JOURNAL OF COMBINATORICS
Volume 9, Number 1, 119-161, 2018

Revisiting the Hamiltonian theme in the square of a
block: the case of DT-graphs

GEK L. CHIA*, JAN EKSTEIN', AND HERBERT FLEISCHNER?

The square of a graph G, denoted G2, is the graph obtained from
G by joining by an edge any two nonadjacent vertices which have
a common neighbor. A graph G is said to have the Fj property
if for any set of k distinct vertices {x1,za,..., 2} in G, there is
a hamiltonian path from x; to 25 in G2 containing k — 2 distinct
edges of G of the form z;z;, i = 3,...,k. In [7], it was proved that
every 2-connected graph has the F3 property. In the first part of
this work, we extend this result by proving that every 2-connected
DT-graph has the F4 property (Theorem 2) and will show in the
second part that this generalization holds for arbitrary 2-connected
graphs, and that there exist 2-connected graphs which do not have
the Fj property for any natural number k& > 5. Altogether, this
answers the second problem raised in [4] in the affirmative.
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1. Introduction and history

All concepts not defined in this paper can be found in the book by Bondy
and Murty, [1], or in the other references. However, we prefer definitions
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as given in Fleischner’s papers if they differ from the ones given in [1]. In
particular, we define a graph to be eulerian if its vertices have even degree
only; that is, it is not necessarily connected. This is in line with D. Konig’s
original definition of an Eulerian graph, [12], and this is how eulerian graphs
have been defined in Fleischner’s papers quoted below (many authors call
such graphs even graphs, whereas they consider a graph to be eulerian if it
is a connected even graph). In any case, we consider finite loopless graphs
only, but allow for multiple edges which may arise in certain constructions.

The study of hamiltonian cycles and hamiltonian paths in powers of
graphs goes back to the late 1950s/early 1960s and was initiated by M.
Sekanina who studied certain orderings of the vertices of a given graph. In
fact, he showed in [17] that the vertices of a connected graph G of order n can
be written as a sequence a = ay,as,...,a, = b for any given a,b € V(G),
such that the distance dg(ai,aiy1) < 3,7 = 1,...,n — 1. This led to the
general definition of the k-th power of a graph G, denoted by GF, as the
graph with V(G*) = V(G) and xy € E(G*) if and only if dg(x, y) < k. Thus
Sekanina’s result says that G is hamiltonian connected for every connected
graph G.

Unfortunately, this result cannot be generalized to hold for G2, the
square of an arbitrary connected graph G (the square of the subdivision
graph of K 3 is not hamiltonian). Thus Sekanina asked in 1963 at the Graph
Theory Symposium in Smolenice, which graphs have a hamiltonian square,
[18]. In 1964, Neuman, [15], showed, however, that a tree has a hamiltonian
square if and only if it is a caterpillar. On the other hand, it wasn’t until
1978 when it was shown in ([19]), that Sekanina’s question was too general,
for it was tantamount to asking which graphs are hamiltonian (that is, an
N P-complete problem).

However, in 1966 at the Graph Theory Colloquium in Tihany, Hungary,
C. St. J. A. Nash-Williams asked whether it is true that G? is hamiltonian
if G is 2-connected, [14], and noted that L.W. Beineke and M.D. Plummer
had thought of this problem independently as well.

By the end of 1970, the third author of this paper answered Nash-
Williams’ question in the affirmative; the corresponding papers [5, 6] were
published in 1974. In the same year, it was shown that this result implied
that G? is hamiltonian connected for a 2-connected graph G, [2].

Further related research was triggered by Bondy’s question (asked in
1971 at the Graph Theory Conference in Baton Rouge), whether hamil-
tonicity in G? implies that G2 is vertex pancyclic (i.e., for every v € V(G)
there are cycles of any length from 3 through |V (G)|). In fact, Hobbs showed
in 1976, [11], that Bondy’s question has an affirmative answer for the square
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of 2-connected graphs and connected bridgeless DT-graphs (the latter type
of graphs in which every edge is incident to a vertex of degree two, was
essential for answering Nash-Williams’ question — and it is essential for the
main proofs of the current paper as well). The same issue of JCT B contains,
however, a paper by Faudree and Schelp, [9], in which they proved for the
same classes of graphs, that since G? is hamiltonian connected, there are
paths joining v and w of arbitrary length from dgz(v, w) through |V (G)|—1
for any v,w € V(G) (that is, G? is panconnected). They asked, however,
whether this is a general phenomenon in the square of graphs (i.e., hamilto-
nian connectedness in G? implies panconnectedness in G2). Bondy’s question
and the question by Faudree and Schelp were answered in full in [7].

Already in 1973 (and published in 1975) the most general block-cutvertex
structure was determined such that every graph within this structure has a
hamiltonian total graph, [8].

In the second part of the current work we establish in [3] the strongest
possible results in some sense (Fi-property), for the square of a block to be
hamiltonian connected. As for hamiltonicity in the square of a block, the
strongest possible result is cited Theorem E ([7, Theorem 3]). Altogether,
these results will enable us to establish (in joint work with others) the most
general block-cutvertex structure such that if G satisfies this structure then
G? is hamiltonian connected or at least hamiltonian. That is, what has been
achieved for total graphs, [8], will be achieved for general graphs correspond-
ingly. Here, but also in the papers [5, 6, 7, 8] the concept of EPS-graphs
plays a central role; and some of the theorems in the subsequent paper [3]
require intricate proofs involving explicitly or implicitly EPS-graphs.

We are fully aware that there are shorter proofs on the existence of
hamiltonian cycles in the square of a block; one has been found by Riha,
[16]; and more recently, a still shorter proof was found by Georgakopoulos,
[10]. Moreover, a short proof of Theorem E (cited below) has been found
by Miittel and Rautenbach, [13]. Unfortunately, their methods of proof do
not seem to yield the special results which we can achieve with the help
of EPS-graphs. This is not entirely surprising: [8, Theorem 1] states that
for a graph G, the total graph T'(G) is hamiltonian if and only if G has an
EPS-graph (note that the total graph of G is the square of the subdivision
graph of G).

2. Preliminary discussion

By a wv-path we mean a path from w to v. If a uv-path is hamiltonian, we
call it a uv-hamiltonian path.
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Definition 1. Let G be a graph and let A = {x1,x2,...,x1} be a set of k > 3
distinct vertices in G. An x1xo-hamiltonian path in G* which contains k — 2
distinct edges x;y; € E(G), i = 3,...,k is said to be Fj. Hence we speak of
an Fj, x1x2-hamiltonian path. If x; is adjacent to x;, we insist that x;y; and
xjy; are distinct edges. A graph G is said to have the F, property if for any
set A= {x1,...,2} CV(G), there is an Fy x172-hamiltonian path in G2.

Let G be a graph. By an EPS-graph, JEPS-graph respectively, of G,
denoted S = FU P, S = JU E U P respectively, we mean a spanning
connected subgraph S of G which is the edge-disjoint union of an eulerian
graph E (which may be disconnected) and a linear forest P, respectively
a linear forest P together with an open trail J. For S = EU P, let dg(v)
and dp(v) denote the degree of v in E and P, respectively. In the ensuing
discussion we need, however, special types of EPS-graphs: thus a [v;w]-
EPS-graph S = EU P of G with v,w € V(G), satisfies dp(v) = 0 and
dp(w) < 1. For k > 2, [v;wy,...,wg]-EPS-graphs are defined analogously,
whereas in [w; ..., wg|-EPS-graphs only dp(w;) < 1,i=1,...,k, needs to
be satisfied.

Let be(G) denote the block-cutvertex graph of the graph G. If be(G) is a
path, we call G a block chain. A block chain G is called trivial if E(bc(G)) =
(); otherwise it is called non-trivial. A block of G is an endblock of G if it
contains at most one cutvertex of G.

In [5, Lemma 2], it was shown that if G is a block chain whose endblocks
B, By are 2-connected and v € By and w € Bsy are not cutvertices of G,
then G has an EPS-graph S = EU P such that dp(v) = 0 = dp(w). A more
refined statement is now given below. In Lemma 1 we apply [5, Lemma
2, Theorem 3| and in Theorem 1 we apply Theorem D (stated explicitly
below) several times to the blocks of G, respectively to G itself, to obtain
EPS-graphs of the required type.

Lemma 1. Suppose G is a block chain with a cutvertex, v and w are vertices
in different endblocks of G and are not cutvertices. Then

(i) there exists an EPS-graph EU P C G such that dp(v), dp(w) < 1.
If the endblock which contains v is 2-connected, then we have dp(v) = 0 and
dp(w) <1; and

(ii) there exists a JEPS-graph JU EU P C G such that dp(v) =0 =
dp(w). Moreover, v,w are the only odd vertices of J. Also, we have dp(c) =
2 for at most one cutvertex ¢ of G (and hence dp(c’) < 1 for all other
cutvertices ¢ of G).

Proof. If G is a path, the result is trivially true.
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So assume that G is not a path. If G has a suspended path (i.e., a maxi-
mal path whose internal vertices are 2-valent in G) starting at the endvertex
v of GG, then let P, denote this path and let v; denote the other endvertex
of P,. Note that v is a cutvertex of GG. If there is no such suspended path,
then define P, to be an empty path. Likewise, P, is defined similarly with
w (respectively wi) taking the place of v (respectively vy).

(i) By [5, Lemma 2], G’ = G— (P,UP,) has an EPS-graph S’ = E'UP’
with dp/(v1) = 0 and dp/(wy) < 1. But this means that G has an EPS-
graph S = E U P with dp(v) < 1 and dp(w) < 1 if we set E = E’ and
P = P'"UP,UP,. Clearly, in the case that P, is an empty path, then v = v;
and we have dp(v) =0 and dp(w) < 1.

(ii) Let B be a block of G. Let ¢1,co € V(B). If B is not an endblock,
then let ¢1, co € B be the cutvertices of G in B. If B is an endblock of G, then
let only one of ¢y, co, say ¢, to be a cutvertex of G, and let ¢y = v, ¢ = w
respectively, depending on the endblock ¢; belongs to. By [5, Theorem 3|, B
has a JEPS-graph Sp = Jg U Ep U P with dp,(c1) =0, dp,(c2) < 1, and
c1,co are the only odd vertices of Jg. If B is not an endblock, then we may
interchange c; and cy. Thus we can ensure that for at most two blocks of G,
B’ and B” say, satisfying B’ N B" = ¢y, we have dp_, (c2) = dp,, (c2) = 1.

Note that if B is not a 2-connected block, then Ep = ) = Pg so that
Sp = Jp. In this case, dp,(c1) =0 = dp,(c2).

By taking S = |Jz Sp, where the union is taken over all blocks B of G,
we have a JEPS-graph that satisfies the conclusion of (ii).

This completes the proof. ]

Theorem 1. Suppose G is a 2-connected graph and v,w are two distinct
vertices in G. Then either

(i) there exists an EPS-graph S = EUP C G with dp(v) = 0 = dp(w);
or

(ii) there exists a JEPS-graph S = JUEUP C G with v,w being the
only odd vertices of J, and dp(v) =0 = dp(w).

Proof. 1f G is a cycle, then clearly the result is true. Hence assume that G
is not a cycle.

Let K’ be a cycle in G containing v, w. If dg(v) = 2, then we take a
[w; v]-EPS-graph with K’ C E. If dg(w) = 2, then we take a [v; w]-EPS-
graph with K’ C E. In either case, Theorem D (stated below) guarantees
the existence of such EPS-graphs. Thus conclusion (i) of the theorem is
satisfied.

Hence we assume that dg(v),dg(w) > 3. We proceed by contradiction,
letting G be a counterexample with minimum |E(G)].
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Let G' = G — K’ denote the graph obtained from G by deleting all edges
of K’ (including all possibly resulting isolated vertices).

(a) Suppose G’ is 2-connected. G’ either has an FPS-graph S’ = E'U P’
or a JEPS-graph S’ = J' U E’' U P’ satisfying the additional property (i) or
(ii), respectively.

Suppose S’ = E' U P'. Then set £ = K' UE', P = P’ to obtain an
EPS-graph S = EUP of G satisfying property (i). If G’ has a JEPS-graph
S’ = J UE"U P satisfying property (ii), then set E = E’, P = P’ and
J =J UK’ to obtain a JEPS-graph S = JU E U P as required. Whence
G’ is not 2-connected.

(b) Suppose G’ has an endblock B’ with (B’ — ~v¢) N {v,w} = 0 where
~vc = if B’ contains a cutvertex ¢ of G’, and v¢’ = () otherwise (in this
latter case, B’ is a component of G’ having at least two vertices with K’ in
common). It follows that G’ O H' where H' is a block chain with B’ C H’
and G* := G — H' is 2-connected. Suppose H' is chosen in such a way that
G* is as large as possible.

It follows that if H' is not 2-connected then |V (G*)NV (H'-V(B’))| = 1.
Denote the corresponding vertex with ¢* and observe that ¢* is a cutvertex
if ¢* € V(G'). Also, by the choice of B’ and the maximality of G* we have

(H — ) n{v,w} =10

and ¢* is not a cutvertex of H'. Let u’ € V(B') — v¢ be chosen arbitrarily.
We set dc* = ¢* if ¢* is a pendant vertex of H', and dc* = () otherwise.
By repeated application of Theorem D (see below) we obtain an EPS-
graph S = E' U P' of H' — §c¢* with dp/(6c¢*) = 0 (setting dp/ () = 0) and
dp(u') < 1.

If however, H' is 2-connected, i.e. H' = B’, then we let ¢* = (G'—B")nB’,
if B’ contains a cutvertex of G', otherwise ¢* € V(B') N V(K’) arbitrarily.
Futhermore we choose u’ € V(B') — ¢* arbitrarily. By Theorem D, B’ = H'
has a [¢*;u/]-EPS-graph 8" = E' U P'.

Also, G* has an EPS-graph S* = E* U P* or a JEPS-graph S* =
J* U E* U P* with dp-(v) = dp«(w) = 0; and K’ C E*, K/ C J*U E*
respectively.

Observing that P* N P’ = () and that S* and S’ are edge-disjoint, we
conclude that E = E* U E' and P = P* U P’ together with J = J* yield
S =FEUP, S =JUEUP respectively, a spanning subgraph of G as claimed
by the theorem (observe that dp(c*) = dp-(c*) because dp:(c*) = 0, and
dp-(c*) =0 if ¢* € {v,w}).
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(c) Because of the cases solved already, we now show that G’ is connected
and for every endblock B’ of G, V(B')N{v, w} # (. For, if G’ is disconnected
and because of case (b) already solved, G’ could be written as

@ =G UG,
where G/, is a component of G’; and
Gin{v,w}#0, i=1,2.

Without loss of generality v € G, w € Gf. Consequently, G; := G, U K’,
i = 1,2, is 2-connected with dg, (w) = 2, dg,(v) = 2. Arguing as at the
very beginning of the proof of this theorem (where we considered the case
dg(v) = 2 or dg(w) = 2) we conclude that the corresponding E PS-graphs
S; = E; UP; with K' C E;, i = 1,2, satisfy conclusion (i) of the theorem,
and so does S = FU P where E = E; U (FEy — K') and P = P, U P,.
Because of case (a) already solved, we thus have that G’ is a non-trivial
block chain with v, w belonging to different endblocks B,,, B,, respectively,
of G’ and they are not cutvertices of G’. Let ¢, and ¢, be the respective
cutvertices of B, and B, (possibly ¢, = ¢,). If B, is not a bridge of G’ we
use a [v; ¢, |-EPS-graph S, of B, and a [w; ¢, |-EPS-graph Sy, of By, if By,
is also not a bridge, or S, = 0 if B, is a bridge. Proceeding similarly for
every block B of G’ — (B, U By,) we conclude that G’ has an FPS-graph
S" = E'U P with dp/(v) = dp,(v) = 0 and dp/(w) = dp,(w) = 0, where
P, CS,, P, C S, (defining dp, (w) = 0 if P, = 0). Thus in either case
S"UK' is an EPS-graph of G satisfying conclusion (i). However, if both B,
and B,, are bridges, i.e., dg/(v) = dg(w) = 1, we introduce z ¢ V(G') and
form G, := G' U{z,2v,2w}. G, contains a cycle K, through z,v,w since
k(Gz) > 2, so it contains a [v,w]-EPS-graph S, = E, U P, with K, C E,.
Trivially, dp, (v) = dp, (w) = 0, and for the component Ey C E, with z € Ej
we have J := (Ep — z) U K being an open trail joining v and w. Setting
E=F,—FEjand P = P, we conclude that S = JUEUP is a JEPS-graph
satisfying conclusion (ii) of the theorem. Theorem 1 now follows. O

The following results from [8], [5], and [7] will be used quite frequently
in the proof of Theorem 2.

Let G be a graph and let W be a set of vertices in G. A cycle K in G is
said to be W-mazimal if |V(K')NW| < |[V(K)NW]| for any cycle K’ of G.
Moreover, we say that the W-maximal K is W-sound if |V (K)NW| > 4.

The following Theorems A and B are special cases of the theorems
quoted.
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Theorem A. (/8, Theorem 4]) Let G be a 2-connected graph and let W be a
set of five distinct vertices in G. Suppose K is a W-sound cycle in G. Then
there is an EPS-graph S = EU P of G such that K C E and dp(w) < 1
for every w € W.

An EPS-graph which satisfies the conclusion of Theorem A is also called
a W-EPS-graph.

Theorem B. (/8, Theorem 3]) Let G be a 2-connected graph and let v, wy,
wa, w3 be four distinct vertices of G. Suppose K is a cycle in G such that
{v,w1,we, w3} C K. Then G has a [v;wy,ws,ws]-EPS-graph S = EU P
such that K C E.

Suppose G is a 2-connected graph and v, wy,ws are distinct vertices in
G. A cycle K in G is a [v;wy, ws]-mazimal cycle in G if {v,w;} C V(K),
and we € V(K) unless G has no cycle containing all of {v, wy,ws}.

Theorem C. ([8, Theorem 2]) Let G be a 2-connected graph and let v, wy, wo
be three distinct vertices of G. Suppose K is a [v;wy, wa]-mazimal cycle in
G. Then G has a [v;wy,ws]-EPS-graph S = EU P such that K C E.

Theorem D. ([5, Theorem 2]) Let G be a 2-connected graph and let v, w
be two distinct vertices of G. Let K be a cycle through v,w. Then G has a
[v;w]-EPS-graph S = EU P with K C E.

Theorem E. ([7, Theorem 3]). Suppose v and w are two arbitrarily chosen
vertices of a 2-connected graph G. Then G? contains a hamiltonian cycle C
such that the edges of C incident to v are in G and at least one of the edges
of C' incident to w is in G. Further, if v and w are adjacent in G, then these
are three different edges.

A hamiltonian cycle in G2 satisfying the conclusion of Theorem E is also
called a [v;w]-hamiltonian cycle. More generally, a hamiltonian cycle C' in
G? which contains two edges of G incident to v, and at least one edge of
G incident to each w;, i = 1,...,k, is called a [v;w, ..., wg]-hamiltonian
cycle, provided the edges in question are all different.

Theorem F. ([7, Theorem 4]). Let G be a 2-connected graph. Then the
following hold.

(i) G has the F3 property.

(ii) For a given q € {x,y}, G* has an xy-hamiltonian path containing
an edge of G incident to q.

By applying Theorems E and F to each block of a block chain B, we
have the following.
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Corollary 1. Suppose B is a non-trivial block chain with |V (B)| > 3 and v
and w are vertices in different endblocks of G. Assume further that v, w are
not cutvertices of B. Then

(i) B? has a hamiltonian cycle which contains an edge of B incident to v
and an edge of B incident to w. In the case that the endblock which contains
v is 2-connected, then B? has a hamiltonian cycle which contains two edges
of B incident to v and an edge of B incident to w. Also,

(ii) B? has a vw-hamiltonian path containing an edge of B incident to
v and an edge of B incident to w.

3. DT-graphs

Recall that a graph is called a DT'-graph if every edge is incident to a 2-
valent vertex. If G is a graph, we denote by V5(G) the set of all vertices of
degree 2 in G.

The following result which is interesting in itself, is obtained by applying
Theorem 1 and the construction in [5] of a hamiltonian cycle/path in the
corresponding spanning subgraph.

Corollary 2. Let G be a DT-block and z1,z2 € V(G) satisfying N(x1) U
N(z2) C Va(G) and z1x9 & E(G). Then either (i) there exists a hamiltonian
cycle in G? — x5 whose edges incident to x1 are in G, or else (i) there exists
an x1xo-hamiltonian path in G2 whose first and final edges are in G.

Theorem 2. Fvery 2-connected DT'-graph has the Fy property.

The proof of Theorem 2 is rather involved. We first give an outline of
the general strategy used in the proof.

Let G be a 2-connected DT-graph and let A = {x1, z2, 23,24} be a set of
four distinct vertices in G. Let G denote the 2-connected graph obtained
from G by adding a new vertex y which joins x; and xo. Then G7 is a
DT-graph unless Ng(z;) € Va(G) for some i € {1,2}. We shall show that
(G*)? contains a hamiltonian cycle C' containing edges of G* of the form
YT1,YyTo, T323, T424 where x3z3,x4z4 are edges of G. Then clearly C' gives
rise to an F4 x1xo-hamiltonian path in G? when we delete the vertex y from
(GH)2.

In order to show the existence of such hamiltonian cycle C in (G)?, we
shall apply induction or show that G admits an EPS-graph S = EU P
with some additional properties. In particular, in almost all cases, E will
contain a prescribed cycle KT passing through y. KT will also contain as
many elements of {x3,x4} as possible. Note that G* is 2-connected and
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hence contains a cycle through y and x;, i € {3,4}, which automatically
contains x1, xo.

Note that in [5] it was shown that if a 2-connected DT-graph H admits
an EPS-graph, then H? has a hamiltonian cycle. We refer the reader to [5]
for the method of constructing such hamiltonian cycle and to see how edges
of H can be included in such hamiltonian cycle. Also, we may automatically
assume that in an EPS-graph S = E'U P the edges of P are the bridges of
S (otherwise, we could delete step-by-step P-edges (i.e., edges of P) until
such situation is achieved).

However, GT may not be a DT-graph and/or some elements in A may
be 2-valent and (at least) one of its neighbors may not be 2-valent. In such
cases, the existence of the various types of EPS-graphs S in G may not
be sufficient to guarantee a hamiltonian cycle to begin with in S?. Even if
we can derive the existence of a hamiltonian cycle from these FPS-graphs,
they may not suffice to guarantee a hamiltonian cycle with the additional
properties. Thus we need to consider neighbors of elements of A to assure
that they are incident to less than two P-edges. This applies, in particular,
to z; € Ng(z;) with zx; € E(K™T), i € {1,2,3,4}.

The following observations will be used quite frequently (sometimes im-
plicitly) in the proof of Theorem 2.

Observation (*): Suppose S = EU P is an EPS-graph of G* such that
dp(z;) <1 fori=1,2. Let x be a 2-valent vertex of G belonging to E.

(i) Suppose N(x) = {ui,us}. Then S% has a hamiltonian cycle which
contains the edges yxi,yxe and u;x for some i € {1,2} unless xj € N(u;)U
{uj} and dp(z;) = 1,ds(uj) > 2 for j = 1,2; or for some j € {1,2},
dp(zj) =1,dp(z;) =2 and z; € N(z;) " V(K™T); ordp(u1) = dp(uz) =2 -
in all three cases Ng(z;) € Va(G).

(i) We further note that any pendant edge in S will always be contained
in any hamiltonian cycle of S?.

(iii) Consider W C V(GT1) with |[W| = 5 and KT C G*. Suppose
(WNV(KT)| >4. If K is W-sound, then Theorem A applies. If, however,
K™ is not W-sound, then there is a W-sound cycle K* with W C K* and
we operate with K* in place of K*. This follows from the definition of W -
soundness (see the discussion immediately preceding Theorem A ).

The observations (i) and (ii) follow directly from the degree of freedom
inherent in the construction of a hamiltonian cycle in S? as given in [5].

The proof of Theorem 2 is divided into several cases depending on
whether N(z;) C Va(G) or not, ¢ = 1,2,3,4. Note that if N(x;) Z Va(G),
then dg(z;) = 2. If dg(x;) = 2, we let N(z;) = {u;,v;} throughout the
proof. Also, we define x} = x; if dg(z;) > 2; and x} = z; otherwise.
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Lemma 2. Let G be defined as before with N(x3) € Vo(G) and N(z4) €
Vao(G). Suppose N(x;) C Va(G) for some i € {1,2}. Assume further that
every proper 2-connected subgraph of G has the Fy property. Then (G7)? has
a hamiltonian cycle containing the edges r1y, T2y, T323, 424 where x323, T424
are different edges of G.

Proof. By the hypotheses, dg(x3) = dg(x4) = 2. Assume without loss of
generality that N(z1) C Va(G).

(1) Suppose {u;,v;} # {x1, 22} for i = 3, 4.
Let K be a cycle containing the vertices y, z1, T2, T4, U4, V4.

(1.1) Assume that K also contains the vertex xs.
We may assume that

+ _
KT =yx121...u4T404 .. . U3T3V3 . .. 2902Y.

(a) Assume that ug # x1.

Since {z1, 2,13, T4, u3,us, 22} € V(KT), Theorem B ensures the exis-
tence of a [ug;x1, 29, 22]-EPS-graph Sy = E4 U Py of GT with Kt C Ey4
in the case x3x4 € E(G). Likewise, we obtain a [u4; z1, us, 5]-EPS-graph
S3 = k3 U Ps of Gt with KT C Es if xgry & E(G) where 563 = xo if
dc(z2) > 2, and 25 = 290 = V(K T) N Ng(x2) otherwise. It is straightforward
to see that in both cases, the EPS-graph yields a hamiltonian cycle in (G*)?
as required by the lemma (see Observation (*)(i)).

(b) Assume that uy = x; and v = .
(b1) Suppose z3 and x4 are adjacent or N(x3) N N(xy4) # 0.

(i) z3 and w4 are adjacent. Let G~ = G — {z3,24}. If G~ is not 2-
connected, then it is a non-trivial block chain with z, x9 belonging to dif-
ferent endblocks, and x1,z2 are not cutvertices of G~. Hence (G~)? has a
hamiltonian path P(z1, z2) starting with an edge x1w; of G and ending with
an edge xowy of G (see Corollary 1(ii)). Then

(P(fL'l, CCZ) - {33171)1, $2w2}) U {.’E1134, 23, LaW1, 33371}2}

defines a required F; z1z»-hamiltonian path in G2.
If G~ is 2-connected, then (G~)? has a hamiltonian cycle C~ containing
r1w1, T1t1, Towe which are edges of G. Then

(C™ —{zyw1, z1t1, vows }) U{wity, x12423W02 }

is a required F; zzo-hamiltonian path in G2.
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(ii) Suppose N(z3) N N(z4) = {u}.

If dg(u) = 2, then let G = G — {x3,24,u} and proceed similarly as
before to obtain a required F; zz2-hamiltonian path in G2. Hence we as-
sume that dg(u) > 2. Suppose further that G — x; is 2-connected for some
i € {3,4}. Then G — x; has the F4 property with u taking the place of z;;
and any such F; x1z2-hamiltonian path in (G — z;)? can be extended to a
required F; z1zs-hamiltonian path in G2. Thus we have to consider the case
k(G —x;) < 2 forie {3,4}.

Consider G — x4. Since dg(z4) = 2, G’ = G — x4 is a non-trivial block
chain with z1, u belonging to different endblocks of G’ and are not cutvertices
of G'. The endblock B, of G’ with v € V(B,) also contains 3,y because
dg/(u) > 2 and dg(x3) = dg(x3) = 2. Hence B, is 2-connected. Let ¢ be
the cutvertex of G’ belonging to B,,.

Suppose first ¢ # xo. Because of the hypothesis of the lemma, B, has the
F property. Correspondingly, there is a hamiltonian path P(c,z2) in (By)?
containing zzws,uu’ with w3 € {u,z2}, which are different edges of B,,.
Likewise, there is a hamiltonian path P(x1,c¢) in (G’ — B,)? by Theorem F,
Corollary 1(ii), respectively. Then

P(x1,¢) U (P(c,z2) —uu') U {u'xy, 4u}

is a required F4 x122-hamiltonian path in G2.

Finally suppose ¢ = z2. By Theorem F(ii) or Corollary 1(ii), (G’ —
Bu)2 has a xjzo-hamiltonian path P;o ending with an edge woza of G.
By Theorem E, (B,)? has a hamiltonian cycle C, with {ux3, xox3, 20m2} C
E(B,).

(P12 U Cy — {wawa, 2owo, uxs}) U {wazo, uxy, x4w3}
defines a hamiltonian path as required.

(b2) Suppose z3 and x4 are not adjacent and N(x3) N N(x4) = 0.

Let W = {y,r1,%2,u3,v4}. Then KT is W-sound. By Theorem A, G*
has an EPS-graph S = EU P with Kt C E and dp(w) < 1 for every
w € W; and dp(z3) = dp(z4) = 0. Because of the hypothesis of this case
a required hamiltonian cycle can be constructed in (G)? (see Observation
(*)(1)). In particular, the hamiltonian cycle contains x4v4 and uszs.

(c) Assume that ug = x1 and vs # 2.

If z32z4 ¢ E(K™), then Theorem B ensures the existence of an [z2;x1,
vy, v3]-EPS-graph S3 = E3 U P3 of GT with K™ C F3. By construction, S?
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contains a hamiltonian cycle C' with z4v4, x3v3 € E(C). (see Observation
(*)(i)). Hence we assume that z3zy € E(K™T).

If v3ze & E(KT), or v3zo € E(K™) and dg(z2) > 2, then we invoke
Theorem C to obtain a [vs;z1,2z5]-EPS-graph S3 = F3 U P3 of G with
K* C Es. If, however, v3zo € E(K™) and dg(z3) = 2, then Theorem C
ensures the existence of an [xo; 1, v3]-EPS-graph S3 = E3U P3 of GT with
K+ C FEj3. Note that KT contains all these special vertices. In all these
cases, (S3)? contains a hamiltonian cycle C' with z3x4,z3v3 € E(C) (see
Observation (*)(i)).

(1.2) In view of case (1.1), we may assume that G* has no cycle con-
taining y, x4, x3, and that

¥ _
K™ =yx121 - - uamqvy - - - 2222y,

and GT — 3 is 2-connected if GT — x; is 2-connected for some i € {3,4}.
Without loss of generality, assume that us & {x1,x2}.

(a) Consider first the case that G* = G — z3 is 2-connected.

Define W* = {y, z1, 25, uq, us} if 21 # ug and W* = {y, x1, 25, va, us}
otherwise. Abbreviate W* = {y, x1, x5, t4, uz} with t4 € {uq, v4}.

(al) We first deal with the case |[W*| = 5.

In view of Observation (*)(iii), set K* = K1 if KT is W*-sound in G*,
or else there exists K* D W* in G* (note |[KT NW*| > 4).

(al.1) Assume that x4 € K*. In this case we may assume that
KT = K*. By Theorem A, there exists a W*-EPS-graph S* = E* U P*
of G* with K* C E*. Noting that dp«(u3) < 1, we set E = E* and P =
P* U {ugz3}. Then S = E U P is an EPS-graph of G* whose structure
implies that (G7)? has a hamiltonian cycle containing the edges ugz3 and
tyx (because xg is a pendant vertex in S — see Observation (*)(i)—(ii)).

(al.2) Assume that z4 ¢ K*. Then uz € K* (hence Kt # K*).
Since z; ¢ K*, for i = 3,4, dg(t4) > 2, dg(uz) > 2. We define x3* as x5 with
respect to K*.

First suppose z5* = z3. By Theorem B, there exists a [u4;z1, us, x3]-
EPS-graph §* = E* U P* of G* with K* C E* if 1 # u4. By the same
token, there is a [u4; v4, ug, 25]-EPS-graph S* = E*UP* of G* with K* C E*
if 1 = ug. In both cases, we set £ = E*, P = P*U{x3u3}. Then S = FUP
is an EPS-graph of G which yields a hamiltonian cycle in (G*)? containing

Kk
2
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uszrs and x4z for some z € N(xy4). If 24 is a pendant vertex in S*, then it is
adjacent to vy (see Observation (*)(i)—(ii)).

If 25" # x5, then we proceed analogously as before using z5* instead of
x5. Note that ug = 23" is not an obstacle (we use Theorem C) because of
dg(z2) = 2 since dg(z2) = 2 and z3 is also in K™* (thus xex3 ¢ E(S)) in this
case.

(a2) Assume that |[WW*| = 4.

(a2.1) W* = {y,x1,25,ta} where t4 € {uq,vs}. If uz = t4, then
we operate with a [t4; z1, 25]-EPS graph S* = E*U P* of G* with K+ C E*,
which exists by Theorem C. If ug = %, then we operate with a [z5;z1, 4]
EPS graph S* = E* U P* of G* with K™ C E*, which exists by Theorem C
(note that x5 # x2 in this case using uz # z2).

In either case, set E = E* and P = P*U{zgu3}. Then S = FUP is an
EPS-graph of G which yields a hamiltonian cycle C' in (G)? containing
either xgtyxy or xdxs, xats (see Observation (*)(i)).

(a2.2) W* = {y, 21,25, u3}. Then either (i) ug # x1, or (ii)
ug = o1 and vy # f or (iii) ug = z1 and vg = 25.

In cases (i) and (ii) we are back to case (a2.1) with us = t4 # 3.

In case (iii) we have x% # x2 because N(z4) # {x1,22}. We consider
G' = G — {z4,0x3}; again, dzi = x} if 23 is a pendant vertex in Gt — x4
and 0z = () otherwise. Set zf, = «% if 25 € V(G') and zf, = x5 otherwise.
Suppose £(G’) = 1. In any case, G’ has different endblocks B and Bb; they
are 2-connected with z; € B{ and 25, € B not being cutvertices of G’
Since G’ is homeomorphic to G if 2}, = 29 (a contradiction to k(G’) = 1), it
follows that x5 € Bj and that x9 is a cutvertex of G’ since {z2} = B] N BY,.
However, 3 = dg+(v2) = dp; (22)+dp;(r2) > 2+2, an obvious contradiction.
Thus G’ is 2-connected in any case. Starting with a cycle K/ C G’ with
y,x1,22,23 € V(K') we apply Theorem C to obtain an [x1;us, 25*]-EPS-
graph S’ = E' U P! of G’ with K’ C E’, where 25" = Ng(z2) — x%. Setting
E = E', P = P U{xi124,6(x423)}, where §(xq23) = zq2d if 25 ¢ V(G
and (z4z3) = 0 otherwise, we obtain S = EU P of G with K’ C F and
dp(r1) = 1 and dp(ug) < 1. It is clear that S? yields a hamiltonian cycle of
(GT)? as required (see Observation (*)(i)).

(a3) Assume that |[W*| = 3.

Then W* = {y, z1,z5}.
Hence us ¢ {z1,y}, therefore uz = 3. Analogously t4 ¢ {x1,y}, there-
fore t4 = vy = a%. That is, ug = 25 = t4 = vg and 21 = ug. G' = Gt — x4 is
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2-connected since there is a cycle K’ in G’ containing y and 3 and hence also
x4, x1,vs. If v3 # x1, we operate with an [x3; z1, vs]-EPS-graph S’ = E'UP’
of G’ with K’ C E* (by Theorem C). Setting £ = E* and P = P*U {425},
we obtain an EPS-graph S = E'U P of G which will yield a hamiltonian
cycle in (GT)? containing z3vs, r4vs (see Observation (*)(i)). If vz = w1,
then G — x4 is 2-connected (since N (z3) = N(z4)). Hence G — x4 has the Fy
property with vy taking the place of x4; and any such Fy x1ze-hamiltonian
path in (G — z4)? can be extended to a required F; x1z2-hamiltonian path
in G2. This finishes the proof of case (a).

(b) Now consider the case where G* = G+ —xz3 has a cutvertex and hence
G — x4 has also a cuvertex, because of the assumptions of case (1.2). Thus
G* is a non-trivial block chain since dg(z3) = 2. Note that K is contained
in some endblock By of G*.

Let W = {y, z1, 2%, x3,t4} where we define ¢4 as follows:

o ty = uy if ug # xq;
o {4 = vy if ug = 1 and either x5 = x5 or vy # x5 # x9;
o gy =x9if ug =21 and vg = x5 # x9.

Note that by this definition of ¢4, |W| = 5.

Assume first that the cycle Kt (which passes through y,x1, g, 25, u4,
x4,v4) is W-sound in G*. Let G denote the subgraph of GT which is a non-
trivial block chain containing us, x3, v3 such that G+ — G = B,. Suppose w3
is the vertex in one of the endblocks of G and wj the vertex in the other
endblock of G such that @ﬂBy = {ws, w4 }. Possibly {ws, w}N{us,v3} # 0,
but {ws, w3} # {us, vs}.

We replace G in Gt by a path Py = ajasxsazas (where ay, a3 are iden-
tified with ws, w4 respectively, and {as,as} = {us,vs}) to obtain the graph
G". Note that K™ C G”. Set W = {y,x1, 25, 23,t4} as above. Then KT
is W-sound (by assumption), and by Theorem A, G” has an EPS-graph
S" = E" U P” such that K™ C E” and dp~(z) <1 for every z € W.

(b1) Suppose E(Py)NE(P") = 0. Then P, C E”. Since Gi is a non-trivial
block chain, by Lemma 1(ii), G contains a JEPS- graph S = JUEUP such
that dp(w3) = 0 = dp(wy), and w3, wy are the odd vertices of J; hence
dj(w3) = 2 and dp(z3) = 0. Note that by the second part of Lemma 1(ii)
we can make sure that min{dp(u3),dp(v3)} < 1. In this case, we obtain
an EPS-graph S = EU P of G by setting E = (E” — Py)U.J UE and
P = P"UP. Here dp(zs) = 0 and dp(w) < 1 for every w € W — 3.
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(b2) Suppose E(Py) N E(P") # 0. That is, V(Py) C V(P") (so that
E(Py)NE(E") =0) and dp~(x3) = 1. This means that either agxs & E(P")
or xzzaz & E(P"). Suppose z3a3 & E(P") (so that agas € E(P")). In this
case, we delete T3v3 from G and thus spht G into two block chains G1 and
Gg with x3, w3 € G1 and v, wh € Gg If G is an edge only, then S = G
If G = (), then S5 = (). Otherwise by Lemma 1(i) (or by Theorem D if G
is 2-connected), é; has an EFPS-graph S’; = E\] U E where d (w3) < 1,
dp (z3) = 1, dp (v3) < 1, dp (w3) < 1, j = 1,2. Now, if we take E' = E U
E\QUE” and P = YDIUEU(P”—{@, as}), we have an FPS-graph S = EUP
of G with dp(w) < 1 for every w € W (note that wsag, whag € P"), x3 is
a pendant vertex in .S, and it works also if Gisa path on at least 4 vertices.

In both cases (b1) and (b2), a required hamiltonian cycle in (G*)? can
be constructed from S (see Observation (*)(i)-(ii)). Note that GT — x4 is
2-connected if KT = yzizgaiwoy (hence dg(z) = 2) and if dg(x3) > 2.
Here we have a contradiction to the assumption of this case (1.2)(b).

Now assume that the cycle Kt is not W-sound. Since y, 1, 23,4 € KT
and |[W| =5, there exists a cycle K* C G containing all of W and not xy4.

(i) Suppose t4 = v4 or t4 = xo. In both cases, K* contains uy = 1 and
v4 = t4, v4 = 235, respectively, but not z4. Hence GT — x4 is 2-connected, a
contradiction with assumptions of case (1.2)(b).

(ii) Suppose t4 = uy. Because G — z3 has a cutvertex, without loss
of generality suppose that uz ¢ KT but clearly us € K*. Hence uz ¢
{z1,25,us}. We define x3* as 3 with respect to K*.

First suppose z3* = x}. By Theorem B, GT has a [u4; z1, 25, us]-EPS-
graph S = E U P. Note that either x4 is a pendant vertex in S, or else x4
is a vertex in E. It is clear that S? yields a hamiltonian cycle of (GT)? as
required (see Observation (*)(i)—(ii)).

If 25" # x5, then we proceed analogously as before using z5* instead of

. Note that 25" = ug or x3* = w4 is not an obstacle (we use Theorem C)
because of dg(x2) = 2 since dg(x2) = 2 and x5 is also in K* (thus xex} ¢
E(S)); and 5" = uz = uy4 is not possible in this case.

(2) Suppose {usz,vs} = {x1,z2}.

Note that, in G, there exists a cycle containing x3 and x4 (and hence
also the vertices us, vs, ug, v4).

Let G* = G — x3 which is homeomorphic to G and thus G* is 2-
connected. Note that there exists a cycle K* = KT (see above) in G* con-
taining the vertices y, 1, 2, x4.
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(2.1) Suppose w € N(x4)—{x1,z2} exists; let 920 € E(K*). Note that
dg- (xz) =2 if dG(ZQ) > 2.

By Theorem B, there exists an [z1; 2, 22, w]-EPS-graph, an [x1; x9, 29|
EPS-graph by Theorem C respectively, if w = z5; in both cases we denote
S* = E*U P* C G* with K* C E* and dp+(z1) = 0. Note that K* is
[€1; 9, zo]-maximal if zo0 = w. Set E = E* and P = P* U {x;x3}; thus
dp(xz1) = 1. Also, dp(z2) + dp(2z2) < 1 since dp(z2) > 0 implies dp(x2) =
0 since dg«(z3) = 2. Then S = E U P is an EPS-graph of Gt and a
hamiltonian cycle in (G*)? can be constructed (using S) which starts with
yx1, 123, ends with yzo and traverses wzy even if w = zy (see Observation

(*)(1)—(ii) for zq1z3).
(2.2) Next assume that {ug,v4} = {21, 22}

Note that, in this case, dg(z2) > 2 since dg(x1) > 2 can be assumed and
x3, x4 are 2-valent (note that the lemma is trivially true if G is a 4-cycle).

Consider the graph G' = G — {z3,24}.

(a) Suppose G’ is 2-connected. We shall apply Theorem 1 to G’ with
1,9 in place of v, w.

(i) Suppose G’ has an EPS-graph S’ = E’' U P’ with dp/(z;) = 0 for
i =1,2. Let E = F' U{yr1z420y} and P = P’ U {x123}; this yields an
EPS-graph S = EU P of G with dp(z1) = 1, dp(x2) = 0, dp(x3) = 1
and dp(z4) = 0. Hence we may construct a hamiltonian cycle in (GT)?
containing the edges x1x3 and xox4 apart from yxq, yrs.

(ii) Suppose G’ has a JEPS-graph S’ = J' U E' U P’ with 1, x2 being
the only odd vertices of J' and dp/(x1) = 0 = dp/(x2). Let E = E' U (J U
{z1yx2}) and P = P'U{z1x3,x224}. Then S = FUP is an EPS-graph of G
with dp(z1) = dp(x2) = dp(x3) = dp(z4) = 1. Hence a hamiltonian cycle
in (G*)2 containing the edges yx1, yxo, xr1x3 and xox4 can be constructed.

(b) Finally assume that G’ is not 2-connected. Then G’ is a non-trivial
block chain. By Lemma 1(ii) with 1 = v and 22 = w, G’ has a JEPS-
graph 8" = J' U E' U P' with dp/(z1) = 0 = dp/(22). As before, take £ =
E' U (J'U{z1yze}) and P = P’ U {z123,2924}. Then S = FU P is an
EPS-graph of GT with dp(z1) = dp(z2) = dp(v3) = dp(z4) = 1. Hence
a hamiltonian cycle in (GJ“)2 containing the edges yx1,yrs, r12x3 and xoxy
can be constructed.

This completes the proof of the lemma. O

Proof of Theorem 2. Let G be a 2-connected DT-graph and A = {z1, x2,
x3,x4} be a set of four distinct vertices in G. It is easy to see that the
theorem holds if G is a cycle. Hence we also apply induction, apart from
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direct construction at the given graph. However, in general let G* be defined
as before.

Case (A): N(z;) CVWo(G),i=1,2,3,4.

There exists a cycle KT in G containing the vertices y, 1, T2, 4 (and
possibly z3), assuming that KT is at least as long as any cycle containing
Y, 21, T2, x3. Assume KT is W-sound for W = {y, z1, z2, 23, 24}. By Theo-
rem A, there exists a W-EPS-graph S = EU P in Gt with KT C F (that
is, dp(w) < 1 for every vertex w in W). Moreover dp(y) = 0 (since y is
2-valent in Gt and K™ C F).

Since N(z;) C Va(G) for i = 1,2,3,4, a hamiltonian cycle C in (G*)?
can be constructed, and C' will contain yz1,yxo and at least one edge of
G incident to x; for j = 3,4. That is, G? contains a hamiltonian path as
required (see Observation (*)(i)).

Case (B): N(z;) C Va(G), i = 1,2,3 and N(z4) € Va(Q); ie.,
dg(xg) = 2.

Let K be a cycle in G containing ¥, 1, 22, 74 and possibly z3.

(B)(1) Suppose z3 is not in KT (so, no cycle of G contains y and x;,
i=1,2,3,4).

(a) Suppose {ug,v4} # {1, 22}

Then we may assume that uy & {x1,72}. Let G’ = G — x4 and let
K’ C G’ be a cycle containing y, x1, x2, T3.

(al) Suppose G’ is 2-connected.

Set W' = {y,x1,x2, 23, us} and suppose without loss of generality that
K' is W'-sound (i.e., ug € V(K') if G’ has a cycle containing all of W’).
By Theorem A, G’ has a W/-EPS-graph S’ = E' U P’ with K’ C E’ such
that dp/(w) < 1 for all w € W’ with dp/(y) = 0. Take E = E' and P =
P’ U {ugz4}. Then S = E U P is an EPS-graph of G* with K/ C FE,
dp(y) = 0,dp(x4) =1 and dp(w) < 1 for w € W' — {us}; and dp(uq) < 2.
A careful examination of this case and Observation (*)(i)—(ii) show that a
required hamiltonian cycle in (G7)? can be constructed (note that usry is
a pendant edge of S).

(a2) Suppose G’ is not 2-connected.

Then G’ is a non-trivial block chain. Let B, denote the block in €4
containing K’. Note that wug,vs belong to different endblocks of G’. Let
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z4 € {u4,v4} be a vertex in an endblock By of G’ where By # B,. Further
let G denote the maximal block chain in G’ containing By but no edges of
By. Let ¢g € V(By) NV(G) be a cutvertex of G’ (which is not a cutvertex
of G). R

Now replace G in G with a path Py = z4zcg of length 2 joining 24 and
co and call the resulting graph G*; z € V(G). In so doing the cycle K™ is
transformed into the cycle K* in G* containing P, U {y, x1, x2, x4}. Observe
that x3 € V(K*); otherwise K* could be extended to become a cycle in G
containing y, r1,..., x4 contrary to the supposition of this case. Set W =
{y,x1, 29, 23,24}. K* is W-sound in G*; by Theorem A, G* contains a W-
EPS-graph §* = E* U P* with K* C E*, dp- (y) =0=dp- ($4) = dp- (24)
and dp-(w) < 1 for all w € W — {y, z4}.

Let H = GUP,. Then H is a 2-connected graph and hence has a [co; 24)-
EPS-graph Sy = Ey U Py with Ky C Ey where Ky = (KTNG)U P; (see
Theorem D).

By taking £ = (F*UEy)— (K*UKg))UK™ and P = P*U Py we have
S = EUP being a W-EPS-graph of GT with K™ C E, dp(y) = 0 = dp(z4),
dp(w) < 1 for all vertices w € W — {y, x4}, dp(z4) < 1 and dp(ys) < 2
where y4 € N(z4) — 2z4. Hence a required hamiltonian cycle H in (G1)?2
can be constructed (as {ugry, r4v4} € K); in particular 2424 € E(H) (see
Observation (*)(i)).

(b) Suppose {u4,vs} = {x1, 22}

Let G’ = G™ — x4 (which is 2-connected since G is 2-connected) and let
K’ be a cycle in G’ containing y, z1, z2, 3. By Theorem C, there exists an
[x1; 22, x3]-EPS-graph S = E' U P/ in G’ with K’ C F’, dp/(w) < 1 for
w € {x9,23} and dp/(z1) = 0. Let E = E' and P = P’ U {z124}. Then we
have an EFPS-graph S = EU P of G* with K’ C F and dp(z;) < 1 for
i = 1,2,3, and x4 is a pendant vertex in S. Hence we can can construct
a hamiltonian cycle in (G*)? containing the edges yx1,yro, z124 and x3t3
where t3 € N(x3) since N(z3) C Vo(G) (see Observation (*)(i)—(ii)).

(B)(2) Suppose also x3 is in K.

Assume without loss of generality that K+ = yxiz;--- z373W3 -
U4T VY * - - 2222Y.

(a) Suppose uyq # 3.

Set W = {y, 21,2, 23,u4}. Then W C K+ and hence K is W-sound.
By Theorem A, there is a W-EPS-graph S = EUP in G* such that K™ C E
and dp(w) < 1 for every w € W. Then it is possible to construct in (G*)? a
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hamiltonian cycle C containing the edges zgws and ugzy (recall that x4, w3
are 2-valent vertices in G) (see Observation (*)(i)).

(b) Suppose uy = z3.

(i) Suppose vy # x9. We apply Theorem B to G to obtain an [z3; 1,
x9,v4)-EPS-graph S = EUP with K+ C F and dp(x3) = 0, dp(z;) < 1 for
i=1,2, and dp(vq) < 1. Since K™ C E and z4 € K, we have dp(z4) = 0.
We can construct a hamiltonian cycle C' in (G)? whose two edges incident
to x; are edges of G for i = 3 or ¢ = 4, one of which is (without loss of
generality) z3z4 (see Observation (*)(i)).

(ii) Suppose vs = x2. We operate analogously as in case (i) with an
[x3; 21, T2, y]- EPS-graph S provided z3 € N (z1). However S? does not yield
a hamiltonian cycle as required if z3 € N(x1). That is, dg(x3) = 2; dg(x4) =
2, and N(z1) C Va(G) by the assumptions. This is a special case of Lemma 2.
This finishes the proof of Case (B).

Case (C): N(z;) CVa(G), i =1,2 and dg(z3) = 2 = dg(z4).
The proof of this case follows from Lemma, 2.

Case (D): N(x1) C V2(G) and N(x2) € Va(Q); dg(z2) = 2 follows.
(D)(1) N(z4) CVa(G).

There is a cycle KT in G containing y, z1, 22, x3 and also x4 if such
a cycle exists. Recall that z3§ = z3 if dg(x3) > 2 and 2§ = ug = z3 if
de(r3) = 2, and N(x2) = {u2,v2} and assume that ve is in K+. Let 23,25
denote the predecessor, successor respectively, of x3 in K+, where we start
the traversal of K with the edge yz1. We also note that z§ = u3 = z3 and
vy = x7 if z3 € Va(G).

(1.1) Assume that vo & {x3,z4}.
(a) N(xz3) C Va(G).

Let W = {y, 1, v2, z3, 24 }. Without loss of generality let K+ be chosen
such that it is W-sound, since {y,z1,ve,z3} C KT anyway, and possibly
ry € Kt. Let S = EUP be a W-EPS-graph of G with KT C E (by
Theorem A). Observe that if x4 ¢ F, then it is a pendant vertex in S; also
dp(z2) < 1 automatically since N(z3) € Vo(G) and 2o € K. Now it is
easy to construct a required hamiltonian cycle C in S? having the required
properties; we may assume that zszq € E(C) and zqws € E(G) N E(C),
since dp(z4) < 1 and N(zy4) C Vo(G). This is even true if x; = x5 since
both x3 and x4 are 2-valent in G in this case (see Observation (*)(i)-(ii)).
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(b) N(x3) € Va(G); da(z3) = 2 follows.
Set W+ = {y,xl,vz,x;’,m}.

(b1) Suppose x4 = x4 . Since K+ D {y, 21, v, 23,25, 24}, by Theo-
rem B, G contains an [x4;y, z1,v9]-EPS-graph S = EU P with KT C
E such that dp(x4) = dp(x3) = 0, dp(va) < 1, dp(z1) < 1, but also
dp(z2) < 1. We obtain a hamiltonian cycle C C S? as required with
z375, 24wy € BE(G) N E(C) (wy ¢ V(KT) may hold, if dg(x4) > 2). This
covers also the case zyz3 € E(K™T).

(b2) Suppose x4 # 3.
(b2.1) Now assume that K is W*-sound.

(i) Suppose 3 # vo. Let S = EU P be a W-EPS-graph of G with
K* C E, by Theorem A. Then S? contains a hamiltonian cycle C of (GT)?
as required, even if z123 € E(KT) and dg(x3) > 2. In any case, also here
C can be constructed from S such that x3zd, 4wy € E(G) N E(C).

(ii) Suppose 3 = vo. Hence x4 € K, otherwise |V (KT)NW | = 3 and
K™ is not W-sound, a contradiction. Then G* contains an [z9; 21, 74 , 24]-
EPS-graph S = EU P with K+ C E, by Theorem B. Hence we obtain a
hamiltonian cycle C' C S? as required with z3z3, 24wy € E(G) N E(O).

(b2.2) Assume that K is not W*-sound.

(i) Suppose |V(KT) N WT| > 3. Then there exists a cycle K* in G
containing y,xl,vg,a:;, x4 but x3 € K*; otherwise, we should have chosen
KT = K* which is W*-sound, a contradiction.

First suppose vy € E(K*). By Theorem B (if 25 # v2), Theorem C
(if 23 = vq), there is an [23; 71, vo, 24]-EPS-graph, [x3; z1, 24]- EPS-graph,
respectively, S = EU P of G* with K* C E. Note that either z3 is a vertex
in F, or else it is a pendant vertex in S. Also take note that dp(z2) < 1 and
dp(v2) < 1. By Observation (*) (i)-(ii), S? has a hamiltonian cycle with the
required properties.

If xovy ¢ E(K™), then zous € E(K*) and we proceed analogously as
before using uy instead of ve. Note that us = x4 is not an obstacle (we use
Theorem C) because of dg(x2) = 2 since dg(z2) = 2 and vy is also in K*
(thus vy ¢ E(S)); and v2 = 3 is not possible in this case.

(ii) Suppose |V(KT)nW| = 3.

Hence 24 ¢ K+ and vy = a3. If 2125 ¢ E(K™), then we set W* =
{y, 21,25, 25,24}. If 2123 € B(KT) and dg(ve) = 2, then we set W* =
{y,$1,$2,$;,$4}. In both cases KT is W*-sound. By Theorem A, G con-
tains a W*-EPS-graph S = E U P with KT C E. Observe that if 4 & E,
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then it is a pendant vertex in S. Now it is easy to construct a required
hamiltonian cycle C in S? having the required properties (see Observation
(4)(0)~(ii)).

If 7123 € E(KT) and dg(v2) > 2, then we consider G — 3.

If G — x3 is 2-connected, then we apply induction and get an Fy zixo-
hamiltonian path P; in (G — x3)? containing edges z4wy, 23wy € FE(G).
Then

P = Py U {wixs, x3205 } — {zFw]}

defines a hamiltonian path in G? as required.

If G — x3 is not 2-connected, then x; belongs to one endblock and a:;, T9
to the other endblock of a non-trivial block chain G—x3 because of the degree
condition of x3, zs. Moreover x1, xgr, and xo are not cutvertices of G — x3.
Depending on the position of x4 in G — x3 we construct a hamiltonian path
P in G? as in the preceding case applying either induction, or Theorem F,
proceeding block after block. Since this procedure is straightforward we do
not work out the details.

(1.2) Vo € {$3,$4}.
(1.2.1) Assume that v = 3.

Gt — z9uy is a trivial or non-trivial block chain. Let B, denote the
endblock (in G — zaus) containing the cycle K+ and let G = (G — zaug) —
B,.

Suppose first that G # (). Hence G is a block chain in G — ToUg CON-

taining us and ]Y(uQ) — 5. Let t be the cutvertex of G — zous belonging
to By. That is, G N B, = {t}.

(a) Suppose x4 & G-t

Then z4 is in B,. Observe that G—x3 is a block chain with G being an in-
duced subgraph of G — x5 (note that dg(z2) = 2). Since B, is 2-connected, it
contains a path P(z3,z1) through x4. It follows that x9,y & P(x3,z1). Thus
P(x3,71) C G—x3 with x4 € P(x3,21). Now, P(29,21) = z223P (73, 71) is a
path in G — G. Thus we may assume that K+ = yzoP(z2,21)z1y C By and
thus passes through y, z1, 2, 2%, 4. By Theorem C, By has an [x3; 21, x4]-
EPS-graph S, = E, U P, with K+ C E, and dp,(z2) = 0 (note that
dp,(z2) = 2). Let the same S,, denote an [z3; 21]- EPS-graph of By, if x4 = 3
(i.e., x3z4 € E(K™)) (see Theorem D).

Since x4 ¢ G- t, by Lemma 1(i) or Theorem D if G is 2-connected, G
contains an FPS-graph S = EUP with dp(t) = 0 and dp(ug) < 1, provided
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da(t) > 1. If dg(t) = 1, then either S =0 if G = uyt or by Lemma 131),
G — t contains an EPS-graph S = E U P with dp(t1) <1 and dp(uz) < 1,
where t1 € Ng(t).

Since P, N P = 0, by setting E = E, UE and P = P, U P U {ugxs},
we obtain an EPS-graph S = E U P of GT with KT C E, dp(xg) = 1,
dp(z%) =0, dp(z;) < 1for i =1,4 and dp(ug) < 2.

If [V(K™T)| > 6, a required hamiltonian cycle in S? can be constructed
(note that the cases ©4 = t and x4 # t are treated simultaneously) (see
Observation (*)(i)).

If, however, |V(K™)| < 6, i.e., |[V(KT)| = 5, then dg(z1) = 2 since
N(z4) C V5(G) and N(z1) € V2(G), which in turn implies dg(z4) =
dg(xz3) = 2. Hence G — {x3,x4} is a block chain G~ with z1,2z2 being
pendant vertices of G~ It follows that (G~)? has a hamiltonian path H P~
starting with z1w; € E(G) and ending with xous € E(G). Clearly,

HP = (HP™ — {zjw1, vous}) U {x124W1, 2T3U2}

defines a required hamiltonian path in G2.
(b) Suppose 24 € G —t.

In this case, we note that in By, the cycle KT can be assumed to tra-
verse ¥y, x1,t,x3, 2 in this order; it also contains zj if x3 is 2-valent. As for
t € V(KT), see the preceding observation at the beginning of (a), with ¢
assuming the role of x4.

Suppose t # x1. By Theorem C, By has an [2}; x1,t]-EPS-graph S, =
E, U P, with KT C E, if 2§ # t; by Theorem D, By has an [z};z1]-EPS-
graph S, = E, U P, with K* C E, if z§ = ¢; and dp,(x2) = 0 since
dg(x2) = 2.

Suppose t = z1. We let S, = E, U P, be an [z;;23]-EPS-graph in B,
with KT C E, by Theorem D. Note that we set 23§ = x9 if z123 € E(K™T).

(b1) Assume that x4 is a cutvertex in G.

(i) Consider the case x4 is not incident to a bridge of G. Let Gy and
C/J\g be defined by G = é\l U é\g with t,24 € V(é\l), T4,Us € V(@) and
G1 N Ga = {a4}. N o

By Lemma 1(i) or Theorem D, G; has an EPS-graph S; = E; U P; with
dp (z4) =0fori=1,2,dp(t) <1 and dj (u) < 1.

By taking £ = E, U E\l U E\g, P=PU ﬁ U E, we have an FPS-graph
S = EUP of G* with dp(z2) = 0 =dp(z4), and dp(z1) < 1 and dp(z3) < 1;
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dp(t) < 2 by construction, provided ¢t # x;. Moreover, if t = z3, we have
dp,(23) = 0 and hence dp(x3) < 1 because of dj (23) < 1; and dp(z1) < 1.
Also if t = w1, we have dp, (1) = 0 and hence dp(x1) < 1 because of
dp (t) < 1; and dp(x3) < 1. Hence a required hamiltonian cycle in S? can
be constructed (the various construction details are straightforward and are
thus omitted).

(ii) Now suppose x4 is incident to a v bridge f of G and ]V(K+)] > 4.
In this case, we delete f and thus split G into two block chains G1 and G2
with t € Gl, Uug € Gg and x4 is either i in G1 or in GQ By Lemma 1(i) o
Theorem D, G; has an EPS-graph S; = E;UP; with dp(t) <1, dp(u2) <1

and dg (z4) < 1 for some i € {1,2}. Note that Si=Gyif Gi=Ky;or §; =0

if G; =t or G; = us. Proceedlng similarly to case (i) let £ = E, U E UL,
and P = P, U P U (P, U {usa2}). Then we have an EPS-graph § = EU P
of GT.

Because of the choice of Sy in the cases t ¢ {z1, 25}, t = 25, and t = x4,
we have in any case, dp(z1) <1, dp(x2) =1, dp(25) < 1 and x4 is either a
pendant vertex in S or dp(z4) = 0 (which occurs when dg(x4) > 2).

By a similar argument as in case (i), we conclude that in all cases S?
contains a hamiltonian cycle with the required properties unless dp(z2) = 1,
dp(z3) = 1 and 5 = z3 = t. In this case there exists a cycle containing
Y, X1, T2, x3, T4, a contradiction to the choice of K. R

(iii) Now suppose x4 is incident to a bridge f of G and |[V(K™T)| = 4.
It follows that t = x1 and therefore G’ = G — x3 is a non-trivial block
chain containing f as a bridge. Hence (G —x3)? contains a hamiltonian path
HP' starting with an edge z1w; € E(G) and ending with usze € E(G) and
containing f. It follows that

HP = (HP, — l‘lwl) U {:clacgwl}

yields a hamiltonian path in G? as required if f # xyx4. However, if f =
T1T4, then we set

HP = (HP/ — ngg) U {achgug}.

(b2) Hence assume that z4 is not a cutvertex in G.

Suppose first that x4 is contained in a 2-connected block B in G. Further,
let ¢1,¢co be two vertices in B which are also cut/yertices of G if B is not an
endblock of G. If, however, B is an endblock of G, then let ¢; be the unique
cutvertex of G in B, and let co € {t, u2} depending on which of the endblocks
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of Gis B. If x4 # c2, we apply Theorem C to B to obtain an [x4; ¢y, co]-EPS-
graph of B; if x4 = co (which means x4 = ug), then we apply Theorem D to
B to obtain an [z4; ¢1]-EEPS-graph of B. In both cases by using Lemma 1(i),
extend these EPS-graphs to an EPS-graph § = EUP of G with d a(t) <1,
dp(uz) <1, and dp(z4) = 0.

Setting £ = EyUE and P = Pyuﬁ we obtain an £ PS-graph S = FUP
of G with dp(xg) =0= dp(x4), dp(:L‘g) <1 and Clp($1) <1.

Hence assume that z4 is not contained in a 2-connected block. That is,
x4 is a pendant vertex in G. In this case, x4 = uz. We apply Lemma 1(i) to
obtalnanEPSgraphS EUPOfGWlthd()<1 and dp(z )<11f
G#:mt IfG—:):4t then S = G. Setting £ = E, UE and P = p, UP we
obtain an FPS-graph S = EU P of G* with dp(a:g) =0 and dp(a?3) <1,
dp(z1) <1, dp(x4) =1 and 24 is a pendant vertex in S.

In any of these cases, S? contains a hamiltonian cycle C with the required
properties (note that xszo € E(C) because dg(x2) = dg+(x2) — 1 = 2); see
Observation(*)(i)—(ii).

Finally if G = 0, we find S, as in Case (1.2.1)(a) and construct a
hamiltonian cycle as required using .Sy only.

(1.2.2) Assume that vy = z4.

Recall that the cycle KT in G contains y, z1, 2, 23, v2. Therefore
KT = YT - .. 23T3W3 . . . 24L422Y.

Consider the graph G’ = G — zous.
Case (a) G’ is 2-connected.

Suppose z3, x4 are adjacent in K. Then apply Theorem D to obtain an
[r4; 21]-EPS-graph S = EU P of G’ with K™ C E. Suppose w3, 14 are not
adjacent in Kt. Then apply Theorem C to obtain an [z1; 2%, x4]-EPS-graph
S = FEUP of G' with K C E. In either case, a required hamiltonian cycle
in S? can be constructed (setting =5 = x4 = ws if 2125 € E(KT)).

Case (b) G’ is not 2-connected.

Then G’ is a non-trivial block chain. As before, let B, denote the end-

block in G’ containing y (and hence containing the cycle K *). Set G =
G’ — B, which is a trivial or non-trivial block chain; G # () in any case.

It follows that B, N G = {t} and t is a cutvertex of G’. By Theorem D or
Lemma 1(i), G has an EPS-graph S = E U P with d > p(t) <1if G # uot. If
G = ust, then S=a.



144 Gek L. Chia et al.

(i) Suppose t = x4.

Then G = GT — 2914 is 2-connected. Replace in K the edge x429 with
a path P(z4,z2) in GU {ugws} to obtain the cycle K”. Since {y, x1, r3, 24,
ug,z2} C V(K"), we may apply Theorem B to obtain an [x4;x1,us, 2]
EPS-graph S” = E" U P” C G”" if 3 and x4 are adjacent in K", or to
obtain an [z1; 2%, 4, ug]-EPS-graph S” = E" U P" C G if z3 and z4 are
not adjacent in K (setting o3 = x5 = ws if 123 € E(K")). In both cases,
K" C E". A required hamiltonian cycle in (S”)? can be constructed (since
the situation is similar to Case (a) above); see Observation (*)(i).

(ii) Suppose t = x3.

We apply Theorem C to B, to obtain an [z3;x1,z4]-EPS-graph S, =
E, U P, of G' with K+ C E,. Note that N(z3) C V2(G) in this case.

(iii) Suppose t = 21 and xyw374 € KT,

We set 3 = x5 = ws, if z123 € E(KT). We apply Theorem C to B,
again to obtain an [x1; 2%, 24]-EPS-graph S, = E,UP, of G’ with K+ C E,,.

In the cases (ii) and (iii), we let E = EU E,, P = PU P, and obtain
an EPS-graph S = FU P of Gt — zoup with K™ C E, dp(z2) = 0 and
dp(w) < 1 for w € {x1,x%, 24}. Hence a required hamiltonian cycle in S?
can be constructed; see Observation (*)(i).

(iv) Suppose t & {x1,x3, T4}

We set x5 = a7§ = ws if z123 € E(KT). Note that dp,(z2) = 2. Let
W ={y,x1, 25, z4,t}; W —{t} CV(KT).

First suppose that |WW| = 5. If Kt is not W-sound, then there is a cycle
K’ C By containing all vertices of W, in which case we apply Theorem B to
By to obtain an [z%; x1, x4, t]-EPS-graph S, = E, U P, with K’ C E,. Note
that, if z3 ¢ K’, then either x3 is a pendant vertex in S, or dp,(z3) = 0
and zizs € E(Ey). If KT is W-sound, then we set K’ = Kt and apply
Theorem A to By to obtain a W-EPS-graph S, = E, U P, with K’ C E,,.

Suppose |W| = 4. Hence z} # z3.

If 25 = x4 # t, then Ng(z3) = {x1, 24} and B, — 3 is 2-connected: for,
there are two internally disjoint paths from ¢ to K, and the endvertices of
these paths in K are z1 and x4 since z3,x9 € V(G). Thus B, —z3 contains
a cycle K’ containing y, z1, x2, 24, t. Hence we apply Theorem B to B, — x3
to obtain an [r1;x2,24,t-EPS-graph S = E, U P, with K’ C Ej. Let
E, = E; and P, = P, U{z123}. Thus we have an EPS-graph S, = E, U P,
of B, with K’ C E,. Moreover dp,(x1) = 1, dp,(x2) = 0, dp,(x3) = 1,
dp,(x4) <1,dp,(t) <1, and x3 is a pendant vertex in S,,.

If 25 =t ¢ {x1, 23,24}, then we set K’ = K* and apply Theorem C to
By to obtain an [z}; z1, z4]-EPS-graph S, = E, U P, with K’ C E,,.
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In all cases, we let £ = Eu E,, P = PU P, and obtain an FPS-
graph S = EU P of Gt — xous with K/ C E, dp(x2) = 0 and dp(w) < 1
for w € {x1,x%, 24} (even if x123 € E(KT) or 23 = 25 =t # x3). Hence a
required hamiltonian cycle in S? can be constructed; see Observation (*)(i)-
(i)

(v) Suppose t = x1 and xyw374 C KT

Note that KT = yxiz3z422y. Let G3 = By — {y, z2}; it is 2-connected if
dg(xq) > 2, or else it is a path zjx324. We have G —xo1y = Ggu(éu{mxg})
with t = G3 N G. Consequently,

G =G U {ugmy} = G — ({wazs} U G3).

By Corollary 1(ii), G? has a hamiltonian path P o starting with zjw; €
E(G) and ending with usxs. If G3 is 2-connected, then G3 — 3 is a (trivial
or non-trivial) block chain and thus (G3 — x3)? has a hamiltonian path
Py, starting in x4 = vp and ending with an edge s1z1 € E(G) (using
Theorem F(ii) if G3 — 3 is 2-connected, Corollary 1(ii) if G5 — x3 is a
non-trivial block chain, and Py = G3 — x3 if G3 — x3 = x124). Set

P(x1,29) = mwzwy (P2 — {1, v2} )ugwszs
if G3 = x1x324; and
P(x1,x9) = ziz3xa(Pyy — x1)s1wi (Pra — x1)

if G3 is 2-connected. In both cases, P(x1,x2) is a Fy xr1x2-hamiltonian path
in G2. This finishes the proof of Case (D)(1).

Since the case N(z3) C Va(G) is analogous to the Case (D)(1), we are
left with the following case.

(D)(2) N(z:) Z Va(G) for i = 3, 4.

However, the proof of this case follows from Lemma 2. This finishes the
proof of Case (D).

Case (E): N(z1) € Va(G) and N(z2) € Va(G).

Then dg(x1) = 2 = dg(x2).
Let KT be a cycle containing the vertices v, u1, us2, r3 and possibly x4
where we assume that

KT =yziuy - 23 ugiay.
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(E)(1) Suppose x4 is not in any cycle containing y and x3.
(1.1) dg(z3) > 2, dg(zs) > 2.

(a) Suppose z3 & {u1,us}.

Set W = {y,u1,us, x3,x4}. By supposition, KT is W-sound. By Theo-
rem A, we have an EPS-graph S = FUP with Kt C FE and dp(w) < 1 for
every w € W. In this case a required hamiltonian cycle C' in S? can be con-
structed (taking note that xy, zo are 3-valent in G, and that ;x4 € E(P),
i € {1,2}, does not constitute an obstruction in the construction of C').

(b) Suppose z3 = uy.

Note that if z4 & N(x1)UN (x2), then we are back to case (a) with z3 and
x4 changing roles. Hence we have x4 € {v1,v2}. Also, x4 = v1 = vy cannot
hold; otherwise, dg(x4) > 2 and x; € N(x4), dg(x;) =2, ¢ = 1,2 imply the
existence of an x4q3-path P(x4,q3) C G with g3 € V(K ™) and (P(z4,q3) —
qg3) N KT = 0, yielding in turn a cycle containing y, z3, x4 contradicting
E(1). By the same token, x5 = u; = ug cannot hold.

(b1) x4 = vo.

Consider G~ = G — {x1u1, x2us}.

Note that 3, x4 belong to different components of G~; otherwise there
is a path Py in G~ joining z3 and x4 implying that Cy = Pyrqxoyxix3 is
a cycle in Gt with y,z3,24 € V(Cp), a contradiction to the supposition.
Since G is 2-connected, G~ contains precisely two components G5 # K
and G containing x3, x4, respectively. Clearly x5 € V(G ). We also have
z1 € V(G}) because Py as above does not exist.

Observe that G; and Gj are (trivial or non-trivial) block chains in
which x1, 29 € V(Gy) and z3,up € V(G5 ) are not cutvertices. Thus Gt —
{z1u1, x2us} is a disconnected graph with two components G3 = G5 (which
contains x3 = uy and ug) and G4 (which contains y, z1,v1, 24 = v2 and x3).

Note that in Gy, there is a cycle C* containing y, x1, v1, 24, T2, implying
that G4 is 2-connected, whereas (3 is a block chain. By Theorem D, let
Sy = E4 U Py be a [v1;24]-EPS-graph in G4 with CT C FEy, dp,(v1) =
0 = dp,(z1) = dp,(z2) and dp,(r4) < 1. By Lemma 1(i) or Theorem D
(respectively depending on whether G5 has a cutvertex or G is 2-connected),
there is an EPS-graph S5 = FE3 U P3 in G3 such that dp,(z3) = 0 and
dp,(ug) < 1. Taking F = E3U Ey and P = P3 U {x123} U Py, we have an
EPS-graph S = EU P of Gt with CT C F and dp(v1) = 0 = dp(z2),
dp(wl) =1= dp(l'g) and dp(l‘4) S 1.
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Note that in this case, since dg(x3), dg(z4) > 2, dp(z2) =0, dp(z3) =
1 and dp(z4) < 1, it is straightforward that one can obtain a required
hamiltonian cycle of (GT)2.

(b2) Ty = V1.

Let G' = G — z123, and we may assume that a cycle K/ = yxiz4---
voxoy C G’ exists. Note that in G we have two internally disjoint paths
2123 - - UsTe and X124 - - - Vazo. This is in line with the notation of K+ above.

(b2.1) Suppose G’ is 2-connected.

Take W = {y,x3,x4,v2,22}. Then K’ is W-sound in G’ since vg # x4
(see the observation in (b)). Let S = F U P be a W-EPS-graph of G’
(and hence a W-EPS-graph of G) with K/ C F and dp(w) < 1 for every
w € W. Since dg(z3) > 2, dg(z4) > 2, a hamiltonian cycle in S? can be
constructed containing z1y, zoy and x;z; where z; € Ng(x;), i = 3,4.

(b2.2) Suppose G’ is not 2-connected.

By symmetry, Gt — x1x4 is also not 2-connected. Then G’ is a block
chain with endblocks Bs, B’, with 3 € B3 and K’ C B’ and x; and x3 are
not cutvertices of G’. Furthermore, let ¢ denote the cutvertex of G’ which
belongs to B’; ¢ # x4 (otherwise, GT contains a cycle through y, z3, z4).

Set Gy = G’ — B’. Note that z3, ¢ are vertices in Go and are not cutver-
tices of Gp. By Lemma 1(i) or Theorem D (depending on whether Gy has a
cutvertex or not), Gy contains an EPS-graph Sy = EyU Py with dp,(c) <1
and dp,(z3) = 0 (Bs is 2-connected because dp,(x3) > 1).

(i) Suppose ¢ & {va, z2}. Let W/ = {y, x4, ¢,v2,22}. B’ D K' D (W' —¢)
in any case. So, K’ is W’-sound, or there is a cycle K" > W’ with B’ O K",
in which case K" is W’-sound in B'.

(ii) Now suppose ¢ = xo. Set W' = {y, x1,x9,v2, 24} and observe that
K’ is W'-sound in B’ again.

In both cases, we obtain by Theorem A an EPS-graph S’ = E' U P’ of
B’ with K’ C E' or K" C E’, and dp/(w) < 1 for every w € W'. Note that
if ¢ ¢ {vo, 22}, ¢ ¢ K' and xouy ¢ E(K"), or if ¢ = x9, then dp/(z2) = 0
because dp:(z2) = 2.

Set E = FEgUFE', P = PyU P’ to obtain an EPS-graph S = FU P
of Gt with K* C F where K* € {K',K"}, dp(xz3) = 0, dp(z) < 1 for
every z € {y,x4,v2, 22}, and dp(c) < 2 if ¢ ¢ {vg, 22}, and dp(c) < 1 if
¢ = xg9. Also, dp(x1) = 0 since z123 ¢ E(S). Since N(z;) C Va(G), i = 3,4
and dp(x3) = 0, dp(x4) < 1, a hamiltonian cycle in S? containing the
edges incident to y and containing edges x;z;, can be constructed, where
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zi € Ng(x;), i = 3,4. Observe that dp(va) = dp(x2) = 1 does not create
any obstacle.

(iii) Suppose ¢ = wvg. In this case, by Theorem C we take in B’ a
[ve; T2, x4]- EPS-graph and proceed as in case (i).

(1.2) d(x3) > 2,de(xq) = 2.

Let K’ be a cycle in GT containing the vertices y, z1, w1, ug, T4, V4, Wa, T2
in this order where w; € {u;,v;}, i =1,2.

(a) x4 ¢ {w1, w2}
(al) Suppose v4 € N(z2). Note that in this case |V(K')| > 6.

Set W = {y, w1, wa, x3,v4} and observe that |W| =5 and |[K'NW| > 4.

Suppose K’ is W-sound in G*. Then by Theorem A, G has a W-EPS-
graph S = EU P with K’ C E and dp(y) = 0 = dp(x4). Moreover, for
i = 1,2, we have dp(z;) < 1 since dg(z;) = 2. Hence we can construct a
hamiltonian cycle in S? having the required properties.

Now we assume that K’ is not W-sound. Then there is a cycle K* in
G containing all of W but not containing z4. Consider G’ = G+ — a24.

(i) Suppose G’ is 2-connected. By Theorem B, G’ has a [v4; 3, w1, wa]-
EPS-graph S’ = E' U P! with K* C E'. Set E = E' and P = P U {vqx4}
to obtain an EPS-graph of Gt with K* C E and vsx4 is a pendant edge
in S. Hence a hamiltonian cycle in S? with the required properties can be
constructed. For i = 1,2, note that if w;z; ¢ F(K*), then dp(x;) = 0 since
dg(z;) = 2 and w; € K*. Observe also that vyz; € E(K*) and x3x; € E(K*)
do not constitute any obstacle in this case.

(ii) Suppose G’ is not 2-connected. Let By, be the endblock in (the non-
trivial block chain) G’ containing K*, and let ¢4 be the cutvertex of G’
belonging to B,. Set G = (G' = By) U {uazs}. Note that G is a non-trivial
block chain and G = (G — B,) — z4u;.

Set W* = {y, w1, we, x3,ts} and observe that x3 ¢ {wy,ws}; otherwise,
G has a cycle containing y, z3, z4 (contradicting E(1)). In any case, G has
an EPS-graph § = E U P with dp(ts) <1 and dp(wy4) = 1 by Lemma 1(i).

Now if t4 € {w1,wa, 23}, let Sy = Ey U P, be a [t4; 14, 4, y]-EPS-graph
of B, with K* C E, where {ry, s4,t4} = {w1, w2, 3}, by Theorem B.

If, however, t4 ¢ {wi, w2, 3}, we may assume without loss of generality
that K* is W*-sound (since |W*| =5 and K* D W* —t4). Consequently, let
in this case Sy = £, U Py be a W*-EPS-graph of B, with K* C E,.

In all cases, let an EPS-graph S = EUP of GT be defined by E = EyUE,
P = Pyuﬁ. We have K* C E and note that dp(w) < 1 for every w € W*—ty,
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and dp(ty) <2 but dp(ty) < 1ifty € {w1,we, x3}. It is now straightforward
to see that in each of the cases in question, S? contains a hamiltonian cycle
as required (see the argument at the end of case (i); moreover, tyz; € E(K¥)
does not constitute an obstacle, ¢ = 1,2). This finishes case (al).

Since the case uq ¢ N(x1) can be treated analogously, we are led to the
following case.

(a2) ug = wy and vy = we. Then |[V(K')| = 6. In view of case
(al), we may assume that any cycle in G containing y, x1,x2, us, T4, V4
has length 6.

Suppose H = G —xquy is 2-connected. Then H has a cycle C containing
the edges w44, x4v4, yz1, yre, T7w) (Where w) # ug). But this means that
[V(C)| > 6 (because at least 2 more edges are required to form the cycle
(), a contradiction.

Thus H is not 2-connected, and let B, and B4 denote the endblocks of
H containing y and x4, respectively.

Suppose 3 is not a cutvertex of H. Since k(B,) > 2, it follows that
{z2,u2,v2} C V(By). Now, we have a path P = P(v2,ug) in B, with x5 ¢
V(P). Since dg(x4) = 2, x4 € V(P); otherwise uy € V(P) as well and hence
zquy € E(By N Bg) which is impossible. Thus we obtain for {7, wa} =
{ug,v2} a cycle

K* = (K/ — ’LUQI'Q) JPU {7”2.7}2}

in Gt containing V(K') and |V (K*)| > 6, contradicting the assumption at
the beginning of this case. Thus x5 is a cutvertex of H.

Observing that dg+(x2) = 3 and x(By) > 2, we conclude dp (x2) = 2
and thus zowe € E(H) — E(B,) is the other block of H containing the
cutvertex xz. It now follows that B, N By = ) since zows ¢ E(By). Without
loss of generality wo = vo; hence usxs € E(By).

It now follows that H — B, is either a path of length 3, or it is a block
chain with B4 being 2-connected and zovo being a block.

(a2.1) Suppose z3 € V(By). Let K, be a cycle in B, containing
Y, X1, T2, T3 where we may assume that

/ /
Ky = ya;lwl cee g w2$2y'

Note that 3 = w] = w, is impossible because of dg(z3) > 2. If x5 # w)
and 3 # w), then By has an [z3;y, w], ws]-EPS-graph S, = E, U P, with
K, C E, by Theorem B. If 23 = w] or 3 = w), then B, has an [z3;y, w))-
EPS-graph or an [z3;y,w]]-EPS-graph S, = E, U P, with K, C E, by
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Theorem C, respectively. Likewise, if dg(us) > 2, then By has a [ug;vy]-
EPS-graph Sy = E4 U Py with K C E,; where K® is a cycle in By
containing uy, x4, v4, by Theorem D. If, however, B, is a bridge of H, then
the path Py = ugx4vy4 has the only EPS-graph Sy = E4 U Py with Ey = (.
Setting £ = E, U E, and P = PyU Py U{zu4}, we have an EPS-graph
S = EUP of Gt with dp(%'l) =1, dp(m'g) = dp($3) = dp(y) =0, dp(wll) <
1, dp(wh) < 1, dp(xz4) € {0,2}, dp(us) < 2 and dp(vq) < 1. However,
dp(x4) = 2 implies dp(vq) = 1 and thus x4v4 is a pendant edge. Hence a
hamiltonian cycle in S? with the required properties can be constructed.

(a2.2) Suppose x3 € V(By); thus By is 2-connected. Let K, be a
cycle in By, containing y, z1, r2 where we may assume that

/ /
Ky = yriwy - - - wyxay.

Note that if w] = wh, then dp (w}) = 2. If w] # wj, then B, has an
[z1;y, w}, wy|-EPS-graph S, = E, U P, with K, C E, by Theorem B. If
w| = wh, then By has an [z1;y, w]]-EPS-graph Sy, = E, U P, with K, C E,
by Theorem C. Likewise, By has a [u4;z3,v4]-EPS-graph Sy = E4 U Py
with K4 C E; where K@ is a cycle in By containing x3, u4, T4, v4. Setting
E =FE,UFE;and P = P,UP;U{z1us}, we have an EPS-graph S = FUP
of G and S? contains a hamiltonian cycle as required.

(b) x4 € {w1,ws} but wy # wo.

Without loss of generality assume x4 = w; and hence z1x4 € E(G) (the
case r4 = wy, w # wa, can be solved by a symmetrical argument). Note
that x3 = u; = ug cannot hold (see the argument in case (1.1)(b)).

(b1) Suppose vy € N(z2); i.e., vg # wo. Let K’ be a cycle in G+
containing y, x1, x4, v4, w2, x2 in this order and let W = {y, x4, v4, wa, x3}.
Then K’ is W-sound because of the supposition at the beginning of (E)(1).
By Theorem A, G has a W-EPS-graph S = EUP with K’ C E and hence
a hamiltonian cycle in S? with the required properties can be constructed.

(b2) Suppose vg = wo. Assume first that dg(vs) = 2. Let K’ be the
cycle yrizqwoxoy and let W = {y, x1, 22, 23, 24}. Then K’ is W-sound. By
Theorem A, G* has a W-EPS-graph with K’ C E.

Now assume that dg(vs) > 2. Let z € N(vq) — {x4,22}. There is a
path P(vy,21) in G from v4 to x1 via the vertex z since G is 2-connected;
x9 & P(vg,x1) since dg(xa) = 2. Now K* = P(vy, x1)x1yTovy4 is & cycle in
G containing N(z4) but not x4 itself. Hence G” = G* — x4 is 2-connected.
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We may assume that K7 is also a cycle in G” containing ¥, x1, u1, x3,
ug, 9 in this order. If 23 # u; and x3 # us, then by Theorem C, G” has an
[r3;u1, us]-EPS-graph §” = E" U P" with KT C E”. If 13 = uy or x3 = ua,
then by Theorem D, G” has an [x3; us]-FEPS-graph or an [z3; u1]-FEPS-graph
S" = E" U P" with K™ C E”, respectively.

Set £ = E” and P = P" U {z1z4}. Then S = FEU P is an EPS-
graph of G such that dp(z1) = 1, dp(x3) = 0 = dp(y) and dp(w) < 1
for w € {x9,u1,u2} and z1x4 is a pendant edge in S. In either case, a
hamiltonian cycle in S? with the required properties can be constructed.

(c) N(za) = {z1, 22}

Clearly G” = G — x4 is 2-connected. Let K” be a cycle in G” containing
Y, x1, T2, x3, and let uy € V(K") N Ng(z1). Without loss of generality, u; #
x3: for dg(xs) > 2 implies {x1, 22} ¢ N(z3).

Then G” has an [z3;ui]-EPS-graph S” = E” U P"” with K" C E". Set
E =FE"and P = P"U{x124}. Then S = FUP is an EPS-graph of G with
dp(y) =0 =dp(x3) = dp(x2) and x4 being a pendant edge in S. Hence a
hamiltonian cycle in S? with the required properties can be constructed.

(1.3) dg(.%'g) = 2, dg(x4) = 2.

Recall that zs3,x4 are not on the same cycle containing y,x1,x2. For
each i = 3,4, let [; denote the length of a longest cycle in G* containing
Y, L1, T2, Ti-

(a) Suppose I3 > 7 or Iy > 7; without loss of generality assume that
l3 > 7. Recall that

KT =yzjug - uswsvs - - - ugay

Then either uy ¢ {us,x3} or ug & {vs,x3}. Without loss of generality,
assume that uy & {us, x3}.

(al) Assume that G’ = GT — 24 is 2-connected.

Set W = {y,ui,u2,us,qs}, where q4 € {ug,v4}. Note that |{y,uq,
ug, us}| = 4.

Suppose ¢4 exists such that |W| = 4, say for ¢4 = u4. Then uy €
{u1,u2,u3} and G’ has a [uy; wy, wo]-EPS-graph ' = E'UP’ with K+ C F/,
where {ug, w1, wa} = {u1,u2,us}, by Theorem C.

Now suppose that |[IW| =5 and K is W-sound in G’ for some choice of
q4, say for ¢4 = uy. Then by Theorem A there is a W-EPS-graph S’ = E'UP’
of G’ with KT C E'.
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In both cases, taking £ = E’ and P = P' U {z4u4}, we have an EPS-
graph S = F U P of GT such that dp(w) < 1 for all w € W — {uy},
dp(r4) = 1 and dp(uy) < 2. Hence a required hamiltonian cycle in S? can
be constructed; it can be made to contain x4uy and ugzs.

Hence we assume that |[WW| = 5 and KT is not W-sound in G’ for any
choice of q4 € {ug,v4}. Then there is another cycle K’ in G’ such that
V(K') O W. We may assume that ¢4 = ug and 3 ¢ K'. Then by Theorem B,
G’ contains a [ug; u1, ug, us)-EPS-graph S’ = E' U P’ with K/ C E’. Taking
E = E' and P = P' U {z4us}, we have an EPS-graph S = EF U P of
GT. Note that x4 is a pendant vertex in S and either x3 is a vertex in E,
or else it is a pendant vertex in S. Hence a required hamiltonian cycle in
S? can be constructed. For i = 1,2, also note that if u;z; ¢ E(K'), then
dp(z;) = 0 since dg(x;) = 2 and u; € K'. Observe also that ugz; € E(K')
and uqz; € E(K') do not constitute any obstacle in this case.

(a2) Assume that G’ = GT — x4 is not 2-connected.

In view of case (al), we may assume, by symmetry, that G™ — x3 is also
not 2-connected.

Let K denote a cycle containing y, x1, 2, ¥; where i € {3,4}. Let B; be
the block of GT —x; with K("=% < B;. Let G;, G, denote the block chains in
GT —x; — B; (possibly G; = 0 or G} = () which contain {u;,¢;} and {v;, ¢;}
respectively, where ¢;, ¢; denote the cutvertices of G — z; belonging to B;,
provided G; # 0, G} # 0. If G; = 0, then u; = ¢; and is not a cutvertex, and
likewise v; = ¢ if G, = 0.

We observe that K (7= is edge-disjoint from G; U G}, i = 3,4 and that
G3UGY, and G4 UG are edge-disjoint (since every block of G; UG/ contains
an edge of K(). Finally, if C, (in G*) is a cycle containing y, then E(Cy, N
(GiUG,)) = 0 for at least one ¢ € {3,4}; otherwise, Cy D {x3, x4}, contrary
to (E)(1). Without loss of generality C, is one of the cycles K, and we
may also assume that K3) = K (see the beginning of (a)).

Set W = {y, u1,u2,us,x4}. The definition of W together with the last
sentences of the preceding paragraph ensure that [W| =5 and K B = K+
is W-sound in G.

Set Go = G4 U Gy U {ugxqvs}; it is a block chain.

(a2.1) Suppose Gy is a path with 3 <[(Gy) < 4.

Then by Theorem A, G+ has a W-EPS-graph S = EUP with K®) C E
and dp(z4) < 1. If dp(x4) = 0, then x4 is in E, and one of its neighbors is
2-valent because I(Go) > 3. If dp(z4) = 1, then x4 is a pendant vertex in S.
In either case, a required hamiltonian cycle in (GT)? can be constructed.
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(a2.2) Suppose Gy is a path with I[(Go) > 5, or G is a block chain
having non-trivial blocks.

Replace Gp in G by a path Py = cquqr4v4C) to obtain the graph G*
(note that |E(Gp)| > 5). Observe that the cycle K(® in G* passes through
the vertices y,x1,x2,x3. Then as in case (a2.1), G* has a W-EPS-graph
S* = E* U P* with dp-(x4) =0 or dp-(z4) = 1.

(i) If dp«(za) = 0, then Py C E*. Since Gy is a block chain, by
Lemma 1(ii), Go contains a JEPS-graph Sy = Jo U Ey U Py such that
dp,(c4) = 0 = dp,(c}). Moreover, in constructing Sy by proceeding block by
block, one can achieve dp,(us) < 1, dp,(v4) < 1. In this case, we obtain a
W-EPS-graph S = EU P of Gt by setting F = (E* — Py) U Jy U Ep and
P = P*UP,. Here dp<1'4) =0, dp<U4) < 1,dp('U4) < 1,dp(C4) < Q,dp(cﬁl) <
2 and a required hamiltonian cycle in (G*)? can be constructed.

(i) If dp«(z4) = 1, then V(Py) C V(P*). Hence either uszy ¢ E(P*)
or vary ¢ E(P*). Suppose vary ¢ E(P*) (so that uszy € E(P*)). By
Lemma 1(i), G4U{usz4} (respectively G%) has an EPS-graph S® = E®yU
P® (respectively §'Y) = E'Y) U P'™) such that dpw (cs) < 1, dpw (ug) <
2, dpw(z4) = 1 with uyzy being a pendant edge in S and dpiw (c)) <
1, dpiw (vs) < 1. Now, if we take E = E*U E® U EF'® and P = (P* —
{ug,v4}) U PW U P'® we have an EPS-graph S = E U P of Gt with
dp(w) < 1 for every w € W from which a required hamiltonian cycle in
(GT)? can be constructed (take note that cquy,vsc) € E(P*) resulting in
dp(cs) < 2and dp(c)) < 2; and dp(x;) < 1is guaranteed by the assumption
da(zi) =2,i=1,2).

In view of case (1.3)(a) solved, we may assume from now on that I3 < Iy
and hence we are left with the following case.

(b) Suppose 4 <3 <1y <6.
(b1) Suppose I3 = 6.
(b1.1) Suppose ug = ug = u; and v3 = vg4 = vy. Set G* = G — x4.
k(G*) = 2 since N(x4) = N(z3). By induction, G* has the Fy-property;
that is, there exists an z1zo-hamiltonian path P(x1,z2) in (G*)? containing
different edges x3z3, uszq € E(G*). We may write
P(.fl,xQ) :xl"'St“'.TQ

where {s,t} = {ug4,24}. Then
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is a required hamiltonian path in G2; it contains x3z3 because P(z1,2)
does.

(b1.2) Suppose ug = ui, vz = ve and ug = vy, V4 = Ug.

Consider G~ = G — {z1v1, z2ug}. If there is a path P(s,t) from s €
{vi,us} tot € {us,v2} in G~ then either I3 > 6 or Iy > 6, or G has a cycle
containing both x3 and x4. Thus z3 and x4 belong to different components
of G~. Let G; denote the component of G~ containing the vertices u;, x;, v;,
i € {3,4}. We reach the same conclusion when considering Gt —{zjuy, zov2}
instead of G~. Since Ng(x1) € Va(G), Ng(x2) € Va(G), we may assume
without loss of generality that d(vy) > 2 or d(ug) > 2 (otherwise, 3 and x4
switch their roles) and hence both vq,ug are not 2-valent (otherwise, vy or
ug would be a cutvertex of G). It follows that G4 is 2-connected. Likewise,
('3 is also 2-connected.

There is a cycle CW in (G4 containing ug4,x4,v4 and there is a cycle
C®) in G3 containing y, z1, T2, u3, x3,v3. By Theorem D, G; has a [ug;v;]-
EPS-graph S; = E; U P; with C®) C E;, i = 3,4. Note that dp,(z) = 0 for
z € {y7 T1, T2, $3}‘

Now set £ = E3U E4 and P = P3U P;U{xjv1}. Then S = FUP is an
EPS-graph of GT with C® UC® C E and a required hamiltonian cycle
in (GT)? containing z4v1, r3v2 can be constructed.

(b1.3) Suppose usz = u1 = uyg,v3 = vy and vg = ugy (the case uz = uq,
ug = v and vy = v3 = vy is symmetric).

This subcase is impossible; otherwise, it gives rise to a cycle containing
Y, x3, x4, a contradiction to the assumption (just consider in G a path from
x1 to ug avoiding uq).

It is straightforward to see that x; ¢ N(x;) for i = 3,4 and j = 1,2 for
all choices of i and j; otherwise, I; > 6 or there exists a cycle containing
y, x3, x4. Therefore, subcase (bl) is finished.

(b2) Suppose I3 = 5.

We may assume without loss of generality that us = x1, x3 = u; and
V3 = V9.

Suppose dg(vs) = 2. Consider G' = G — {x3,v3}; it is a non-trivial
block chain with pendant edges xjv1, zoue. By Corollary 1(ii), there exists
a hamiltonian path P(x1,22) C (G’)? starting with x1v; and ending with
ugxy. We proceed block by block to construct P(z1,x2) such that xz4z4 €
E(G)N P(x1,x9) and w424 & {101, usx2}: this is clear if x4 is a cutvertex
of G'; and if x4 € V(By4) where By C G’ is a 2-connected block containing
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the cutvertices c4,c} of G’, one uses a hamiltonian path P(cy,c}) in (By)?
containing an edge incident to x4 (Theorem F(i)). Then

(P(xl, 962) - u2$2)u21}3$3$2

is a required hamiltonian path in G2.

If dg(vs) > 2, then GO =G — {z1,x9,x3} is connected (or else v is
a cutvertex of G). Any vsug-path P(vs,us) C GO can be extended to a
cycle yzixs3 P(vs, ug)xaoy of length > 6, contradicting the assumption of this
subcase.

(b3) Suppose I3 = 4.

In this case, let G’ = G — x3. Operating with P(x1,22) C (G')? as in
case (b2), we obtain an F; zzo-hamiltonian path (P(z1,x2) — usza)usrsee
in G2.

(1.4) dg(xg) =2, dG(.Z'4) > 2.

This case is symmetrical to the case (1.2).

(E)(2) Suppose z3 and x4 are in K.

Without loss of generality, assume that
I(+ = YT1UL - - 23T T424 - - URTY.

As for the definition of x3, ) see the paragraph preceding the statement of
Lemma 2.

(2.1) x3 # u1 and x4 # us.

(a) Suppose either u;—o & Ng(z;), or uj—o €€ Ng(x;) and dg(z;) > 2
for some 7 € {3,4}. Without loss of generality, assume that ¢ = 4.

If uy # %, set W = {y,u1,uz2,2%,25}. Then |W| =5 and KT is W-
sound, so by Theorem A, G* has a W-EPS-graph S = EUP with KT C E.

If uy = a3, then dg(x3) = 2 since z3 # u; by supposition. Now, let
S = EUP be an [z}; u1, us]-EPS-graph of G with K™ C E by Theorem C.

In either case, a required hamiltonian cycle in (G7)? can be constructed.

(b) Suppose u;—2 € Ng(z;) and dg(x;) = 2 for i = 3,4.

If wy is the predecessor of x4 in K+ and wy # x3, then let S = EUP be
a [r1;u1, ug, wy]-EPS-graph with K™ C E by Theorem B. If w4y = z3, then
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let S = FUP be an [x1;uy,us]-EPS-graph with K+ C E by Theorem C.
Hence a required hamiltonian cycle in (GT)? can be constructed from S.

(2.2) 23 = u; and x4 # uo.
(a) Suppose either ug ¢ Ng(z4), or us € Ng(z4) and dg(zg) > 2.
(al) z3z4 € E(G).

If dg(x4) > 2, then dg(z3) = 2 and we choose an [r1; x4, ug)-EPS-graph
S = FUP of G" with K™ C E by Theorem C. If, however dg(z4) = 2,
we choose an [z1; 3, 24, ug]-EPS-graph S = EU P of GT with KT C E by
Theorem B. In either case, S? contains a required hamiltonian cycle.

(a2) z3x4 ¢ E(G).

Here w3 is the successor of x3 in K*. Let S = EUP be an [z3; ug, w3, 5]
EPS-graph with KT C E by Theorem B. Also here, S? contains a required
hamiltonian cycle; it contains x3v € E(G) which is consecutive to zjz3 in
the eulerian trail of the component of E containing K™ (possibly v = w3)
and it contains x4z4.

(b) Suppose ug € N(z4) and dg(z4) = 2.
(b].) xr3T4 € E(G)

Let H = G — x4. Suppose H is 2-connected. Then by induction, H has
an F, r1xo-hamiltonian path P(x1,z3) in H? containing z3ws and usws
which are edges of H. By deleting usws from P(z1,z2) and joining x4 to
ug, wo, we obtain an Fj x1zo-hamiltonian path in G? containing zsws, T4us
which are edges of G.

Suppose H is not 2-connected. Then H is a non-trivial block chain with
endblock B; containing u;; u; is not a cutvertex of H, i = 1, 2. Let ¢; denote
the cutvertex of H which is contained in B;, i = 1,2. Set B1o = H — (B1 U
By). If ¢1 = cg, then set By s = c¢;1. In any case, ¢; and ¢ are not cutvertices
of BLQ.

By supposing z; # ¢; (and thus B; is 2-connected) we apply Theorem F
to conclude that (B;)? has an F3 x;c;-hamiltonian path P(xz;,¢;), i = 1,2
containing z3ws, ugws respectively, which are edges of G. Let P(c1,c2) de-
note a cjco-hamiltonian path in (Bj2)?. By deleting the edge usws from
the z129-hamiltonian path P(x1,c1)P(c1,c2)P(22,¢2) in (G —x4)? and join-
ing x4 to us, ws, we obtain an F; x;xo-hamiltonian path in G? containing
r3ws, T4us which are edges of G. Now suppose 1 = c¢1 or xo = co; i.e.,
dg(uy) = 2 or dg(uz) = 2. In this case we consider GT and choose an
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[11;u1,us)-EPS-graph S = EU P of Gt with Kt C E by Theorem C.
Hence S? contains a hamiltonian cycle as required.

If w3 # wy, then we set S = E'U P to be an [x3; ug, ws, wy|-EPS-graph
of GT with KT C E by Theorem B. If w3 = wy, then we set S = EU P
to be an [x3; uz, ws]-EPS-graph of Gt with KT C F by Theorem C. Here
w3 is the successor of x3 and wy is the predecessor of x4 in K. Hence S2
yields a required hamiltonian cycle unless ws = w4 and dg(ws) > 2, in which
case dg(x3) = 2 holds, and we operate with an [x1;ws, ug]-EPS-graph by
Theorem C. This settles case (2.2).

Since the case x3 # u; and x4 = ug is symmetrical to the case (2.2) just
dealt with, we are left with the following case.

(2.3) x3 = u1 and x4 = us.
(a) dg(x3) = 2.
(al) z3z4 ¢ E(G).

Choose an [z4;us]-EPS-graph S = EU P of GT with K™ C E by
Theorem C if ug # ug4, and an [r4; ug, us)-EPS-graph S = EUP of GT with
KT C E by Theorem D if uz = wuy4; here us is taken to be the successor of x3
and w4 the predecessor of x4 in K. Then S? yields a required hamiltonian
cycle unless ug = uyg and dg(us) > 2. In this case dg(z4) = 2 and we may
operate with an [ry; us]-EPS-graph to obtain a required hamiltonian cycle
in S? by Theorem D.

(a2) z3z4 € E(G).

(i) Suppose dg(z4) > 2.

G — 3 is a block chain in which z; and x4 are not cutvertices and belong
to different endblocks. However, the endblock containing z4 is 2-connected
since dg(z4) > 2; and it contains xa as well which is not a cutvertex of
G — w3 either. Therefore, GT — x3 is 2-connected. Set

H= (G+ - {y,l'l,l'g}) U {$,$Ul,$$2}~

H is 2-connected since Gt — x5 is 2-connected. By Theorem E, H? has a
hamiltonian cycle C' containing vix, xxe, x4ws which are edges of H. Now
(C — x) U {viz3z1yze} is a hamiltonian cycle in (G1)? with the required
properties.

(ii) Suppose dg(z4) = 2.
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Let H be the graph obtained from G by deleting y, 22,23, 24. Then
H is a non-trivial block chain containing x; which is not a cutvertex of H.
By Corollary 1(i), H? has a hamiltonian cycle C' containing the edge x1v1
(which is an edge of G). This implies that the cycle yz1(C — z1v1)vi 232472y
is a hamiltonian cycle in (G*)? having the required properties.

(b) dg(x3) > 2, hence dg(z4) > 2; otherwise we are back to (a) above,
by symmetry. Then z3z4 ¢ E(G).

Suppose G’ = G — x1 is 2-connected. Then by induction, G’ has an Fy
v1w2-hamiltonian path P(vy,x2) in (G’)? containing x3ws and x4w, which
are edges of G'. Now {z1v1} U P(v1,22) is an Fy x1xe-hamiltonian path in
G? containing xzws, x4w4 which are edges of G.

Now suppose G’ = G — x1 is not 2-connected. Then G’ is a non-trivial
block chain with x3,v1 in different endblocks and not cutvertices. Note that
the block containing x3 is 2-connected and at least one block contaning x4
is 2-connected, since dg(x3) > 2 and dg(x4) > 2.

(b1) Suppose x5 is a cutvertex of G'. Let G and G2 be the com-
ponents of G’ — xo with either x3,24 € V(G;1) and v9,v7 € V(G2), or
x3,v2 € V(G1) and z4,v1 € V(G2) (note dg(xz2) = 2). Observe that in
the first case vy = v is possible. However, v1 = x4 is impossible because
of the assumptions of this case (b); i.e., dg(x4) > 2. By the same token
v9 = x = 3 is impossible.

Suppose z3,24 € V(Gi) and va,v1 € V(G2). Then by Theorem F(ii)
or Corollary 1(ii), respectively, (G1)? has an zzzs-hamiltonian path Py
containing an edge zsws € E(G). If Go = K; = v, then we set P =
PyU{zoxy, x3v1,v121 }. If Go = Ky = vouy, then we set P = PyU{xox4, x301,
v1v2, vor1 }. Otherwise, by Theorem E or Corollary 1(i), respectively, (G2)?
has a hamiltonian cycle C containing an edge t1v1 € E(G). Then we set
P = Py UCy U {zomy, z3v1,t121} — {t1v1}. In all cases P is an Fy zqxo-
hamiltonian path in G? containing x3ws, 2422 which are edges of G as re-
quired.

Suppose x3,v2 € V(G1) and x4,v1 € V(G2). Then we apply an analogous
strategy as in the preceding case using Theorems E, F' and Corollary 1, but
considering GG1 instead of G5 and vice versa.

(b2) Suppose z3 is not a cutvertex of G’. Let By be the 2-connected
block containing xs.

(i) Suppose x5 € V(B3). Let ¢ be the cutvertex of G’ in By; possibly
t = x4, t ¢ {z2,x3} in any case. We define the block chain G; such that
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G' = BoUGT and BoNGy = {t}. If t = x4, then (Bs)? has an xst-hamiltonian
path P» containing zsws € E(G) by Theorem F(i). If ¢ # x4, then by
induction (By)? has an xot-hamiltonian path P, containing x3ws, x4w,4 which
are different edges of G. In both cases (G1)? has a tvi-hamiltonian path
starting with tw € E(G), by Theorem F(ii) or Corollary 1(ii), respectively.
Then P = P,UPU{viz1} is an Fy z172-hamiltonian path in G? containing
r3ws, r4wy which are edges of G as required. Note that if ¢ = x4, then
rawy = tw.

(ii) Suppose z3 ¢ V(Bs). If By is not an endblock, then ¢,¢ denote
the cutvertices of G’ in By and we define block chains Gy, Gy such that
G'=G1UBy UGy, 23 € V(Gl),v1 € V(Go) and GiNBy=t, BoNGoy=1t.
If By is an endblock, then we proceed analogously: we set Gy = () and ¢’ = v
in this case. Note that ¢t = x4 ot t = x4 is possible.

If ' # x4, then by Theorem F(i) (B3)? has an zt-hamiltonian path
P, containing t'w’ € E(G) for t = x4 and by induction (By)? has an F4
Tot-hamiltonian path P, containing t'w’, x4ws which are different edges of
G for t # z4. By the same token (Gp)? has an txs-hamiltonian path P
containing tw € E(G). If Gy = (), then we set P = P, U P; U {z3z1}. If
Go = t'vy, then we set P = P, U Py U {x3x1,w'vy,v1t'} — {tw'}. Otherwise
(Gp)? has a hamiltonian cycle Cy containing t'w* € E(G) by Theorem E or
Corollary 1(i), respectively, and we set P = P, UCp U Py U {z3z1, w'w*} —
{t'w', #'w*}. In all cases P is an F; x129-hamiltonian path in G? containing
r3r1, 4wy which are edges of G as required. Note that if ¢ = x4, then
rawy = tw.

If ¢/ = x4, we proceed analogously as in the previous case with G and
Gy switching roles.

This completes the proof of Theorem 2. O
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