A hamilton cycle in which specified vertices are located in polar opposite

Hui Du and Kiyoshi Yoshimoto

Enomoto conjectured that if a graph G of order n has minimum degree at least n/2 + 1, then for any two vertices x and y, there is a hamilton cycle C such that $d_C(x, y) = \lfloor n/2 \rfloor$. In this paper, we show the existence of a hamilton cycle C in G such that $d_C(x, y) \ge (n-4)/3$.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 05C45. Keywords and phrases: Hamilton cycle, Dirac condition, hamilton connectedness, panconnectivity.

1. Introduction

In this paper, we consider finite simple graphs. The order and the size, i.e., the number of edges, of a graph G are denoted by |G| and ||G||, respectively. The set of all neighbours of a vertex $x \in V(G)$ is denoted by $N(x) = N_G(x)$, and $d(x) = d_G(x) = |N(x)|$ is the degree of x. The minimum degree of G is denoted by $\delta(G)$. For both the vertex set, V(G), and the edge set, E(G), of G we will eventually use G whenever the context is clear. And we denote the order and the minimum degree of G by simply n and δ , respectively. The distance $d_G(x, y)$ of two vertices x and y in G is the length of a shortest path joining x and y. For terminology and notation not defined in this paper, we refer the readers to [3]. The following result is well known.

Theorem A (Dirac [4]). If G is a 2-connected graph of n vertices with minimum degree at least δ , then there is a cycle C such that $|C| \ge \min\{2\delta, n\}$.

This result immediately implies that a graph with $\delta \ge n/2$ is hamiltonian. Ore [14] improved this as follows: a graph with

$$\sigma_2(G) = \min\{d_G(u) + d_G(v) : uv \notin E(G)\} \ge n$$

is hamiltonian.

A graph is called *pancyclic* if the graph contains cycles of all lengths from 3 to n. Bondy suggested an interesting metaconjecture that any nontrivial

condition which implies the graph is hamiltonian also implies the graph is pancyclic and showed that a graph with $\sigma_2(G) \ge n$ is pancyclic or G is isomorphic to $K_{n/2,n/2}$ in [2]. Pancyclicity is studied by many researchers and so we refer readers to the surveys [16] or [12] for details.

Ore [15] considered a property strengthening hamiltonicity and proved that a graph with $\sigma_2(G) \ge n+1$ is *hamilton-connected*, i.e., for any two vertices in G, there is a hamilton path joining the specified vertices. If the vertices are adjacent, then we can obtain a hamilton cycle from the hamilton path by adding the edge.

Alavi and Williamson [1] introduced panconnectivity. A graph is called panconnected if for any two vertices and an integer $2 \le k \le n-1$, there is a path joining the vertices of length k. Williamson [17] proved a graph with $\delta \ge n/2 + 1$ is panconnected. As in hamilton-connectivity, panconnected graphs are necessarily pancyclic. A similar result for bipartite graphs, bipanconnectivity, was given by Du et al. [5].

Enomoto conjectured the following:

Conjecture B ([6]). If G is a graph with $\delta \ge n/2 + 1$, then for any two vertices x and y in G, there is a hamilton cycle C of G such that $d_C(x, y) = \lfloor n/2 \rfloor$.

In this conjecture, the minimum degree condition is sharp because in the graph $K_{(n-3)/2} \vee K_3 \vee K_{(n-3)/2}$, the minimum degree is (n+1)/2 and $d_C(x,y) \leq (n-3)/2$ for any x and y in one of $K_{(n-3)/2}$ and any hamilton cycle C.

Motivated by Conjecture B, Kaneko and Yoshimoto [11] showed that if G is a graph with $\delta \geq n/2$ and d an integer such that $0 < d \leq n/4$, then for any vertex subset $A \subset V(G)$ with $|A| \leq n/2d$, there is a hamilton cycle C such that $d_C(x, y) \geq d$ for any x and $y \in A$. Sárkőzy and Selkow [13] generalized this result by applying the Regularity Lemma. Furthermore by using k-linkage, Faudree et al. [7] also gave interesting facts relating to the result.

On the other hand, Faudree and Li gave a natural conjecture generalizing the conjecture by Enomoto.

Conjecture C ([10]). If G is a graph with $\delta \ge n/2+1$, then for any vertices x and y and any integer $2 \le k \le n/2$, there is a hamilton cycle C of G such that $d_C(x, y) = k$.

This conjecture generalizes also the panconnectivity result by Williamson. Faudree and Li [10] proved that if the order of G is sufficiently large for k, then the statement of Conjecture C holds. Recently Faudree, Lehel and Yoshimoto improved the lower bound of n as follows:

Theorem D ([8]). If G is a graph with $\delta \ge n/2 + 1$, then for any vertices x and y and any integer $2 \le k \le n/6$, there is a hamilton cycle C of G such that $d_C(x, y) = k$.

A similar result for bipartite graphs was given by Faudree, Lehel and Yoshimoto [9].

The purpose of this paper is to propose new conjectures implying the conjecture by Enomoto and give partial results for them. A path P with ends x and y is denoted by xPy and for any two vertices u and v of P, the subpath joining u and v in P is denoted by uPv.

Conjecture 1. If G is a graph with $\delta \ge n/2+1$, then for any three vertices x, y and $z \in V(G)$, there is a hamilton path P joining x and z such that $\lfloor \frac{n}{2} \rfloor \le ||xPy|| \le \lceil \frac{n}{2} \rceil$.

This conjecture implies Conjecture B because if we choose x and z which are adjacent in G, then $P \cup \{xz\}$ is a hamilton cycle satisfying the condition in the conjecture.

Let $u \in V(G)$ and $S \subset V(G) - u$. A path joining u and some vertex in S is called a (u, S)-path. A path factor of G is a spanning subgraph of G in which all components are paths.

Let $Y = N_G(y)$. If G - y has a path factor consisting of an (x, Y)-path xPy' and a (z, Y)-path y''Qz such that $\lfloor \frac{n}{2} \rfloor - 1 \leq ||P|| \leq \lceil \frac{n}{2} \rceil - 1$, then xPy'yy''Qz is a desired hamilton path in Conjecture 1. Therefore the following conjecture also implies Conjecture **B**.

Conjecture 2. If G is a graph with $\delta \ge (n+1)/2$, then for any two vertices x and $z \in V(G)$ and $Y \subset V(G) - \{x, z\}$ with at least (n-1)/2 vertices, G has a path factor consisting of an (x, Y)-path P and a (z, Y)-path Q such that $\lfloor \frac{n-1}{2} \rfloor \le ||P|| \le \lceil \frac{n-1}{2} \rceil$.

Our main results are the following:

Theorem 1. If G is a graph with $\delta \ge (n+1)/2$, then for any two vertices x and $z \in V(G)$ and $Y \subset V(G) - \{x, z\}$ with at least (n-1)/2 vertices, there exist disjoint (x, Y)-path P and (z, Y)-path Q such that $\min\{||P||, ||Q||\} \ge n/3 - 2$.

Theorem 2. Let G be a graph with $\delta \ge (n+2)/2$ and x, y and z be any three vertices in G. If there are disjoint paths xPy and yQz such that $s = \min\{||P||, ||Q||\} \ge (n-1)/3 - 2$, then there is a hamilton path R joining x and z such that

$$\min\{||xRy||, ||yRz||\} \ge s + 1.$$

By Theorem 1 and Theorem 2, we have the following immediately.

Corollary 3. If G is a graph with $\delta \ge (n+2)/2$, then for any two vertices x and $y \in V(G)$, there is a hamilton cycle C such that $d_C(x, y) \ge (n-4)/3$.

First we give a proof of Theorem 2 in Section 2, which is easier and the proof of Theorem 1 is given in Section 3.

Notice that in Conjecture 2, it is difficult to improve the minimum degree condition and the lower bound of |Y| at the same time because $K_{(n-2)/2} \lor K_2 \lor K_{(n-2)/2}$ has no desired path factor if we choose the vertices in K_2 as $\{x, z\}$ and one of $K_{(n-2)/2}$ as Y.

Finally, we give some additional notations. For a subgraph H of G, we denote $N_G(x) \cap V(H)$ by $N_H(x)$ and its cardinality by $d_H(x)$. Let $C = v_1 v_2 \cdots v_c v_1$ be a cycle with a fixed orientation. The segment $v_i v_{i+1} \cdots v_j$ is written by $v_i C v_j$ where the subscripts are to be taken modulo c. The successor of v_i is denoted by v_i^+ and the predecessor by v_i^- . For a vertex subset A in C, we write $\{u_i^+ : u_i \in A\}$ and $\{u_i^- : u_i \in A\}$ by A^+ and A^- , respectively. For a path with fixed orientation, we define similar notations.

2. Proof of Theorem 2

Let $x, y, z \in V(G)$ and $Y = N(y) - \{x, z\}$. Then

$$\delta(G-y) \geq \frac{n+2}{2} - 1 = \frac{n}{2} = \frac{|G-y|+1}{2} \text{ and}$$
$$|Y| \geq \frac{n+2}{2} - 2 = \frac{n-2}{2} = \frac{|G-y|-1}{2}.$$

Thus by Theorem 1, in G - y, there are vertex disjoint (x, Y)-path xPy'and (z, Y)-path zQy'' both of which have length at least $s \ge \frac{n-1}{3} - 2$. Then there is the path $R_0 = xPy'yy''Qz$ in G with

$$|R_0| \ge 2(s+1) + 1 \ge 2(\frac{n-1}{3} - 2 + 1) + 1 = \frac{2n-5}{3}$$

and $\min\{d_{R_0}(x, y), d_{R_0}(y, z)\} \ge \min\{||xPy||, ||zQy||\} \ge s + 1.$

Let R be a longest path joining x and z such that

(1)
$$\min\{d_R(x,y), d_R(z,y)\} \ge s+1$$

Then

(2)
$$|R| \ge |R_0| \ge \frac{2n-5}{3}.$$

Suppose R is not a hamilton path. Since R is longest, no vertex in G - R is adjacent to consecutive vertices on R. Thus $d_R(v) \leq (|R|+1)/2 \leq n/2$ for

any $v \in G - R$. Since $d_G(v) \ge \delta \ge n/2 + 1$, there is no isolated vertex in G - R. Let $v_1 L v_2$ be a longest path in G - R and l = |L|. By (2),

(3)
$$2 \le l \le n - |R| \le \frac{n+5}{3}.$$

Let $d_i = d_R(v_i)$ for $i \in \{1, 2\}$. Since $d_{G-R}(v_i) \leq l-1$,

(4)
$$d_i \ge \frac{n+2}{2} - d_{G-R}(v_i) \ge \frac{n}{2} - l + 2.$$

Let $N_R(v_1) \cup N_R(v_2) = \{u_1, u_2, \ldots, u_p\}$ which occur in the order on *R*. Let $I_i = u_i^+ R u_{i+1}^-$ for i < p. Since *R* is longest, $|I_i| \ge 1$. If $\{v_1, v_2\} \subset N(u_i) \cup N(u_{i+1})$ and $y \notin I_i$, then $|I_i| \ge l$; otherwise we can construct a path satisfying (1) which is longer than *R*.

Suppose $M = N_R(v_1) \cap N_R(v_2) = \emptyset$. Since every interval I_i contains at least one vertex, by (4), $\sum_{i < p} |I_i| \ge p - 1$, and so

$$\begin{array}{rcl} n-l \geq |R| & \geq & \displaystyle \sum_{i < p} |I_i| + |N_R(v_1) \cup N_R(v_2)| \\ & \geq & (p-1) + p = 2(d_1 + d_2) - 1 \\ & \geq & 4(\frac{n}{2} - l + 2) - 1 = 2n - 4l + 7 \\ & \rightarrow l & \geq & \frac{n+7}{3}. \end{array}$$

This contradicts (3).

Suppose $M \neq \emptyset$, and let m = |M|.

Case 1. $N_R(v_1) = M$ or $N_R(v_2) = M$.

In this case, $m \ge n/2 - l + 2$ by (4). If $y \in M$, then there are at least m-1 intervals corresponding to vertices in M which contains at least l vertices; otherwise we can construct a path satisfying (1) which is longer than R. If y is in an interval corresponding to a vertex in M, then the interval may contain less than l vertices. Hence there are at least m-2 intervals corresponding to vertices in M which contains at least l vertices. Therefore $\sum_{i < p} |I_i| \ge (m-2)l + 1$. Thus

$$n - l \ge |R| \ge \sum_{i < p} |I_i| + |N_R(v_1) \cup N_R(v_1)|$$

$$\ge (m - 2)l + 1 + m$$

$$\ge (\frac{n}{2} - l + 2 - 2)l + 1 + \frac{n}{2} - l + 2$$

(5)
$$\rightarrow 0 \geq \frac{(l-1) n - 2l^2 + 6}{2}$$

If the equality holds, then

$$l = \frac{\pm \sqrt{n^2 - 8n + 48} + n}{4}$$

Since by (3),

$$\frac{-\sqrt{n^2 - 8n + 48} + n}{4} < 2 \le l \le \frac{n + 5}{3} < \frac{\sqrt{n^2 - 8n + 48} + n}{4}$$

the inequality (5) does not hold. This is a contradiction.

Case 2. $N_R(v_i) - M \neq \emptyset$ for each $i \in \{1, 2\}$.

There are $p-1 = d_1 + d_2 - m - 1$ intervals. Since $N_R(v_i) - M \neq \emptyset$ for each $i \in \{1, 2\}$, there are at least m + 2 - 1 intervals $u_i^+ R u_i^-$ such that $\{v_1, v_2\} \subset N(u_i) \cup N(u_{i+1})$. Therefore if $y \in N_R(v_1) \cup N_R(v_2)$, then there are at least m + 1 intervals containing at least l vertices. In the case of $y \notin N_R(v_1) \cup N_R(v_2)$, there are at least m such intervals as in Case 1. Thus,

$$\sum_{i < p} |I_i| \ge ml + (d_1 + d_2 - m - 1 - m),$$

and hence by (4)

$$\begin{array}{rcl} n-l \geq |R| & \geq & \sum_{i < p} |I_i| + |N_R(v_1) \cup N_R(v_2)| \\ & \geq & ml + (d_1 + d_2 - 2m - 1) + (d_1 + d_2 - m) \\ & \geq & ml + 4(\frac{n}{2} - l + 2) - 3m - 1 \\ & \geq & ml + 2n - 4l + 7 - 3m \\ & \rightarrow 0 & \geq & ml + n - 3l + 7 - 3m \\ & 0 & \geq & m(l - 3) + n - 3l + 7. \end{array}$$

If l = 2, then $m \ge n + 1$, a contradiction. If $l \ge 3$, then $l \ge (n + 7)/3$. This contradicts (3).

3. Proof of Theorem 1

We will use the following lemma.

40

Lemma 1. Let A and B be vertex subsets of a path L. Then there is a subpath in L joining a vertex in A and a vertex in B of length at least (|A| + |B|)/2 - 1.

Proof. Let $A \cup B = \{u_1, ..., u_l\}$ which occur in the order on *L*. By symmetry, we may assume $u_1 \in A$, and let $s = \min\{i : u_i \in B\}$ and $t = \max\{i : u_i \in B\}$. If u_1Lu_t is not a desired path, i.e., $|u_1Lu_t| < (|A| + |B|)/2$, then $|u_t^+Lu_l| > |A| - (|A| + |B|)/2 = (|A| - |B|)/2$. Thus $|u_sLu_l| > |B| + (|A| - |B|)/2 = (|A| + |B|)/2$. □

Proof of Theorem 1. Let x and z be two distinct vertices in G and $Y \subset V(G) - \{x, z\}$ with at least $\frac{n-1}{2}$ vertices. Without of generality, we may assume Y contains exactly $\lceil \frac{n-1}{2} \rceil$ vertices by ignoring several vertices in Y. We will construct disjoint (x, Y)-path P and (z, Y)-path Q such that $\min\{||P||, ||Q||\} \ge n/3 - 2$.

Since $\delta(G) \ge \frac{n+1}{2}$, G is 3-connected, and so $G' = G - \{x, z\}$ is connected.

Claim 1. If G' has a cut vertex, then G has desired paths P and Q.

Proof. Suppose G' has a cut vertex u, and let H_1 and H_2 be two components of G' - u. For any vertex $v \in H_i$ for $i \in \{1, 2\}$,

$$|H_i| - 1 \ge d_{H_i}(v) \ge d(v) - |\{x, z, u\}| \ge \frac{n+1}{2} - 3 = \frac{n-5}{2},$$

and so $|H_i| \ge \frac{n-3}{2}$. Since $|H_1| + |H_2| \le n-3$, we have $|H_1| = |H_2| = \frac{n-3}{2}$. Thus H_i is isomorphic to $K_{\frac{n-3}{2}}$ and every vertex in H_i is adjacent to all of x, z and u.

Suppose there are $y_1 \in H_i \cap Y$ and $y_2 \in H_j \cap Y$ for $\{i, j\} = \{1, 2\}$. By symmetry, we may assume $y_i \in H_i$. Let $w_i \in H_i - \{y_i\}$ and P_i be a hamilton path of H_i joining w_i and y_i for $i \in \{1, 2\}$. Then $P = xw_1P_1y_1$ and $Q = zw_2P_2y_2$ are desired paths because ||P|| = (n-3)/2 + 1 - 1 = (n-3)/2 and also ||Q|| = (n-3)/2.

Suppose $H_1 \cap Y = \emptyset$ or $H_2 \cap Y = \emptyset$. By symmetry, we may assume $H_1 \cap Y = \emptyset$, and then $Y \subset H_2 \cup \{u\}$. Since $|Y| \ge \frac{n-1}{2}$ and $|H_2| = \frac{n-3}{2}$, we have $Y = V(H_2) \cup \{u\}$. Thus for any hamilton path $w_i P_i w'_i$ of H_i for $i \in \{1, 2\}$, the paths $P = xw_1 P_1 w'_1 u$ and $Q = yw_2 P_2 w'_2$ are desired paths as in the previous case.

Thus we suppose $G' = G - \{x, z\}$ is 2-connected. Let $C = v_1 v_2 \cdots v_c v_1$ be a longest cycle of G'. By Theorem A,

(6)
$$n-2 \ge c = |C| \ge \min\{2(\delta(G)-2), n-2\} \ge n-3.$$

Claim 2. If $N_C^+(x) \cap N_C(z) = N_C^-(x) \cap N_C(z) = \emptyset$, then there are desired paths P and Q.

Proof. Suppose that $N_C^{\pm}(x) \cap N_C(z) = \emptyset$. When c = n - 2, we have $d_C(x), d_C(z) \ge \frac{n-1}{2}$, then

$$\frac{n-1}{2} \le d_C(z) \le |C| - d_C(x) \le \frac{n-3}{2},$$

a controdiction.

When c = n - 3, we have $d_C(x), d_C(z) \ge \frac{n-3}{2}$, then

$$\frac{n-3}{2} \le d_C(z) \le |C| - d_C(x) \le \frac{n-3}{2},$$

and we obtain $d_C(z) = d_C(x) = \frac{n-3}{2}$. We claim that the distance of every pair of consecutive neighbors of x along C is exactly 2. Suppose not. If v_i, v_i^+ are consecutive neighbors of x along C, then there exist a pair of consecutive neighbors of x along C such that their distance along C is more than 3, for otherwise we have $c \leq 2(d_C(x) - 1) + 1 = n - 4$. If v_i, v_j are consecutive neighbors of x along C with $v_j = v_i^{+k} (k \geq 3)$, then $v_j^- \neq v_i^+$ and $v_j^- \notin N_C^+(x)$, so $|N_C^{\pm}(x)| \geq |N_C^+(x)| + 1 \geq \frac{n-1}{2}$. Thus we have

$$\frac{n-3}{2} = d_C(z) = |N_C(z)| \le |C| - |N_C^{\pm}(x)| \le \frac{n-5}{2},$$

a controdiction.

By the same reason, we obtain that the distance of every pair of consecutive neighbors of z along C is also 2. Without loss of generality, let $N_C(x) = \{v_1, v_3, v_5, \dots, v_{n-4}\}$. If $N_C(z) = \{v_2, v_4, v_6, \dots, v_{n-3}\}$, then it contracts to $N_C^{\pm}(x) \cap N_C(z) = \emptyset$, so $N_C(z) = N_C(x) = \{v_1, v_3, v_5, \dots, v_{n-4}\}$.

Since $|Y \cap C| \ge \frac{n-3}{2}$, there are v_s and $v_t \in Y$ such that $1 \le t-s \le 2$. Then for two vertices v_i and v_{i+2} in $v_{t+\lceil \frac{n}{3}\rceil}Cv_{s-\lceil \frac{n}{3}\rceil} \cap N_C(x)$, $P = v_tCv_ix$ and $Q = zv_{i+2}Cv_s$ are desired paths.

By Claim 2, we may assume that $(N_C^+(x) \cap N_C(z)) \cup (N_C^-(x) \cap N_C(z)) \neq \emptyset$, say $N_C^+(x) \cap N_C(z) \neq \emptyset$. Without loss of generality, we may assume that $v_1 \in N_C(x)$ and $v_c \in N_C(z)$. Let

$$m_1 = d_C(x), m_2 = d_C(z), k = |Y \cap C| \text{ and } d = \lceil \frac{n}{3} \rceil - 2$$

A hamilton cycle in which specified vertices

Figure 1.

Notice that

(7)
$$\begin{cases} m_1, m_2 \ge \frac{n-1}{2} \text{ and } k = \lceil \frac{n-1}{2} \rceil & \text{if } c = n-2.\\ m_1, m_2 \ge \frac{n-3}{2} \text{ and } \lceil \frac{n-1}{2} \rceil \ge k \ge \frac{n-3}{2} & \text{if } c = n-3. \end{cases}$$

If $R = v_d C v_{c-d+1}$ contains two vertices v_i and v_j (i < j) in Y, then $P = x v_1 C v_i$ and $Q = v_j C v_c z$ are desired paths because

$$||P|| \ge d+1-1 \ge \lceil \frac{n}{3} \rceil - 2$$
 and also $||Q|| \ge \lceil \frac{n}{3} \rceil - 2$.

See Figure 1a.

Thus we suppose $R = v_d C v_{c-d+1}$ contains at most one vertex in Y. Let

$$C_S = C - R = v_{c-d+2}Cv_{d-1}.$$

Then $|C_S| = 2(d-1)$ ($\approx 2n/3$) and $|C_S \cap Y| \ge k-1$. We define intervals of length 2d - k ($\approx n/6$) in C_S as follows:

let
$$S_i = v_i C v_{i+(2d-k)}$$
 for $v_i \in v_{c-d+2} C v_{d-1-(2d-k)} = v_{c-d+2} C v_{k-d-1}$.

Then $C_S = \bigcup \{S_i : v_i \in v_{c-d+2}C_{k-d-1}\}$. Since $|C_S \cap Y| \ge k-1$ and

$$|C_S| - |S_i| = 2d - 2 - (2d - k + 1) = k - 3,$$

each interval S_i contains at least two vertices in Y. For each S_i , let

$$S'_{i} = v_{i+(2d-k)+(d-1)}Cv_{i-(d-1)} \ (\subset C - S_{i}).$$

Figure 2.

See Figure 1b. Then

(8)
$$|S'_i| = c - |S_i| - 2(d-2) = c - 4d + k + 3 \ (\approx n/6).$$

If there is an S'_i which contains distinct vertices v_s and v_t adjacent to x and z, respectively, then since $S_i \cap Y$ contains at least two vertices, by using the vertices of Y, u_s and u_t , we can construct desired paths P and Q as in the case of $|R \cap Y| \geq 2$.

Thus we suppose that there is no S'_i containing distinct vertices adjacent to x and z, respectively. Let $C_{S'} = \bigcup \{S'_i : v_i \in v_{c-d+2}Cv_{k-d-1}\}$. Then for any $v_s \in N_{C_{S'}}(x)$ and $v_t \in N_{C_{S'}}(z)$,

(9)
$$v_s = v_t \text{ or } d_C(v_s, v_t) \ge |S'_i| = c - 4d + k + 3 \ (\approx n/6).$$

Since

$$S'_{c-d+2} = v_{c-d+2+(2d-k)+(d-1)}Cv_{c-d+2-(d-1)} = v_{2d-k+1}Cv_{c-2d+3} \text{ and } S'_{k-d-1} = v_{k-d-1+(2d-k)+(d-1)}Cv_{k-d-1-(d-1)} = v_{2d-2}Cv_{c+k-2d},$$

we have

(10)
$$C_{S'} = v_{2d-k+1}Cv_{c+k-2d} \text{ and} \\ |C_{S'}| = c + k - 2d - (2d - k) = c + 2k - 4d \ (\approx 2n/3)$$

See Figure 2. Thus

$$|N_{C_{S'}}(x)| \ge |N_C(x)| - (|C| - |C_{S'}|) = m_1 - 4d + 2k \ (\approx n/6)$$
 and

(11)
$$|N_{C_{S'}}(z)| \ge m_2 - 4d + 2k.$$

Let

$$a = \min\{i : v_i \in N_{C_{S'}}(x)\}, \quad b = \max\{i : v_i \in N_{C_{S'}}(x)\}, X = v_a C v_b(\subset C_{S'}), a' = \min\{i : v_i \in N_{C_{S'}}(z)\}, \quad b' = \max\{i : v_i \in N_{C_{S'}}(z)\}, Z = v_{a'} C v_{b'}(\subset C_{S'}).$$

Then by (11),

(12)
$$\begin{aligned} |X| \ge |N_{C_{S'}}(x)| \ge m_1 - 4d + 2k \ (\approx n/6) \text{ and} \\ |Z| \ge |N_{C_{S'}}(z)| \ge m_2 - 4d + 2k. \end{aligned}$$

Later we will take a path P or Q by using X and Z.

Claim 3. $X \cap Z = \emptyset$.

Proof. First we show $N_{C_{S'}}(x) \cap N_{C_{S'}}(z) = \emptyset$. Suppose $l = |N_{C_{S'}}(x) \cap N_{C_{S'}}(z)| \ge 1$, and let $U = C_{S'} - N_{C_{S'}}(x) \cup N_{C_{S'}}(z)$.

Suppose $l < \min\{|N_{C_{S'}}(x)|, |N_{C_{S'}}(z)|\}$. Then both of $N_{C_{S'}}(x) - N_{C_{S'}}(z)$ and $N_{C_{S'}}(z) - N_{C_{S'}}(x)$ are not empty. Since, by (9), U has at least l + 1components containing at least $|S_i| - 1$ vertices, $|U| \ge (l+1)(|S'_i| - 1)$. Therefore by (10), (11), (9) and (8),

$$\begin{aligned} |C_{S'}| &= c + 2k - 4d \\ &= |N_{C_{S'}}(x)| + |N_{C_{S'}}(z)| - l + |U| \\ &\geq (m_1 - 4d + 2k) + (m_2 - 4d + 2k) - l + (l + 1)(c - 4d + k + 2) \\ &= m_1 + m_2 - 8d + 4k + l(c - 4d + k + 1) + c - 4d + k + 2 \\ &\geq m_1 + m_2 - 8d + 4k + (c - 4d + k + 1) + c - 4d + k + 2 \\ &\to 0 &\geq c - 12d + 4k + m_1 + m_2 + 3 \\ &\geq n - 3 - 12(\lceil \frac{n}{3} \rceil - 2) + 4 \times \frac{n - 3}{2} + 2 \times \frac{n - 3}{2} + 3 \\ &\geq n - 3 - 12(\lceil \frac{n + 2}{3} - 2) + 4 \times \frac{n - 3}{2} + 2 \times \frac{n - 3}{2} + 3 > 0, \end{aligned}$$

a contradiction.

Suppose $l = \min\{|N_{C_{S'}}(x)|, |N_{C_{S'}}(z)|\}$. By (11),

$$l \geq m_i - 4d + 2k \geq \frac{n-3}{2} - 4(\lceil \frac{n}{3} \rceil - 2) + 2\frac{n-3}{2}$$

$$\geq \frac{n-3}{2} - 4(\frac{n+2}{3} - 2) + 2\frac{n-3}{2}$$
$$\geq \frac{n+5}{6}.$$

Since, by (9), U has at least l-1 components containing at least $|S_i|-1$ vertices, $|U| \ge (l-1)(|S'_i| - 1)$. Thus, by (10), (11), (9) and (8),

$$\begin{aligned} |C_{S'}| &= c + 2k - 4d \\ &= |N_{C_{S'}}(x)| + |N_{C_{S'}}(z)| - l + |U| \\ &\geq (m_1 - 4d + 2k) + (m_2 - 4d + 2k) - l + (l - 1)(c - 4d + k + 2) \\ &= m_1 + m_2 - 8d + 4k + l(c - 4d + k + 1) - (c - 4d + k + 2) \\ &\rightarrow 0 \geq l(c - 4d + k + 1) + m_1 + m_2 + k - 2c - 2 \\ &\geq \frac{n + 5}{6}(n - 3 - 4(\lceil \frac{n}{3} \rceil - 2) + \frac{n - 3}{2} + 1) + 2 \times \frac{n - 3}{2} \\ &+ \frac{n - 3}{2} - 2(n - 2) - 2 \\ &\geq \frac{n + 5}{6}(n - 3 - 4(\frac{n + 2}{3} - 2) + \frac{n - 3}{2} + 1) + 2 \times \frac{n - 3}{2} \\ &+ \frac{n - 3}{2} - 2(n - 2) - 2 \\ &\geq \frac{n^2 - 2n - 35}{36} > 0 \text{ if } n > 7, \end{aligned}$$

a contradiction. Thus $N_{C_{S'}}(x) \cap N_{C_{S'}}(z) = \emptyset$. If $X \cap Z \neq \emptyset$, then $|U| \ge 2(|S'_i| - 1)$, and so again by (10), (11), (9) and (8),

$$\begin{aligned} |C_{S'}| &= c + 2k - 4d \\ &= |N_{C_{S'}}(x)| + |N_{C_{S'}}(z)| + |U| \\ &\geq (m_1 - 4d + 2k) + (m_2 - 4d + 2k) + 2(c - 4d + k + 2) \\ &\to 0 \geq m_1 + m_2 - 12d + 4k + c + 4 \\ &\geq 2 \times \frac{n - 3}{2} - 12(\lceil \frac{n}{3} \rceil - 2) + 4 \times \frac{n - 3}{2} + n - 3 + 4 \\ &\geq 2 \times \frac{n - 3}{2} - 12(\frac{n + 2}{3} - 2) + 4 \times \frac{n - 3}{2} + n - 3 + 4 > 0, \end{aligned}$$

a contradiction.

By symmetry, we may assume a < a', i.e., by (10),

$$2d - k + 1 \le a < b < a' < b' \le c + k - 2d.$$

Figure 3.

In the next claim, we show that the ends of $R = v_d C v_{c-d+1}$ are contained in X and Z, respectively. See Figure 3.

Let $T = v_{b+1}Cv_{a'-1}$ and then by (9),

(13)
$$|T| \ge |S'_i| - 1 = c - 4d + k + 2.$$

Claim 4. a < d < b < a' < c - d + 1 < b'.

Proof. If $d \leq a$, then by (12) and (13),

$$c + k - 2d \ge b' \ge a - 1 + |X| + |T| + |Z|$$

$$\ge d - 1 + (m_1 - 4d + 2k) + (c - 4d + k + 2)$$

$$+ (m_2 - 4d + 2k)$$

$$\ge m_1 + m_2 + 5k - 11d + c + 1$$

$$\to 0 \ge m_1 + m_2 + 4k - 9d + 1$$

$$\ge 2\frac{n - 3}{2} + 4\frac{n - 3}{2} - 9(\frac{n + 2}{3} - 2) + 1 > 0,$$

a contradiction. Thus d > a. Since $|X| = b - (a - 1) \ge |N_{C_{S'}}(x)| \ge m_1 - 4d + 2k$ and $a \ge 2d - k + 1$,

$$b \geq (a-1) + m_1 - 4d + 2k \geq m_1 - 4d + 2k + (2d-k+1-1)$$

= $m_1 + k - 2d \geq \frac{n-3}{2} + \frac{n-3}{2} - 2(\lceil \frac{n}{3} \rceil - 2)$
 $\geq \frac{n-3}{2} + \frac{n-3}{2} - 2(\frac{n+2}{3} - 2) = \frac{n-1}{3} > d.$

Figure 4.

Thus a < d < b. By symmetry, we have a' < c - (d - 1) < b'.

Let $v_h \in N_X(x)$ and $v_{h'} \in N_Z(z)$ be vertices which are closest to v_d and v_{c-d+1} , respectively. Possibly $v_h = v_d$ and $v_{h'} = v_{c-d+1}$. By symmetry, we may assume

(14)
$$|h - d| \le |h' - (c - d + 1)|.$$

Since $R = v_d C v_{c-d+1}$ contains at most one vertex of Y, there are at least k-1 vertices of Y in $C-R = v_{c-d+2}C v_{d-1}$.

If $v_h \in v_a C v_d$, then let v_t be the vertex in $Y \cap (C-R) = Y \cap v_{c-d+2} C v_{d-1}$ which is closest to v_{c-d+1} . See Figure 4a. Then $P = x v_h C v_t$ is a desired (x, Y)-path because

$$\begin{aligned} ||P|| &\geq |\{x\}| + |v_d C v_{c-d+2}| - 1 \geq c - 2d + 3\\ &\geq n - 3 - 2 \times \left(\frac{n+2}{3} - 2\right) + 3 = \frac{n+8}{3} > d. \end{aligned}$$

If $v_h \in v_{d+1}Cv_b$, then let v_t be the vertex in $Y \cap v_{h+d-1}Cv_c$ which is closest to v_{h+d-2} . See Figure 4b. Then $P = xv_hCv_t$ is a desired (x, Y)-path because

$$||P|| \geq |\{x\}| + |v_h C v_{h+d-1}| - 1$$

 \geq 1 + (h + d - 1) - (h - 1) - 1 = d.

Next we will construct a (z, Y)-path Q by using C - P. Since $R = v_d C v_{c-d+1}$ contains at most one vertex in Y,

(15)
$$|v_{c-d+2}Cv_{d-1} - Y| = (d-1) + (d-2) + 1 - (k-1) \le 2d - k - 1.$$

We divide our argument into two cases.

Case 1. $v_h \in v_a C v_d$.

Recall that v_t is the vertex in $Y \cap v_{c-d+2}Cv_{d-1}$ which is closest to v_{c-d+1} and $P = xv_h Cv_t$. See Figure 4a.

Claim 5. $P - x = v_h C v_t \subset C_{S'}$.

Proof. Since $v_h \in N_X(x) \subset C_{S'}$, it is enough to show $v_t \in C_{S'}$. By (15), we have

$$c - d + 2 \le t \le (c - d + 2) + |v_{c-d+2}Cv_{d-1} - Y|$$

$$\le (c - d + 2) + (2d - k - 1) = c + d - k + 1.$$

Since v_{c+k-2d} is an end of $C_{S'}$ and

$$\begin{array}{rcl} (c+k-2d)-(c+d-k+1) & \geq & 2k-3d-1 \\ & \geq & 2\times \frac{n-3}{2}-3(\frac{n+2}{3}-2)-1 \geq 0, \end{array}$$

we have

$$t \le c+d-k+1 \le c+k-2d,$$

and so $v_t \in C_{S'}$.

We will construct a (z, Y)-path Q by using vertices in $N_{C-P}(z)$ and $Y \cap (C-P)$ and Lemma 1.

Claim 6. 1. $|N_{C-P}(z)| \ge m_1 + m_2 - 4h + k$. 2. $|Y \cap (C-P)| \ge k + h - d - 2$.

Proof. If $v_h = v_d$, by (10), (12) and (13)

$$|N_{P-x}(z)| \leq |N_{C_{S'}}(z)| \leq |Z| \leq |C_{S'}| - |X| - |T|$$

$$\leq (c+2k-4d) - (m_1 - 4d + 2k) - (c-4d+k+2)$$

$$= 4d - m_1 - k - 2,$$

and so

$$|N_{C-P}(z)| \geq |N_C(z)| - |N_{P-x}(z)|$$

$$\geq m_2 - (4d - m_1 - k - 2) = m_2 + m_1 - 4d + k + 2.$$

Since $|Y \cap P| = |Y \cap R| + |\{v_t\}| \le 1 + 1 = 2$,

$$|Y \cap (C - P)| \geq k - 2.$$

Suppose $v_h \in v_a C v_{d-1}$. By the definition of v_h , x is adjacent to no vertex in $v_{h+1}Cv_{d+(d-h)-1}$. Since $v_{h+1}Cv_{d+(d-h)-1} \subset X$, by (12),

(16)
$$|X| \geq |N_{C_{S'}}(x)| + |v_{h+1}Cv_{d+(d-h)-1}| \\ \geq (m_1 - 4d + 2k) + (2d - 2h - 1) \\ = m_1 - 2d - 2h + 2k - 1.$$

Similarly, by (14), z is adjacent to no vertex in $v_{(c-d+1)-(d-h-1)} \times Cv_{(c-d+1)+(d-h-1)}$,

$$\begin{aligned} |Z| &\geq |N_{C_{S'}}(z)| + |v_{(c-d+1)-(d-h-1)}Cv_{(c-d+1)+(d-h-1)}| \\ &= |N_{C_{S'}}(z)| + |v_{c-2d+h+2}Cv_{c-h}|. \end{aligned}$$

Thus by (10), (16) and (13),

$$\begin{aligned} |N_{P-x}(z)| &\leq |N_{C_{S'}}(z)| \leq |Z| - |v_{c-2d+h+2}Cv_{c-h}| \\ &\leq |C_{S'}| - |X| - |T| - ((c-h) - (c-2d+h+1)) \\ &\leq (c+2k-4d) - (m_1 - 2d - 2h + 2k - 1) - (c-4d+k+2) \\ &-(2d-2h-1) \\ &= 4h - k - m_1. \end{aligned}$$

Thus, we have $|N_{C-P}(z)| = |N_C(z)| - |N_{P-x}| \ge m_2 + m_1 - 4h + k$. Since

$$|Y \cap P| = |Y \cap v_h C v_{d-1}| + |Y \cap R| + |\{v_t\}|$$

$$\leq (d-1-(h-1)) + 1 + 1 = d-h+2,$$

we have

$$|Y \cap (C - P)| \ge k - (d - h + 2) = k + h - d - 2.$$

By Lemma 1, there is a subpath Q_0 in C - P joining $N_{C-P}(z)$ and $Y \cap (C-P)$ of length at least $(|N_{C-P}(z)| + |Y \cap (C-P)|)/2 - 1$. Let Q be the path obtained from $Q_0 \cup \{z\}$ by adding the edge joining z and the end of Q_0 in $N_{C-P}(z)$. Then Q is a desired (z, Y)-path because

$$||Q|| \geq \frac{|N_{C-P}(z)| + |Y \cap (C-P)|}{2} - 1 + 1$$

$$\geq \frac{1}{2}((k+h-d-2) + (m_2+m_1-4h+k))$$

$$\geq \frac{1}{2}(m_2+m_1-3h-d+2k-2)$$

$$\geq \frac{1}{2}(m_2 + m_1 - 4d + 2k - 2) \geq \frac{1}{2}(2 \times \frac{n-3}{2} - 4(\lceil \frac{n}{3} \rceil - 2) + 2 \times \frac{n-3}{2} - 2) \geq \frac{1}{2}(2 \times \frac{n-3}{2} - 4(\frac{n+2}{3} - 2) + 2 \times \frac{n-3}{2} - 2) = \frac{n}{3} - \frac{4}{3} \geq d.$$

Case 2. $v_h \in v_{d+1}Cv_b$.

Recall that v_t is the vertex in $Y \cap v_{h+d-1}Cv_c$ which is closest to v_{h+d-2} and $P = xv_hCv_t$. See Figure 4b. In Case 2, $P - x = v_hCv_t$ may not be in $C_{S'}$.

Claim 7. 1. If h + (d - 1) < c - d + 2, then $P - x \subset C_{S'}$. 2. If $h + (d - 1) \ge c - d + 2$, then $|P - x - C_{S'}| \le h - \frac{n+8}{3}$.

Proof. Since $v_h \in C_{S'}$, it is enough to show $t \leq c + k - 2d$.

1. Since

$$t \le (h+d-1) + |v_{h+d-1}Cv_{d-1} - Y|$$

and by (15),

$$\begin{aligned} |v_{h+d-1}Cv_{d-1} - Y| &= |v_{h+d-1}Cv_{c-d+1} - Y| + |v_{c-d+2}Cv_{d-1} - Y| \\ &\leq ((c-d+1) - (h+d-1) + 1) + (2d-k-1) \\ &= c-h-k+2, \end{aligned}$$

we have $t \le (h + d - 1) + (c - k - h + 2) = c - k + d + 1$. Therefore

$$\begin{array}{rl} t-(c+k-2d) &\leq & (c-k+d+1)-(c+k-2d) \\ &= & 3d-2k+1 \leq 3(\frac{n+2}{3}-2)-2 \times \frac{n-3}{2}+1=0. \end{array}$$

2. Notice that

$$h \ge c - d + 2 - (d - 1) = c - 2d + 3 \ge n - 3 - 2(\frac{n + 2}{3} - 2) + 3 = \frac{n + 8}{3}.$$

If $t \leq c + k - 2d$, then $P - x \subset C_{S'}$ and so we are done. Hence we suppose t > c + k - 2d. Since by (15),

$$|v_{h+d-1}Cv_{d-1} - Y| \le |v_{c-d+2}Cv_{d-1} - Y| \le 2d - k - 1$$

we have $t \le (h + d - 1) + (2d - k - 1) = 3d + h - k - 2$. Thus

$$|P - x - C_{S'}| = t - (c + k - 2d)$$

$$\leq (3d + h - k - 2) - (c + k - 2d)$$

= $5d + h - c - 2k - 2$
 $\leq 5(\frac{n+2}{3} - 2) + h - (n-3) - 2 \times \frac{n-3}{2} - 2$
 $\leq h - \frac{n+8}{3}.$

As in Case 1, we will construct a (z, Y)-path Q by using vertices in $N_{C-P}(z)$ and $Y \cap (C-P)$ and Lemma 1.

Claim 8. 1. If h + (d - 1) < c - d + 2, then

$$|N_{C-P}(z)| \ge m_1 + m_2 - 8d + 4h + k \text{ and } |Y \cap (C-P)| \ge k - 2$$

2. If $h + (d - 1) \ge c - d + 2$, then

$$|N_{C-P}(z)| \ge m_1 + m_2 - 8d + 3h + k + \frac{n+8}{3} \text{ and}$$
$$|Y \cap (C-P)| \ge k - h - 2d + c + 1.$$

Proof. Since $v_h \in v_{d+1}Cv_b$, by (12) and (14),

(17)

$$|X| \geq |N_{C_{S'}}(x)| + |c_{d-(h-d-1)}Cv_{h-1}| \\\geq (m_1 - 4d + 2k) + (2h - 2d - 1) \\= m_1 - 6d + 2k + 2h - 1 \text{ and} \\|Z| \geq |N_{C_{S'}}(z)| + |v_{(c-d+1)-(h-d-1)}Cv_{(c-d+1)+(h-d-1)}|$$

(18)
$$|Z| \geq |N_{C_{S'}}(z)| + |v_{(c-d+1)-(h-d-1)} \cup v_{(c-d+1)+(h-d-1)} \cup v_{(c-d+1)+(h-d-1)+(h-d-1)} \cup v_{(c-d+1)+(h-d-1)} \cup v_{(c-d+1)+(h-d-1)+(h-d-1)} \cup v_{(c-d+1)+(h-d-1)$$

1. Since $P - x \subset C_{S'}$, by (18), (10), (17) and (13), we have

$$\begin{aligned} |N_{P-x}(z)| &\leq |N_{C_{S'}}(z)| \leq |Z| - (2h - 2d - 1) \\ &\leq |C_{S'}| - |X| - |T| - (2h - 2d - 1) \\ &\leq (c + 2k - 4d) - (m_1 - 6d + 2k + 2h - 1) - (c - 4d + k + 2) \\ &- (2h - 2d - 1) \\ &= 8d - 4h - m_1 - k. \end{aligned}$$

Therefore $|N_{C-P}(z)| = |N_C(z)| - |N_{P-x}(z)| \ge m_1 + m_2 - 8d + 4h + k$. Since

$$|P \cap Y| = |v_h C v_t \cap Y| = |v_h C v_{h+d-2} \cap Y| + |v_{h+d-1} C v_t \cap Y|$$

$$\leq |v_d C v_{c-d+1} \cap Y| + |v_{h+d-1} C v_t \cap Y| \leq 1 + 1 = 2,$$

we have $|Y \cap (C - P)| \ge k - 2$.

2. Since
$$|P - x - C_{S'}| \le h - (n+8)/3$$
, by (18), (10), (17) and (13),
 $|N_{P-x}(z)| \le |N_{C_{S'}}(z)| + |(P - x) - C_{S'}|$
 $\le |Z| - (2h - 2d - 1) + (h - \frac{n+8}{3})$
 $\le |C_{S'}| - |X| - |T| - (2h - 2d - 1) + (h - \frac{n+8}{3})$
 $\le (c + 2k - 4d) - (m_1 - 6d + 2k + 2h - 1) - (c - 4d + k + 2)$
 $-(2h - 2d - 1) + (h - \frac{n+8}{3})$
 $= 8d - 3h - m_1 - k - \frac{n+8}{3}.$

Thus

$$|N_{C-P}(z)| = |N_C(z)| - |N_{P-x}(z)| \ge m_1 + m_2 - 8d + 3h + k + \frac{n+8}{3}.$$

If h + d - 1 = c - d + 2, then

$$\begin{aligned} |P \cap Y| &= |v_h C v_t \cap Y| \\ &= |v_h C v_{c-d+1} \cap Y| + |v_{h+d-1} C v_t \cap Y| \le 2. \end{aligned}$$

Since h+d-1 = c-d+2, we have $|Y \cap (C-P)| \ge k-2 = k-h-2d+c+1$. If h+d-1 > c-d+2, then

$$\begin{aligned} |P \cap Y| &= |v_h C v_t \cap Y| \\ &= |v_h C v_{c-d+1} \cap Y| + |v_{c-d+2} C v_{h+d-2} \cap Y| + |v_{h+d-1} C v_t \cap Y| \\ &\leq 1 + (h+2d-c-3) + 1 = h + 2d - c - 1. \end{aligned}$$

Thus $|Y \cap (C - P)| \ge k - h - 2d + c + 1.$

By Lemma 1, there is a subpath Q_0 in C-P joining a vertex in $N_{C-P}(z)$ and a vertex in $Y \cap (C-P)$ of length at least $(|N_{C-P}(z)|+|Y \cap (C-P)|)/2-1$. Let Q be the path obtained from $Q_0 \cup \{z\}$ by adding the edge joining zand the end of Q_0 in $N_{C-P}(z)$. Then Q is a desired (z, Y)-path. In fact, if h + (d-1) < c - d + 2, as d < h,

$$||Q|| \geq \frac{|N_{C-P}(z)| + |Y \cap (C-P)|}{2} - 1 + 1$$

$$\geq \frac{1}{2}((m_1 + m_2 - 8d + 4h + k) + (k - 2))$$

Hui Du and Kiyoshi Yoshimoto

$$= \frac{1}{2}(m_1 + m_2 - 8d + 4h + 2k - 2)$$

> $\frac{1}{2}(m_1 + m_2 - 4d + 2k - 2)$
\ge $\frac{1}{2}(2 \times \frac{n-3}{2} - 4(\frac{n+2}{3} - 2) + 2 \times \frac{n-3}{2} - 2)$
= $\frac{n-4}{3} > d.$

In the case of $h + (d-1) \ge c - d + 2$,

$$\begin{aligned} ||Q|| &\geq \frac{|N_{C-P}(z)| + |Y \cap (C-P)|}{2} - 1 + 1 \\ &\geq \frac{1}{2}((m_1 + m_2 - 8d + 3h + k + \frac{n}{3} + \frac{8}{3}) + (k - h - 2d + c + 1)) \\ &= \frac{1}{2}(m_1 + m_2 - 10d + 2h + 2k + c + \frac{n}{3} + \frac{11}{3}) \\ &\geq \frac{1}{2}(m_1 + m_2 - 14d + 2k + 3c + \frac{n}{3} + \frac{29}{3}) \\ &\geq \frac{1}{2}(2 \times \frac{n - 3}{2} - 14(\frac{n + 2}{3} - 2) + 2 \times \frac{n - 3}{2} + 3(n - 3) + \frac{n}{3} + \frac{29}{3}) \\ &= \frac{n + 20}{3} > d. \end{aligned}$$

Now we complete the proof.

Acknowledgments

The authors would like to thank Professor Hao Li for his comments. The second author's work was supported by JSPS KAKENHI Grant Number 26400190.

References

- Y. Alavi and J. Williamson, *Panconnected graphs*, Studia Sci. Math. Hungar. 10 (1975) 19–22. MR0450125
- J. A. Bondy, *Pancyclic graphs*, Journal of Combinatorial Theory 11 (1971) 80–84. MR0285424
- [3] J. A. Bondy and U. S. R. Murty, *Graph Theory*, Springer. MR2368647
- G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69–81. MR0047308

- [5] H. Du, R. Faudree, J. Hulgan and K. Yoshimoto, A panconnectivity theorem for bipartite graphs, submitted.
- [6] Personal communication.
- [7] R. Faudree, R. Gould, M. Jacobson, and C. Magnant, *Distributing Vertices on Hamiltonian Cycles*, J. Graph Theory 69 (2012) 28–45. MR2864621
- [8] R. Faudree, J. Lehel and K. Yoshimoto, Note on locating pairs of vertices on a Hamiltonian cycle, Graphs and Combin 30 (2014) 887–894. MR3223951
- R. Faudree, J. Lehel and K. Yoshimoto, Locating pairs of vertices on Hamiltonian cycles in bipanconnected balanced bigraphs, submitted. MR3489715
- [10] R. Faudree and H. Li, Locating pairs of vertices on a Hamiltonian cycle, Discrete Math. 321 (2012) 2700–2706. MR2935423
- [11] A. Kaneko and K. Yoshimoto, On a Hamiltonian cycle in which specified vertices are uniformly distributed, J. Combin. Theory Ser B 81 (2001) 309–324. MR1809428
- [12] H. Li, Generalizations of Dirac's theorem in Hamiltonian graph theory A survey, Discrete Math. 313 (2013) 2034–2054. MR3073135
- [13] G. Sárkőzy and S. Selkow, Distributing vertices along a Hamiltonian cycle in Dirac graphs, Discrete Math. 308 (2008) 5757–5770. MR2459395
- [14] O. Ore, Note on hamiltonian circuits, Amer. Math Monthly 67 (1960) 55. MR0118683
- [15] O. Ore, Hamilton connected graphs, J. Math. Pures Appl. 42 (1963) 21–27. MR0146816
- [16] B. Randerath, I. Schiermeyer, M. Tewes and L. Volkmann, Vertex pancyclic graphs, Discrete Applied Math. 120 (2002) 219–237. MR1912869
- [17] J. E. Williamson, Panconnected graphs II, Period, Math. Hungar. 8 (1977) 105–116. MR0463037

HUI DU HOCCHI KARUIZAWA NAGANO 389-0113 JAPAN *E-mail address:* huidu1986@gmail.com KIYOSHI YOSHIMOTO DEPARTMENT OF MATHEMATICS COLLEGE OF SCIENCE AND TECHNOLOGY NIHON UNIVERSITY TOKYO 101-8308 JAPAN *E-mail address:* yosimoto@math.cst.nihon-u.ac.jp

Received 5 February 2015

56