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3-dimensional polygons determined by permutations

Enrica Duchi, Simone Rinaldi, and Samanta Socci

In this paper we introduce the notion of d-dimensional permupoly-
gons on Z

d, with d ≥ 2. 2−dimensional permupolygons, also called
permutominides, where introduced by Incitti et al. [12]. By using
an encoding of permupolygons inspired by the encoding given for
convex polyominoes by Bousquet-Mélou and Guttmann [6], we eas-
ily recover enumerative results about 2-dimensional parallelogram,
unimodal, column convex and convex permupolygons. Moreover,
we extend these results for dimension d = 3. Finally, we study com-
binatorial characterizations of permutations defining 3-dimensional
permupolygons. We show some necessary and sufficient conditions
for a triple of 2-dimensional permutations (π1, π2, π3) to define a
3-dimensional permupolygon.

1. Introduction

The goal of this paper is to extend the notions of permutomino/permuto-
minide to the 3-dimensional case, by introducing the notion of 3-dimensional
permupolygon, and to study some subclasses of these objects defined in terms
of convexity constraints in order to determine their combinatorial properties
and enumeration. We thus start by briefly reviewing definitions and results
on permutominoes and permutominides before defining permupolygons and
discussing our results.

1.1. Permutominoes and permutominides

We start this section by briefly recalling a few basic definitions of polyomi-
noes.

Definition 1. In the plane Z × Z a polyomino is a finite union P of unit
squares (called cells) whose interior is connected.

Polyominoes are defined up to a translation (see Fig. 1). Polyominoes
have been extensively studied in the literature. In particular we will be
concerned with some subclasses which can be defined using the geometrical
notions of directedness and convexity.
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Definition 2. A polyomino is said to be:

i) parallelogram if its boundary can be decomposed in two paths, the upper

and the lower paths, which are made of north and east unit steps and meet

only at their starting and final points (see Fig. 1 (a));

ii) directed when each of its cells can be reached from a distinguished cell,

called the root, by a path which is contained in the polyomino and uses only

north and east unit steps (see Fig. 1 (b));

iii) column-convex or vertically-convex (resp. row-convex or horizontally-

convex ) if all its columns (resp. rows) are connected (see Fig. 1 (c), (d));

iv) convex, if it is both horizontally and vertically-convex (see Fig. 1 (e)).

Figure 1: (a) A parallelogram polyomino; (b) a directed polyomino; (c) a
column-convex polyomino; (d) a row-convex polyomino; (e) a convex poly-
omino.

For more details we refer to the vast literature on the subject, in partic-

ular to [5]. Now, let us recall some basics about permutominoes and permu-

tominides.

Definition 3. Let P be a polyomino, then a vertex of P is an intersection

point of two consecutive boundary edges with different direction, and a side

of P is a segment joining two consecutive vertices.

Definition 4. Let P be a polyomino without “holes”, i.e. a polyomino whose

boundary is a single loop, and having n rows and n columns, n ≥ 1; we

assume without loss of generality that the south-west corner of its minimal

bounding rectangle is placed at (1, 1). The polyomino P is a permutomino

if for each abscissa (resp. ordinate) between 1 and n+1 there is exactly one

vertical (resp. horizontal) side in the boundary of P with that coordinate,

and n is called the size of the permutomino.

A permutomino P can be equivalently defined by a pair of permutations

of length n + 1. Indeed for each vertical (resp. horizontal) side of P there

are exactly 2 vertices of P with the same abscissa (resp. ordinate).
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Definition 5. Let P be a permutomino of size n, and let us denote by r(P )
its leftmost vertex with minimal ordinate. By following the boundary of P
in clockwise order, starting from r(P ), we obtain a sequence s(P ) of 2n+ 2
vertices of P . Then the first and the second components of P are the two
permutations of length n+1, denoted by π1(P ) and π2(P ), whose graphical
representation are respectively given by vertices with odd and even indices
in s(P ).

Figure 2 shows an example of permutomino and its associated permuta-
tions. For more detailed definitions on permutominoes we address the reader
to [3, 8, 11].

Figure 2: A permutomino of size 6 and its two components π1 =
(2, 5, 7, 1, 4, 3, 6) and π2 = (5, 7, 4, 2, 6, 1, 3).

Permutominoes were introduced in [13] in an algebraic context and then
they were considered by F. Incitti in studying permutation diagrams, deter-
mined by a pair (π1, π2) of permutations [12]. Permutominoes are closely
related to another class of combinatorial objects uniquely defined by pairs
of permutations, the family of permutominides [9].

Definition 6. A polyominide is a finite connected union of cells.

As for polyominoes, a polyominide is said to be vertically-convex (resp.
horizontally-convex ) if all its columns (resp. rows) are connected. Finally,
a polyominide is said to be convex, if it is both horizontally and vertically-
convex.

Definition 7. A permutominide of size n is a polyominide whose boundary
can be drawn as a single (possibly self-intersecting) loop that has exactly
one side for every abscissa (resp. every ordinate) between 1 and n+ 1.

A permutominide can be equivalently represented by a pair of permu-
tations of length n + 1, defined in the same way as for permutominoes.
Figure 3 shows a permutominide of size 6 and its associated permutations
π1 = (3, 6, 7, 5, 2, 4, 1) and π2 = (5, 2, 6, 7, 1, 3, 4).
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A vertically-convex (resp. horizontally-convex, convex ) permutominide is
a vertically-convex (resp. horizontally-convex, convex) polyominide, which
is also a permutominide. A convex permutominide of size n is said to be
directed-convex if it contains the cell with lowest leftmost vertex in position
(1, 1). A directed-convex permutominide of size n is said to be parallelogram
if it contains the cell with upper rightmost vertex in position (n+ 1, n+ 1).

Figure 3: A permutominide of size 6 and its two components.

Here we would like to recall the main results on permutominoes and per-
mutominides, which can be roughly grouped into two main research guide-
lines:

1. Enumeration of restricted classes of permutominoes/permutominides.
The enumeration of permutominoes according to the size has been
considered and solved for restricted classes defined by imposing con-
vexity or directedness constraints. The largest class which has been
studied is that of vertically-convex permutominoes: in [2] the authors
determine a direct recursive construction for vertically-convex permu-
tominoes of a given size, which leads to a functional equation. How-
ever, they are not able to solve the equation in order to obtain the
generating function of vertically-convex permutominoes. By using nu-
merical analysis they were led to conjecture that the number fn of
vertically-convex permutominoes of size n has the following asymp-
totic behavior:

(1) fn ∼ k (n+ 1)!hn , where k = 0.3419111 and h = 1.385933.

Exact results have been obtained for some classes of convex permu-
tominoes [3, 8, 11], and in particular it was proved that the number
of convex permutominoes of size n is:

(2) 2 (n+ 3) 4n−2 − n

2

(
2n

n

)
n ≥ 1.



3-dimensional polygons determined by permutations 61

We point out that (2) was proved independently in [4] and in [8],
by using analytical techniques. Recently, a bijective proof of (2) was
given in [9] by encoding convex permutominoes in terms of lattice
paths.
On the other side, concerning the enumeration of permutominides,
some restricted classes defined by similar convexity constraints have
been considered. In particular Disanto et al. [9] enumerated convex
permutominides of size n :

(3) 2 (n+ 1)4n−2 ,

as well as parallelogram and directed convex permutominides, while
in Beaton et al. [2] enumerated vertically convex permutominides of
size n :

(4) 2n−2 (n+ 1)! ,

2. Study of permutation pairs defining restricted classes of permutomi-
noes.
The second research line concerns the study of permutations defining
restricted classes of permutominoes, and has been studied in [3, 11].
This topic shows connections with the vast literature on pattern avoid-
ing permutations. So, let P be a restricted class of permutominoes
(defined as usual by imposing certain convexity constraints), and let
Pn be the set of permutominoes of P with size n. Researchers have
investigated the problem of giving a characterization of the following
sets:

(i) {(π1, π2) : ∃P ∈ P such that π1(P ) = π1, π2(P ) = π2 }.
(ii) Σ1

n = {π1(P ) : P ∈ Pn}, Σ2
n = {π2(P ) : P ∈ Pn};

(iii) Σ12
n = Σ1

n ∪ Σ2
n.

In [3], a characterization of the sets Σ1
n and Σ12

n for the classes of paral-
lelogram, directed-convex and convex permutominoes has been given.
In particular the characterization of the sets Σ1

n and Σ12
n for convex

permutominoes has been given in terms of square permutations, which
have been recently investigated by several authors [1, 10, 14].

1.2. Permupolygons

In this section we introduce a different definition of permutominoes and
permutominides, which relies on the paper [6] by Bousquet-Mélou and
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Guttmann. In this paper the authors, with the aim of extending the notion

of polyomino to the 3-dimensional case, observed that the property of be-

ing a polyomino without holes and the convexity constraint can be thought

as properties of the self avoiding polygon which forms the boundary of the

polyomino rather than properties of the set of cells forming the interior of

the object.

Similarly, the definition of permutomino and permutominide of size n

can be given using polygons: A permutominide of size n is a polygon with

vertices on the integer lattice [1, n + 1]2 such that its intersection with any

vertical (resp. horizontal) line with integer coordinate between 1 to n + 1

has exactly one connected component different from an isolated point; a

permutomino of size n is a permutominide which is self avoiding.

Let us generalize these definitions to higher dimensions: In the lattice

Z
d with its canonical basis (e1, e2, . . . , ed), a permupolygon P is a polygon

such that, in each hyperplane orthogonal to ei and with coordinate j, with

i = 1, 2, . . . d and j = 1 . . . n+ 1, there lie exactly d− 1 sides of P ; precisely

one side for each direction ej , with j �= i. A more formal definition will be

provided in Section 2. Following this approach, starting from Section 2, we

will replace the words permutomino and permutominide, commonly used

in the literature and in the 2-dimensional case, by the word permupolygon.

The use of permupolygons turns out to be decisive since it provides a unified

setting to represent these objects in the multidimensional case.

A remarkable property of d-dimensional permupolygons, directly follow-

ing from their definition, is that for d ≥ 3 they are self avoiding polygons.

We point out that, while our definition is given for the d-dimensional case,

in the paper we will deal only with d = 2, 3.

The main idea of the paper is to use a unique representation of each

permupolygon P by means of a word s(P ), called the path encoding of P ,

which will allows us to deal with 3-dimensional permupolygons in a simple

way. We will show that 3-dimensional permupolygons are an “appropriate”

extension of permutominoes and we will enumerate some restricted classes

of 3-dimensional permupolygons defined by convexity constraints.

We believe that this representation could be used to tackle some al-

gebraic problems related to the classification and characterization of per-

mutation diagrams, as those mentioned in [12]. In particular, extending

what happens for permutominoes and permutominides, we will also see that

each 3-dimensional permupolygon P is uniquely determined by a triple of

2-dimensional permutations (π1, π2, π3), called the first, second, and third

components of P , respectively.
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1.3. Results of the paper

In Section 2 we provide a formal definition of a d-dimensional permupolygon,
and present the most important subclasses of permupolygons, which we are
going to study.

In Section 3 we return to the 2-dimensional case. Our representation of
2-dimensional permupolygons in terms of their path encoding allows us to re-
obtain results already known for vertically-convex, convex, directed-convex
and parallelogram permutominides, in a simpler and compact way.

In Section 4 we consider 3-dimensional permupolygons. Using the rep-
resentation of these objects via their path encodings, we can handle these
objects with no need of a graphical representation. Then, we provide enu-
meration of some restricted classes of convex permupolygons, including con-
vex, directed-convex and parallelogram permupolygons. These results extend
those proved in Section 3 for d = 2.

In Section 5 we study combinatorial characterizations of permutations
defining 3-dimensional permupolygons. We show some necessary and suf-
ficient conditions for a triple of 2-dimensional permutations (π1, π2, π3) to
define a 3-dimensional permupolygon.

2. Basic definitions

In this section we first recall some definitions given in [6] concerning d-
dimensional polygons, then we introduce the notion of d-dimensional
permupolygon on Z

d. Finally we recall the notion of multidimensional per-
mutation.

2.1. d-dimensional permupolygons

Definition 8. Let d ≥ 1, and let us consider the lattice Zd, with its canonical
basis (e1, ..., ed). An oriented rooted polygon of perimeter 2n is a 2n-tuple
(s1, ..., s2n) of points of Z

d such that si and si+1 are neighbors (namely, there
exists a vector ek of the canonical basis, such that si+1 can be reached from
si by taking a unit step along the direction of ek) for 1 ≤ i ≤ 2n (with
s2n+1 = s1). The point s1 is called the root of the polygon.

We can represent an oriented rooted polygon P of perimeter 2n as a
word u(P ) = u1 u2 . . . u2n on the alphabet A = {1, 2, . . . , d} ∪ {1, 2, . . . , d},
namely, if ui = k (resp. k) it means that one goes from the point si to the
point si+1 by taking a unit step along the unit vector ek (resp. −ek). Remark
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that the number of occurrences of k in u(P ), denoted |u|k, is equal to the
number of occurrences of k in u(P ). Conversely, any word u on A such that
|u|k = |u|k (for 1 ≤ k ≤ d) defines an oriented rooted polygon.

Observe that, according to Definition 8, oriented rooted polygons are
not necessarily self-avoiding.

Definition 9. Let P be an oriented rooted polygon with associated word
u = u(P ). A vertex of P is any point si such that ui−1 �= ui, for i > 0, and
a side of P is the segment joining two consecutive vertices.

The dimension of an oriented rooted polygon is the dimension of its
minimal bounding hypercube. We would like to point out that, since we are
interested in the shape of the object, an oriented rooted polygon is defined
up to translation. Therefore, given an oriented rooted polygon, we can as-
sume, without loss of generality, that the origin of its minimal bounding
hypercube is placed at (1, . . . , 1) so that all vertices of the polygon have
positive coordinates.

Definition 10. An oriented polygon is an oriented rooted polygon consid-
ered up to a cyclic permutation of its points.

Now we define some classes of oriented rooted polygons in terms of
properties of the associated words. We would like to point out that, in the
restricted case of self-avoiding polygons, these classes are a generalization in
dimension d ≥ 3 of some well-known classes of polyominoes studied in the
literature.

Definition 11. An oriented rooted parallelogram polygon P is an oriented
rooted polygon whose word u = u(P ) can be written as vw (i.e. u = vw),
where v (resp. w) is a word on {1, ..., d} (resp. {1, ..., d}).
Definition 12. An oriented polygon is parallelogram if there exists a cyclic
permutation of its points such that the oriented rooted polygon associated
with this permutation is parallelogram. Observe that such a permutation is
unique if it exists.

We point out that the class of parallelogram self-avoiding polygons with
d = 2 is identical to the class of parallelogram polyominoes.

Figure 4 (a) shows a 2-dimensional oriented parallelogram polygon, and
its unique rooted representation is

2 2 1 1 1 2 2 1 1 2 1 1 1 2 1 2 2 1 ,

with (1, 1) as root. In the graphical representation, the root of an oriented
rooted polygon is represented using a black dot, while we use white dots for
other vertices of the polygon. This convention is adopted also in the sequel.
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Definition 13. An oriented rooted polygon P is said to be unimodal in
direction k if its word u = u(P ) can be written as vw (i.e. u = vw), where
v and w are words on {1, ..., d} ∪ {1, ..., d}, with |v|k = |w|k = 0. Moreover,
P is unimodal if P is unimodal in all directions.

Definition 14. An oriented polygon is unimodal if there exists a cyclic per-
mutation of its points such that the oriented rooted polygon associated with
this permutation is unimodal. Observe that such a permutation is unique if
it exists.

We point out that the class of unimodal self-avoiding polygons with
d = 2 is identical to the class of directed convex polyominoes.

Definition 15. An oriented polygon is unimodal in direction k if there exists
a cyclic permutation of its points such that the oriented rooted polygon
associated with this permutation is unimodal in direction k. It is convex if
it is unimodal in all directions.

We point out that the class of convex self-avoiding polygons with d = 2
is identical to the class of convex polyominoes.

Observe that, if an oriented polygon P is unimodal in direction k, it
may have several different representations as an oriented rooted polygon
unimodal in direction k. We will refer to each of these representations as a
k-unimodal representation of P . On the other hand, for unimodal polygons
there is a unique rooted polygon which is unimodal in all directions. For
instance, Figure 4 (b) shows a 2-dimensional oriented rooted polygon P ,
unimodal in direction 1, with root in (1, 3) and word

u(P ) = 1 1 2 1 1 2 1 2 2 1 1 2 2 2 1 2 1 2 1 2 .

We observe that P is unimodal in direction 1 but not in direction 2. We
can obtain another 1-unimodal representation for the same oriented poly-
gon, by placing the root at (1, 2) instead of (1, 3). Figure 5(a) shows the
unique rooted unimodal representation P of a 2-dimensional oriented uni-
modal polygon, where

u(P ) = 2 2 1 1 2 2 1 2 2 2 1 2 1 2 1 1 1 1 2 1 2 1 1 1 2 2 2 1,

and the root is (1, 1); it is unimodal in direction 1, as it can be encoded vw,
with

v = 22 1 1 2 2 1 2 2 2 1 2 1 2 1 1 and w = 11 2 1 2 1 1 1 2 2 2 1,
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and in direction 2 as shown by encoding

v = 22 1 1 2 2 1 2 2 2 1 and w = 21 2 1 1 1 1 2 1 2 1 1 1 2 2 2 1.

Figure 5(b) shows an oriented convex polygon P . A 1-unimodal representa-
tion of P (with root in (1, 2)) is

2 1 1 2 1 1 2 2 2 2 1 2 1 2 11 1 2 1 1 2 2 2 1 2 1 2 1;

which is not unimodal in direction 2. A 2-unimodal (non 1-unimodal) rep-
resentation of P can be obtained by placing the root in (2, 1).

Figure 4: 2-dimensional polygons: (a) an oriented rooted parallelogram poly-
gon; (b) an oriented rooted polygon unimodal in direction 1; (c) a permupoly-
gon.

Now we are ready to give the definition of the main object of interest in
the paper, i.e. the permupolygon.

Definition 16. An oriented rooted polygon P of dimension d and size n is
an oriented rooted permupolygon if, in each hyperplane hi,j = {xi = j}, i.e.
orthogonal to ei and with coordinate j, with i = 1, 2, . . . d and j = 1 . . . n+1,
there are exactly d−1 sides of P in hi,j , precisely one side for each direction
ek with k �= i.

Remark that, by definition, in an oriented permupolygon of dimension
d and size n, each hyperplane hi,j contains exactly d vertices. Therefore the
total number of vertices is d(n + 1). Indeed we can choose a direction ei,
and consider all the hyperplanes hi,j , j = 1, . . . , n + 1, orthogonal ei. Each
vertex of P belongs to one of these n + 1 hyperplanes, and each hyperlane
contains exactly d vertices.

Given an oriented permupolygon P we choose a rooted representation of
P , that we call canonical, by assuming that the root r(P ) of P is the minimal
among the vertices of P , ordered according to the usual lexicographic order.
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Figure 4 (c) shows a 2-dimensional oriented permupolygon P of size 5 (with
root in (1, 2)) and word

u(P ) = 2 2 2 1 1 1 1 2 12 2 2 1 2 1 1 1 2 2 2 1 1 1 1 2 1 .

An oriented parallelogram (resp. unimodal, convex in direction k, con-
vex) permupolygon is an oriented parallelogram (resp. unimodal, convex in
direction k, convex) polygon which is also an oriented permupolygon.

Given an oriented parallelogram (resp. unimodal) permupolygon P , the
rooted parallelogram (resp. unimodal) representation of P obtained by as-
suming r(P ) as defined above is exactly the unique rooted representation of
P considered as oriented polygon.

Figure 5: (a) An oriented rooted unimodal polygon; (b) an oriented convex
polygon.

Proposition 1. Let u = u(P ) be the word associated with the canonical
representation of an oriented permupolygon P of size n, and let v1, v2, ...,
vdn+d be the sequence of vertices of P . Moreover, for j = 1, . . . , dn + d,
let wj = k if uj = k or uj = k̄ (equivalently wj indicates the direction of
the unit step starting from vj , regardless of the orientation of this step).
Then

i) initial part: ws �= wt for s, t = 1, ..., d, and s �= t;
ii) periodicity: wkd+j = wj for j = 1, ..., d and k = 1, ..., n.

Proof. i) Let us consider the hyperplane H containing the first d vertices
of P , i.e. containing vj , with j = 1, . . . , d. Then, by definition of
permupolygon, it contains exactly d − 1 sides of P , one for each di-
rection ei that is not orthogonal to H. Then, the entries wj of u,
corresponding to the unit steps starting from vj , for j = 1, . . . , d, must
all be different since they belong to d different sides.
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ii) wkd+j = wj for j = 1, ..., d and k = 1, ..., n. Let us suppose that this is
not true, then we take the leftmost value wk′d+j′ , with k′ �= 1, such that
wk′d+j′ �= wj′ . Let us say wk′d+j′ = e�, we look for the first k

′′
d+ j

′′
<

k′d+ j′ (there is at least one since k′ �= 1) such that wk′′d+j′′ = e�. Ob-
serve that the length of the subword wk′′d+j′′+1 . . . wk′d+j′−1 is less than
d. Indeed, if it was not the case, there would be at least d elements dif-
ferent from e� in the subword wk′′d+j′′+1 . . . wk′d+j′−1. This means that
there would be two identical values different from e� in the subword
wk′′d+j′′+1 . . . wk′d+j′−1, that is e� would not be the leftmost unit step
such that wk′d+j′ �= wj′ . Since the length of wk′′d+j′′+1 . . . wk′d+j′−1 is
less than d, the hyperplanes containing vk′′d+j′′+1 . . . vk′d+j′−1 and or-
thogonal to one of the unit steps that is not in wk′′d+j′′+1 . . . wk′d+j′−1

would not respect the definition of permupolygon. Therefore we have
a contradiction.

We will refer to the initial part w1w2 ... wd of the sequence introduced
in Proposition 1 as the trigger of the oriented permupolygon P .

Given a word u which is the canonical representation u = u(P ) of an
oriented permupolygon P , observe that the word ur, obtained by taking
the reverse of u and exchanging k with k for 1 ≤ k ≤ d, is the canonical
representation of the oriented permupolygon obtained from P by changing
the orientation. From a geometric point of view it is natural to consider that
these two words correspond to a same object, which we call an unoriented
permupolygon.

Remark 2.1. By the previous considerations, it follows that, for each se-
quence t1 t2 ... td such that ti �= tj (with i �= j and i, j ∈ {1, ..., d}), the
class of oriented permupolygons with trigger t1 t2 ... td and the class of ori-
ented permupolygons with trigger td td−1 ... t1 coincide, if thought as unori-
ented permupolygons. We choose to represent unoriented permupolygons by
means of the oriented permupolygons with trigger t1 t2 ... td, with t1 > td.

For instance, the 2-dimensional permupolygon shown in Figure 4 (c) will
be represented as a 2-dimensional oriented permupolygon with trigger 2 1.

2.2. Multi-dimensional permutations

In this section we introduce a notion of multidimensional permutations,
that we will be useful to describe properties of permupolygons. A (one-
dimensional) permutation π = (π(1), . . . , π(n)) of length n is a bijective
function from the set [n] to itself. A permutation π can be viewed as a 2-row
array made of the two sequences (1, . . . , n) and (π(1), . . . , π(n)).
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A d-dimensional permutation (briefly, d-permutation) is a sequence of d
unidimensional permutations π1, . . . , πd which can be viewed as a (d+1)-row
array made of the identity permutation and the permutations π1, . . . , πd. A
d-dimensional permutation π is denoted by π = (id, π1, . . . , πd), where the
identity permutation can be omitted. Clearly, the number of d-dimensional
permutations of length n is equal to (n!)d. A d-dimensional permutation
of length n is naturally interpreted as a collection of n points with integer
coordinates in Z

d+1. Geometrically, in each hyperplane hi,j , with i = 1, . . . , d
and j = 1, . . . , n+ 1 there is exactly one point of the permutation. Figure 6
shows a 2-dimensional permutation π = ((1, 2, 3, 4), (2, 3, 1, 4), (4, 1, 3, 2)) of
length 4.

Figure 6: A 2-permutation of length 4.

3. Permupolygons on the square lattice

In this section we consider 2-dimensional unoriented permupolygons, and
study their combinatorial properties, explaining their relations with the
classes of permutominoes, and permutominides.

Referring to Remark 2.1, a 2-dimensional unoriented permupolygon is
represented by means of a 2-dimensional oriented permupolygon with trigger
2 1, simply called permupolygon in this section.

3.1. Permupolygons and path encoding

Now we show the relation between these objects and permutations, which
explains the name permupolygon.

Proposition 2. The class of 2-dimensional permupolygons is identical to
the class of permutominides. Moreover, the class of 2-dimensional self avoid-
ing permupolygons is equivalent to the class of permutominoes.

Proof. The first assertion follows from Definitions 7 and 16 and the second
from Definitions 4 and 16.
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As we already saw in the Introduction, permutominoes and permuto-
minides can be represented by a pair of permutations. Here we recall the
definition of such a pair of permutations, given for 2-dimensional permupoly-
gons.

Definition 17. Let P be a 2-dimensional permupolygon of size n. The
first and the second components of P are two permutations of length n+1,
denoted π1(P ) and π2(P ), respectively, defined by choosing alternatively the
vertices of P , with the convention that the root r(P ) is an entry of π1(P ).
Besides, if the vertex with coordinate (i, j) is a point of π1(P ) (resp. π2(P ))
it means that π1(i) = j (resp. π2(i) = j).

Remark that π1(1) < π2(1) and π1(i) �= π2(i) for all i, and that π−1
1 ◦π2

has a unique cycle.

Now we give a unique representation of a permupolygon P in terms of
a path word encoding the word u(P ).

Definition 18. Let P be a permupolygon of size n, we define the path en-
coding s(P ) of P (briefly encoding of P ) as the word of the form (Y X)n+1 =
Y X . . . Y X︸ ︷︷ ︸

n+1

, where each X and Y is endowed of an index according to the

following rules:

i. the word starts with Yπ1(1)X1;
ii. the letter following Yj is Xπ−1

1 (j);
iii. the letter following Xi (if there is one) is Yπ2(i).

For example, the path encoding of the permupolygon in Figure 4 (c) is
Y2X1 Y5X5 Y6X4 Y3X3 Y4X6 Y1X2.

Remark 3.1. The definition of permupolygon implies that for every index
i, Xi and Yi appear precisely once in s(P ).

Proposition 3. A permupolygon P of size n is uniquely determined by its
path encoding s(P ).

Proof. This can simply be proved by showing that, using the path encoding
s(P ), we can uniquely build a permupolygon P ′, and P ′ coincides with P .
First we notice that the root r(P ) can be easily be recovered, since its
coordinates are given by the indices of the first occurrence of Y and X.
Then, starting from the root r(P ), we build a polygon P ′ as follows: if in
the reconstruction of P ′ we are considering the point (i, j) and in s(P ) we
read Ys (resp. Xt) then we have to connect point (i, j) to point (i, s) (resp.
(t, j)) using unit steps along the direction of e2 (resp. of e1). It is then clear
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that at the end of the reconstruction process we obtain a permupolygon P ′,
and that P ′ coincides with P , by construction.

The following statement clearly explains that permutominoes and per-
mutominides can be viewed as special cases of permupolygons.

Proposition 4. The class of vertically-convex (resp. horizontally-convex,
convex, directed-convex, parallelogram) permutominides is identical to the
class of permupolygons that are convex in direction 1 (resp. convex in di-
rection 2, convex, unimodal, parallelogram).

Proof. Assume the P is a vertically convex permutominide with 2k hori-
zontal steps. By definition P has at most two horizontal edges per column,
hence, starting from a leftmost point, the sequence of horizontal steps on
its boundary consists of k horizontal steps to the right (in the direction e1),
followed by k horizontal steps to left (in the direction −e1): the boundary
path is thus a 2d-permupolygon that is unimodal in direction 1. Conversely
given a 2d-permupolygon that is unimodal in direction 1 the horizontal steps
visit abscissa 1 to k + 1 and then k + 1 to 1: there are at most two steps in
each column, hence each column is connected.

The other cases (convex, unimodal, parallelogram permutominide) are
proven in a similar way.

We are going to enumerate the subclasses of parallelogram, directed-
convex, convex and vertically-convex (convex in direction 1) permupolygons
by using the encoding of a permupolygon. This leads us to recover, in a
simpler way, Equations (3), (4) at page 61, respectively for convex and
vertically-convex permutominides, as well as those for parallelogram and
directed-convex permutominides [9].

3.2. Parallelogram permupolygons on the square lattice

Proposition 5. Let P be a parallelogram permupolygon of size n; its en-
coding s(P ) is a word (Y X)n+1, such that:

1) each X and Y is endowed of an index such that for all i ∈ {1, · · · , n+1}
Xi (resp. Yi) appears exactly once;

2) it starts with Y1X1;
3) the indices of its subsequence of Yi’s form a unimodal sequence (Property

UY );
4) the indices of its subsequence ofXi’s form a unimodal sequence (Property

UX);
5) it contains the factor Yn+1Xn+1 (case y)) or Xn+1 Yn+1 (case x)).



72 Enrica Duchi et al.

Proof. Properties 1) – 5) follow from the definition of parallelogram
permupolygon and from the fact that the root of a parallelogram permupoly-
gon is always in (1, 1).

Figure 7 (y) shows a parallelogram permupolygon P of case y) with
π1(P ) = (1, 2, 4, 5, 3, 7, 6, 8, 9) and π2(P ) = (3, 1, 2, 4, 6, 5, 9, 7, 8) whose en-
coding is

s(P ) = Y1X1 Y3X5 Y6X7 Y9X9 Y8X8 Y7X6 Y5X4 Y4X3 Y2X2.

Similarly Figure 7 (x) shows a parallelogram permupolygon P of case x)
with π1(P ) = (1, 2, 3, 4, 6, 5, 8, 9, 7) and π2(P ) = (4, 1, 2, 5, 3, 7, 6, 8, 9) whose
encoding is

s(P ) = Y1X1 Y4X4 Y5X6 Y7X9 Y9X8 Y8X7 Y6X5 Y3X3 Y2X2.

Figure 7: (x) A parallelogram permupolygon P of size 8, case x). (y) A
parallelogram permupolygon P of size 8, case y).

Definition 19. Let P be a parallelogram permupolygon of size n. The upper
path encoding su(P ) of P is the subsequence of s(P ) starting from Y1 and
ending in Xn+1 (resp. Yn+1) in case y) (resp. x)).

Proposition 6. Given a parallelogram permupolygon P of size n, we have
that:

i) P is determined by its upper path encoding;
ii) referring to case y), su(P ) contains the same number of elements Xi and

Yj , as shown in Fig. 7 (y);
iii) referring to case x), in su(P ) the number of Yj is equal to the number

of Xi plus one, as shown in Fig. 7 (x).
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Proof. i) By definition of permupolygon P there are exactly two vertices in
each hyperplane hi,j = {xi = j}, {i = 1, 2}, {j = 1, . . . , n + 1}. Since
the lower path encoding of P is made up only by south and west steps,
then there is only one way to reconstruct the entire permupolygon :
starting from the last vertex of su(P ) we go west (resp. south) if we are
in the case x) (resp. y)), until we cross the hyperplane x1 = j (resp.
x1 = j) which does not contain exactly two vertices of P . Then we go
south (resp. west) until we cross the hyperplane x1 = j (resp. x2 = j)
which does not contain exactly two vertices of P , and so on.

ii) In this case su(P ) starts with Y1 and ends Xn+1. Since Yj and Xi alter-
nate, then we have the same number.

iii) In this case su(P ) starts with Y1 and ends Yn+1. Since Yj and Xi alter-
nate then the number of Yj is equal to the number of Xi plus one.

Proposition 7. Let Pn be the class of parallelogram permupolygons of size
n. For any n ≥ 1, we have

|Pn| =
1

2

(
2n

n

)
.

Proof. To prove this statement we use Propositions 5 and 6. We are going
to count the number of upper path encodings:

- referring to case y): We observe that the set of upper encodings of par-
allelogram permupolygons of type y) is exactly the set of alternating
words starting with X1Y1 and ending with Xn+1 and such that Xi and
Yj appear at most once for all 2 ≤ i, j ≤ n.
Hence to construct a parallelogram permupolygon of type y) we choose
h elements in the set {X2, X3, ..., Xn} and h elements in the set {Y2,
Y3, ..., Yn}, so we have

n−1∑
h=0

(
n− 1

h

)(
n− 1

h

)

parallelogram permupolygons of type y).
- referring to case x): As above we observe that the set of upper encodings

of parallelogram permupolygons of type x) is exactly the set of alter-
nating words starting with X1Y1 and ending with Yn+1 and such that
Xi and Yj appear at most once for all 2 ≤ i, j ≤ n.
Hence to construct a parallelogram permupolygon of type x) we choose
h − 1 elements in the set {X2, X3, ..., Xn} and h elements in the set
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{Y2, Y3, ..., Yn} with h ≥ 1, so we have

n−1∑
h=1

(
n− 1

h− 1

)(
n− 1

h

)
=

n−1∑
h=0

(
n− 1

h− 1

)(
n− 1

h

)
,

parallelogram permupolygons of type x).

It follows that:

|Pn| =
n−1∑
h=0

((
n− 1

h

)
+

(
n− 1

h− 1

))(
n− 1

h

)

=

n−1∑
h=0

(
n

h

)(
n− 1

h

)
=

1

2

(
2n

n

)
.

3.3. Directed-convex permupolygons on the square lattice

In this paragraph we deal with directed-convex permupolygons, giving a
characterization of their encoding s(P ), which leads to their enumeration.

Proposition 8. The encoding s(P ) of a directed-convex permupolygon P
of size n is uniquely represented by a word (Y X)n+1, such that:

1) each X and Y is endowed of an index such that for all i ∈ {1, · · · , n+1}
Xi (resp. Yi) appears exactly once,

2) s(P ) starts with Y1X1;
3) s(P ) satisfies Properties UY and UX (in Proposition 5).

Proof. It follows from the definition of directed-convex permupolygon and
from the fact that the root of a directed-convex permupolygon is placed in
(1, 1).

Figure 8 (a) shows a directed-convex permupolygon P with π1(P ) =
(1, 2, 3, 4, 5, 7, 9, 8, 6) and π2(P ) = (3, 1, 6, 2, 4, 5, 7, 9, 8) whose encoding is

s(P ) = Y1X1 Y3X3 Y6X9 Y8X8 Y9X7 Y7X6 Y5X5 Y4X4 Y2X2.

Proposition 9. Let Dn be the class of directed-convex permupolygons of
size n. For any n ≥ 1, we have:

|Dn| = 4n−1.
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Figure 8: (a) A directed-convex permupolygon of size 8. (b) A convex
permupolygon of size 8. (c) A vertically-convex permupolygon of size 8.

Proof. From Proposition 8 it follows that a directed-convex permupolygon
is determined by two unimodal sequences that are completely independent:
a sequence of Xi’s and a sequence of Yj ’s. Each unimodal sequence such
that each element appears exactly one time, is uniquely determined by the
choice of the elements put in increasing order. To obtain the number of
sequences of Xi’s, we consider each possible way to choose h elements in the
set {X2, X3, ..., Xn}, which will be the elements put in increasing order in
the sequence, so we obtain:

n−1∑
h=0

(
n− 1

h

)
= 2n−1.

The number of sequence of Yj ’s is obviously the same as the number of
sequences of Xi’s. It follows that:

|Dn| =
n−1∑
h=0

(
n− 1

h

)
·
n−1∑
k=0

(
n− 1

k

)
= 2n−1 · 2n−1 = 4n−1.

3.4. Convex permupolygons on the square lattice

In this paragraph we deal with the problem of enumerating convex permu-
polygons according to their size.

Proposition 10. The encoding s(P ) of a convex permupolygon P of size
n is uniquely represented by a word (Y X)n+1, such that

1) each symbol is endowed of an index such that for all i ∈ {1, · · · , n + 1}
Xi (resp. Yi) appears exactly one time,
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2) s(P ) satisfies Property UX ,
3) s(P ) starts with Yk X1 Yj with k < j;
4) if we consider the cyclic shift sy(P ) of s(P ) starting from Y1, the indices

of sequence (in sy(P )) of Yi’s form an unimodal sequence (Property
CY ).

Proof. It follows from the definition of convex permupolygon and from the
fact that the root of a convex permupolygon always has abscissa equal to 1.

Figure 8 (b) shows a convex permupolygon P with π1(P ) = (4, 2, 1, 5, 3,
8, 9, 7, 6) and π2(P ) = (5, 4, 2, 6, 1, 3, 8, 9, 7) whose encoding is

s(P ) = Y4X1 Y5X4 Y6X9 Y7X8 Y9X7 Y8X6 Y3X5 Y1X3 Y2X2.

Proposition 11. Let Cn be the class of convex permupolygons of size n.
For any n ≥ 1, we have

|Cn| = 2(n+ 1)4n−2 .

Proof. From Proposition 10 it follows that a convex permupolygon is deter-
mined by two sequences that are completely independent: a sequence of Xi’s
which is unimodal, and a sequence of Yj ’s which is a cyclic shift of a uni-
modal sequence. As usual the number of possible sequences of Xi’s is 2

n−1.
Concerning the sequence of Yj ’s, as usual, to find the number of unimodal
sequences it suffices to choose k elements in the set {Y2, Y3, ..., Yn} to arrange
in increasing order; now, we need to consider all of cyclic shifts (satisfying
Property 3 in Proposition 10) of these unimodal sequences. Clearly, the only
allowed shifts are those starting with one of the k chosen elements or Y1. So
we have:

n−1∑
k=0

(k + 1)

(
n− 1

k

)
=

n−1∑
k=0

k

(
n− 1

k

)
+

n−1∑
k=0

(
n− 1

k

)
=

=

n−1∑
k=1

(n− 1)

(
n− 2

k − 1

)
+ 2n−1 = (n− 1)2n−2 + 2n−1 = 2n−2(n+ 1).

It follows that:

|Cn| = 2n−12n−2(n+ 1) = 2(n+ 1)4n−2 .
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3.5. Vertically convex permupolygons

In this paragraph we consider the class of vertically convex permupolygons
(i.e. permupolygons that are convex in direction 1), and we obtain their
enumeration according their size. Trivially, the class of horizontally convex
permupolygons (i.e. permupolygons that are convex in direction 2) is in
bijection with the class of vertically convex permupolygons.

Proposition 12. The encoding s(P ) of a vertically convex permupolygon P
of size n is uniquely represented by a word (Y X)n+1, where each symbol is
endowed of an index such that for all i ∈ {1, · · · , n+1} Xi (resp. Yi) appears
exactly one time, which has Properties UX and the additional Property:

2) it starts with Yk X1 Yj with k < j.

Proof. It follows from the definition of vertically convex permupolygon and
from the fact that the root of a permupolygon has always abscissa equal to
1. Furthermore, since the coordinates of the root are given by the indices of
the first Y and X in s(P ), the index of the second Y cannot be less than the
ordinate of the root, otherwise we could find a vertex of the permupolygon
different from the root which is less than the root according to the usual
lexicographic order.

Figure 8 (c) shows a vertically convex permupolygon P with π1(P ) =
(4, 2, 5, 9, 3, 8, 1, 6, 7) and π2(P ) = (5, 4, 7, 2, 9, 3, 8, 1, 6) whose encoding is

s(P ) = Y4X1 Y5X3 Y7X9 Y6X8 Y1X7 Y8X6 Y3X5 Y9X4 Y2X2.

Proposition 13. Let Vn be the class of vertically convex permupolygons of
size n. For any n ≥ 1, we have

|Vn| = 2n−2 (n+ 1)! .

Proof. From Proposition 12 it follows that a vertically convex permupoly-
gon is determined by two sequences, completely independent: a unimodal
sequence of Xi’s and a sequence of Yj ’s which is a permutation, where the
second entry is greater than the first entry. Then, the number of sequences
of Xi’s is 2

n−1. On the other side, the sequences of Yj ’s are given by permu-
tations of {Y1, Y2, ..., Yn+1}, where the second entry is greater than the first

entry, so precisely (n+1)!
2 . It follows that:

|Vn| = 2n−1 (n+ 1)!

2
= 2n−2 (n+ 1)! .
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4. Permupolygons on the cubic lattice

In this section we consider 3-dimensional permupolygons, thus providing an
extension of the notion of permutomino to the 3-dimensional case. Since in
this section we will work only with 3-dimensional permupolygons, the word
3-dimensional will be omitted.

The following statement shows that – differently from what happens
in the 2-dimensional case – a 3-dimensional permupolygon is always a self
avoiding polygon: then permupolygons are an appropriate extension of the
notion of permutomino.

Proposition 14. A permupolygon is a self avoiding polygon.

Proof. If two sides of a permupolygon P intersect then we can find four
vertices of P belonging to the same plane, precisely a plane orthogonal to ei
for some i ∈ 1, 2, 3. But this is not possible for a permupolygon, which has
exactly three vertices in each plane orthogonal to ej for each j = 1, 2, 3.

Remark 4.1. We would like to emphasize one more time that Proposition
14 does not work in the 2-dimensional case, as shown in Fig. 3. This is
the reason why in the literature there is an explicit distinction between
permutominoes and permutominides.

Here, the trigger of an oriented rooted permupolygon is a permutation
of length 3, which will be usually represented by means of a permutation of
the symbols X, Y, Z, where the symbol X (resp. Y , Z) stands for 1 (resp.
2, 3).

As in the 2-dimensional case (see Remark 2.1), we need to remark
that the class of oriented permupolygons with trigger Z X Y (resp. Z Y X,
Y Z X) and the class of oriented permupolygons with trigger Y X Z (resp.
X Y Z, X Z Y ) coincide, if thought as unoriented objects.

It follows that the class of permupolygons of size n is given by the union
of the classes of permupolygons with triggers Z X Y , Z Y X, and Y Z X.

We can associate to 3-dimensional permupolygons a triple of 2-permuta-
tions.

Definition 20. Let P be a permupolygon with trigger t1 t2 t3 of size n. We
consider the sequences of vertices v1(P ), v2(P ), v3(P ) defined by choosing
alternatively the vertices of P , with the convention that the root r(P ) is an
entry of v1(P ), the next two vertices following the root along the permupoly-
gon P are respectively an entry of v2(P ) and v3(P ), and so on. Then we
define three 2-permutations of length n+ 1, denoted by π1(P ) = (π11, π12),
π2(P ) = (π21, π22) and π3(P ) = (π31, π32), as follows : π11(i) = j and
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π12(i) = k (resp. π21(i) = j, π22(i) = k and π31(i) = j, π32(i) = k) if
and only if the vertex (i, j, k) belongs to the sequence v1(P ) (resp. v2(P )
and v3(P )).

Remark 4.2. We would like to point out that π�,m, � ∈ {1, 2, 3} and m ∈
{1, 2} are indeed permutations and, as a consequence, π�(P ), � ∈ {1, 2, 3},
are 2-permutations. Indeed if we take two vertices (i, j, k) and (i′, j′, k′) of a
sequence v�(P ), then we have that i �= i′, j �= j′, and k �= k′ and consequently
π�,m, m ∈ {1, 2} are permutations. If it was not true, let us say for example
j = j′, then there would be an hyperplane orthogonal to ej containing two
vertices of the same permutation. This would contradict the definition of
permupolygon.

Remark 4.3. Permutations π1(P ), π2(P ), π3(P ) uniquely determine a
permupolygon with trigger t1 t2 t3. Indeed from permutations π1(P ), π2(P ),
π3(P ) we can easily obtain the sequence of vertices v1(P ) v2(P ), v3(P ) of
permupolygons. By convention the first vertex of v1(P ), that is v1(1) =
(1, π1,1(1), π2,1(1)), is the root of the permupolygon. By knowing the trigger
t1 t2 t3 we can find all the other vertices. Indeed, in the permupolygon P ,
each element of the sequence v1 (resp. v2, v3) must follow one of the se-
quence v3 (resp. v1, v2) along the direction et3 (resp. et1 , et2), this uniquely
determines v1, v2 and v3.

4.1. Enumeration of permupolygons with different triggers

Here we show that the choice of the minimal vertex in the lexicographic or-
der as root of a permupolygon leads to an asymmetry in the enumeration of
permupolygons with different triggers. By definition, for every permupoly-
gon P there are exactly three vertices of P belonging to plane x = 1 and
one of these vertices is the root of P . Let A = (1, y1, z1), B = (1, y2, z1) and
C = (1, y2, z2) be these three vertices lying on x = 1. Then, four situations
may occur, depending on the relations between y1, y2 and z1, z2. Figure 9
shows these four cases, where the root is represented by a white dot.

More precisely:

1. if y1 < y2 and z1 < z2 (see Fig. 9 (a)), then A is the root, and the
permupolygon has trigger Y Z X;

2. if y2 < y1 and z1 < z2 (see Fig. 9 (b)), then B is the root, and the
permupolygon has trigger Z X Y ;

3. if y2 < y1 and z2 < z1 (see Fig. 9 (c)), then C is the root, and the
permupolygon has trigger Z Y X;
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Figure 9: The four possible positions of the three vertices belonging to plane
x = 1.

4. if y1 < y2 and z2 < z1 (see Fig. 9 (d)), then A is the root, and the
permupolygon has trigger Y Z X.

Remark 4.4. By simple symmetry arguments it follows that the number of
permupolygons with trigger Z X Y is equal to the number of permupolygons
with trigger Z Y X, while the number of permupolygons with trigger Y Z X
is twice the number of those with trigger Z X Y (or Z Y X). Let us point out
that the root of a directed-convex (parallelogram) permupolygon is placed
at (1, 1, 1), then case (d) in Fig. 9 cannot arise. This is why enumeration
of directed-convex (resp. parallelogram) permupolygons does not depend on
the choice of the trigger.

In the next sections we are going to provide enumeration of parallelogram
(resp. directed-convex, convex) permupolygons with trigger Z X Y and show
that the number of convex permupolygons with trigger Y Z X is effectively
twice the number of convex permupolygons with trigger Z X Y . Finally we
obtain the enumeration of the whole class of parallelogram (resp. directed-
convex, convex) permupolygons.

4.2. Permupolygons with trigger Z X Y

Similarly to what we have done in the 2-dimensional case, we provide a path
encoding s(P ) of a 3-dimensional permupolygon, which will be useful for
enumeration.

Remark 4.5. We would like to point out that, as for the 2-dimensional case,
s(P ) encodes the vertices of P , i.e. the 2-dimensional permutations π1(P ),
π2(P ), and π3(P ). In particular, a vertex V = (i, j, k) in π2(P ) (resp. π3(P ),
π1(P )) corresponds to the subword ZkX� (resp.XiY�, YjZ�) in s(P ). Observe
that, in the case ZkX�, (resp. XiY�, YjZ�) � is the first (resp. second, third)
coordinate of the vertex V ′ = (�, j, k) (resp. V ′ = (i, �, k), V ′ = (i, j, �))
belonging to π3(P ) (resp. π1(P ), π2(P )) and following V = (i, j, k) in P .
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Then we have the following definition.

Definition 21. The path encoding (briefly encoding) s(P ) of a permupoly-
gon P with trigger Z X Y and size n, is the word (Z X Y )n+1, where each
symbol is endowed of an index according to the following rules:

i. s(P ) starts with Zπ12(1)X1 Yπ11(1);
ii. the letter following Zk is Xπ−1

32 (k);
iii. the letter following Xi is Yπ11(i);
iv. the letter following Yj (if there is one) is Zπ22(π

−1
11 (j)).

Remark 4.6. The definition of permupolygon implies that for every index
i, Xi, Yi, and Zi appear precisely once in s(P ).

Proposition 15. A permupolygon P with trigger Z X Y of size n is uniquely
determined by its path encoding s(P ).

Proof. The proof is similar to that for the 2-dimensional case : given a path
encoding s(P ), we can uniquely build a permupolygon P ′, and P ′ coincides
with P . The root r(P ′) is given by (1, π11(1), π12(1)), then we build a polygon
P ′ as follows: if in the reconstruction of P ′ we are considering the point
(i, j, k) and in s(P ) we read Zs (resp. Xt, Y�) then we have to connect the
point (i, j, k) to the point (i, j, s) (resp. (t, j, k), resp. (x, �, k)) using unit
steps along the direction of e3 (resp. e1, e2). It is then clear that at the end
of the reconstruction process we obtain a permupolygon P ′, and that P ′

coincides with P , by construction.

In the rest of this section, we will study some restricted classes of permu-
polygons with trigger Z X Y , precisely: parallelogram, directed-convex and
convex permupolygons with trigger Z X Y .

4.2.1. Parallelogram permupolygons with trigger Z X Y

Proposition 16. Let P be a parallelogram permupolygon with trigger
Z X Y and size n. Its encoding s(P ) has the following properties:

1) it is a word (Z X Y )n+1, where each symbol is endowed of an index such
that for all i ∈ {1, · · · , n + 1} Zi (resp. Xi, Yi) appears exactly one
time;

2) it starts with Z1X1 Y1;
3) the indices of its sequence of Xi’s form an unimodal sequence (Property

UX);
4) the indices of its sequence of Yi’s form an unimodal sequence (Property

UY );
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5) the indices of its sequence of Zi’s form an unimodal sequence (Property

UZ);

6) it contains the factor Xn+1 Yn+1 Zn+1 (case x)) or Yn+1 Zn+1Xn+1 (case

y)) or Zn+1Xn+1 Yn+1 (case z)).

Proof. Property 1 follows from the fact that P is a permupolygon, Property

2 descends from the fact that the root of a parallelogram permupolygon is

always (1, 1, 1), Properties 3 – 5 follow from the fact that P is parallelogram,

while 6 follows from the fact that P is a parallelogram permupolygon with

trigger Z X Y .

Figure 10 (x) shows a parallelogram permupolygon P with trigger Z X Y

of case x), with

π1(P ) = ((1, 2, 3, 4), (1, 2, 3, 4), (1, 2, 4, 3)),

π2(P ) = ((1, 2, 3, 4), (1, 2, 3, 4), (2, 3, 1, 4)),

π3(P ) = ((1, 2, 3, 4), (3, 1, 4, 2), (1, 2, 4, 3))

whose encoding is

s(P ) = Z1X1 Y1 Z2X2 Y2 Z3X4 Y4 Z4X3 Y3.

Figure 10 (y) shows a parallelogram permupolygon P with trigger Z X Y of

case y), with

π1(P ) = ((1, 2, 3, 4), (1, 4, 2, 3), (1, 2, 3, 4)),

π2(P ) = ((1, 2, 3, 4), (1, 4, 2, 3), (2, 4, 1, 3)),

π3(P ) = ((1, 2, 3, 4), (2, 1, 3, 4), (1, 2, 3, 4))

whose encoding is

s(P ) = Z1X1 Y1 Z2X2 Y4 Z4X4 Y3 Z3X3 Y2.

Figure 10 (z) shows a parallelogram permupolygon P with trigger Z X Y of

case z), with

π1(P ) = ((1, 2, 3, 4), (1, 2, 3, 4), (1, 2, 3, 4)),

π2(P ) = ((1, 2, 3, 4), (1, 2, 3, 4), (2, 4, 1, 3)),

π3(P ) = ((1, 2, 3, 4), (3, 1, 4, 2), (1, 2, 3, 4))
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whose encoding is

s(P ) = Z1X1 Y1 Z2X2 Y2 Z4X4 Y4 Z3X3 Y3.

Figure 10: (x) (resp. (y), (z)) A parallelogram permupolygon of size 3 with
trigger Z X Y , case x) (resp. y), z)). The root of the permupolygon is indi-
cated.

Definition 22. Let P be a parallelogram permupolygon with trigger Z X Y
of size n, the upper path encoding su(P ) of P is the subsequence of s(P )
starting from Z1 and ending in Zn+1 (resp. Xn+1, Yn+1) in case x) (resp. y),
z)).

Proposition 17. Given a parallelogram permupolygon P of size n, with
trigger Z X Y , we have that:

i) P is determined by its upper path encoding;
ii) referring to case z), su(P ) contains the same number of Xi’s, Yj ’s and

Zk’s (see Fig. 10 (z));
iii) referring to case x), su(P ) contains the same number of Xi’s and Yj ’s,

and the number of Zk’s is equal to the number of Xi’s plus one (see
Fig. 10 (x));

iv) referring to case y), su(P ) contains the same number of Xi’s and Zk’s,
and the number of Yj ’s is equal to the number of Xi’s minus one (see
Fig. 10 (y)).

Proof. i) By definition of 3-dimensional permupolygon P there are exactly
three vertices in each hyperplane hi,j = {xi = j}, {i = 1, 2, 3}, {j =
1, . . . , n + 1}. Since the lower path encoding of P is made up only
by south, west, and south-west steps, then there is only one way to
reconstruct the entire permupolygon : starting from the last vertex of
su(P ) we go west (resp. south-west, south) if we are in the case x),
(resp. y), z)) until we cross the hyperplane x1 = j (resp. x2 = j,
x3 = j) then we go south-west (resp. south, west) until we cross the
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hyperplane x2 = j (resp. x3 = j, x1 = j) and so on, according to the
trigger ZXY .

ii) In this case su(P ) starts with Z1 and ends with Yn+1. Since Zk, Xi, and
Yj alternate, then we have the same number.

ii) In this case su(P ) starts with Z1 and ends with Zn+1. Since Zk, Xi, and
Yj alternate, then the number of Zk is equal to the number of Xi (resp.
Yj) plus one.

iii) In this case su(P ) starts with Z1 and ends with Xn+1. Since Zk, Xi, and
Yj alternate then the number of Zj (resp. Xi) is equal to the number
of Yj plus one.

Proposition 18. Let P ′
n be the class of parallelogram permupolygons of

size n with trigger Z X Y . For any n ≥ 1, we have:

|P ′
n| =

n−1∑
h=0

(
n− 1

h

)3

+

n−1∑
h=1

(
n− 1

h

)2(n− 1

h− 1

)
+

n−1∑
h=1

(
n− 1

h

)(
n− 1

h− 1

)2

.

Proof. To prove this statement we use Propositions 16 and 17. We are going
to count the number of upper path encodings, in particular:

- referring to the case z) we can choose h elements in the set {X2, X3, ..., Xn},
h elements in the set {Y2, Y3, ..., Yn} and h elements in the set {Z2,
Z3, ..., Zn}, so we have

n−1∑
h=0

(
n− 1

h

)3

objects of type z);
- referring to the case x) we can choose h − 1 elements in the set {X2,

X3, ..., Xn}, h−1 elements in the set of {Y2, Y3, ..., Yn} and h elements
in the set {Z2, Z3, ..., Zn} with h ≥ 1, so we have

n−1∑
h=1

(
n− 1

h− 1

)2(n− 1

h

)

objects of type x);
- referring to y) we can choose h − 1 elements in the set {Y2, Y3, ..., Yn},

h elements in the set of {X2, X3, ..., Xn} and h elements in the set
{Z2, Z3, ..., Zn} with h ≥ 1, so we have

n−1∑
h=1

(
n− 1

h− 1

)(
n− 1

h

)2
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objects of type y).

It follows that:

|P ′
n| =

n−1∑
h=0

(
n− 1

h

)3

+

n−1∑
h=1

(
n− 1

h

)2(n− 1

h− 1

)
+

n−1∑
h=1

(
n− 1

h

)(
n− 1

h− 1

)2

.

4.2.2. Directed-convex permupolygons with trigger Z X Y In this
paragraph we consider directed-convex permupolygons with trigger Z X Y
and we provide their enumeration according to size.

Proposition 19. Let P be a directed-convex permupolygon with trigger
Z X Y and size n. Its encoding s(P ) is a word (Z X Y )n+1, where each
symbol is endowed of an index such that

1) for all i ∈ {1, · · · , n+ 1} Zi (resp. Xi, Yi) appears exactly once,
2) it starts with Z1X1 Y1,
3) it satisfies Properties UX , UY and UZ .

Proof. It follows from the definition of directed-convex permupolygon and
from the fact that the root of a directed-convex permupolygon is placed in
(1, 1, 1).

Figure 11 (a) shows a directed-convex permupolygon P with trigger
Z X Y where

π1(P ) = ((1, 2, 3, 4), (1, 2, 3, 4), (1, 3, 4, 2)),

π2(P ) = ((1, 2, 3, 4), (1, 2, 3, 4), (3, 4, 2, 1)),

π3(P ) = ((1, 2, 3, 4), (4, 1, 2, 3), (1, 3, 4, 2)).

The encoding of P is

s(P ) = Z1X1 Y1 Z3X2 Y2 Z4X3 Y3 Z2X4 Y4.

Proposition 20. Let D′
n be the class of directed-convex permupolygons of

size n with trigger Z X Y . For any n ≥ 1, we have:

|D′
n| = 8n−1.

Proof. The proof is similar to that of Proposition 9 for the number of
directed-convex permupolygons on the square lattice. From Proposition 19,
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Figure 11: (a) A directed-convex permupolygon of size 3 with trigger Z X Y .
(b) A convex permupolygon of size 3 with trigger Z X Y .

it follows that a directed-convex permupolygon is determined by three uni-
modal sequences, completely independent: one of Xi’s, one of Yj ’s and one
of Zk’s. As observed before, the number of sequences of Xi’s is 2n−1. Fur-
thermore, the number of sequences of Yj ’s (resp. Zk’s) is clearly the same as
the number of sequences of Xi’s. It follows:

|D′
n| = 2n−1 · 2n−1 · 2n−1 = 8n−1.

4.2.3. Convex permupolygons with trigger Z X Y This section is
dedicated to the enumeration of convex permupolygons with trigger Z X Y ,
according to their size. We apply the same technique used in the previous
section.

Proposition 21. The encoding s(P ) of a convex permupolygon P of size
n with trigger Z X Y , is a word (Z X Y )n+1, such that

1) each X, Y , Z is endowed of an index such that for all i ∈ {1, · · · , n+1}
Zi (resp. Xi, Yi) appears exactly once,

2) it satisfies Property UX ,
3) if we consider the cyclic shift sz(P ) of s(P ) starting from Z1, the indices

of sequence (in sz(P )) of Zi’s form an unimodal sequence (Property
CZ);

4) if we consider the cyclic shift sy(P ) of s(P ) starting from Y1, the indices
of sequence (in sy(P )) of Yi’s form an unimodal sequence (Property
CY );

5) it starts with Zk X1 Yj , where k �= n + 1 (resp. j �= n + 1) is an index
of the increasing (resp. decreasing) subsequence of sz(P ) (resp. sy(P ))
or k = 1 (resp. j = 1).

Proof. From the definition of convex permupolygon it follows that the en-
coding of P satisfies properties UX , CY and CZ . Instead, Property 5 is a
consequence of the choice of the root as the minimal vertex in lexicographic
order (see Fig. 9 (b)).
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Figure 11 (b) shows a convex permupolygon P with trigger Z X Y where

π1(P ) = ((1, 2, 3, 4), (3, 4, 2, 1), (2, 1, 4, 3)),

π2(P ) = ((1, 2, 3, 4), (3, 4, 2, 1), (4, 2, 3, 1)),

π3(P ) = ((1, 2, 3, 4), (4, 1, 3, 2), (2, 1, 4, 3))

whose encoding is

s(P ) = Z2X1 Y3 Z4X3 Y2 Z3X4 Y1 Z1X2 Y4.

Proposition 22. Let C′
n be the class of convex permupolygons of size n

with trigger Z X Y . For any n ≥ 1, we have

|C′
n| = 23n−5 (n+ 1)2 .

Proof. From Proposition 21 it follows that a convex permupolygon with
trigger Z X Y is determined by three sequences, completely independent:
one of Xi’s which is unimodal, one of Yj ’s and one of Zk’s which are both
cyclic shifts of unimodal sequences. The number of sequences of Xi’s is 2

n−1.
Concerning the sequence of Yj ’s, we choose k elements (for the increasing
subsequence) in the set {Y2, Y3, ..., Yn}. According to Proposition 21, we
consider the only cyclic shifts starting with one of the remaining elements
(namely those not chosen) different from Yn+1, then the number of sequences
of Yi’s is:

n−1∑
k=0

(n+ 1− k − 1)

(
n− 1

k

)
= n 2n−1 −

n−1∑
k=0

k

(
n− 1

k

)
= n 2n−1 − (n− 1) 2n−2

= 2n−2 (n+ 1).

The number of sequences of Zk’s is equal to the number of sequences of Yj ’s.
We have to observe that the chosen elements are used to form the decreasing
subsequence of Zk’s in sz(P ) (instead of the increasing one). It follows that:

|C′
n| = (2n−1) (2n−2 (n+ 1))2 = 23n−5 (n+ 1)2 .

4.3. Permupolygons with trigger Y Z X

As observed in Remark 4.4, we have that the number of permupolygons with
trigger Y Z X is twice the number of permupolygons with trigger Z X Y (or
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Z Y X). We can directly prove this fact by providing a path encoding of a

permupolygon with trigger Y Z X.

Remark 4.7. We want to point out that a vertex V = (i, j, k) in π2(P )

(resp. π3(P ), π1(P )) corresponds to the subword YjZ� (resp. ZkX�, XiY�) in

s(P ). Observe that, in the case YjZ�, (resp. ZkX�, XiY�) � is the third (resp.

first, second) coordinate of the vertex V ′ = (i, j, �), (resp. V ′ = (�, j, k), V ′ =
(i, �, k) ) belonging to π3(P ) (resp. π1(P ), π2(P )) and following V = (i, j, k)

in P .

Then we have the following definition.

Definition 23. The path encoding (briefly encoding) s(P ) of a permupoly-

gon P with trigger Y Z X of size n, is the word (Y Z X)n+1, where each

symbol is endowed of an index according to the following rules:

i. s(P ) starts with Yπ11(1) Zπ12(1)X1;

ii. the right neighbor of Yj is Zπ32(π
−1
21 (j));

iii. the right neighbor of Zk is Xπ−1
12 (k);

iv. the right neighbor of Xi (if there is one) is Yπ21(i).

Also in this case we can prove a statement similar to that of Remark 4.6

and the following is straightforward.

Proposition 23. A permupolygon with trigger Z Y X is uniquely deter-

mined by its path encoding.

4.3.1. Convex permupolygons with trigger Y Z X

Proposition 24. The encoding s(P ) of a convex permupolygon P of size

n with trigger Y Z X is a word (Y Z X)n+1, such that

1) each X, Y , Z is endowed of an index such that for all i ∈ {1, ..., n + 1}
Yi (resp. Zi, Xi) appears exactly once,

2) it satisfies Property UX , CY , CZ

3) it starts with Yj Zk X1, where j �= n + 1 is an index of the increasing

subsequence of sy(P ) or j = 1 and k ∈ {1, ..., n+ 1}.

Proof. From the definition of convex permupolygon it follows that the se-

quence of Xi’s has Property UX and the sequence of Yi’s (resp. Zi’s) has

Property CY (resp. CZ). Furthermore, Property 3 follows from the conven-

tion of the choice of the root (see Fig. 9 (a),(d)).
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Figure 12 (a) shows a convex permupolygon P with trigger Y Z X (case
(a) in Fig. 9) with

π1(P ) = ((1, 2, 3, 4), (2, 4, 1, 3), (3, 4, 1, 2)),

π2(P ) = ((1, 2, 3, 4), (4, 3, 2, 1), (3, 4, 1, 2)),

π3(P ) = ((1, 2, 3, 4), (4, 3, 2, 1), (4, 2, 3, 1)),

whose encoding is

s(P ) = Y2 Z3X1 Y4 Z4X2 Y3 Z2X4 Y1 Z1X3.

Figure 12 (b) shows a convex permupolygon P with trigger Y Z X (case
(d) in Fig. 9) with

π1(P ) = ((1, 2, 3, 4), (2, 1, 3, 4), (4, 1, 2, 3)),

π2(P ) = ((1, 2, 3, 4), (4, 2, 1, 3), (4, 1, 2, 3)),

π3(P ) = ((1, 2, 3, 4), (4, 2, 1, 3), (3, 4, 1, 2)),

whose encoding is

s(P ) = Y2 Z4X1 Y4 Z3X4 Y3 Z2X3 Y1 Z1X2.

Proposition 25. Let C′′
n be the class of convex permupolygons of size n

with trigger Y Z X. For any n ≥ 1, we have

|C′′
n| = 2 (23n−5 (n+ 1)2).

Proof. Using the same arguments as above, we have that the number of
sequences of Xi’s is 2

n−1, and the number of sequences of Yi’s is 2
n−2 (n+1).

Moreover, the sequences of Zi’s are cyclic shifts of unimodal sequences, then
their number is equal to

n−1∑
k=0

(n+ 1)

(
n− 1

k

)
= (n+ 1) 2n−1.

It follows that:

|C′′
n| = 2n−2 (2n−1(n+ 1))2 = 2 (23n−5 (n+ 1)2).
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Figure 12: Two convex permupolygons of size 3 with trigger Y Z X.

4.4. Permupolygons enumeration

Now we are ready to provide the enumeration of the whole class of parallel-

ogram (resp. directed-convex, convex) permupolygons according to size.

Proposition 26. Let Pn be the class of parallelogram permupolygons of

size n. For each n ≥ 1, we have

|Pn|=3

(
n−1∑
h=0

(
n− 1

h

)3

+

n−1∑
h=1

(
n− 1

h

)2(n− 1

h− 1

)
+

n−1∑
h=1

(
n− 1

h

)(
n− 1

h− 1

)2
)
.

Proof. It just follows from Proposition 18 and Remark 4.4.

Proposition 27. Let Dn be the class of directed-convex permupolygons of

size n. For any n ≥ 1, we have:

|Dn| = 3 · 8n−1.

Proof. Similarly to the case of parallelogram permupolygons, it just follows

from Proposition 20 and Remark 4.4.

Proposition 28. Let Cn be the class of convex permupolygons of size n.

For each n ≥ 1, we have

|Cn| = 8n−1 (n+ 1)2.

Proof. According to Proposition 22 and Remark 4.4, we have

|Cn| = 2 (23n−5 (n+ 1)2) + 2 (23n−5 (n+ 1)2) = 8n−1 (n+ 1)2.
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5. Permutations defining permupolygons

As we have mentioned in Section 4, a 3-dimensional permupolygon P of size
n is uniquely determined by a triple of 2-dimensional permutations (the com-
ponents of P ) π1(P ) = (π11, π12), π2(P ) = (π21, π22) and π3(P ) = (π31, π32)
of length n + 1. In this section we provide a characterization of the triples
of 2-dimensional permutations which define a 3-dimensional permupolygon.

Proposition 29. Let P be a permupolygon of size n with trigger Z X Y .
The three components of P have the following properties:

(1) π11, π12 and π22 satisfy:

(1.1) π22(i) �= π12(i), for each i = 1, . . . , n+ 1,

(1.2) π12(1) < π22(1),

(1.3) π11(1) < π11 ◦ π−1
22 ◦ π12(1)

(1.4) the permutation π−1
12 ◦ π22 has a unique cycle (of length n+ 1);

(2) π21 = π11;
(3) π32 = π12;
(4) π31 = π11 ◦ π−1

22 ◦ π12.

Proof. Let us start from the root and follow the sequence of vertices of P .
If we encounter a point of π1, it is connected to its neighbor – which is a
point of π2 – using only unit steps in direction e3; therefore, passing from
a point of π1 to its neighbor of π2, only the third coordinate changes and
so we have (2), namely π21 = π11. Similarly, a point of π3 is connected to a
point of π1 using only unit steps in direction e2; in this case only the second
coordinate changes and so we have (3), namely π32 = π12. Finally, we pass
from a point of π2 to its neighbor (a point of π3) using only unit steps in
direction e1, hence only the first coordinate changes and so we obtain (4).
Since the vertices of P are distinct it follows that π22(i) �= π12(i) for each
i = 1, . . . , n + 1. Moreover, r(P ) = (1, π11(1), π12(1)), then it follows that
π12(1) < π22(1), π11(1) < π31(1) = π11 ◦ π−1

22 ◦ π12(1). Furthermore, P is a
single loop, then the permutation π′, such that π′(i) = j means that in s(P )
the leftmost X following Xi has index equal to j, must have a unique cycle
of length n+1. Moreover, from Definition 21 and from (4) it follows exactly
that π′ = π−1

32 ◦ (π22 ◦ π−1
11 ) ◦ π11 = π−1

32 ◦ π22 = π−1
12 ◦ π22.

Let us prove that Condition (1) of Proposition 29 is a necessary and
sufficient condition to determine a permupolygon with trigger Z X Y . In
particular we can prove:
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Proposition 30. Given three permutations π, σ and τ of length n+1 such
that:

1. τ(i) �= σ(i) for each i = 1, . . . , n+ 1,
2. σ(1) < τ(1),
3. π(1) < π ◦ τ−1 ◦ σ(1),
4. the permutation σ−1 ◦ τ has a unique cycle of length n+ 1.

Setting π11 = π21 = π, π12 = π32 = σ, π22 = τ and π31 = π ◦ τ−1 ◦ σ, the
three 2-permutations π1 = (π11, π12), π2 = (π21, π22) and π3 = (π31, π32)
uniquely determine a permupolygon with trigger Z X Y of size n and root
in (1, π(1), σ(1)).

Proof. Using π1, π2 and π3 we can define the word s as in Definition 21.
Then we build the unique polygon P such that s(P ) = s (as in the proof of
Proposition 15). We can easily prove that P is a permupolygon with trigger
Z X Y . In fact since τ(i) �= σ(i) for each i = 1, . . . , n + 1 it follows that
the points of π1, π2 and π3 are all distinct. Moreover, the two conditions
σ(1) < τ(1) and π(1) < π ◦ τ−1 ◦ σ(1) ensure that the root is the point
(1, π(1), σ(1)). Furthermore, the constraint that the permutation σ−1 ◦ τ
has a unique n+ 1-cycle, ensures that P is a single loop.

According to Remark 4.4, the characterization in Proposition 30 is suf-
ficient to find the cardinality of the whole class of permupolygons of given
size.

Conclusion 1. We believe that is possible to extend the results of this
paper for dimension d > 3, but this will be a further work.
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