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A new approach to graph reconstruction using
supercards

Paul Brown and Trevor Fenner

The vertex-deleted subgraph G − v, obtained from the graph G
by deleting the vertex v and all edges incident to v, is called a
card of G. The deck of G is the multiset of its unlabelled vertex-
deleted subgraphs. The number of common cards of G and H is
the cardinality of a maximum multiset of common cards, i.e., the
multiset intersection of the decks of G and H. We introduce a new
approach to the study of common cards using supercards, where
we define a supercard G+ of G and H to be a graph that has at
least one vertex-deleted subgraph isomorphic to G, and at least
one isomorphic to H. We show how maximum sets of common
cards of G and H correspond to certain sets of permutations of
the vertices of a supercard, which we call maximum saturating
sets. We then show how to construct supercards of various pairs
of graphs for which there exists some maximum saturating set X
contained in Aut(G+). For certain other pairs of graphs, we show
that it is possible to construct G+ and a maximum saturating set
X such that the elements of X that are not in Aut(G+) are in one-
to-one correspondence with a set of automorphisms of a different
supercard G+

λ of G and H. Our constructions cover nearly all of
the published families of pairs of graphs that have a large number
of common cards.

Keywords and phrases: Graph reconstruction, reconstruction num-
bers, vertex-deleted subgraphs, supercards, graph automorphisms.

1. Introduction

In this paper all graphs are finite, undirected and contain no loops or mul-
tiple edges. Any graph-theoretic terminology and notation not explicitly
explained below can be found in Bondy and Murty’s text [4]. For more in-
formation on the action of a permutation group on the vertices of a graph,
we refer the reader to the book by Lauri and Scapellato [14].

Let G be a graph and let u, v ∈ V (G). We denote the group of all
permutations of V (G) by SV (G) and the identity permutation of SV (G) by
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1V (G). The neighbourhood of v in G is the set NG(v) consisting of all vertices
of G adjacent to v. The cardinality of this set is the degree of v in G, i.e.,
dG(v) = |NG(v)|. A leaf of G is a vertex of degree 1, and an isolated vertex
of G is a vertex of degree 0. G is k-regular if dG(v) = k for each v ∈ V (G).
The complement of G, denoted by G, is the graph with V (G) = V (G) and
uv ∈ E(G) if and only if uv �∈ E(G). We use n to denote |V (G)|, the order
of G.

Suppose that H is another graph and that γ is a bijection from V (G) to
V (H). For any Z ⊆ V (G), we write the image of Z under γ as γ(Z). When γ
is, moreover, an isomorphism from G toH, i.e., xy is an edge of G if and only
if γ(x)γ(y) is an edge of H, we write γ(G) = H. We write G ∼= H to indicate
that G and H are isomorphic. The group of all automorphisms of G, i.e.,
isomorphisms from G to itself, is denoted by Aut(G). G is vertex-transitive
if, for all u, v ∈ V (G), there exists γ ∈ Aut(G) such that γ(u) = v.

Now let Z ⊆ V (G). The Z-deleted subgraph G− Z is obtained from G
by deleting all the vertices of Z together with all edges of G incident to a
vertex in Z. So dG−Z(v) = dG(v)−|NG(v)∩Z|, for all v ∈ V (G−Z). When
Z = {v} or Z = {u, v}, we write G−Z as G− v or G− u− v, respectively.
The vertex-deleted subgraph G − v is also known as a card of G, and the
multi-set of all n unlabelled cards of G is called the deck of G, which we
denote by D(G).

Clearly, if G ∼= H then D(G) = D(H). The Reconstruction Conjecture,
first proposed by Kelly and Ulam in 1941 [12, 13, 18], asserts that, when
n > 2, the converse also holds, i.e., G is isomorphic to H if and only if G
has the same collection of n unlabelled cards as H. However, despite the
efforts of many graph theorists, the status of the sufficiency of the condition
remains unresolved. Surveys on the reconstruction problem can be found in
[2] [3] [14].

One approach to tackling this problem has been to consider the number
of common cards between pairs of graphs in various families (see, for exam-
ple, [5] or [10]). A common card of, or between, G and H is any card in the
multi-set intersection D(G)∩D(H), and the number of common cards of G
and H, denoted by b(G, H), is the cardinality of this multi-set intersection.
The Reconstruction Conjecture can then be reformulated as follows: when
n > 2, b(G, H) < n unless G and H are isomorphic. We note that if G′ ∼= G
and H ′ ∼= H then b(G′, H ′) = b(G, H).

Until recently, there were no known families of pairs of non-isomorphic
graphs that had b(G, H) > n

2 + 1
8(3 +

√
8n+ 9). However, Bowler, Brown

and Fenner [5] showed that there are, in fact, several infinite families of pairs
of non-isomorphic graphs G and H with b(G, H) = 2

⌊
n−1
3

⌋
. Moreover, they
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conjectured that b(G, H) is bounded above by 2(n−1)
3 for large enough n.

In a subsequent paper [6], they, together with Myrvold, showed that if G
is disconnected and H is connected then b(G, H) ≤

⌊
n
2

⌋
+ 1. They also

characterised all pairs of such graphs that attain this bound (most of these
infinite families can also be found in [5]). Results for small graphs, i.e., for
n ≤ 11, have been provided by Baldwin [1], McMullen [15] and Rivshin [17].

In this paper, we introduce a new approach to the study of the maximum
number of common cards using supercards, where we define a supercard of
non-isomorphic graphs G and H to be any graph having at least one vertex-
deleted subgraph isomorphic to G, and at least one isomorphic to H. In
Section 3, we define such a supercard G+ and show that there exist subsets
of SV (G+) of cardinality b(G, H), the elements of which correspond to the
elements of D(G) ∩ D(H). We call these subsets maximum saturating sets.

It is easy to show that if λ ∈ Aut(G+) then λ corresponds to some
common card of G and H. Furthermore, it is always possible to find a set of
supercards so that every common card corresponds to an automorphism of
at least one of these supercards. We shall show that, in all of the published
examples we know of, pairs of graphs that have a large number of common
cards require automorphisms of at most two supercards to represent all their
common cards.

In Section 4, we use vertex-transitive graphs to construct directly super-
cards G+, and then define corresponding graphs G and H, where b(G, H) =
n+1
2 . Moreover, we show that there exist corresponding maximum saturating

sets that are subsets of Aut(G+). We then show how to construct supercards
for nearly all of the infinite families of pairs of graphs of odd order that at-
tain the bound b(G, H) = n+1

2 , when G is disconnected and H is connected
(see Theorems 3.4 and 3.6 of [5] and [6], respectively.) We also show that
there exist maximum saturating sets that are subsets of the automorphism
group of the corresponding supercard.

In Section 5, we show how to construct a second supercard G+
λ of G

and H from G+, and show how their maximum saturating sets are related.
In Section 6, we give examples of supercards and maximum saturating sets
such that each element of the set is either an automorphism of G+ or cor-
responds to an automorphism of G+

λ . These examples include a supercard
of the infinite family given in Theorem 2.1 of [5] that has the largest value

of b(G, H), currently known for large n, i.e., b(G, H) = 2(n−1)
3 ; the unique

infinite family of even order given in Theorem 3.7 of [6] that attains the
bound of b(G, H) = n+2

2 when G is disconnected and H is connected; and
a generalisation of the infinite family with b(G, H) = n+3

2 discovered by
Bondy and reported by Myrvold in [16].



98 Paul Brown and Trevor Fenner

2. Preliminary results

The following gives a simple criterion for two graphs with at least one com-
mon card to be isomorphic.

Lemma 2.1. Let G and H be graphs, and let γ be a bijection from V (G) to
V (H). Suppose that there is some vertex v of G such that γ(G−v) = H−γ(v)
and γ(NG(v)) = NH(γ(v)). Then γ(G) = H.

Proof. γ preserves the adjacencies of the vertices of G− v by the first con-
dition, and those of v by the second. Thus γ(G) = H.

Corollary 2.2. Let G be a graph and let v ∈ V (G). Suppose that γ ∈ SV (G).
Then γ ∈ Aut(G) if and only if

γ(G− v) = G− γ(v) and γ(NG(v)) = NG(γ(v)).

We note that the first condition of Corollary 2.2 alone is not sufficient,
i.e., we may have G−v ∼= G−u even though there is no automorphism of G
mapping v to u. This phenomenon is called pseudosimilarity and has been
explored by Harary and Palmer [11], Lauri and Scapellato [14], and others.

The constructions in Sections 4 and 6 all involve vertex-transitive graphs
and their complements. We will make use of the following simple results for
regular graphs, which hold, a fortiori, for vertex-transitive graphs.

Lemma 2.3. Let G and H be regular graphs and let v ∈ V (G). Suppose that
there exists a bijection γ from V (G) to V (H) such that γ(G−v) = H−γ(v).
Then γ(G) = H.

This result holds, in particular, when G = H, in which case γ would be
an automorphism of G.

Corollary 2.4. Let G and H be regular graphs. Then b(G, H) �= 0 if and
only G ∼= H.

Using Lemma 2.3, is easy to deduce that G is vertex-transitive if and
only if every card in D(G) is isomorphic. It follows that no vertex-transitive
graph contains a cut-vertex.

3. Supercards

For the rest of this paper, we assume that G and H are non-isomorphic
graphs, both of order n. We now show how to use supercards in the study
of common cards.
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Definition 3.1. A supercard of G is any graph of order n + 1 whose deck

contains a card isomorphic to G.

Definition 3.2. A common supercard of G and H is any graph that is a

supercard of both G and H, i.e. a graph whose deck contains some card Ĝ
isomorphic to G and another card Ĥ isomorphic to H. For brevity, we refer

to such graphs as supercards of G and H.

Lemma 3.3. There exists a graph G+ that is a supercard of G and H if

and only if b(G, H) ≥ 1.

Proof. Suppose first that G+ is a supercard of both G and H and let v and
w be vertices of G+ such that G+ − w ∼= G and G+ − v ∼= H. Then, since

G+−w−v = G+−v−w, it follows that b(G, H) = b(G+−w, G+−v) ≥ 1.

Suppose conversely that there exists s ∈ V (G), t ∈ V (H), and an iso-

morphism γ such that γ(G − s) = H − t. For some t∗ �∈ V (G) ∪ V (H), let

G+ be the graph defined by

V (G+) = V (G) ∪ {t∗} ,(1)

E(G+) = E(G) ∪ {xt∗ | x ∈ V (G− s) and γ(x)t ∈ E(H)} .

Clearly, G+− t∗ = G, so G+ is a supercard of G. Now let ψ be the bijection

from V (G+ − s) to V (H) defined by ψ(t∗) = t and ψ(x) = γ(x) for all

x ∈ V (G+ − s− t∗). Then ψ(G+ − s− t∗) = γ(G− s) = H − t. In addition,
x ∈ NG+−s(t

∗) if and only if γ(x)t ∈ E(H) by (1), and thus ψ(NG+−s(t
∗)) =

NH(t). Hence ψ(G+−s) = H by Lemma 2.1, and therefore G+ is a supercard
of H.

If G+ is constructed as in (1), then the graph G† that consists of G+

with an additional edge st∗ is clearly also a supercard of G and H. Moreover,
it is easy to see that any supercard of G and H can be constructed from

(1) in one of these two ways, for some s ∈ V (G), t ∈ V (H) and some

isomorphism γ.

Definition 3.4. Suppose that b(G, H) ≥ 1. Let G+ be a supercard of G

and H, and let v and w be vertices of G+ such that Ĝ = G+ − w ∼= G and
Ĥ = G+ − v ∼= H. The set of active permutations of G+ with respect to v

and w, denoted by Bvw(G
+), is the subset of SV (G+) defined by

Bvw(G
+) = {λ ∈ SV (G+) | λ((G+ − w)− λ−1(v)) = (G+ − v)− λ(w)}(2)

= {λ ∈ SV (G+) | λ(Ĝ− λ−1(v)) = Ĥ − λ(w)}.
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We note that 1V (G+) ∈ Bvw(G
+), and that if λ ∈ Bvw(G

+) then
λ(w) �= v, since G and H are not isomorphic.

Definition 3.5. Suppose that b(G, H) ≥ 1. Let G+ be a supercard of G
and H, and let v and w be vertices of G+ such that Ĝ = G+ − w ∼= G
and Ĥ = G+ − v ∼= H. A maximum saturating set of Bvw(G

+) is a subset
X ⊆ Bvw(G

+) that satisfies the following three properties:

(a) 1V (G+) ∈ X;
(b) if λ and π are distinct elements inX then λ−1(v) �= π−1(v) and λ(w) �=

π(w);
(c) there is no σ in Bvw(G

+) \X such that X ∪ {σ} satisfies (b).

We note that, for any pair of distinct permutations λ and π in X, (b)
guarantees that G+ − λ−1(v) �= G+ − π−1(v) and G+ − λ(w) �= G+ − π(w),
although either pair of graphs could be isomorphic.

Although condition (c) only ensures that X is maximal with respect to
(a) and (b), we shall show in Theorem 3.8 that all maximum saturating sets
have the same cardinality. This implies that such sets are in fact of maximum
cardinality with respect to (a) and (b).

In [6], a bipartite graph B(G, H) was introduced to facilitate calculation
of b(G, H) when G and H are vertex-disjoint. We generalise that construc-
tion here.

Definition 3.6. Let G and H be non-isomorphic graphs of order n, and let
VG and VH be two disjoint sets of n vertices. Label the elements of VG and
VH so that the vertex xs ∈ VG corresponds to the vertex s of G, and the
vertex yt ∈ VH corresponds to the vertex t of H. We define B(G, H) to be
the bipartite graph on VG ∪ VH such that xsyt ∈ E(B(G, H)) if and only if
G− s ∼= H − t.

Since VG ∩ VH = ∅, it is easy to see that b(G, H) is the size of any
maximum matching in B(G, H), as stated in [6].

We note that any vertex xs of VG is adjacent in B(G, H) to every vertex
yt of VH such that G − s ∼= H − t, and conversely. It follows that every
component of B(G, H) must be a complete bipartite graph. Therefore, any
maximal matching of B(G, H) must be a maximum matching, i.e. each
maximal matching of B(G, H) has cardinality b(G, H).

Lemma 3.7. Suppose that b(G, H) ≥ 1. Let G+ be a supercard of G and
H, and let v and w be vertices of G+ such that θ(Ĝ) = θ(G+ −w) = G and
ψ(Ĥ) = ψ(G+ − v) = H, for some isomorphisms θ and ψ. Let B(G, H) be
the bipartite graph constructed as in Definition 3.6.
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(a) If λ ∈ Bvw(G
+) then xθλ−1(v)yψλ(w) is an edge of B(G, H).

(b) Any edge of B(G, H) can be written as xθλ−1(v)yψλ(w) for some
λ ∈ Bvw(G

+).

Proof. (a) Suppose that λ ∈ Bvw(G
+), so λ(Ĝ−λ−1(v)) = Ĥ−λ(w) by (2).

Then ψ(λ(θ−1(G− θλ−1(v))) = H −ψλ(w), hence xθλ−1(v)yψλ(w) is an edge
of B(G, H).

(b) Suppose now that xsyt is an edge of B(G, H), so there exists an
isomorphism σ such that σ(G − s) = H − t. Define λ by λ(θ−1(s)) = v,
λ(w) = ψ−1(t), and λ(u) = ψ−1σθ(u) for all other u ∈ V (G+), so xsyt
is xθλ−1(v)yψλ(w). It is straightforward to show that λ ∈ SV (G+). Moreover,

since θ(Ĝ− λ−1(v)) = G− s, it follows that λ(Ĝ− λ−1(v)) = Ĥ − λ(w). So
λ ∈ Bvw(G

+).

This lemma implies that there is a many-to-one surjection from Bvw(G
+)

to the edges of B(G, H). Moreover, it follows from the theorem below that
the image of a maximum saturating set of Bvw(G

+) is a maximum matching
of B(G, H).

Theorem 3.8. Suppose that b(G, H) ≥ 1. Let G+ be a supercard of G and
H, and let v and w be vertices of G+ such that θ(Ĝ) = θ(G+ −w) = G and
ψ(Ĥ) = ψ(G+−v) = H, for some isomorphisms θ and ψ. Let Y ⊆ Bvw(G

+)
satisfy properties (a) and (b) of Definition 3.5. Then

(a) M = {xθπ−1(v)yψπ(w) | π ∈ Y } is a matching in B(G, H), and |M | =
|Y | ≤ b(G, H).

(b) If Y is not a maximum saturating set of Bvw(G
+) then |Y | < b(G, H).

(c) If |Y | < b(G, H) then there is a maximum saturating set X such that
Y ⊂ X (so Y is not a maximum saturating set).

(d) Y is a maximum saturating set of Bvw(G
+) if and only if |Y | =

b(G, H).

Proof. (a) By Corollary 3.7(a), M is a set of edges of B(G, H). Moreover,
since θ and ψ are isomorphisms, it follows from property (b) of Definition 3.5
that M is a matching and that |M | = |Y |. The result follows since b(G, H)
is the size of a maximum matching of B(G, H).

(b) Suppose that Y is not a maximum saturating set. Then, by part (c)
of Definition 3.5, there exists σ ∈ Bvw(G

+) \ Y such that Y ∪ {σ} satisfies
parts (a) and (b) of that definition. Since |Y ∪ {σ} | ≤ b(G, H) by part (a),
it follows that |Y | < b(G, H).

(c) Suppose that |Y | < b(G, H) and let M be defined as in (a). Then
|M | < b(G, H), so M is not a maximum matching of B(G, H). Now, since
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each component of B(G, H) is complete, we may construct a maximum
matching M ′ by repeatedly adding non-adjacent edges to M . Furthermore,
by Lemma 3.7, each edge of M ′ \M can be writen as xθλ−1(v)yψλ(w) for some
λ ∈ Bvw(G

+). Hence there exists some non-empty set Z ⊂ Bvw(G
+) such

that M ′ \M = {xθλ−1(v)yψλ(w) | λ ∈ Z} and |Z| = |M \M ′|. Since M ′ is a
matching and θ and ψ are isomorphisms, λ−1(v) �= π−1(v) and λ(w) �= π(w)
for any distinct λ and π in Y ∪Z. Thus the set X = Y ∪Z satisfies properties
(a) and (b) of Definition 3.5. Clearly, |X| = |M ′| = b(G, H) as M ′ is a
maximum matching of B(G, H). It then follows from part (b) that X is a
maximum saturating set.

(d) This follows immediately from (a) to (c).

We frequently make use of the fact that every maximum saturating set
of Bvw(G

+) has cardinality b(G, H) without quoting this theorem. We note
that it follows from Theorem 3.8(c) that every maximal set satisfying prop-
erties (a) and (b) of Definition 3.5 is a maximum saturating set. This justifies
our terminology in Definition 3.5.

In Sections 4 and 6, we show how to construct supercards of pairs of
graphs with a large number of common cards relative to their order n. The
constructions make use of the result of following lemma, that every auto-
morphism of G+ is an active permutation.

Lemma 3.9. Suppose that b(G, H) ≥ 1. Let G+ be a supercard of G and
H, and let v and w be vertices of G+ such that Ĝ = G+ − w ∼= G and
Ĥ = G+ − v ∼= H. Then Aut(G+) ⊆ Bvw(G

+).

Proof. Let λ ∈ Aut(G+). Now λ(w) �= v as G �∼= H, so λ−1(v) ∈ V (Ĝ) and
v ∈ V (G+ − λ(w)). Thus λ(Ĝ − λ−1(v)) = (G+ − λ(w)) − v = Ĥ − λ(w).
Hence λ ∈ Bvw(G

+).

For any maximum saturating set X, we have the following bound on
|X ∩Aut(G+)|.
Lemma 3.10. Suppose that b(G, H) ≥ 1. Let G+ be a supercard of G
and H, and let v and w be vertices of G+ such that Ĝ = G+ − w ∼= G
and Ĥ = G+ − v ∼= H. Let A = {σ(w) | σ ∈ Aut(G+)} and let B =
{σ(v) | σ ∈ Aut(G+)}. Then, for any maximum saturating set X,

(3) |X ∩Aut(G+)| ≤ min {|A|, |B|} ≤ n+1
2 .

Proof. Let λ ∈ X ∩Aut(G+). Then λ(w) and λ−1(v) are elements of A and
B, respectively, as λ−1 ∈ Aut(G+). So |X ∩ Aut(G+)| ≤ min {|A|, |B|} by
part (b) of Definition 3.5. The second inequality holds since A ∩ B = ∅ as
G �∼= H.
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Corollary 3.11. Suppose that the conditions of Lemma 3.10 hold and that
there is some maximum saturating set X of Bvw(G

+) such that X ⊆ Aut(G+).
Then

(a) b(G, H) ≤ min {|A|, |B|} ≤ n+1
2 ,

(b) if b(G, H) = n+1
2 then |A| = |B| = n+1

2 .

4. Supercard constructions

We now show how to construct directly several families of graphs G+ such
that D(G+) contains non-isomorphic cards G = G+ − w and H = G+ − v
for which there exists a maximum saturating set X of Bvw(G

+) such that
X ⊆ Aut(G+) and |X| = b(G, H) = n+1

2 .

If G1 and G2 are disjoint graphs then G1 + G2 denotes the disjoint
union of G1 and G2, i.e., the graph with V (G1 + G2) = V (G1) ∪ V (G2)
and E(G1 + G2) = E(G1) ∪ E(G2). If p and q are integers then we write
pG1+qG2 for a representative of the isomorphism class of the disjoint union
that consist of p graphs isomorphic to G1 and q graphs isomorphic to G2.
We note that G is vertex-transitive if and only if G ∼= kT for some connected
vertex-transitive graph T .

The join of G1 and G2, denoted G1 ∨ G2, is the graph G1 + G2 with
additional edges joining every vertex of G1 with every vertex of G2. It is easy
to see that G1 +G2 = G1∨G2. It is also easy to see that Aut(G) = Aut(G),
from which it follows that G is vertex-transitive if and only if G is vertex-
transitive.

Lemma 4.1. Let G+ = aT + bS, where a ≥ 1 and b ≥ 1, and S and
T are disjoint non-isomorphic connected vertex-transitive graphs, with the
proviso that we do not have S ∼= Kp−1 and T ∼= Kp, for some p ≥ 2, or vice
versa. Let T1 and S1 be particular components of G+ isomorphic to T and
S, respectively. Let w ∈ V (T1) and v ∈ V (S1), and let

G=G+−w=(T1−w)+(a−1)T+bS H =G+−v= aT+(S1−v)+(b−1)S.

Then G �∼= H and Bvw(G
+) = Aut(G+), so X ⊆ Aut(G+) for any maximum

saturating set X of Bvw(G
+). Moreover,

b(G, H) = min {a|V (T )|, b|V (S)|} ≤ n+1
2 .

Proof. Clearly, G ∼= H since S �∼= T . Let A and B be the subsets of V (G+)
defined in Lemma 3.10. Since both T and S are vertex-transitive, clearly
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A = V (aT ) and B = V (bS). In addition, there exists a set of automorphisms

λ1, λ2, . . . , λq of G+, where q = min {a|V (T )|, b|V (S)|}, such that each

λi(w) is a distinct element of A and each λ−1
i (v) is a distinct element of

B, i.e., λi(w) �= λj(w) and λ−1
i (v) �= λ−1

j (v), when i �= j. Without loss of

generality, we may assume that λ1 = 1V (G+). So, by Theorem 3.8, there

exists a maximum saturating set X of Bvw(G
+) that contains each of these

q automorphisms λi, so b(G, H) ≥ q.

Without loss of generality, we may assume that |V (T )| ≥ |V (S)|. Let
λ ∈ Bvw(G

+), so λ(G − λ−1(v)) = H − λ(w). Clearly, λ(w) ∈ V (aT ) as

|V (T )| ≥ |V (S)|. In addition, since T and S are regular, T − t �∼= S for

t ∈ V (T ) unless T ∼= Kp and S ∼= Kp−1. Since this last case is excluded by

hypothesis, it follows that λ−1(v) ∈ V (bS). Let T ∗ and S∗ be the compo-

nents of G+ that contain λ(w) and λ−1(v), respectively. By Corollary 2.4,

b(S, T ) = 0, so λ(T1 − w) = T ∗ − λ(w) and λ(S∗ − λ−1(v)) = S1 − v. Thus

λ(T1) = T ∗ and λ(S∗) = S1 by Lemma 2.3. So

λ(NG(λ
−1(v)) = λ(NS∗(λ−1(v)) = NS1

(v) = NG+−λ(w)(v).

Thus λ(G) = G+−λ(w) by Lemma 2.1. Similarly, λ(NG+(w)) = NG+(λ(w)),

so λ(G+) = G+ by Corollary 2.2. Hence Bvw(G
+) = Aut(G+). In particu-

lar, X ⊆ Aut(G+), thus b(G, H) = q = min {a|V (T )|, b|V (S)|} ≤ n+1
2 by

Corollary 3.11(a).

Corollary 4.2. Let G+ be defined as in Lemma 4.1 and let X be a maximum

saturating set of Bvw(G
+). If a|V (T )| = b|V (S)| then b(G, H) = |X| = n+1

2 .

We now show how to extend the construction in Lemma 4.1 to connected

supercards. In the following examples, we use a supercard G† where v and

w are adjacent (so that the symmetry of the supercard is easier to see).

We recall that if A is vertex-transitive then A ∼= kU for some connected

vertex-transitive graph U .

Corollary 4.3. Let G† = aT ∨ bS, where a ≥ 1 and b ≥ 1, and S and

T are disjoint non-isomorphic connected vertex-transitive graphs, with the

proviso that G† is not vertex-transitive and the components of G† are not

all isomorphic to either Kp or Kp−1, for some p ≥ 2. Let T1 and S1 be

particular components of aT and bS isomorphic to T and S, respectively.

Let w ∈ V (T1) and v ∈ V (S1), and let

G=G†−w=((T1−w)+(a−1)T )∨bS H =G†−v= aT∨((S1−v)+(b−1)S).
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Then G �∼= H, and Bvw(G
†) = Aut(G†), so X ⊆ Aut(G†) for any maximum

saturating set X of Bvw(G
†). Moreover,

b(G, H) = min {a|V (T )|, b|V (S)|} ≤ n+1
2 .

Proof. Let aT = αU and bS = βW , where U and W are connected vertex-

transitive graphs. (Clearly, if a ≥ 2 then α = 1 as in this case aT is con-

nected, and similarly for b and β.) Then G† = aT + bS = αU + βW ,

and w is in some component U1 isomorphic to U and v is in some com-

ponent W1 isomorphic to W . So G = (U1 − w) + (α − 1)U + βW and

H = αU+(W1−v)+(β−1)W . As G† is not vertex-transitive, neither is G†,

so U �∼= W . Therefore, by applying Lemma 4.1 to G†, G andH, it follows that

G �∼= H, (hence G �∼= H) and Bvw(G†) = Aut(G†). It is straightforward to

prove that λ(G−λ−1(v)) = H−λ(w) if and only if λ(G−λ−1(v)) = H−λ(w)

for any λ ∈ SV (G+), so Bvw(G
†) = Bvw(G†) = Aut(G†). The result then fol-

lows as Aut(G†) = Aut(G†). As in Lemma 4.1, it is straightforward to show

that b(G, H) = min {a|V (T )|, b|V (S)|} ≤ n+1
2 .

A more interesting extension is to add a perfect matching to G+, where

each edge of this matching is incident to a vertex of aT and a vertex of bS.

We shall make use of the following result that was proved in Lemma 3.3

of [5].

Lemma 4.4. Let A be a transitive permutation group on the set R, and let t

be in R. Then there exists a set of |R| distinct permutations {αu |u ∈ R} ⊆ A

such that, for every pair of distinct elements u and v in R,

(a) αu(u) = t;

(b) αu(t) �= αv(t).

We note that, if we replace αt by 1A, (a) and (b) still hold.

Lemma 4.5. Let T and T ∗be disjoint isomorphic connected vertex-transitive

graphs of order p, p ≥ 2, and let φ be an isomorphism such that φ(T ) = T ∗.
Suppose that T and T have different degrees, and let G† be the graph con-

structed from T + T ∗ by adding the perfect matching that joins each vertex

u of T to the corresponding vertex φ(u) of T ∗. Let w ∈ V (T ), G = G† − w,

v = φ(w) ∈ V (T ∗), and H = G† − v. Then G �∼= H, and, moreover, there

exists a maximum saturating set X of Bvw(G
†) such that X ⊆ Aut(G+) and

b(G, H) = |X| = n+1
2 .
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Proof. Clearly, G �∼= H as T and T have different degrees. Now, since T is
vertex-transitive, it follows from Lemma 4.4 applied to Aut(T ) and w, that
there exists Y = {λi | 1 ≤ i ≤ p} ⊆ Aut(T ) such that λ1 = 1V (T ), and

λi(w) �= λj(w) and λ−1
i (w) �= λ−1

j (w), when i �= j. For each λi ∈ Y , we

define λ̂i ∈ SV (G†) by λ̂i(x) = λi(x) for x ∈ V (T ) and λ̂i(x) = φ(λi(φ
−1(x)))

for x ∈ V (T ∗). Clearly, λ̂i(w) = λi(w) and

λ̂−1
i (v) = φ(λ−1

i (φ−1(v))) = φ(λ−1
i (w)).

In addition, it is easy to show that each λ̂i ∈ Aut(G†). So, since λ̂1 = 1V (G†)

and φ is an isomorphism, it follows that the set Ŷ = {λ̂i | λi ∈ Y } is a
subset of Aut(G†) satisfying properties (a) and (b) of Definition 3.5. Hence,
by Theorem 3.8, there exists a maximum saturating set X of Bvw(G

†) that
contains Ŷ . Since |Ŷ | = p, the result will then follow if we show that |X| ≤
p = n+1

2 .
Suppose that dT (w) > dT ∗(v), and let dT (w) = k, so dT ∗(v) = p− k− 1.

Since the case when T is complete is dealt with in Lemma 4.7 below, we
may assume that 1 < k < p− 1. Let λ ∈ X. Now, H contains p− 1 vertices
of degree k + 1, whereas G contains only p − k − 1 such vertices. So, since
λ(G− λ−1(v)) = H − λ(w) and k > 1, clearly λ(w) ∈ V (T ), i.e., there exist
at most p distinct choices for λ(w). Thus, |X| ≤ |V (T )| ≤ p by property
(b) of Definition 3.5. Therefore, b(G, H) = |X| = p = n+1

2 in this case. The
case when dT (w) < dT ∗(v) can be proved in a similar manner, by showing
that λ−1(v) ∈ V (T ∗).

Example 4.6. Let T and T ∗ be isomorphic to K3 × K2, i.e., the trian-
gular prism on 6 vertices. Then T ∗ ∼= C6. We construct G†, G and H
as in Lemma 4.5. So there exists a maximum saturating set X such that
X ⊆ Aut(G+) and b(G, H) = |X| = 6.

The perfect matching construction of Lemma 4.5 can also be used in
some cases when T ∗ �∼= T ; for example, if T ∗ is isomorphic to either Kp or
pK1. Indeed, as shown in the following lemma, when T ∗ ∼= Kp, we obtain the
“super-family” of pairs of graphs that attain the bound of b(G, H) = n+1

2
when H is connected and G is disconnected [5] [6].

Lemma 4.7. Let T be a connected vertex transitive graph of order p, p ≥ 2,
and let G† be the graph constructed from T and p isolated vertices by adding
a perfect matching such that each edge of this matching is incident to a
vertex of T and an isolated vertex. Let w ∈ V (T ), and let v be the leaf of
G† adjacent to w. Let G = G† −w and H = G† − v. Then G �∼= H and there
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exists a maximum saturating set X of Bvw(G
†) such that X ⊆ Aut(G†) and

b(G, H) = |X| = n+1
2 . Moreover, Bvw(G

†) = Aut(G†) when dT (w) ≥ 3.

Proof. By construction, G is disconnected and H is connected, so G �∼= H.
We note that, this is the same pair as in Theorem 3.6 of [6]. It was shown
there, using Lemma 4.4, that b(G, H) = n+1

2 .

Now, when dT (w) = 1, clearly G† ∼= P4, and the two distinct auto-
morphisms of G† form a maximum saturating set of Bvw(G

†). In the case
when dT (w) = 2 we have that T ∼= Cp, and it is easy to see that there
is a unique maximum saturating set X ⊆ Aut(G†) that is isomorphic to
the cyclic group of order p. We now show that Bvw(G

†) = Aut(G†) when
dT (w) ≥ 3. We note that, in this case, every vertex of G† is either a leaf, or
is of degree dT (w) + 1 ≥ 4 and is adjacent to precisely one leaf.

Let λ ∈ Bvw(G
†), so λ(G − λ−1(v)) = H − λ(w). By counting the

number of edges in G − λ−1(v) and H − λ(w), it immediately follows that
dG†(λ(w)) = dT (w) + 1 and dG†(λ−1(v)) = 1. Let x be the unique vertex of
G† adjacent to λ−1(v). It is easy to see that x is w if and only λ(w) = w.
So suppose that x is not w. Now, if w is adjacent to x then G − λ−1(v)
contains a unique vertex, i.e. x, of degree dT (w)− 1. Otherwise G− λ−1(v)
does not contain such a vertex, and instead contains a unique vertex, i.e.
x, of degree dT (w) that is not adjacent to a leaf. Similar observations hold
for w and H − λ(w) depending on whether or not λ(w) is adjacent to w.
Hence λ(x) = w in all cases, and thus λ(NG(λ

−1(v)) = NG†−λ(w)(v). So

λ(G) = G† − λ(w) by Lemma 2.1.

Let v∗ be the leaf adjacent to λ(w). Now, v is the unique isolated vertex
of G, and NG†(w) \ {v} consists of all the vertices of G of degree dT (w).
Similarly, v∗ is the unique isolated vertex of G†−λ(w), and NG†(λ(w))\{v∗}
consists of all the vertices of G† − λ(w) of degree dT (w). It immediately
follows that λ(NG†(w)) = NG†(λ(w)) as λ(G) = G† − λ(w). Therefore,
λ(G†) = G† by Corollary 2.2, so Bvw(G

†) = Aut(G†).

The supercard G† from Lemma 4.7 when T is the Petersen Graph is
shown in Figure 1.

We conclude this section with an example from Theorem 3.6 of [5],

namely a caterpillar G and a sunshine graph H for which b(G, H) = 2(n+1)
5 .

We show that this pair can be constructed by adding a set of 2p edges to
the graph C3p + 2pK1.

Example 4.8. Let T = C3p with vertices w0, w1, . . . w3p−1, and let v0,
v1, . . . , v2p−1 be the vertices of S = 2pK1. Let G

+ be the graph constructed
from T + S by adding the edge set {w3iv2i, w3iv2i+1 | 0 ≤ i ≤ p − 1}. Let
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Figure 1: The supercard G† from Lemma 4.7 when T is the Petersen Graph.

w = w1, v = v1, and let G = G+−w and H = G+−v. Then G and H are the
sunshine-caterpillar pair described in Theorem 3.6 of [5]. We may construct
a maximum saturating set X of Bvw(G

+) such that X ⊆ Aut(G+) and,
moreover, the restriction of X to the cycle T is generated by the rotation
φ defined by φ(wi) = wi+3 (mod 3), together with any reflection of the cycle.
We note that X ∼= D(2p), the Dihedral Group of order 2p.

Figure 2: The supercard G+ from Example 4.8 when p = 4.

A similar supercard can be constructed from the graph C2p + pK1, for
p ≥ 3, with a matching between alternate vertices on the cycle and the
isolated vertices. In this case, there exists a maximum saturating set X such
that |X\Aut(G+)| = 2, whereX∩Aut(G+) is isomorphic to the cyclic group
C(p). This pair was described by Francalanza in [8] and has b(G, H) = n+7

3 .
In a forthcoming paper [7], we shall show that all sunshine-caterpillar pairs
that have a large number of common cards can be obtained from this type
of construction. Moreover, we can always find a maximum saturating set X
such that X ∩ Aut(G+) is isomorphic to either a cyclic or dihedral group,
and |X \Aut(G+)| ≤ 2.
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5. Two supercards

In Section 4, we presented supercards for which there exist maximum satu-
rating sets X such that X ⊆ Aut(G+), and thus b(G, H) ≤ n+1

2 by Corol-
lary 3.11. It was shown in [5] that there are infinite families of pairs of graphs
for which b(G, H) ≈ 2n

3 . In this and similar examples, there must exist max-
imum saturating sets X such that |X| > n+1

2 ≥ |X ∩ Aut(G+)|. In these
cases, we need to consider more than one supercard of G and H.

For the whole of this section, we assume that b(G, H) ≥ 1, and that G+

is a supercard of G and H such that Ĝ = G+−w ∼= G and Ĥ = G+−v ∼= H
for distinct vertices v and w of V (G+).

Definition 5.1. Let λ ∈ Bvw(G
+). We define G+

λ to be the graph Ĝ ∪
λ−1(Ĥ), i.e., the graph with V (G+

λ ) = V (G+) and

(4) E(G+
λ ) = E(Ĝ) ∪ {xw : x ∈ V (Ĝ− λ−1(v)) and λ(x)λ(w) ∈ E(Ĥ)}.

We further define Ĥλ = G+
λ − λ−1(v). Clearly, G+

λ = G+ when λ = 1V (G+).

We note that, since V (G+) = V (G+
λ ), we will consider any element

π ∈ SV (G+) to be a permutation of V (G+
λ ) or a bijection between V (G+

λ )
and V (G+), as necessary.

Lemma 5.2. Let λ ∈ Bvw(G
+) and let G+

λ be the graph defined in Defini-

tion 5.1. Then G+
λ − w = Ĝ ∼= G and λ(G+

λ − λ−1(v)) = λ(Ĥλ) = Ĥ ∼= H,
so G+

λ is a supercard of G and H.

Proof. G+
λ − w = Ĝ by construction. Clearly,

λ((G+
λ − λ−1(v))− w) = λ(Ĝ− λ−1(v)) = Ĥ − λ(w),

as λ ∈ Bvw(G
+). In addition, λ(NG+

λ−λ−1(v)(w)) = NĤ(λ(w)) by (4). There-

fore λ(G+
λ − λ−1(v)) = Ĥ by Lemma 2.1, so G+

λ is a supercard of G
and H.

We now define the set of active permutations of G+
λ with respect to

λ−1(v) and w: we replace λ by σ, v by λ−1(v), G+ by G+
λ and Ĥ by Ĥλ in

Definition 3.4, to obtain:

Bλ−1(v)w(G
+
λ )

= {σ ∈ SV (G+
λ ) | σ((G+

λ − w)− σ−1(λ−1(v)) = (G+
λ − λ−1(v))− σ(w)}

= {σ ∈ SV (G+
λ ) | σ(Ĝ− σ−1(λ−1(v))) = Ĥλ − σ(w)}.
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Lemma 5.3. Let λ ∈ Bvw(G
+) and let G+

λ be the graph defined in Defini-
tion 5.1. Then λ−1(Bvw(G

+)) = Bλ−1(v)w(G
+
λ ). Moreover, X is a maximum

saturating set of Bvw(G
+) that contains λ if and only if λ−1(X) is a maxi-

mum saturating set of Bλ−1(v)w(G
+
λ ) that contains λ−1.

Proof. By (2), π ∈ Bvw(G
+) if and only if π(Ĝ − π−1(v)) = Ĥ − π(w).

This holds if and only if λ−1π(Ĝ − (λ−1π)−1λ−1(v)) = Ĥλ − λ−1π(w)
since λ−1(Ĥ) = Ĥλ, i.e., if and only if λ−1π ∈ Bλ−1(v)w(G

+
λ ). Therefore

λ−1(Bvw(G
+)) = Bλ−1(v)w(G

+
λ ).

LetX be a maximum saturating set of Bvw(G
+) that contains λ. Clearly,

λ−1(X) contains the identity and λ−1. In addition, for each distinct π, σ ∈ X,
it follows from Definition 3.5 that (λ−1π)−1λ−1(v) �= (λ−1σ)−1λ−1(v) and
λ−1π(w) �= λ−1σ(w). So λ−1(X) satisfies properties (a) and (b) of Defini-
tion 3.5 with respect to Bλ−1(v)w(G

+
λ ). So, since |λ−1(X)| = |X| = b(G, H),

it follows from Theorem 3.8(d) that λ−1(X) is a maximum saturating set
of Bλ−1(v)w(G

+
λ ). The converse implication can be proved in a similar fash-

ion.

We now show how to find elements of λ−1(X) contained in Aut(G+
λ ).

Lemma 5.4. Let λ and π be distinct permutations in Bvw(G
+), and let

G+
λ be the graph defined in Definition 5.1. Suppose that π(NĜ(π

−1(v))) =

λ(NĜ(λ
−1(v))). Then λ−1π(Ĝ) = G+

λ − λ−1π(w).

Proof. Since λ−1π ∈ Bλ−1(v)w(G
+
λ ) by Lemma 5.3, it follows that λ−1π is a

bijection from V (Ĝ) to V (G+
λ − λ−1π(w)), such that

λ−1π(Ĝ− π−1(v)) = (G+
λ − λ−1π(w))− λ−1(v).

Now π(NĜ(π
−1(v))) = λ(NĜ(λ

−1(v))), so π(w) �∈ λ(NĜ(λ
−1(v))), and there-

fore λ−1π(w) �∈ NĜ(λ
−1(v)). So, since by construction λ−1(v)w is not an

edge of G+
λ ,

λ−1π(NĜ(π
−1(v))) = NĜ(λ

−1(v)) = NĜ−λ−1π(w)(λ
−1(v))

= NG+
λ−λ−1π(w)(λ

−1(v)).

Thus λ−1π(Ĝ) = G+
λ − λ−1π(w) by Lemma 2.1.

Corollary 5.5. Suppose that X is a maximum saturating set of Bvw(G
+)

that contains two permutations λ and π satisfying the conditions of Lemma
5.4. If λ−1π(NG+

λ
(w)) = NG+

λ
(λ−1π(w)) then λ−1π ∈ λ−1(X) ∩Aut(G+

λ ).
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Proof. λ−1π(Ĝ) = G+
λ − λ−1(π(w)) by Lemma 5.4. So, if λ−1π(NG+

λ
(w)) =

NG+
λ
(λ−1π(w)) then λ−1π ∈ Aut(G+

λ ) by Corollary 2.2.

6. Two supercard constructions

In this final section, we construct a number of families of graphsG+ such that
D(G+) contains non-isomorphic cardsG = G+−w andH = G+−v for which
there is no maximum saturating set of Bvw(G

+) contained in Aut(G+).
However, there does exist a maximum saturating set X of Bvw(G

+) and
some permutation λ ∈ X \ Aut(G+) such that, if G+

λ is the supercard of G

and H given in Definition 5.1 (where Ĝ = G and Ĥ = H) then

λ−1(X \Aut(G+)) = λ−1(X) ∩Aut(G+
λ );

i.e., X consists of |X ∩Aut(G+)| automorphisms of G+ and |X \Aut(G+)|
permutations that each correspond to a different automorphism of G+

λ .
For convenience, we define XAut = X ∩ Aut(G+), for any maximum

saturating set X of Bvw(G
+). Since λ−1(X) is a maximum saturating set of

Bλ−1(v)w(G
+
λ ) by Lemma 5.3, we further define

λ−1(X)Aut = λ−1(X) ∩Aut(G+
λ ).

Figure 3: The supercards G+ and G+
λ from Lemma 6.1 when p = 5.

Lemma 6.1. For p ≥ 3, let S be a graph isomorphic to Kp, and let T and
T ∗ be graphs isomorphic to Kp+1. Let

G+ = S + T + T ∗ ∼= Kp + 2Kp+1.
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Let w ∈ V (T ), v ∈ V (S), and let

G = G+ − w = S + (T − w) + T ∗ ∼= 2Kp +Kp+1

H = G+ − v = (S − v) + T + T ∗ ∼= Kp−1 + 2Kp+1.

Then G �∼= H and there exists a maximum saturating set X of Bvw(G
+) and

some λ ∈ X \XAut, where λ−1(v) ∈ V (T − w), such that the supercard G+
λ

given in Definition 5.1 is

G+
λ = (w ∨ S) + (T − w) + T ∗ ∼= G+.

In addition, λ−1(X \ XAut) = λ−1(X)Aut, |XAut| = |λ−1(X)Aut| = p and

b(G, H) = 2(n−1)
3 .

Proof. Clearly, G �∼= H. Let λ ∈ Bvw(G
+), so λ(G − λ−1(v)) = H − λ(w).

By comparing the components of G and H, it is easy to see that λ(w) ∈
V (T ) ∪ V (T ∗) and λ−1(v) ∈ V (S) ∪ V (T − w). Furthermore, since each
component of G+ is complete, there are 2(p+1) distinct choices for λ(w) and
2p distinct choices for λ−1(v), and thus b(G, H) = 2p. Now, if λ ∈ Aut(G+)
then λ−1(v) ∈ V (S), so |XAut| ≤ p for any maximum saturating set X of
Bvw(G

+). However, it is easy to see that there exists such a set X for which
|XAut| = |X \ XAut| = p. Moreover, σ(w) ∈ V (T ) for all σ ∈ XAut, and
π(w) ∈ V (T ∗) and π−1(v) ∈ V (T − w) for all π ∈ X \XAut. We note that
π(S) = T ∗ − π(w), π((T − w) − π−1(v)) = S − v and π(T ∗) = T , for all
such π.

Now let λ ∈ X \ XAut and let G+
λ be the supercard given in Defini-

tion 5.1. Then, since λ(w) is adjacent to every other vertex of T ∗ in H, and
λ−1(v) ∈ V (T − w), it follows that w is adjacent in G+

λ to every vertex of
S. So G+

λ = (w ∨ S) + (T − w) + T ∗ ∼= G+. As |V (T − w)| = p, it is again
easy to show that |YAut| ≤ p for any maximum saturating set Y of G+

λ ; so
|λ−1(X)Aut| ≤ p.

Suppose now that π is a permutation in X \ XAut distinct from λ. As
shown above, π−1(v) ∈ V (T − w) and π((T − w) − π−1(v)) = S − v. Since
T − w and S − v are both complete, clearly

π(NG(π
−1(v))) = λ(NG(λ

−1(v)) = V (S − v).

Hence, λ−1π(G) = G+
λ − λ−1π(w) by Lemma 5.4. It is easy to see that

λ−1π(S) = (w ∨S)− λ−1π(w) under this isomorphism. So, since NG+
λ
(w) =

V (S) and NG+
λ
(λ−1π(w)) = V ((w ∨ S) − λ−1π(w)), it follows that
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λ−1π(NG+
λ
(w)) = NG+

λ
(λ−1π(w)), and hence λ−1π ∈ λ−1(X)Aut by Corol-

lary 5.5. As |X \XAut| = p and |λ−1(X)Aut| ≤ p, it immediately follows that
λ−1(X \XAut) = λ−1(X)Aut, hence |λ−1(X)Aut| = p.

We note that the infinite family in Lemma 6.1 has the largest value of
b(G, H) yet published and is conjectured to have the largest possible value
of b(G, H) for large n [5]. The case when p = 5 is illustrated in Figure 3.

In Lemma 6.1, the two supercards are isomorphic. The following lemma
gives a construction where this is rarely the case.

Lemma 6.2. Let S and T be vertex-transitive graphs such that S ∨T is not
vertex-transitive. Let S1 and S2 be disjoint graphs isomorphic to S, let T1

and T2 be disjoint graphs isomorphic to T , and let s ∈ V (S2). Now define

G+ = (S1 ∨ T1) + ((S2 − s) ∨ T2) ∼= (S ∨ T ) + ((S − x) ∨ T ),

for any x ∈ V (S). Let w ∈ V (T1) and v ∈ V (T2), and let

G = G+ − w = (S1 ∨ (T1 − w)) + ((S2 − s) ∨ T2)
∼= (S ∨ (T − y)) + ((S − x) ∨ T

H = G+ − v = (S1 ∨ T1) + ((S2 − s) ∨ (T2 − v))
∼= (S ∨ T ) + ((S − x) ∨ (T − y)),

for any y ∈ V (T ). Define S∗
2 to be S2 but with s relabelled as w. Then

G �∼= H and there exists a maximum saturating set X of Bvw(G
+) and some

λ ∈ X \XAut, where λ−1(v) ∈ V (S1), such that the supercard G+
λ given in

Definition 5.1 is

G+
λ = (S1 ∨ (T1 − w)) + (S∗

2 ∨ T2) ∼= (S ∨ (T − y)) + (S ∨ T ).

In addition, λ−1(X \XAut) = λ−1(X)Aut, |XAut| = |V (T )|, |λ−1(X)Aut| =
|V (S)| and b(G, H) = n

2 +1. (We note that G+ and G+
λ are only isomorphic

when (S − x) ∨ T ∼= S ∨ (T − y)).

Proof. By comparing the components of G and H, clearly G �∼= H and
λ(w) ∈ V (S1) ∪ V (T1) for all λ ∈ Bvw(G

+). So b(G, H) ≤ |V (S)|+ |V (T )|,
i.e., b(G, H) ≤ n

2 + 1.

Suppose that λ ∈ Aut(G+). Then w and λ(w) must be in isomorphic
components of S1+T1 as λ(S1+T1) = λ(S1 ∨ T1) = S1 ∨ T1 = S1+T1. Since
S∨T is not vertex-transitive, nor is S1+T1, which implies that λ(w) ∈ V (T1).
It therefore follows that |XAut| ≤ |V (T )| for all maximum saturating sets X
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of Bvw(G
+). Indeed, since both S and T are vertex-transitive, it is easy to

show that there exists a maximum saturating set X of Bvw(G
+) such that

|XAut| = |V (T )| and |X \ XAut| = |V (S)|, so b(G, H) = |V (S)| + |V (T )|,
i.e., b(G, H) = n

2 + 1. Furthermore, σ−1(v) ∈ V (T2) for all σ ∈ XAut, and
π(w) ∈ V (S1) and π−1(v) ∈ V (S1) for all π ∈ X \ XAut. In addition, for
all such π, we have π((S1 − π−1(v)) ∨ (T1 − w)) = (S2 − s) ∨ (T2 − v) and
π((S2 − s) ∨ T2) = (S1 − π(w)) ∨ T1, where, without loss of generality, we
may assume that π(V (T1 − w)) = V (T2 − v) and π(V (T2)) = V (T1).

Now let λ ∈ X \ XAut, and let G+
λ be the supercard given in Defini-

tion 5.1. Then, since λ(w) is in V (S1) and is adjacent to every vertex of T1

in H, λ(V (S2 − s)) = V (S1 − λ(w)) and λ−1(v) �∈ V (T2), it follows that
w is adjacent in G+

λ to every vertex of T2 and the same vertices of S2 as
s. So G+

λ = (S1 ∨ (T1 − w)) + (S∗
2 ∨ T2). Since w ∈ V (S∗

2), it is easy to
show in a similar manner to the proof above, that |YAut| ≤ |V (S)| for any
maximum saturating set Y of G+

λ ; so |λ−1(X)Aut| ≤ |V (S)|. Furthermore,
as in the proof of Lemma 6.1, i.e., using Lemma 5.4 and Corollary 5.5, it
is straightfoward to prove that λ−1π ∈ λ−1(X)Aut for each π ∈ X \ XAut.
Hence λ−1(X\XAut) = λ−1(X)Aut, and therefore |λ−1(X)Aut| = |V (S)|.

The case when S ∨ T is vertex-transitive can be easily shown to fit into
the two supercard paradigm. An example of this isKp+1+Kp. This gives rise
to the pair G ∼= Kp+Kp and H = Kp+1+Kp−1, for which b(G, H) = n

2 +1.
This pair was first reported by Harary and Manvel [10].

Corollary 6.3. Let G+ be as in Lemma 6.2, and let G∗ be the graph ob-
tained by G+ by adding additional edges between V (T1) and V (T2), V (S1)
and V (S2), or both. The edges added may either be the join between V (T1)
and V (T2), a matching between V (T1) and V (T2) in a similar manner to
Lemma 4.5, or the complement of such a matching. Edges between V (S1)
and V (S2) may be added independently in a similar manner. Corresponding
conclusions to those in Lemma 6.2 then hold for G∗ and G∗

λ, where G∗
λ is

constructed from G+
λ by adding the corresponding edges.

The following example of the construction in Corollary 6.3 is the family
of disconnected and connected pairs of graphs of even order that attain the
upper bound of b(G, H) = n

2 + 1 [5] [6].

Example 6.4. Let S = K1, and let T1 and T2 both be isomorphic to pK1

where S, T1 and T2 are all disjoint. (Here S−x is the null graph, the graph
with no vertices.) Let G+ be the connected graph constructed from the
graph (S ∨ T1) + T2 by adding a matching joining each vertex in V (T1) to
a vertex in V (T2), as illustrated for p = 5 in Figure 4. Let w ∈ V (T1) and
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Figure 4: The supercards G+ and G+
λ from Example 6.4 when p = 5.

v ∈ V (T2) be such that v and w are adjacent in G+, and let G = G+ − w
and H = G+ − v. Then G and H are the pair of graphs that attain the

upper bound of b(G, H) = n
2 + 1, for even n, when H is connected and

G is disconnected, given in Theorem 3.7(c) of [6]. Moreover, there exists a
maximum saturating set X of Bvw(G

+) that consists of p automorphisms

of G+, and one permutation corresponding to the identity automorphism of
G+

λ , where G+
λ is constructed from λ ∈ X \XAut as in Lemma 6.2.

Our final example is a generalisation of a pair with n+3
2 common cards

discovered by Bondy and reported by Myrvold in [16].

Lemma 6.5. Let T = Kp, p+1 and S = Kp−1, p+1, and let w ∈ V (T ) and

v ∈ V (S) be such that dT (w) = p and dS(v) = p− 1. For a ≥ 1, let A be the
graph that consists of 2a − 1 components isomorphic to T , B be the graph
that consists of 2a−1 components isomorphic to S, and C be the graph that

consists of a− 1 components isomorphic to Kp, p. Now let

G+ = (A+ T ) + (B + S) + C ∼= 2aKp, p+1 + 2aKp−1, p+1 + (a− 1)Kp, p,

and let

G = G+ − w = A+ (B + S) + (C + (T − w))
∼= (2a− 1)Kp, p+1 + 2aKp−1, p+1 + aKp, p

H = G+ − v = (A+ T ) +B + C + (S − v)
∼= 2aKp, p+1 + (2a− 1)Kp−1, p+1 + (a− 1)Kp, p +Kp−1, p.
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Then G �∼= H and there exists a maximum saturating set X of Bvw(G
+) and

some λ ∈ X \XAut, where λ−1(v) ∈ V (C+(T −w)), such that the supercard
G+

λ given in Definition 5.1 is

G+
λ = (A+ T ∗) +B + (C + (T − w))

∼= 2aKp, p+1 + (2a− 1)Kp−1, p+1 + aKp, p,(5)

where T ∗ ∼= T , w ∈ V (T ∗) and T ∗ − w = S. In addition, λ−1(X \XAut) =
λ−1(X)Aut, |XAut| = 2a(p + 1), |λ−1(X)Aut| = 2ap and b(G, H) =
2a(2p+1) = n+1

2 + a(1− p)+ p. (We note that G+ and G+
λ are not isomor-

phic.)

Proof. By comparing the components of G and H, it is easy to see that
G �∼= H and λ(w) ∈ V (A + T ) for all λ ∈ Bvw(G

+). Furthermore, it is
straightforward to show that there exists a maximum saturating set X of
Bvw(G

+) such that, for all σ ∈ XAut, we have σ
−1(v) ∈ V (B+S) and, for all

π ∈ X \XAut, we have π
−1(v) ∈ V (C+(T −w)). Moreover, dG+(σ(w)) = p,

dG+(σ−1(v)) = p − 1 and dG+(π(w)) = p + 1, for all such σ and π. In
addition, if Rπ is the component of C + (T − w) that contains π−1(v) then
π(Rπ − π−1(v)) = S − v, and if Tπ is the component of A+ T that contains
π(w) then, without loss of generality, we may assume that π(S) = Tπ−π(w).
Clearly, |XAut| = 2a(p+ 1) and |X \XAut| = 2ap, thus

b(G, H) = 2a(2p+ 1) =
n+ 1

2
+ a(1− p) + p.

Now let λ ∈ X \XAut, and let G+
λ be the supercard given in Definition 5.1.

Then, since λ(w) is adjacent to every vertex of Tλ of degree p and λ−1(v) �∈
V (S), it follows that w is adjacent in G+

λ to every vertex of S of degree
p − 1. Hence G+

λ is the graph given in (5). As λ−1(v) ∈ V (C + (T − w)),
it is easy to see that |YAut| ≤ 2ap for any maximum saturating set Y of
G+

λ ; so |λ−1(X)Aut| ≤ 2ap. Furthermore, it is straightfoward to prove, in a

Figure 5: The supercards G+ and G+
λ from Lemma 6.5 when p = 1 and

a = 2.
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similar manner to Lemma 6.1, again using Lemma 5.4 and Corollary 5.5,
that λ−1(X \XAut) = λ−1(X)Aut, and hence |λ−1(X)Aut| = 2ap.

Bondy’s example corresponds to the case when p = 1. Noting that
K0, 2 = 2K1, we have G+ ∼= 2aK1, 2 +4aK1 + (a− 1)K2 and b(G, H) = n+3

2
in this case (as illustrated in Figure 5 for a = 2). The same value for b(G, H)
is also obtained for the case when a = 1.
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