of symmetric plabic graphs.
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2.3 Plabic graphs 262

2.4 The boundary measurement map 264

2.5 Bounded affine permutations 265

2.6 Grassmann and reverse Grassmann necklaces 267

2.7 Bridge graphs 268

3 Characterizing symmetric plabic graphs 270

4 Network realizations of symmetric points 273

Acknowledgements 277

References 277

arXiv: 1510.02122
∗Supported in part by NSF grant DGE-1256260 and NSF grant DMS-0943832.

259

http://www.intlpress.com/JOC/
http://arxiv.org/abs/1510.02122


260 Rachel Karpman and Yi Su

1. Introduction

A plabic graph is a planar graph embedded in a disk, with vertices colored
black or white. Postnikov introduced plabic graphs as a tool for studying the
positroid stratification of the totally nonnegative Grassmannian Gr≥0(k, n)
[7].

The totally nonnegative Grassmannian is the region of the Grassman-
nian Gr(k, n) where all Plücker coordinates are nonnegative real numbers, up
to multiplication by a common scalar. Postnikov defined a stratification of
Gr≥0(k, n) by positroid cells, each defined as the locus in Gr≥0(k, n) where
some set of Plücker coordinates vanish. The resulting positroid stratifica-
tion of Gr≥0(k, n) has a rich geometric and combinatorial structure. There
are numerous combinatorial objects which index positroid cells, including
bounded affine permutations, Grassmann necklaces, and a class of matroids
called positroids [7, 3].

Given a plabic graph G, Postnikov’s boundary measurement map takes
the space of positive real edge weights of G surjectively to a positroid cell
ΠG in Gr≥0(k, n) for some values of k and n. Moreover, the bounded affine
permutation, Grassmann necklace, and matroid of ΠG are encoded in the
structure of G. Note that plabic graphs are not in bijection with positroid
cells; rather, for each positroid cell, we have a family of plabic graphs.

In this note, we study plabic graphs which satisfy a symmetry condition.
See Figure 1 for an example. These symmetric plabic graphs arise in the the-
ory of total positivity for the Lagrangian Grassmannian Λ(2n), the moduli
space of maximal isotropic subspaces with respect to a symplectic bilinear
form. The connection with Λ(2n), as well as additional results on the com-
binatorics of symmetric plabic graphs, will be discussed in a forthcoming
paper by the first author [2].

Let G denote a plabic graph, and let N denote the underlying uncol-
ored network. Suppose N is symmetric with respect to reflection through a
distinguished diameter d of the disc. Let V be the vertex set of E, and let
r : V → V map each vertex v ∈ V to its mirror image across the line d.
Then G is a symmetric plabic graph if the following conditions hold:

1. G has no vertices on the line d, although edges may cross d
2. For each v ∈ V , the vertices v and r(v) have opposite colors.

We briefly summarize our results. In Theorem 3.1, we characterize the
positroids, Grassmann necklaces, and bounded affine permutations associ-
ated with symmetric plabic graphs. We then consider symmetric weightings
of symmetric plabic graphs; that is, weightings where each edge (u, v) has
the same weight as its reflection (r(u), r(v)). Theorem 4.2 and Corollary 4.3
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Figure 1: A symmetric plabic graph.

give a complete description of the set of points in Gr≥0(k, n) correspond-
ing to such weightings of symmetric plabic graphs. This is a subvariety,
cut out set-theoretically by linear equations, which we call the symmetric
part of Gr(k, n). With the right choice of conventions, the symmetric part
of Gr≥0(k, n) is precisely the totally nonnegative part of the Lagrangian
Grassmannian [2]. Finally, Theorem 4.4 gives an explicit construction which
yields a symmetric weighting of a symmetric plabic graph for each point in
the symmetric part of Gr≥0(k, n). In particular, we construct a symmetric
bridge graph for each point in Gr≥0(k, n). Bridge graphs are a special class
of plabic graphs which appear as a computational tool in particle physics
[1].

2. Background

2.1. Notation

For natural numbers k ≤ n, let [n] denote the set {1, 2, . . . , n}, and let
([n]
k

)
denote the set of all k-element subsets of [n]. For a ∈ [n], let ≤a denote the
cyclic shift of the usual linear order on n given by

(1) a < a+ 1 < . . . < n < 1 < . . . < a− 1.

Note that ≤1 is the usual order ≤. We extend this to a partial order on
([n]
k

)
,

by setting I ≤a J if we have i� ≤a j� for all � ∈ [k], where

(2) I = {i1 <a i2 <a . . . <a ik} and J = {j1 <a j2 <a . . . <a jk}.
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For a, b ∈ [n], we define the cyclic interval [a, b]cyc by

(3) [a, b]cyc =

{
{a, a+ 1, . . . , b} a ≤ b

{a, a+ 1, . . . , n− 1, n, 1 . . . , b} a > b
.

(Note that this differs slightly from Postnikov’s convention.) If we arrange
the elements of [n] clockwise around a circle, then [a, b]cyc represents a se-
quence of consecutive numbers.

Let Sn be the symmetric group in n letters, and let si denote the simple
transposition (i, i+1) which switches i and i+1. Let R>0 denote the positive
reals.

2.2. Grassmannians and Plücker coordinates

Let Gr(k, n) denote the Grassmannian of k-dimensional linear subspaces
of the vector space Cn. We may realize Gr(k, n) as the space of full-rank
k×n matrices modulo the left action of GL(k), the group of invertible k×k
matrices; a matrix M represents the space spanned by its rows.

The Plücker embedding, which we denote p, maps Gr(k, n) into the pro-

jective space P(
n

k)−1 with homogeneous coordinates xJ indexed by the ele-
ments of

([n]
k

)
. For J ∈

([n]
k

)
let ΔJ denote the minor with columns indexed

by J . Let V be a k-dimensional subspace of Cn with representative matrix
M . Then p(V ) is the point defined by xJ = ΔJ(M). This map embeds

Gr(k, n) as a smooth projective variety in P(
n

k)−1. The homogeneous coor-
dinates ΔJ are known as Plücker coordinates on Gr(k, n). The totally non-
negative Grassmannian, denoted Gr≥0(k, n), is the subset of Gr(k, n) whose
Plücker coordinates are all nonnegative real numbers, up to multiplication
by a common scalar.

Let V ∈ Gr≥0(k, n). The indices of the non-vanishing Plücker coordi-

nates of V give a set J ⊆
([n]
k

)
called the matroid of V . We define the

matroid cell MJ as the locus of points V ∈ Gr≥0(k, n) with matroid J .
The matroids J for which MJ is nonempty are called positroids, and the
corresponding matroid cells are called positroid cells. Positroid cells form
a stratification of Gr≥0(k, n). That is, the closure of a positroid cell Π in
Gr≥0(k, n) is the union of Π and some lower-dimensional positroid cells [7].

2.3. Plabic graphs

A plabic graph is a planar graph embedded in a disk, with each vertex
colored black or white. The boundary vertices are numbered 1, 2, . . . , n in
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Figure 2: A trip in a plabic graph G. We have f̄G(2) = 4.

clockwise order, and all boundary vertices have a degree of one. We call the
edges adjacent to boundary vertices legs of the graph, and a leaf adjacent
to a boundary vertex a lollipop. A white lollipop is a white leaf adjacent to
a black boundary vertex, while a black lollipop is the opposite.

Postnikov introduced plabic graphs in [7, Section 11.5]. We follow the
conventions of [5], which are more restrictive than Postnikov’s. In particular,
we require a plabic graph to be bipartite, with the black and white vertices
forming the partite sets. An almost perfect matching on a plabic graph is a
subset of its edges which covers each interior vertex exactly once; boundary
vertices may or may not be covered. We consider only plabic graphs which
admit an almost perfect matching. Finally, we require that no edge in a
plabic graph connects two boundary vertices.

We define a collection of paths and cycles in G, called trips, as follows.
We begin by traversing an edge {u, v} of G, from u to v. We then proceed ac-
cording to the rules of the road : turn (maximally) left at every white internal
vertex, and (maximally) right at every black internal vertex. Continuing in
this fashion, we eventually reach a boundary vertex. The resulting directed
path is a trip in G. See Figure 2 for an example. We repeat this process for
every boundary vertex. If the resulting collection of trips covers every edge
of G twice, once in each direction, we are done.

Otherwise, we find an internal edge e = {u, v} such that no trip covers e
in the direction u → v. We begin by tracing e in this direction, and proceed
according to the rules of the road, until we find ourselves once again about
to trace the edge u → v. The resulting directed cycle is a trip. Repeat this
process until each edge of G is covered twice by trips, once in each direction.

Given a plabic graph G with n boundary vertices, we define the trip
permutation f̄G ∈ Sn of G by setting f̄G(a) = b if the trip that starts at
boundary vertex a ends at boundary vertex b.
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The boundary measurement map is defined only for reduced plabic
graphs. Postnikov defined reduced plabic graphs in terms of certain local
transformations of plabic graphs, and gave a criterion for a plabic graph G
to be reduced [7, Section 13]. We take this criterion as the definition of a
reduced graph.

Definition 2.1. A plabic graph G is reduced if it satisfies the following
criteria:

1. G has no trips which are cycles.
2. G has no leaves, except perhaps some which are adjacent to boundary

vertices.
3. No trip uses the same edge twice, once in each direction, unless that

trip starts (and ends) at a boundary vertex connected to a leaf.
4. No trips T1 and T2 share two edges e1, e2 such that e1 comes before e2

in both trips.

If G is a reduced graph, each fixed point of f̄G corresponds to a lollipop
[7].

2.4. The boundary measurement map

Let G be a reduced plabic network with e edges, and assign weights t1, . . . , te
to the edges of G. Postnikov defined a surjective map from the space of
positive real edge weights of G to some positroid cell ΠG in Gr≥0(k, n), called
the boundary measurement map [7, Section 11.5]. Postnikov, Speyer and
Williams re-cast this construction in terms of almost perfect matchings [8,
Section 4-5], an approach Lam developed further in [5]. We use the definition
of the boundary measurement map found in [5].

As mentioned above, an almost perfect matching of a plabic graph G is
a subset of the edge set of G which covers each internal vertex exactly once.
(Boundary vertices may or may not be covered.) For P an almost perfect
matching on a plabic graph G with e edges, let

∂(P ) ={black boundary vertices used in P}
∪ {white boundary vertices not used in P}

(4)

We define the boundary measurement map

(5) ∂G : (R>0)
e → P(

n

k)−1

to be the map which sends (t1, . . . , te) to the point with homogeneous coor-
dinates
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(6) ΔJ =
∑

∂(P )=J

tP

where the sum is over all matchings P of G, and tP is the product of the
weights of all edges used in P .

The boundary measurement map ∂G is surjective onto the totally non-
negative cell ΠG. However, it is almost never injective, due to the existence
of gauge transformations. Let v be a vertex of G, and let ω be a weighting
of G with ∂G(ω) = X. Multiplying the weights of all edges incident at v by
λ ∈ R>0 simply multiplies all Plücker coordinates by λ, and hence yields a
new weighting ω′ with ∂G(ω

′) = X. Conversely, if two weightings of G map
to the same point in Gr≥0(k, n), then they are related by some sequence of
gauge transformations [7].

2.5. Bounded affine permutations

Bounded affine permutations are one of many families of combinatorial
objects which index positroid cells. There is a natural bijection between
bounded affine permutations and Postnikov’s decorated permutations, so
Postnikov’s results about the latter translate easily to statements about
the former [7, 3].

Definition 2.2. An affine permutation of order n is a bijection f : Z → Z

which satisfies the condition

(7) f(i+ n) = f(i) + n

for all i ∈ Z. The affine permutations of order n form a group, which we
denote S̃n.

We may embed Sn in S̃n by extending each permutation periodically,
in accordance with (7). Conversely, for f an affine permutation, there is a
unique permutation f̄ ∈ Sn such that for all i ∈ [n], we have f̄(i) ∼= f(i)
(mod n).

Definition 2.3. An affine permutation f is a bounded affine permutation
of type (k, n) if it satisfies the following conditions

1.
1

n

n∑
i=1

(f(i)− i) = k.

2. i ≤ f̄(i) ≤ i+ n for all i ∈ Z.
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Figure 3: Crossings in a chord diagram.

We write Bound(k, n) for the set of all bounded affine permutations of type
(k, n).

Let G be a reduced plabic graph with n boundary vertices, and trip
permutation f̄G. Suppose we have

(8) k = |{i ∈ [n] : f̄G(i) < i or i is a white lollipop of G}|.

Then G has an associated bounded affine permutation fG of type (k, n)
defined by setting

(9) fG(i) =

{
f̄G(i) f̄G(i) > i or G has a black lollipop at i

f̄G(i) + n f̄G(i) < i or G has a white lollipop at i

for i ∈ [n], and extending periodically using (7). For f a bounded affine
permutation, we say f has a white fixed point at i if f(i) = i+ n, and that
f has a black fixed point at i if f(i) = i.

Bounded affine permutations of type (k, n) are in bijection with positroid
cells in Gr≥0(k, n) [7]. Let G be as above, and weight the edges of G with
indeterminates. The boundary measurement map carries the space of positive
real edge weights of G to the positroid cell ΠG corresponding to f̄G [7]. There
is a family of reduced graphs for each bounded affine permutation, and hence
for each positroid cell.

We represent bounded affine permutations visually using chord diagrams,
introduced in [7, Section 16]. A chord diagram for a bounded affine permu-
tation f is a circle with vertices labeled 1, 2, . . . , n in clockwise order. We
draw arrows from vertex i to vertex f̄(i) for all i ∈ [n]. By convention, if i is
a white fixed point of f , we draw a clockwise loop at i; if i is a black fixed
point, we draw a counter-clockwise loop.

Let (i, f̄(i)) and (j, f̄(j)) be a pair of chords in the chord diagram of
a bounded affine permutation f . This pair represents a crossing if f̄(j) ∈
[i, f̄(i)]cyc and j ∈ [f̄(i), i]cyc, so the two chords intersect. See Figure 3.

Let Π be a positroid cell in Gr≥0(k, n) with bounded affine permutation
f , and let V be a matrix representing a point in Π. Let v1, . . . , vn be the
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columns of G. We extend this periodically to a sequence of vectors in vi ∈ Ck

by setting vi = vj if i ≡ j (mod n). The following lemma, which is implicit
in [3], gives a characterization of f in terms of the vi.

Lemma 2.4. With the notation above, f(i) is the smallest r ≥ i with vi ∈
Span(vi+1, vi+2, . . . , vr). Similarly f−1(i) is the largest r ≤ i such that vi ∈
Span(vr, vr+1, . . . , vi−1).

2.6. Grassmann and reverse Grassmann necklaces

We now introduce a final pair of indexing sets for positroid cells: Grassmann
necklaces and dual Grassmann necklaces. The combinatorics of Grassmann
necklaces are vital to the proof of Theorem 4.4, which shows that we can
construct a symmetric plabic graph with symmetric weights for any point
in the symmetric part of Gr≥0(k, n).

Definition 2.5. A Grassmann necklace I = (I1, . . . , In) of type (k, n) is a
sequence of k-element subsets of [n] such that the following hold, with indices
taken modulo n:

1. If i ∈ Ii then Ii+1 = (Ii ∪ {j})− {i} for some j ∈ [n].
2. If i 
∈ Ii, then Ii+1 = Ii.

Postnikov defined a combinatorial bijection between Grassmann neck-
laces of type (k, n) and bounded affine permutations. Let I be a Grassmann
necklace of type (k, n). We construct the bounded affine permutation f cor-
responding to I as follows, with indices taken modulo n:

1. If Ii+1 = (Ii ∪ {j})− {i} for some j 
= i, then f̄(i) = j.
2. If Ii+1 = Ii and i 
∈ Ii, then i is a black fixed point of f .
3. If Ii+1 = Ii and i ∈ Ii, then i is a white fixed point of f .

Next, we describe how to recover the Grassmann necklace I from the
bounded affine permutation f . We say i ∈ [n] is an anti-exceedance of f if
either f̄−1(i) > i or i is a white fixed point. We say i is an a-anti-exceedance
if we have f̄−1(i) >a i or i is a white fixed point. The Grassmann necklace
I corresponding to f is given by setting

(10) Ia = {i ∈ [n] | i is an a-anti-exceedance of f}.

Let M be a positroid of type (k, n). Then M is a collection of k-element
subsets of [n]. For each 1 ≤ i ≤ n, let Ii be the minimal element of M with
respect to the shifted linear order ≤i. Then M is a Grassmann necklace
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of type (k, n). This procedure gives a bijection between Grassmann neck-
laces and positroids [7]. For the inverse bijection, let I = (I1, . . . , In) be a
Grassmann necklace of type (k, n), and let M be the set of all k-element

subsets J ∈
([n]
k

)
such that Ii ≤i J for all i ∈ [n]. Then M is the positroid

corresponding to I [6].
Let M and I be as above. If V is a matrix representing some point in

the positroid cell Π corresponding to M, with columns v1, . . . , vn, then the
columns indexed by Ii represent the minimal basis for Ck among the columns
of V with respect to the cyclic order ≤i. We will use this fact frequently in
the proof of Theorem 4.4.

We also recall the dual notion, defined in [4, Section 3.6].

Definition 2.6. A dual Grassmann necklace of type (k, n) is a sequence
J = (J1, . . . , Jn) of k-element subsets of n such that the following hold, with
indices taken modulo n:

1. If i ∈ Ji+1, then Ji = (Ji+1 ∪ {j})− {i} for some j
2. If i 
∈ Ji+1, then Ji = Ji+1.

We have bijections between reverse Grassmann necklaces, decorated per-
mutations, and positroids, which commute with the bijections given above
for Grassmann necklaces. We describe these briefly below.

For J a dual Grassmann necklace, we define the corresponding bounded
affine permutation f by setting

1. If Ji = (Ji+1 ∪ {j})− {i} for some j 
= i, then f̄−1(i) = j.
2. If Ji = Ji+1 and i 
∈ Ji+1, then i is a black fixed point of f .
3. If Ji = Ji+1 and i ∈ Ji+1, then i is a white fixed point of f

where again indices are taken modulo n.
If Π is a positroid cell with positroid M and dual Grassmann necklace

J , then Ji gives the maximal element of M with respect to the shifted order
≤i.

2.7. Bridge graphs

We now describe a way to build up plabic graphs inductively. For more
details on this construction, see [4].

Let G be a reduced plabic graph with bounded affine permutation f
of type (k, n), corresponding to a positroid cell Π. If f(i) > f(i + 1) for
some i ∈ [n], then fsi is a bounded affine permutation of type (k, n), with
corresponding positroid cell Π∗. Moreover, we have dim(Π∗) = dim(Π) + 1.
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We may add an edge, called a bridge, between the two edges of G incident
at i and i+ 1, to produce a graph G∗ corresponding to Π∗. The bridge has
a white vertex adjacent to i and a black vertex adjacent to i+1. If G has a
boundary leaf, or lollipop, at i or i + 1, that leaf becomes one endpoint of
the bridge. Note that after adding the bridge, we add degree-two vertices as
needed to make the graph bipartite, as in Figure 4.

For i ∈ [n], let xi(c) be the elementary matrix with 1’s along the diagonal,
a nonzero entry c at position (i, i + 1), and 0’s everywhere else. Let G be
as above, and suppose f(i) < f(i + 1). Assign positive real weights to the
edges of G, and let M be a matrix representing the corresponding point
in Gr≥0(k, n). Applying gauge transformations, we can assume the edges
adjacent to boundary vertices i and i + 1 have weight 1. Adding a bridge
at (i, i + 1) with weight c corresponds to multiplying M on the right by
xi(c). Let X denote the point in Gr≥0(k, n) corresponding to G with its
original weighting, and X∗ denote the point corresponding to the weighted
graph obtained by adding the bridge. The boundary measurements change
as follows:

(11) ΔI(X
∗) =

{
ΔI(X) + cΔ(I∪{i})−{i+1}(X) if i+ 1 ∈ I but i 
∈ I

ΔI(X) otherwise
.

Note that we are abusing notation slightly, since the ΔI represent homoge-
neous coordinates rather than functions.

Figure 4: Adding a bridge to a plabic graph.

The following proposition, from [5], shows a way to “undo” the operation
of adding a bridge, at least on the level of matrix representatives.

Proposition 2.7. Let X ∈ Gr≥0(k, n), and suppose X is contained in the
positroid cell Π with bounded affine permutation f . Suppose i < f(i) <
f(i+ 1) < i+ n+ 1. Then

(12) c =
ΔIi+1

(X)

Δ(Ii+1∪{i})−{i+1}(X)
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is positive and well defined, and X∗ = X · xi(−c) is in Π∗, where Π∗ ⊂
Gr≥0(k, n) is the positroid with bounded affine permutation fsi and
dim(Π∗) = dim(Π)− 1.

Note that we have

(13) i < f(i) < f(i+ 1) < i+ n+ 1

if and only if the chords in the chord diagram for f which start at i and i+1
respectively form a crossing as in Figure 3. If this occurs, we say that f has
a bridge at (i, i+ 1).

3. Characterizing symmetric plabic graphs

Let G be a plabic graph with 2n boundary vertices, corresponding to a
positroid cell Π. Label the boundary vertices of G with the numbers 1, 2, . . . ,
2n in clockwise order, and fix a distinguished diameter d of G with one end
between vertices 2n and 1, and the other between vertices n and n+ 1. For
each i ∈ 2n, let i′ = 2n+ 1− i.

For I = {i1, i2, . . . , ik}, we define R(I) = [2n]\{i′ | i ∈ I}. Let G be a
symmetric plabic graph, and let I ⊆ [2n]. The reflection through d gives a
bijection between the set of almost perfect matchings P of G with ∂(P ) = I
and the set of almost perfect matchings P ′ of G with ∂(P ′) = R(I). One
immediate consequence is that if I = ∂(P ) for some matching P of G then
|I| = n, so Π lies in Gr≥0(n, 2n).

Theorem 3.1. Let Π be a positroid cell in Gr≥0(n, 2n) with positroid M
and bounded affine permutation f . Let I = (I1, . . . , I2n) be the Grassmann
necklace of Π, and let J = (J1, . . . , J2n) be the dual Grassmann necklace.
The following are equivalent:

(i) Π can be represented by a symmetric plabic graph.
(ii) I ∈ M if and only if R(I) ∈ M.
(iii) For a ∈ [2n], if f(a) = b, then f(2n+ 1− a) = 4n+ 1− b.
(iv) R(Ii) = Ii′+1 for all i ∈ [2n] with indices taken modulo 2n.
(v) R(Ji) = Ji′+1 for all i ∈ [2n] with indices taken modulo 2n.

Proof. The above discussion shows that (i) implies (ii).
Next, we show that (ii) and (iii) are equivalent. Consider a reduced

plabic graph H corresponding to Π, not necessarily symmetric, but with
distinguished diameter d as above. Reflect H about d, and reverse the colors
of all vertices. Let H ′ be the resulting plabic graph. We note that H ′ is
reduced. Indeed, suppose H has a trip from boundary vertex a to boundary
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Figure 5: A symmetric weighting of a symmetric plabic graph. The distin-
guished diameter d is shown in gray. Unlabeled edges have weight 1.

vertex t. Then this trip corresponds, under reflection though d and revers-
ing colors of vertices, to a trip from a′ to t′ in H ′. Hence, H ′ satisfies the
criterion for being reduced, which is phrased entirely in terms of forbidden
intersections between trips.

Let f̄ be the trip permutation of H, and f̄ ′ the decorated permutation
of H ′. Then f̄(a) = t implies f̄ ′(a′) = t′. Note also that a < t if and only
if a′ > t′. Moreover, a is a black fixed point of f if and only if a′ is a white
fixed point of f ′, and vice versa. It follows that f(a) = b implies

(14) f ′(2n+ 1− a) = 4n+ 1− b.

The reduced plabic graph H ′ corresponds to some positroid cell Π′, with
positroid M′. It is clear that M′ = {I | R(I) ∈ M}. Hence M′ = M if and
only if M satisfies condition (ii) above, while f̄ = f ′ if and only if f satisfies
condition (iii). But the statement M′ = M and f̄ = f ′ are both, in turn,
equivalent to Π = Π′. Hence (iii) and (ii) are equivalent as desired.

Next, we show (iii) implies (i). Suppose f(a) = b implies

f(2n+ 1− a) = 4n+ 1− b.

We claim that we can construct a symmetric plabic graph with bounded
affine permutation f , using the bridge graph construction given above. We
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proceed by induction on the dimension of the positroid Π corresponding to
G. Note first that if a is a black fixed point of f , then (iii) implies that a′

is a white fixed point, and vice versa. We may therefore assume that f has
no fixed points. Hence there is some pair (i, i + 1) with 1 ≤ i ≤ 2n such
that the bounded affine permutation f has a bridge at (i, i + 1). If i = n,
let g = fsi. Otherwise, let g = fsi′−1si. In each case, g is a bounded affine
permutation which satisfies (iii). By induction, we can build a symmetric
plabic graph corresponding to g. Adding a bridge at (n, n + 1) or a pair of
bridges at (i, i+1) and (i′−1, i′), respectively, we obtain a symmetric plabic
graph for f .

Next, we show that (iii) implies (iv) and (v). Indeed, if (iii) holds, then
the chord diagram for f has an arrow from a to t if and only if it has an
arrow from a′ to t′. Hence for each i ∈ [2n], we have f̄−1(a) >i a if and
only if f̄−1(a′) <(i′+1) a

′, and so Ii = R(Ii′+1). The argument for the dual
Grassmann necklace is analogous.

Finally, we show that (iv) and (v) each imply (iii). Suppose (iv) holds.
Note first that for a ∈ [2n], we have a ∈ Ii if and only if a′ /∈ Ii′+1. It follows
in particular that if a ∈ Ii for all i ∈ [2n] (that is, a corresponds to a “white”
fixed point of f) then a′ 
∈ Ii for all i, and a′ corresponds to a black fixed
point. Hence f(a′) = 4n+1−f(a) as desired. The analogous argument holds
if a is a black fixed point.

Suppose a is not a fixed point of f . Then we have

Ia = (Ia+1 ∪ {a})− {f̄(a)}(15)

Ia′+1 = (Ia′ ∪ {f̄(a′)})− {a′}(16)

Applying R to the first line above, we have

(17) R(Ia) = (R(Ia+1) ∪ {(f̄(a))′})− {a′}

By (iv), this implies

(18) Ia′+1 = (Ia′ ∪ {(f̄(a))′})− {a′}

Comparing this with our previous expression for Ia′+1 above, we have

(19) f̄(a′) = (f̄(a))′

It follows that f is a bounded affine permutation of type (n, 2n) which
satisfies (iii). Again, note that we could make an analogous argument using
the dual Grassmann necklace. This completes the proof.
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4. Network realizations of symmetric points

LetG be a symmetric plabic graph. Suppose we assign weights to the edges of

G such that each edge (u, v) has the same weight as its reflection (r(u), r(v))

about the distinguished diameter d. For I ∈
([n]
k

)
, reflection across d then

gives a weight-preserving bijection between the almost perfect matchings P

with ∂(P ) = I and the almost perfect matchings P ′ with ∂(P ′) = R(I).

Definition 4.1. A point X ∈ Gr≥0(n, 2n) is a symmetric point if ΔI(P ) =

ΔR(I)(P ) for all I. The subvariety of symmetric points in Gr≥0(n, 2n) is the

symmetric part of Gr≥0(n, 2n). Similarly, for a positiod cell Π, the symmet-

ric part of Π is the intersection of Π with the symmetric part of Gr≥0(n, 2n).

Clearly, the image of every symmetric weighting of a symmetric plabic

graph is a symmetric point. We show the converse.

Theorem 4.2. Let X ∈ Gr≥0(n, 2n) be a symmetric point. Then X may be

represented by a symmetric plabic graph with symmetric weights.

Proof. Since X is a symmetric point, the positroid of X satisfies condition

(ii) from Theorem 3.1. Hence X may be represented by some weighting ω

of a symmetric plabic graph G. Choose a collection F of edges of G which

has all of the following properties:

1. F is symmetric about the diameter d. That is, an edge (u, v) of G is

in F if and only if (r(u), r(v)) is also in F .

2. Every vertex of G is covered by F at least once.

3. F consists of a disjoint collection of trees, each of which has exactly

one vertex on the boundary of G.

It is not hard to show that such a collection of edges exists, since F is

symmetric. Since F is a disjoint union of trees, each with exactly one vertex

on the boundary, we may gauge fix all edges in F to 1. Let ν be the resulting

weighting of G, and let ν ′ be the weighting of G obtained by swapping the

weights of (u, v) and (r(u), r(v)) for each edge (u, v) of G.

By symmetry, ν ′ is another weighting of G with ∂G(ν
′) = X. It follows

that ν and ν ′ are the same up to gauge transformations. Moreover, ν ′ assigns
the weight 1 to each edge of F . Since F satisfies conditions 2 and 3 above, a

sequence of gauge transformations which fixes all edges in F must be trivial.

Hence ν = ν ′ and ν is a symmetric weighting. This completes the proof.

The following is immediate.
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Corollary 4.3. Let Π be a positroid cell. Then the symmetric part of Π
is nonempty if and only if Π can be realized as the image of a symmetric
plabic graph G, where the symmetric part of Π is precisely the image of all
symmetric weightings of G under the boundary measurement map.

A lollipop graph is a plabic graph which has a lollipop at each boundary
vertex. A bridge graph is a plabic graph obtained by starting with a lollipop
graph, and repeatedly adding bridges adjacent to the boundary. See Figure
6 for an example. Given X ∈ Gr≥0(k, n), we can apply Proposition 2.7
repeatedly to construct a weighted plabic graph whose image under the
boundary measurement map is the point X [5]. We now give a symmetric
version of this result.

Figure 6: A symmetric bridge graph with symmetric weights.

Theorem 4.4. Let X ∈ Gr≥0(k, n) be a symmetric point. Then we can
iteratively construct a weighted bridge graph corresponding to X which is
symmetric and has symmetric weights.

Proof. Let Π be the positroid cell containing X, and let f be the decorated
permutation of Π. We induct on the dimension of Π. If the dimension is 0,
then X may be represented by a lollipop graph G [7]. In this case, X has a
single non-zero Plücker coordinate I, corresponding to the positions of the
white lollipops, which necessarily satisfies I = R(I). Thus G has a white
lollipop at i if and only if G has a black lollipop at i′, and G is symmetric.

Suppose dim(Π) > 0. We note first that Π satisfies condition (ii) from
Theorem 3.1. Hence i is a white fixed point of f if and only if i′ is a black
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fixed point of f . We may therefore reduce to the case where f has no fixed
points. It follows that f has a bridge at (i, i+ 1) for some 1 ≤ i ≤ 2n− 1.

First, suppose f has a bridge at (n, n + 1). Let (I1, . . . , I2n) denote the
Grassmann necklace of X. By Proposition 2.7, the quantity

(20) c = ΔIn+1
(X)/Δ(In+1∪{n})−{n+1}(X)

is positive and well-defined, and the pointX∗=X·xn(−c) lies in Gr≥0(n, 2n).
The action of xn(−c) fixes the Plücker coordinates of X, except for those

ΔI with n + 1 ∈ I and n 
∈ I. Note that I ∈
(
[2n]
n

)
has this property if and

only if R(I) does. For each I with n+ 1 ∈ I and n 
∈ I, we have

ΔR(I)(X
∗) = ΔR(I)(X)− cΔ(R(I)∪{n})−{n+1}(X)(21)

= ΔI(X)− cΔR((I∪{n})−{n+1})(X)(22)

= ΔI(X)− cΔ(I∪{n})−{n+1}(X)(23)

= ΔI(X
∗)(24)

So X∗ is a symmetric point. By induction, we may build a symmetric bridge
graph representing the point X∗, which has symmetric weights. Adding a
bridge (n, n+ 1) with edge weight c gives the desired weighted graph.

Next, suppose f does not have a bridge at (n, n+1). Then f has a bridge
(i, i+1) for some 1 ≤ i ≤ 2n−1 with i 
= n. Hence by symmetry, f has a pair
of commuting bridges at (i, i+ 1) and (i′ − 1, i′), respectively. Without loss
of generality, assume 1 ≤ i ≤ n− 1. By Theorem 2.1, we have Ii′ = R(Ii+1),
which implies

(25) (Ii′ ∪ {i′ − 1})− {i′} = R((Ii+1 ∪ {i})− {i+ 1}).

Since X satisfies ΔR(I)(X) = ΔI(X) for all I, we have

(26) c := ΔIi+1
(X)/Δ(Ii+1∪{i})−{i+1}(X) = ΔIi′ (X)/Δ(Ii′∪{i′−1})−{i′}(X)

where both quantities are positive and well-defined, as above.
Once again, let X∗ = X ·xi(−c). Let (I∗1 , . . . , I

∗
2n) denote the Grassmann

necklace of X∗, and let

(27) c∗ = ΔI∗
i′
(X∗)/Δ(I∗

i′∪{i′−1})−{i′}(X
∗).

We claim that c∗ = c. First, note that I∗j = Ij unless j = i+ 1, so I∗i′ = Ii′ .
If either i ∈ Ii′ or i+ 1 
∈ Ii′ , then we have

ΔIi′ (X) = ΔIi′ (X
∗)(28)
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Δ(Ii′∪{i′−1})−{i′}(X) = Δ(Ii′∪{i′−1})−{i′}(X
∗),(29)

and so c∗ = c, as desired.

Suppose i 
∈ Ii′ and i + 1 ∈ Ii′ . Let M be a matrix representative for
X with columns v1, . . . , v2n. Suppose f(i′ − 1) = i′. Then vi′ is a scalar
multiple of vi′−1, and in particular we have vi′ = cvi′−1. Let v∗1, . . . , v

∗
2n be

the columns of M∗ = M ·xi(−c). Then v∗i′ = vi′ and v∗i′−1 = vi′−1. It follows
that we have c∗ = c as desired.

Next, suppose f(i′ − 1) 
= i′, and consider the submatrix S of M with
columns indexed by Ii′ . Since i 
∈ Ii′ , it follows that vi is in the span of the
columns of S indexed by elements of [i′, i−1]cyc. Hence adding a multiple of
vi to the column vi+1 does not change the determinant of S, and ΔIi′ (X

∗) =
ΔIi′ (X). Thus the ratios c∗ and c have the same numerator.

We must now show that c∗ and c have the same denominator. Since
f(i′ − 1) 
= i′, we have i′ ∈ Ii′−1 ∩ Ii′ . It follows that

(30) (Ii′ ∪ {i′ − 1})− {i′} = (Ii′−1 ∪ {f̄(i′ − 1)})− {i′}.

Let S∗ be the submatrix of M with columns indexed by this set. There are
two cases to consider, depending on whether f̄(i′) lies in the cyclic interval
[i′, i]cyc. Throughout this proof, we write va, . . . , vb to denote the columns of
M indexed by elements of [a, b]cyc.

For the first case, suppose f̄(i′) ∈ [i′, i]cyc. Since G has a bridge at
(i′ − 1, i′) and f̄(i′ − 1) 
= i′, this means f̄(i′ − 1) must be in the cyclic
interval [i′ + 1, i − 1]cyc. Let y = f̄(i′ − 1). Then we may express vy as a
linear combination of the columns indexed by Ii′−1 which form a basis of
〈vi′−1, . . . , vy−1〉. Note that we must have a nonzero coefficient of vi′ in this
linear combination, since the columns of S∗ are linearly independent.

Hence vi′ lies in the the span of the columns of S∗ indexed by elements of
[i′−1, y]cyc. In particular, vi′ lies in the span of the columns of S∗ indexed by
elements of [i′ − 1, i− 1]cyc, which therefore span 〈vi′−1, vi′ , . . . , vi−1〉. Thus
vi lies in the span of the columns of S∗ indexed by elements of [i′ − 1, y]cyc.

For the second case, suppose f̄(i′) does not lie in the cyclic interval
[i′, i]cyc. Then vi′ is linearly independent of the columns vi′+1, . . . , vi, so
(Ii′ ∪ {i′ − 1})− {i′} contains a basis for 〈vi′+1, . . . , vi−1〉. Since vi 
∈ Ii′ , the
corresponding columns of S∗ contain vi in their span.

Hence c∗ = c, and so X∗∗ = X · xi(−c)xi′−1(−c) lies in a positroid cell
of dimension two less than Π. It is straightforward to check that X∗∗ is
a symmetric point. By induction, we may build a symmetric plabic graph
for X∗∗ with symmetric edge weights. Adding two bridges of weight c at
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(i′ − 1, i′) and (i, i + 1) respectively gives a symmetric plabic network for
X.

Note that the sequence of bridges added above depends only on the
bounded affine permutation of Π, and the fact that X is symmetric. Hence,
the proof of Theorem 4.4 yields a method for constructing a symmetric
bridge graph G corresponding to Π, and explicitly realizing each point in the
symmetric part of Π with a symmetric weighting of G. We have thus demon-
strated a symmetric analog of the bridge-graph construction for Gr≥0(k, n)
found in [5].
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