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On tight cuts in matching covered graphs*

MARCELO H. CARVALHO, CLAUDIO L. LuccHEsI, AND U. S. R. MURTY'

Barrier cuts and 2-separation cuts are two familiar types of tight
cuts in matching covered graphs. See Lovész ([7], 1987). We refer
to these two types of tight cuts as ELP-cuts. A fundamental result
of matching theory, due to Edmonds, Lovész, and Pulleyblank ([6],
1982) states that if a matching covered graph has a nontrivial tight
cut, then it also has a nontrivial ELP-cut. Their proof of this re-
sult was based on linear programming techniques. An easier and
purely graph theoretical proof was given by Szigeti ([9], 2002). This
note is inspired by Szigeti’s paper. Using properties of barriers in
matchable graphs, which we call Dulmage-Mendelsohn barriers,
we give an alternative proof of the Edmonds-Lovasz-Pulleyblank
(ELP) Theorem.

We conjecture that, given any nontrivial tight cut C' in a match-
ing covered graph that is not an ELP-cut, there exists a nontrivial
ELP-cut D in that graph which does not cross C. Here we give a
short proof of the validity of this conjecture for bicritical graphs
and also for matching covered graphs with at most two bricks.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 05C70.
KEYWORDS AND PHRASES: Perfect matchings, matching covered graphs,
tight cuts.

1. Introduction

All the graphs considered in this paper are loopless. Graph theoretical termi-
nology and notation we use, not surprisingly, is essentially that of Bondy and
Murty [1]. For the terminology that is specific to matching covered graphs,
we follow Lovész [7].

We denote the number of odd components of a graph G by o(G). Tutte
established the following characterization of graphs which have a perfect
matching ([10], 1947):
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1.1 (Tutte’s Theorem). A graph G has a perfect matching if and only if
o(G—-S8)<|9],

for every subset S of V(G). O

An edge of a graph is admissible if there is a perfect matching of the
graph which contains it. A nontrivial graph is matchable if it has at least
one perfect matching, and is matching covered if it is connected and each of
its edges is admissible. The following assertion is easy to prove:

1.2. If v is a cut vertex of a graph G, then some edge incident with v is
not admissible in G. (Thus, every matching covered graph on four or more
vertices is 2-connected.) O

1.1. Tight cuts

For any subset X of the set of vertices of a graph G, the set of all edges of
G with exactly one end in X is denoted by 9(X), and is referred to as a
cut of G. If G is connected and C := 9(X) = 9(Y), then either Y = X or
Y = X = V(G) \ X; and we refer to X and X as the shores of C. A cut
is trivial if either of its shores is a singleton. For any cut C := 9(X) of a
graph G, we denote the graph obtained from G by shrinking the shore X
to a single vertex x by G/(X — z), or simply by G/X if the name of the
vertex to which X is shrunk is irrelevant. The two graphs G/X and G/X
are referred to as the two C-contractions of G.

Let G be a matching covered graph. A cut C' := 9(X) of G is tight
if |C N M| = 1, for every perfect matching M of G. The significance of
this notion is that if C' is a tight cut of G, then both the C-contractions
G/X and G/X are also matching covered. If C is nontrivial, then both the
C-contractions are strictly smaller than G.

A matching covered graph which is free of nontrivial tight cuts is a brace
if it is bipartite, and a brick if it is nonbipartite. An important result due
to Lovéasz [7] states that, given any matching covered graph, by means of
tight-cut-contractions with respect to nontrivial tight cuts, one may obtain
a list of bricks and braces and, more significantly, any two applications of
this decomposition procedure yield the same list of bricks and braces (up to
multiple edges). In particular, any two decompositions of a matching covered
graph G yield the same number of bricks. We denote by b(G) the number
of bricks in every tight cut decomposition of a matching covered graph G.
Informally, we refer to a matching covered graph G such that b(G) < 2 as
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“a matching covered graph having at most two bricks” and as “a matching
covered graphs with two bricks”, if b(G) = 2.
We shall make use of the following known facts about tight cuts.

1.3 ([7]). Let G be a matching covered graph, and let C be a tight cut of
G. Then both C-contractions are matching covered. Moreover, if G' is a C-
contraction of G then a tight cut of G' is also a tight cut of G. Conversely,
if a tight cut of G is a cut of G' then it is also tight in G'. O

Corollary 1.4. Let G be a matching covered graph, and let C = d(X) be a
tight cut of G. Then, both shores X and X of C' induce connected graphs.

Proof. The C-contraction G’ := G/(X — xz) of G is matching covered,
hence it is 2-connected, by (1.2). Thus, G’ — x is connected. In other words,
X induces a connected subgraph of G. Likewise, X also induces a connected
subgraph of G. O

1.5 ([6]). Let G be a matching covered graph and let 9(X) and O(Y) be two
tight cuts such that |[X NY| is odd. Then O(X NY) and (X UY') are also
tight in G. Furthermore, no edge connects X NY to X NY. ]

1.2. ELP-cuts

A barrier in a matchable graph G is a nonempty subset B of V(G) for which
o(G — B) = |B|. For any vertex v of G, it is easy to see that {v} is a barrier
of G35 such a barrier is a trivial barrier. A barrier is nontrivial if it has two
or more vertices. The following assertion elucidates the connection between
barriers and perfect matchings in a matchable graph.

Lemma 1.6. Let G be a matchable graph, and let B denote a barrier of G.
Any perfect matching M of G has precisely one edge in the cut O(V (K)) for
each odd component K of G — B. Consequently, if G is matching covered,
then no edge of G has both its ends in B, and G— B has no even components.

Proof. Let M be a perfect matching of G. As B is a barrier, by definition,
G — B has |B| odd components. For any such component of G — B, clearly
|[M NO(V(K))| > 1. A simple counting argument shows that, in fact, |M N
I(V(K))| =1 for each odd component K of G — B, and also that any edge
of M that has one end in B has its other end in an odd component of G — B.
These conclusions hold for any perfect matching of G. It follows that (i) no
edge with both its ends in B is admissible and that (ii) no edge with one
end in B and one end in an even component of G — B is admissible.

Now suppose that G is matching covered. Since, by definition, every
edge of G is admissible, it follows from the first observation made above
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that no edge has both its ends in B. Also, by definition, G is connected.
Thus, if G — B had any even component K, there would at least be one
edge between B and V(K) and such an edge would be inadmissible by the
second observation. O

For any barrier B of a matching covered graph G, and any (odd) com-
ponent K of G — B, the cut 9(V(K)) is tight in G; tight cuts in matching
covered graphs which arise this way are known as barrier cuts (Figure 1(a)).

Consider a pair {u,v} of two distinct vertices of a matching covered
graph G. Suppose that G — u — v is not connected. From the fact that
|V (G)] is even, we have that the number of odd components of G — u — v
is even. As G is matchable, the number of odd components of G —u — v is
two or less. That is, o(G —u —v) € {0,2}. If o(G — u — v) = 2 then {u,v}
is a barrier. If o(G — u — v) = 0 then the pair {u,v} is referred to as a
2-separation.

In other words, a pair {u, v} of two distinct vertices of a matching covered
graph G is a 2-separation if {u,v} is not a barrier but G — u — v is not
connected. If G happens to have a 2-separation {u,v} as described above,
then every component of G — u — v is even, and for any partition of G —
u — v in two disjoint subgraphs G and Ga, the cuts 9(V(G1) U {u}) and
O(V(G2) U {u}) are tight cuts of G; tight cuts which arise in this manner
are known as 2-separation cuts (Figure 1(b)). We shall refer to barrier cuts
and 2-separation cuts, collectively, as ELP-cuts.

Figure 1: (a) Barrier cut; (b) 2-separation cut; (c) a tight cut which is not
an ELP-cut.

When the set X of vertices of a connected bipartite graph G is odd,
the two parts of the bipartition of G have distinct cardinalities; the larger
part is called the magjority part, the other the minority part; we denote the
majority part of X by X, and the minority part by X_. The following
result is easily proved:
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1.7. Suppose that G is a matching covered graph and that v is a vertex of G.
If the subgraph G — v is bipartite, then G is also bipartite. Furthermore, the
majority part of G — v has just one more vertex than its minority part. [

As a consequence we have:

Theorem 1.8. Let C := 9(X) be a tight cut in a matching covered graph G.
If the subgraph G[X] of G induced by X is bipartite, then the majority part
X+ of G[X] is a barrier of G and C' is a barrier cut of G.

Proof. Consider the C-contraction G’ := G/(X — T). Then G/ — 7 = G[X]
is bipartite by the hypothesis. Thus, by (1.7), G’ is also bipartite, and the
vertex T is adjacent in G’ only to the vertices in X . Furthermore, | X, | =
|X_| + 1. Thus, G — X has precisely | X;| odd components, one of them
being G[X], and the remaining being the trivial components corresponding
to the vertices in the minority part X_. O

As an immediate consequence, we have:

Corollary 1.9. Every tight cut in a bipartite matching covered graph is a
barrier cut. O

In a bipartite matching covered graph every tight cut is a barrier cut,
hence an ELP-cut. But a nonbipartite matching covered graph may have a
tight cut which is not an ELP-cut. For example, the cut shown in Figure 1(c)
is such a tight cut.

1.3. Properties of barriers

We record here the properties of barriers in matchable graphs which will
be used in the proof of the main theorem. The following result may be
established by a straightforward application of Tutte’s Theorem 1.1.

1.10. Let u and v be any two wvertices of a matchable graph G. Then the
graph G — u — v is matchable if and only if there is no barrier of G which
contains both u and v. ]

A nontrivial graph G is bicritical if G — u — v has a perfect matching
for any two distinct vertices u and v of GG. The following two assertions are
simple consequences of the above result.

1.11. An edge e = uv of a matchable graph G is admissible if and only if
no barrier of G contains both u and v. ]

1.12. A matchable graph is bicritical if and only if it is free of nontrivial
barriers. O
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A graph G is critical (factor-critical, hypomatchable) if G—wv is matchable
for any v € V(G). The result stated below may also be derived from Tutte’s
Theorem 1.1.

1.13. Let B denote a maximal barrier of a matchable graph G. Then, every
component of G — B is odd and critical. O

1.4. Cores of matchable graphs

Let G be a matchable graph, and let B denote a nonempty barrier of G.
The bipartite graph obtained from G by deleting the vertices in the even
components of G — B, contracting every odd component to a single vertex,
and deleting the edges with both ends in B, is denoted by H(B). We refer
to this bipartite graph as the core of G with respect to the barrier B. The
following property is a direct consequence of this definition.

1.14. Let B be any barrier of a matchable graph G. Then o(G — B) is equal
to o(H(B) — B), and for any perfect matching M of G, the set M N E(H(B))
is a perfect matching of H(B). O

In our paper on Pfaffian orientations ([3], 2012), we were able to obtain
several useful results by exploiting the relationship between a matchable
graph and its core with respect to a chosen maximal barrier of the graph.

2. The Dulmage-Mendelsohn barriers

One of the important tools we use in our proof of the ELP Theorem is a
property of bipartite matchable graphs which is due to Dulmage and Mendel-
sohn [5] (also see [8]).

2.1. Given a bipartite matchable graph G[U, W], there exists a subset S of
U such that the subgraph of G induced by S U N(S) is matching covered.
Consequently, N(S) is a barrier of G, and the odd components of G — N(S)
are the trivial graphs induced by the vertices of S (Figure 2). O

A Dulmage-Mendelsohn decomposition of a matchable bipartite graph
G[U, W] consists of a partition of U into subsets Aj, Ag, ..., Ax and a par-
tition of W into subsets Bi, Ba,..., By such that, for 1 < i < k, (i) the
subgraph of G induced by A; U B; is matching covered, and (ii) Ng(A;) C
By U By U---U B;. Given any subset S of U with the property described
in (2.1), a Dulmage-Mendelsohn decomposition of G maybe obtained with
Ay = S and B; = N(S), and we shall say that By is the principal barrier of
G associated with that decomposition.
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Figure 2: A Dulmage-Mendelsohn decomposition of a matchable bipartite
graph.

Now we use (2.1) to establish the existence of barriers in matchable
graphs which satisfy two special properties. These properties were exploited
by Szigeti [9] in his proof of the ELP theorem.

Let G be a matchable graph, and let B* be a maximal barrier of G.
Let H(B*) = H[A*, B*| be the core of G with respect to B*, where A* is
the part of the bipartition of H(B*) different from B*. By (2.1) and (1.13),
H(B*) has a barrier B that satisfies the following two properties:

DMB-1: each odd component of G — B is critical, and
DMB-2: the core H(B) of G with respect to B is matching covered.

It can be shown that any barrier B of G satisfying properties DMB-1
and DMB-2 is a principal barrier corresponding to a Dulmage-Mendelsohn
decomposition of the core with respect to some maximal barrier of GG. For
this reason we shall refer to a barrier B of GG satisfying these two properties
as a Dulmage-Mendelsohn barrier, or briefly as a DM-barrier of G. (DM-
barriers are equivalent to Strong barriers used by Szigeti [9].) The following
results concerning DM-barriers summarize the above arguments.

2.2. Every mazimal barrier of a matchable graph G contains a subset which

1s a DM-barrier of G. ]
2.3. Let B denote a DM-barrier of a matchable graph G. Then, every edge e
of the core H(B) with respect to B is admissible in G. O

2.1. A key lemma

The following assertion plays a crucial role in our proof of the ELP Theorem,
where it is applied to derive properties of suitable subgraphs of a matching
covered graph which are matchable but are not matching covered.
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2.4 (Key Lemma). Let G be a matchable graph, and let X be a nonempty
proper subset of V(G) such that:

e both the subgraphs G[X] and G[X| are connected, and
e no edge in the cut 9(X) is admissible in G.

Then G has a DM-barrier B which is a subset of X or of X. Furthermore,
the vertex sets of all the odd components of G — B are also subsets of that
same shore.

Proof. By hypothesis, G has perfect matchings but no edge of 9(X) is admis-
sible. It follows that the graphs G[X] and G[X] both have perfect matchings.

Consider first the case in which 0(X) is empty. Let B* be any maximal
barrier of G[X]. By (2.2), G[X] has a DM-barrier B that is a subset of B*.
This barrier B of G[X] is also a DM-barrier of G. The assertion holds in
this case.

We may thus assume that 9(X) is nonempty. Let e := wv denote an
edge of 9(X), where u € X and v € X. By hypothesis, e is not admissible.
By (1.11), G has a barrier that contains both u and v. Let B* be a maximal
barrier of G that contains both u and v. By (2.2), some subset B of B* is a
DM-barrier of G.

Let us first show that if K is any odd component of G — B, then V(K)
is a subset of one of the shores of the cut 9(X). Suppose that this is not the
case. Then, both V(K)N X and V(K)N X are nonempty. One of these sets
has to be even and the other odd because V(K) is an odd set. Without loss
of generality, assume that |V (K) N X| is even. Since, by hypothesis, G[X]
is connected, there is some edge, say ey, which joins a vertex in V(K)N X
to a vertex in B N X. That edge e, being an edge of the graph H(B), is
admissible in G, by (2.3). Let M; be a perfect matching of G containing e;.
Since K is an odd component of G — B, the edge e; is the only edge of M;
in (V(K)). However, since V(K)NX is an even set, |M1 NIV (K)NX)| is
even. This implies that some edge with one end in V(K) N X and one end
in V(K)NX isin Mj. This is impossible because, by hypothesis, no edge in
0(X) is admissible. We conclude that V' (K) is a subset of one of the shores
of 9(X).

Now observe that since B is a DM-barrier, graph H(B) is matching
covered. Thus H(B) is connected and each of its edges is admissible in G.
But by hypothesis, no edge of 9(X) is admissible in G. It follows that B
and the vertex sets of all the odd components of G — B are all subsets of
one and the same shore of the cut 9(X). O
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3. Tight cuts with minimal shores

Our main objective is to show that any matching covered graph G which has
a nontrivial tight cut also has a nontrivial ELP-cut. As a first step towards
the proof of this statement we show that any nontrivial tight cut of G with
a minimal shore has certain special properties. We exploit these properties
in the proof of the assertion stated above.

Lemma 3.1 (]9, Claims 25 and 26]). Let G be a matching covered graph
which has nontrivial tight cuts, and let X be a minimal subset of V(G) such
that the cut C := 0(X) is nontrivial and tight. Then there exists an edge
e:=wuv € C, withu € X and v € X, such that both the subgraphs G[X — u]
and G[X — v] are connected.

Proof. Consider the two C-contractions G/X := G/(X — 7) and G/X :=
G/(X — ) of G. Note that G[X] = (G/X) — T, and G[X] = (G/X) — z.

As C is a tight cut of G, both G/X and G/X are matching covered.
Furthermore, by the minimality of X, the graph G/X is free of nontrivial
tight cuts.

Let us first show that C' contains an edge e := uv, where v lies in X,
such that G[X —v] is connected. The graph G/ X is matching covered, hence
2-connected, by (1.2). Therefore the graph G[X] = (G/X) — x is connected.
If G[X] happens to be 2-connected then G[X — v] would be connected, for
every vertex v of X. We may thus assume that G[X| has two or more blocks.
Then it has a block F' that contains precisely one cut vertex, say w, of G[X].
Now, as G/X is 2-connected, it follows that F' contains a vertex v, different
from w, which is incident with an edge e = uv of C. As v # w, vertex v is
not a cut vertex of G[X], and hence G[X — v] is connected. (See Figure 3.)

To complete the proof, we now proceed to show that the graph G[X — u]
is connected. For this, assume the contrary that G[X — u| is disconnected.
As the graph G/X is matching covered, and G[X — u] = (G/X) — 7 — u,
it follows that {u,Z} is either a barrier or a 2-separation of G/X. But the
ends of e in G/X are u and Z. Moreover, as /X is matching covered, the
edge e is admissible in G/X. Consequently, {u,Z} is not a barrier of G/X.
It follows that {u,T} is a 2-separation of G/X. Thus, G/X has nontrivial
tight cuts, contradicting the minimality of X. This proves the assertion. [

4. The ELP theorem

4.1 (ELP Theorem). If a matching covered graph G has a nontrivial tight
cut then it has a nontrivial ELP-cut.
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Figure 3: An edge uv in C such that G[X — v] is connected.

Proof. Assume that G has nontrivial tight cuts. By Corollary 1.9, every
tight cut in a bipartite graph is a barrier cut. We may thus assume that G
is nonbipartite. Suppose that B is a nontrivial barrier of G. By Lemma 1.6,
every component K of G— B is odd and the cut 9(V(K)) is tight. Moreover,
as G is not bipartite, at least one component of G — B is nontrivial. In sum,
G — B has a nontrivial component K and the cut J(K) is a nontrivial barrier
cut of G. Thus, in order to prove that G has a nontrivial barrier cut, it is
enough to prove that it has a nontrivial barrier.

By Lemma 3.1, G has a nontrivial tight cut C := 9(X) and an edge
e :=uv € C such that u € X, v € X and the graphs G[X —u] and G[X — ]
are both connected.

S
>
:

G G=G—-u—v

Figure 4: Case 4.1.1: B := B’ U {u} is a nontrivial barrier of G.
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4.1.1. If v is the only neighbor of u in X and u is the only neighbor of v
in X then G has a nontrivial barrier.

Proof. Let G’ := G — u — v. Graph G is matching covered. Thus, G has
a perfect matching, say M, that contains edge e. Then M — e is a perfect
matching of G’, and we deduce that G’ has perfect matchings. Moreover,
C—e=0g(X —u) =0c (X —v) is a cut of G’. For every perfect matching
M’ of G', the set M’ U {e} is a perfect matching of G. As C is tight in G,
it follows that no edge of C' — e is admissible in G'. By (2.4), G’ has a DM-
barrier B’ such that B’, as well as the vertex sets of all the odd components
of G’ — B', are subsets of one of X —u and X — v. Adjust notation so that
B' C X —u. Let B := B’ U {u}. By hypothesis, u is the only vertex of X
adjacent to v. Thus, all the |B| — 1 odd components of G’ — B’ are also
odd components of G — B. Consequently, B is a nontrivial barrier of G (see
Figure 4 for an illustration). O

We may thus assume that either u has two or more neighbours in X,
or that v has two or more neighbours in X. Adjust notation so that u has
two or more neighbours in X. Let R := d(u) \ C. Now consider the graph
G" := G — R, together with the cut D := 9(X — u) (see Figure 5).

4.1.2. The graphs G"[X — u| and G"[X + u] are both connected.

Proof. Note that the graph G”[X — u] is the same as the graph G[X — u],
which is connected.

By (1.4), the shore X of C induces a connected subgraph of G. Vertex
u is adjacent to vertices of X (v is one such vertex). Thus, it follows that
the second graph G”[X + u] is connected as well. O

Every perfect matching of G that contains edge e is also a perfect
matching of G”. Thus, G” has perfect matchings. Both shores in G” of cut
D := 9(X — u) are even. Every perfect matching M of G” is also a perfect
matching of G. Moreover, |[M N C| = |M N D| + 1. As C is tight in G, it
follows that no edge of D is admissible in G”. By (2.4), G” has a DM-barrier
B such that B” and the vertex sets of all the odd components of G — B”
are subsets of one of X —u and X + u.

The rest of the analysis depends on where the vertex w is in relation to
the barrier B”.

4.1.3. If vertex u does not lie in either B” or in the vertex set of one of the
odd components of G" — B", then G has a nontrivial barrier.
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>

v

(b) G//

Figure 5: The graphs G and G”; dashed lines indicate removed edges.

Proof. In this case, u is a vertex of some even component of G” — B”,
whence B := B” U {u} is a nontrivial barrier of G”. But G — B =G — B,
and therefore B is a nontrivial barrier of G. O

Suppose that u is either in B” or in the vertex set of one of the odd
components of G” — B”. Since u is in X + u, it follows that B” and the
vertex sets of all the odd components of G’ — B" are subsets of X + u. We
conclude that X — u is a subset of the vertex set of an even component, say
L, of the graph G” — B”.

4.1.4. If vertex u lies in B" then G has a nontrivial barrier.

Proof. In that case, G” — B” = G — B”. Consequently, L is an even compo-
nent of G — B”. Let w be any vertex of L. Then, B” U {w} is a nontrivial
barrier of G. 0
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We may thus assume that u lies in some (odd) component K of G — B”.
Note that B” is a barrier of G”, and not only B”, but also the set of vertices
of each odd component of G” — B" is a subset of X + u. However, in the
graph G, the edges of R join u to vertices of X —u. Thus u is the only vertex
in an odd component of G’ — B” that is adjacent to vertices of X in the
graph G.

4.1.5. Barrier B” of G” is also a barrier of G.

Proof. By (4.1.2), G"[X —u] is connected. Thus, K UL is an odd component
of G — B”. Therefore, B” is a barrier of G (see Figure 6.) O

G G//

Figure 6: Case 4.1.5: B” is a barrier of G.

If B” is nontrivial, then we are done. Assume thus that B” is trivial.
Vertex u lies in V(K) and has at least two neighbours in G”. (This is the
only reason for requiring u to have degree two or more in G”.) Thus, at least
one neighbour of u lies also in V(K), whence K is nontrivial. Let w denote
the only vertex of B”. The graph G —w —wu has at least two components; one
is a subgraph of K — u and another includes L. Thus, {u,w} is a nontrivial
barrier or a 2-separation of GG. The assertion holds. O

Bipartite graphs of order four or more are not bicritical. The ELP The-
orem implies that if a matching covered graph of order four or more is not a
brick, then it is either not bicritical, or is not 3-connected. In other words,
bricks are precisely the matching covered graphs of order four or more which
are 3-connected and bicritical.
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5. A conjecture

Two cuts C := 9(X) and D := 9(Y) of a matching covered graph cross if
each of the four sets X NY, XNY, XNY, and X NY is nonempty. Thus,
C and D do not cross if and only if one of the two shores of C' is a subset of
one of the two shores of D.

The ELP Theorem (4.1) says that any matching covered graph which
has a nontrivial tight cut also has a nontrivial ELP-cut. In ([2], 2002) we
were able to prove a stronger statement in a special case: if G is a brick and e
is an edge of GG such that G — e is matching covered with two bricks, then for
every nontrivial tight cut C' of G — e, the graph G — e has a nontrivial ELP-
cut that does not cross C. (This was an important ingredient in our proof
of a conjecture due to Lovész, presented in [2].) We venture to conjecture
that this is true for all matching covered graphs:

Conjecture 5.1. Let C be a nontrivial tight cut of a matching covered graph
G. Then, G has an ELP-cut that does not cross C.

The above conjecture may be rephrased in terms of the following notion:
a tight cut C' of a matching covered graph G is essentially an ELP-cut of G
if there is a sequence G; = G, Go, ..., G, r > 1 of matching covered graphs,
such that (i) for « = 1,2,...,7 — 1, G; has an ELP-cut, C;, and G;41 is a
Cj-contraction of G;, and (ii) cut C is an ELP-cut of G,. (Trivially, every
ELP-cut is an essentially ELP-cut.) It can be seen that Conjecture 5.1 is
equivalent to the statement that every nontrivial tight cut of a matching
covered graph is essentially an ELP-cut.

In support of Conjecture 5.1, we establish its validity for bicritical graphs
and also for graphs with only two bricks. We shall make use of the following
known fact about tight cuts.

5.2 ([8]). Let C be a 2-separation cut of a matching covered graph G. If G
is bicritical then both C-contractions of G are bicritical. ]

5.1. Validity of the conjecture for bicritical graphs

Theorem 5.3. Let G be a bicritical graph, and let C := 9(X) be a nontrivial
tight cut of G. Then, G has a 2-separation cut that does not cross C.

Proof. As the graph G has nontrivial tight cuts, by the ELP Theorem 4.1,
it has nontrivial ELP-cuts. Let D := 9(Y') be a nontrivial ELP-cut of G
such that Y is minimal. Since G is bicritical, by the hypothesis, it cannot
have nontrivial barrier cuts, and hence D is a 2-separation cut. Suppose that
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{u, v} is the 2-separation of G which gives rise to D, and adjust notation so
that u e Y,and v €Y.

If D does not cross C' then we are done. We may thus assume that C
and D cross. Adjust notation so that | X NY| is odd.

5.3.1. One of u and v lies in X, the other lies in X.

Proof. By (1.4), the subgraph G[X] of G induced by the shore X of C is
connected. Thus, there is at least one edge joining a vertex in X NY to a
vertex in X NY. Similarly, G[X] is connected and thus, there is at least one
edge joining a vertex in X NY to a vertex in X NY. As the cut 9(Y) is a
2-separation cut associated with the 2-separation {u, v}, each edge of this
cut is incident either with w or v. The desired conclusion follows. ]

5.3.2. Graph G' := G/(Y — %) is a brick.

Proof. By (5.2), G’ is bicritical. Let us now show that G’ is 3-connected,
and conclude that G’ is a brick. For this, assume the contrary, and let vy, vy
denote two vertices of G’ such that G/ — v; — vy is not connected. As G’ is
bicritical, it follows that {vi, v} is a 2-separation of G'.

Consider first the case in which 7 does not lie in {v;,v2}. In that case,
{v1,v2} is a 2-separation of G as well. Let K be a component of G' —v; — vy
that does not contain y. Then, V(K) + v; is the shore of a 2-separation cut
of G and a proper subset of Y, in contradiction to the minimality of Y.

Consider next the case in which 7 lies in {v1,v2}. Adjust notation so
that 7 = vy. Let L denote a connected component of G’ — v; — 7 that does
not contain vertex u. Let e be an edge of d(V(L)) that is not incident with
v1. Then, e is incident with 7, whence it is an edge of D. Every edge of D is
incident with a vertex in {u, v}. Vertex u lies in Y\ V/(L). Thus, e is incident
with v. This conclusion holds for each edge e of (V' (L)) that is not incident
with v;. It follows that {v1,v} is a 2-separation of G. Thus, V(L) + vy is the
shore of a 2-separation cut of G and a proper subset of Y, in contradiction
to the minimality of Y. Thus, G’ is a brick. O

The cut (X NY) is tight in the brick G’. Thus, X NY is a singleton, say
{w}. Suppose that u € X and v € X. In this case, u€ X NY, v € X NY.
By (1.5), G[Y] is an odd component of G — {u,w}. It follows that {u,w} is
a barrier of G. This is absurd because G is bicritical. Thus, we may suppose
that w € X and v € X. In this case, u € XNY,v € XNY and w = u, hence
{v,w} is a 2-separation of G, and the corresponding cut d((X NY) U {v})
is a 2-separation cut that does not cross C'. ]
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5.2. Validity of the conjecture for graphs with at most two bricks

Theorem 5.4. Let G be a matching covered graph such that b(G) < 2,
and let C = 0(X) be a nontrivial tight cut of G. Then, G has a nontrivial
ELP-cut that does not cross C'.

Proof. By induction on |V(G)|. Let us first consider the base case. The
smallest matching covered graph with two bricks is the graph shown in
Figure 7. It has only two nontrivial tight cuts, each of which is a 2-separation
cut; therefore, every nontrivial tight cut of that graph is itself an ELP-cut.
We may thus assume that G has order eight or more.

Figure 7: The smallest matching covered graph with two bricks.

Let G; = G/X and let Gy := G/X. Suppose that one of the C-
contractions, say G1, is bipartite. Every C-contraction is matching covered.
Thus, G1 is a matching covered bipartite graph. As C is nontrivial, G
has four or more vertices, hence the part of (G; that does not contain the
contraction vertex is a nontrivial barrier of G. In that case, C is a barrier
cut of G and we are done. We may thus assume that both C-contractions
of G are nonbipartite. By hypothesis, b(G) < 2. Thus, b(G) = 2 and
b(G1) = 1 = b(Gy). If G is bicritical then the assertion holds by Theo-
rem 5.3. We may also assume that G is not bicritical. Therefore G has
nontrivial barriers.

Let B denote a nontrivial maximal barrier of G. As b(G) = 2, the graph
G is not bipartite. By Lemma 1.6, G— B has a nontrivial (odd) component K.
Let Y := V(K) and let D := 9(Y). Clearly, D is a nontrivial barrier cut
of G. If C' does not cross D then the assertion holds. We may thus assume
that C crosses D. Let X be the shore of C such that | X NY| is odd. Let
I:=XNY andlet U := XNY. By (1.5), the cuts C; := 9(I) and Cy := (V)
are both tight. Let Hy; := G/(Y — %) and let Hy := G/(Y — y). Let
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Figure 8: The graph GG and its cut contractions.

G = G/(T — E), let Gog := G/(U — ﬂ), let Gqg := Gl/(I — Z) and let
Go1 = Hi /(I — ). (See Figure 8.)

5.4.1. The vertex § does not lie in any nontrivial barrier of Hi. Conse-
quently, the graph Ga1 is not bipartite.

Proof. Let B’ denote any barrier of H; that contains vertex y. Then, the
set (B' — ) U B is a barrier of G. By the maximality of B, it follows that
B’ = {g}. That is, 7 does not lie in any nontrivial barrier of Hj.

Assume, to the contrary, that G is bipartite. Let [A”, B”] denote the
bipartition of Gg1. Adjust notation so that i lies in A”. By (1.4), the subgraph
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G[X] induced by X is connected. This implies that 7 and i are adjacent.
Thus, ¥ lies in B”. Then, B” is a nontrivial barrier of H; that contains
vertex . This is a contradiction. O

Cut C is tight in G2, having G2; and G99 as its contractions. By (5.4.1),
G271 is not bipartite. As b(G2) = 1, it follows that Gao is bipartite. If U is
not a singleton then 9(U) is a nontrivial barrier cut of G that does not cross
C, and the assertion holds. We may thus assume that U is a singleton, say,
U ={u}.

Suppose that G1; is bipartite. If I is not a singleton then 9([) is a barrier
cut of G that does not cross C, and the assertion holds. If I is a singleton
then, by (1.5), C is a 2-separation cut of G and, again, the assertion holds.
We may thus assume that G is not bipartite.

Cut (1 is tight in Hy; one of its contractions is G11 and the other is Go;.
As b(G) = 2, it follows that b(G11) = 1 = b(G21) and b(H;) = 2.

We now apply the induction hypothesis, with the graph H; playing the
role of G and C; playing the role of C'. Incidentally, this is the only point in
the proof of the Theorem in which induction is applied. All other cases, one
might say, are the “trivial” cases, from the point of view of mathematical
induction.

As (7 is not a trivial tight cut in Hp, then, by induction, H; has a
nontrivial ELP-cut D; that does not cross C7. Let Y7 be the shore of D; in
H; that does not contain vertex y. Then, Y7 is a shore of Dy in G itself.

5.4.2. Either ICY, orYi C T orYiCc XNY.

Proof. As C7 and D1 do not cross, it follows that, in G, D1 has a shore that
is disjoint with a shore of C. In Hq, the vertex 3 does not lie in Y7, whence,
in G, Y is a subset of Y] N 1. Thus, at least one of the sets Y; N1, Y1 NI and
Y1 NI is empty. These imply, respectively, that I C Y, Y7, C I and Y; C 1.
IfY; C1,asY;is odd and X NY is even, it follows that Y c XNY. O

Case 1. Graph G[Y1] is bipartite.

The cut C is tight and the graph G;; is a Ci-contraction of G. Thus,
G11 is matching covered. We have seen that G1; is not bipartite. By (1.7),
neither is G[I]. It follows that I is not a subset of Y7. By (5.4.2), either Y7 C I
or Y7 € X NY. In both alternatives, D; and C do not cross. Moreover, D;
is a (nontrivial) ELP-cut of G. The assertion holds. We may thus assume
that G[Y1] is not bipartite.

Case 2. The cut Dy is a barrier cut of Hy.
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Let B; denote a nontrivial barrier of H; with which D; is associated.
Every edge of D; is incident with a vertex of Bj. As Bj is nontrivial, it
follows by (5.4.1) that ¥ does not lie in By. Thus, no edge of D; is incident
with 7. Graph G has an edge e that joins a vertex of I to a vertex of X NY.
In Hi, that edge is incident with 7. It follows that e does not lie in Dj.
Consequently, I is not a subset of Y;. By (5.4.2), it follows that D; and C
do not cross. As 7 does not lie in By, we conclude that D; is a (nontrivial)
barrier cut of G. The assertion holds in this case.

We may thus assume that D; is a 2-separation cut of Hy. Let {vy,va}
denote a 2-separation of Hy with which D; is associated. Adjust notation
so that vy lies in Y7, whereupon vs does not lie in Y; and v1 # 3.

Case 3. Y C XNY.

In that case, D1 and C do not cross. If vy is not § then {vy,vs} is a
2-separation of G and the assertion holds. We may thus assume that vo = 7.
Every edge of D; is incident with v; or 7. As Y; C X NY, it follows by (1.5)
that every edge of D; not incident with v; is incident in G with u, the only
vertex of U. We conclude that Dq is a 2-separation cut of G associated with
the 2-separation {u,v;}. The assertion holds in this case.

Case 4. I C Y;.

Consider first the case in which vo =73. Let Z' := Y\ Y3, let Y/ := Z'+u,
let D' := 9(Y"). Clearly, Y’ is a subset of X. Thus, the cuts C' and D" do
not cross. In Hy, every edge of 9(Z') not incident with vy is incident with 7.
Thus, in G, every edge of 9(Z’) not incident with v; is incident with u, the
only vertex of U. Thus, D’ is a 2-separation cut of G that does not cross C.
The assertion holds.

Suppose now that vy and § are distinct. Let R denote the set of edges of
D; that, in G, join a vertex of I to a vertex of Y. In Hy, the edges of R are
incident with 7. The vertices v9 and g are distinct. Moreover, vy does not lie
in Y7, in turn a superset of 1. Every edge of R must be incident with a vertex
in {v1,v2}. It follows that every edge of R is incident with v;. We conclude
that all edges of D are incident in G with a vertex in {u, v;}. Consequently,
the cut O((X NY) + v1) is a 2-separation cut of G that does not cross C.
The assertion holds in this case.

Case 5. Y7 C I.

In this case, Dy and C do not cross. If v9 and 7 are distinct then {vy, v}
constitutes a 2-separation of G and D; is a 2-separation cut of G that does
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Figure 9: The Case Y1 C 1.

not cross C, whence the assertion holds. We may thus assume that vo = 7.
Let Z1 :=Y1 — vy, let Zy :=Y \ Y7 (Figure 9).

In the graph Hi, the cut Do that has Z; + ¥ as a shore is a tight cut
associated with the 2-separation {v1,7}. Thus, in Gi1, Dy is a tight cut
associated with the 2-separation {vi,i}. We have seen that b(G11) = 1,
and therefore, one of the two Ds-contractions of GG11 is bipartite. The Do-
contraction of G411 that contains ¢ is isomorphic to the Ds-contraction of
H; that contains 3. We have seen that no nontrivial barrier of H; contains
3. Thus, the Dy-contraction of H; that contains ¥ is not bipartite, whence
the Do-contraction of G11 that contains i is not bipartite. We conclude that
G11[Y2] is bipartite, where Y3 := (Z2 N X) + v1. But G11[Y2] = G[Y2]. Thus,
0(Y2) is a (nontrivial) barrier cut of G that does not cross C. The assertion
holds. O

The above result is a simpler version of a more complete result which
characterizes tight cuts in a matching covered graph with two bricks, as
explained below.

A tight cut C := 9(X) of a matching covered graph G is an essentially
2-separation cut if there is a companion tight cut D := 9(Y") which crosses
C such that | X NY] is odd and both G[X NY] and G[X NY] are bipartite
subgraphs of GG. In the example depicted in Figure 10, C is an essentially
2-separation cut with D as its companion.

Theorem 5.5 ([4]). Every tight cut of a matching covered graph with at
most two bricks is either a barrier cut or is an essentially a 2-separation
cut. [
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C

Figure 10: An example of essentially 2-separation cuts.

We dedicate this paper to our friend Adrian Bondy for his many valuable

contributions to graph theory. We submitted it in 2014 with the intention of
having it published in a special issue to mark Adrian’s seventieth birthday.

1]

2]

References

J. A. Bondy and U. S. R. Murty. Graph Theory. Springer, 2008.
MR2368647

M. H. Carvalho, C. L. Lucchesi, and U. S. R. Murty. On a conjecture
of Lovasz concerning bricks. II. Bricks of finite characteristic. J. Com-
bin. Theory Ser. B, 85:137-180, 2002. MR 1900684

M. H. Carvalho, C. L. Lucchesi, and U. S. R. Murty. A generaliza-
tion of Little’s theorem on Pfaffian graphs. J. Combin. Theory Ser. B,
102:1241-1266, 2012. MR2992978

M. H. Carvalho, C. L. Lucchesi, and U. S. R. Murty. Tight cuts on
matching covered graphs with two bricks, 2017. http://facom.ufms.br/
~lucchesi/tight-b2.pdf

A. L. Dulmage and N. S. Mendelsohn. Coverings of bipartite graphs.
Can. J. Math., 10:517-53, 1958. MR0097069

J. Edmonds, L. Lovéasz, and W. R. Pulleyblank. Brick decomposition
and the matching rank of graphs. Combinatorica, 2:247-274, 1982.
MR0698652


http://www.ams.org/mathscinet-getitem?mr=2368647
http://www.ams.org/mathscinet-getitem?mr=1900684
http://www.ams.org/mathscinet-getitem?mr=2992978
http://facom.ufms.br/~lucchesi/tight-b2.pdf
http://facom.ufms.br/~lucchesi/tight-b2.pdf
http://www.ams.org/mathscinet-getitem?mr=0097069
http://www.ams.org/mathscinet-getitem?mr=0698652

184 Marcelo H. Carvalho et al.

[7] L. Lovéasz. Matching structure and the matching lattice. J. Com-
bin. Theory Ser. B, 43:187-222, 1987. MR0904405

[8] L. Lovasz and M. D. Plummer. Matching Theory. Number 29 in Annals
of Discrete Mathematics. Elsevier Science, 1986. MR0859549

[9] Z. Szigeti. Perfect matchings versus odd cuts. Combinatorica, 22:575~
589, 2002. MR1956995

[10] W. T. Tutte. The factorization of linear graphs. J. London Math. Soc.,
22:107-111, 1947. MR0023048

MARCELO H. CARVALHO

FACOM - UFMS

CAaMPO GRANDE — MS

BrAziL

E-mail address: mhc@facom.ufms.br

CLAUDIO L. LUCCHESI

FACOM - UFMS

CAaMPO GRANDE — MS

BrAziL

E-mail address: lucchesi@facom.ufms.br

U. S. R. MURTY

UNIVERSITY OF WATERLOO

WATERLOO

CANADA

E-mail address: usrmurty@math.uwaterloo.ca

RECEIVED 18 NOVEMBER 2014


http://www.ams.org/mathscinet-getitem?mr=0904405
http://www.ams.org/mathscinet-getitem?mr=0859549
http://www.ams.org/mathscinet-getitem?mr=1956995
http://www.ams.org/mathscinet-getitem?mr=0023048
mailto:mhc@facom.ufms.br
mailto:lucchesi@facom.ufms.br
mailto:usrmurty@math.uwaterloo.ca

	Introduction
	Tight cuts
	ELP-cuts
	Properties of barriers
	Cores of matchable graphs

	The Dulmage-Mendelsohn barriers
	A key lemma

	Tight cuts with minimal shores
	The ELP theorem
	A conjecture
	Validity of the conjecture for bicritical graphs
	Validity of the conjecture for graphs with at most two bricks

	References

