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A hamilton cycle in which specified vertices are
located in polar opposite
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Enomoto conjectured that if a graph G of order n has minimum
degree at least n/2 + 1, then for any two vertices x and y, there is
a hamilton cycle C such that do(z,y) = [n/2]. In this paper, we
show the existence of a hamilton cycle C in G such that de(x,y) >
(n—4)/3.
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1. Introduction

In this paper, we consider finite simple graphs. The order and the size, i.e.,
the number of edges, of a graph G are denoted by |G| and ||G]||, respectively.
The set of all neighbours of a vertex x € V(G) is denoted by N(x) = Ng(z),
and d(z) = dg(x) = |N(z)| is the degree of . The minimum degree of G is
denoted by §(G). For both the vertex set, V(G), and the edge set, E(G), of
G we will eventually use G whenever the context is clear. And we denote the
order and the minimum degree of G by simply n and d, respectively. The
distance dg(x,y) of two vertices z and y in G is the length of a shortest path
joining x and y. For terminology and notation not defined in this paper, we
refer the readers to [3]. The following result is well known.

Theorem A (Dirac [4]). If G is a 2-connected graph of n vertices with min-
imum degree at least 0, then there is a cycle C such that |C| > min{26,n}.

This result immediately implies that a graph with § > n/2 is hamilto-
nian. Ore [14] improved this as follows: a graph with

02(G) = min{dg(u) + dg(v) : wv ¢ E(G)} > n

is hamiltonian.
A graph is called pancyclic if the graph contains cycles of all lengths from
3 to n. Bondy suggested an interesting metaconjecture that any nontrivial
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condition which implies the graph is hamiltonian also implies the graph is
pancyclic and showed that a graph with o2(G) > n is pancyclic or G is
isomorphic to K, /3,2 in [2]. Pancyclicity is studied by many researchers
and so we refer readers to the surveys [16] or [12] for details.

Ore [15] considered a property strengthening hamiltonicity and proved
that a graph with o9(G) > n + 1 is hamilton-connected, i.e., for any two
vertices in G, there is a hamilton path joining the specified vertices. If the
vertices are adjacent, then we can obtain a hamilton cycle from the hamilton
path by adding the edge.

Alavi and Williamson [1] introduced panconnectivity. A graph is called
panconnected if for any two vertices and an integer 2 < k < n — 1, there is
a path joining the vertices of length k. Williamson [17] proved a graph with
d > n/2 + 1 is panconnected. As in hamilton-connectivity, panconnected
graphs are necessarily pancyclic. A similar result for bipartite graphs, bi-
panconnectivity, was given by Du et al. [5].

Enomoto conjectured the following:

Conjecture B ([6]). If G is a graph with § > n/2 + 1, then for any two
vertices x and y in G, there is a hamilton cycle C' of G such that do(x,y) =
[n/2].

In this conjecture, the minimum degree condition is sharp because in
the graph K(,,_3)/2 V K3V K(;,_3)/2, the minimum degree is (n + 1)/2 and
do(z,y) < (n—3)/2 for any z and y in one of K(,_3)/, and any hamilton
cycle C.

Motivated by Conjecture B, Kaneko and Yoshimoto [11] showed that if
G is a graph with § > n/2 and d an integer such that 0 < d < n/4, then
for any vertex subset A C V(G) with |A| < n/2d, there is a hamilton cycle
C such that dc(z,y) > d for any x and y € A. Sarkézy and Selkow [13]
generalized this result by applying the Regularity Lemma. Furthermore by
using k-linkage, Faudree et al. [7] also gave interesting facts relating to the
result.

On the other hand, Faudree and Li gave a natural conjecture generalizing
the conjecture by Enomoto.

Conjecture C ([10]). If G is a graph with 6 > n/2+1, then for any vertices
x and y and any integer 2 < k < n/2, there is a hamilton cycle C' of G such
that de(z,y) = k.

This conjecture generalizes also the panconnectivity result by William-
son. Faudree and Li [10] proved that if the order of G is sufficiently large for
k, then the statement of Conjecture C holds. Recently Faudree, Lehel and
Yoshimoto improved the lower bound of n as follows:



A hamilton cycle in which specified vertices 37

Theorem D ([8]). If G is a graph with 6 > n/2 + 1, then for any vertices
x and y and any integer 2 < k < n/6, there is a hamilton cycle C of G such
that do(z,y) = k.

A similar result for bipartite graphs was given by Faudree, Lehel and
Yoshimoto [9].

The purpose of this paper is to propose new conjectures implying the
conjecture by Enomoto and give partial results for them. A path P with
ends z and y is denoted by x Py and for any two vertices u and v of P, the
subpath joining v and v in P is denoted by uPwv.

Conjecture 1. If G is a graph with 6 > n/2+1, then for any three vertices
x,y and z € V(Q), there is a hamilton path P joining x and z such that

5] <llzPyl[ < [51.

This conjecture implies Conjecture B because if we choose x and z which
are adjacent in G, then PU{xz} is a hamilton cycle satisfying the condition
in the conjecture.

Let u € V(G) and S C V(G) — u. A path joining u and some vertex in
S is called a (u, S)-path. A path factor of G is a spanning subgraph of G in
which all components are paths.

Let Y = Ng(y). If G — y has a path factor consisting of an (z,Y)-
path Py’ and a (z,Y)-path y"Qz such that |5] —1 < ||P|| < [5] -1,
then zPy'yy”Qz is a desired hamilton path in Conjecture 1. Therefore the
following conjecture also implies Conjecture B.

Conjecture 2. If G is a graph with 6 > (n+1)/2, then for any two vertices
x and z € V(G) and Y C V(G) — {z, 2z} with at least (n — 1)/2 vertices, G
has a path factor consisting of an (x,Y)-path P and a (z,Y)-path Q such
that | "5+] < ||IP|| < [%5H].

Our main results are the following:

Theorem 1. If G is a graph with § > (n+1)/2, then for any two vertices x
and z € V(G) and Y C V(G) —{z, 2z} with at least (n — 1)/2 vertices, there
exist disjoint (z,Y)-path P and (z,Y)-path Q such that min{||P||,||Q||} >
n/3—2.

Theorem 2. Let G be a graph with 6 > (n+2)/2 and x,y and z be any
three vertices in G. If there are disjoint paths xPy and yQz such that s =
min{||P||, ||Q||} > (n —1)/3 — 2, then there is a hamilton path R joining x
and z such that

min{||zRy||, [[yRz|[} = s + 1.

By Theorem 1 and Theorem 2, we have the following immediately.
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Corollary 3. If G is a graph with § > (n + 2)/2, then for any two vertices
x andy € V(QG), there is a hamilton cycle C' such that do(x,y) > (n—4)/3.

First we give a proof of Theorem 2 in Section 2, which is easier and the
proof of Theorem 1 is given in Section 3.

Notice that in Conjecture 2, it is difficult to improve the minimum degree
condition and the lower bound of |Y| at the same time because K, _2)/2 V
K3V K(;,_2)/2 has no desired path factor if we choose the vertices in K3 as
{z, 2} and one of K(,,_5)/ as Y.

Finally, we give some additional notations. For a subgraph H of G, we
denote Ng(z) N V(H) by Np(x) and its cardinality by dg(z). Let C =
v1v2 - - VU1 be a cycle with a fixed orientation. The segment v;v;41---v;
is written by v;Cv; where the subscripts are to be taken modulo c. The
successor of v; is denoted by v;" and the predecessor by v; . For a vertex
subset A in C, we write {u; : u; € A} and {u; :u; € A} by AT and A,
respectively. For a path with fixed orientation, we define similar notations.

2. Proof of Theorem 2
Let z,y,z € V(G) and Y = N(y) — {x, z}. Then

n+2 _]G—yH—la

n
oG — > 1l=—="2"_ " and
G-y =2 — 2 2 .
2 -2 —yl—1
v > nt2 ,_n _ G-y .
2 2 2

Thus by Theorem 1, in G — y, there are vertex disjoint (z,Y)-path Py’
and (z,Y)-path 2Qy"” both of which have length at least s > "T_l — 2. Then
there is the path Ry = 2Py'yy"Qz in G with

n—1 2n -5
-24+1)+1=
3 1+ 3

and min{dg, (z,9), dr, (4, 2)} = min{|lePyll,|[2Qy|l} > s + 1.
Let R be a longest path joining « and z such that

|Rol >2(s+1)+1>2(

(1) min{dr(z,y),dr(z,y)} > s+ 1.
Then

2n — 5
(2) |R| > |Ro| > .

Suppose R is not a hamilton path. Since R is longest, no vertex in G — R is
adjacent to consecutive vertices on R. Thus dr(v) < (|R| +1)/2 < n/2 for
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any v € G — R. Since dg(v) > § > n/2 + 1, there is no isolated vertex in
G — R. Let v1 Lvy be a longest path in G — R and [ = |L|. By (2),

(3) 2§l§n—|R|§n;5.

Let d; = dr(v;) for ¢ € {1,2}. Since dg_g(v;) <1 —1,

n+2 n
(4) di > —dg-r(vi) > 5 ~it2
Let Ng(v1) U Ng(v2) = {u1,us,...,u,} which occur in the order on
R. Let I; = uf Ru;,, for i < p. Since R is longest, || > 1. If {v1,v2} C

N(u;)UN (uit1) and y ¢ I;, then |I;| > [; otherwise we can construct a path
satisfying (1) which is longer than R.

Suppose M = Ng(v1) N Ng(v2) = . Since every interval I; contains at
least one vertex, by (4), >, [l > p— 1, and so
n—1>|R| > ) |+ |Ng(v1) UNg(v2)]

i<p

> (p—1)+p=2(di+ds)—1
> 4(g—l+2)—1:2n—4l+7
n+7
| > .
=T

This contradicts (3).
Suppose M # ), and let m = |M].

Case 1. Nr(v1) = M or Ng(va) = M.

In this case, m > n/2 — 1+ 2 by (4). If y € M, then there are at least
m — 1 intervals corresponding to vertices in M which contains at least [
vertices; otherwise we can construct a path satisfying (1) which is longer
than R. If y is in an interval corresponding to a vertex in M, then the
interval may contain less than [ vertices. Hence there are at least m — 2
intervals corresponding to vertices in M which contains at least [ vertices.

Therefore >, |I;| > (m —2)l + 1. Thus

n—1>|R > Y |LI+|Ng(v1) U Ng(v1)l
1<p
> (m—=2)+14+m
> (@—l+2—2)l+1+g—l+2

2
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(I-1)n—-202+6
5 .

(5) —0

If the equality holds, then

I +vn?2 —8n+48+n

4
Since by (3),
_ 2 _ 4 2 _ 4
vn 8:—1— 8+n<2§l§n;—5<\/n 87;—1— 8+n7

the inequality (5) does not hold. This is a contradiction.

Case 2. Ng(v;) — M # () for each i € {1,2}.

There are p — 1 = d; + da — m — 1 intervals. Since Ng(v;)) — M # 0
for each i € {1,2}, there are at least m + 2 — 1 intervals u;” Ru; such that
{v1,v2} C N(u;) U N(uj+1). Therefore if y € Nr(vi) U Ng(v2), then there
are at least m + 1 intervals containing at least [ vertices. In the case of
y ¢ Ngr(v1)UNg(v2), there are at least m such intervals as in Case 1. Thus,

S OIL| = mi+ (dy +dy —m —1—m),

1<p
and hence by (4)
n—1>|R| > Z‘Ii|+‘NR(U1)UNR(U2)‘
i<p
> ml+ (di+dy—2m —1)+ (dy + d2 — m)
> ml—|—4(g—l—|—2)—3m—l
> ml+2n—41+7—3m
—0 > ml+n—-3l+7—-3m
0 > m(l-3)+n—-3l+T.

If [ = 2, then m > n + 1, a contradiction. If [ > 3, then | > (n + 7)/3. This
contradicts (3). [ ]

3. Proof of Theorem 1

We will use the following lemma.



A hamilton cycle in which specified vertices 41

Lemma 1. Let A and B be vertex subsets of a path L. Then there is a
subpath in L joining a vertexr in A and a vertex in B of length at least

(1Al +1B])/2 - 1.

Proof. Let AUB = {uy,...,u;} which occur in the order on L. By symmetry,
we may assume u; € A, and let s = min{i : w; € B} and t = max{i :
u; € B}. If uyLuy is not a desired path, i.e., |uiLus| < (JA| + |B])/2, then
[ui" Lug| > |A] = (|Al + |B)/2 = (|A| — |B])/2. Thus |usLu| > |B] + (A —
1Bl)/2 = (Al +|B])/2. O

Proof of Theorem 1. Let x and z be two distinct vertices in G and Y C
V(G) — {x, 2} with at least %51 vertices. Without of generality, we may
assume Y contains exactly ("T_l] vertices by ignoring several vertices in
Y. We will construct disjoint (z,Y)-path P and (z,Y)-path @ such that
min{|| P[], [|QI|} = n/3 — 2.

Since §(G) > 2L, G is 3-connected, and so G’ = G—{z, z} is connected.
Claim 1. If G’ has a cut vertezx, then G has desired paths P and Q).

Proof. Suppose G’ has a cut vertex u, and let H; and Hs be two components
of G’ — u. For any vertex v € H; for i € {1,2},

n+1 n—>5
_3=
2 M

|H;| —1>dp,(v) > d(v) — {z,z,u}| >

and so |H;| > %52, Since |H1| + |Ha| < n — 3, we have |H| = |Ha| = 253,
Thus H; is isomorphic to K»-3 and every vertex in H; is adjacent to all of
xz,z and wu. ’

Suppose there are y; € H;NY and y» € H; NY for {i,j} = {1,2}.
By symmetry, we may assume y; € H;. Let w; € H; — {y;} and P; be a
hamilton path of H; joining w; and y; for ¢ € {1,2}. Then P = zw; Pyy; and
Q = 2wy Poys are desired paths because ||P|| = (n—3)/2+1—1= (n—3)/2
and also ||Q|| = (n — 3)/2.

Suppose H1 NY = () or H,NY = (. By symmetry, we may assume
HiNY =0, and then Y C Ho U {u}. Since [Y| > 271 and |Hy| = 253,
we have Y = V(Hz) U {u}. Thus for any hamilton path w;Pyw] of H; for
i € {1,2}, the paths P = zw; Piwju and Q = ywyPywl, are desired paths as
in the previous case. O

Thus we suppose G' = G — {z, z} is 2-connected. Let C = vjvy - - v.v1
be a longest cycle of G’. By Theorem A,

(6) n—22>c=|C|>min{2(6(G) —2),n—2} >n—3.
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Claim 2. If N} (z) N Ne¢(z) = N (z) N Ne(z) = 0, then there are desired
paths P and Q).

Proof. Suppose that NZ (z) N No(z) =
When ¢ =n — 2, we have d¢(z),dc(z) > "Tfl, then

-1 _
m S do(e) £ 10] - dew) < 1,

a controdiction.
When ¢ =n — 3, we have do(z),dc(z) > ”T_g, then

"2 <o) <10) - dee) < "

and we obtain do(z) = de(z) = 252, We claim that the distance of every
pair of consecutive neighbors of x along C' is exactly 2. Suppose not. If
vi,v;r are consecutive neighbors of x along C, then there exist a pair of
consecutive neighbors of z along C such that their distance along C' is more
than 3, for otherwise we have ¢ < 2(dg(z) — 1) +1 = n — 4. If v;,v; are
consecutive neighbors of x along C' with v; = vi+ k(k > 3), then vy #* vf and
v; ¢ N (z), so ]Né[(a:)] > |NZ ()] +1 > 251, Thus we have

n—3
2

n—>5

= dc(2) = [Ne(2)] < 10| = ING (2)] < —5—,

a controdiction.

By the same reason, we obtain that the distance of every pair of con-
secutive neighbors of z along C' is also 2. Without loss of generality, let
No(x) = {v1,v3,v5, - ,vp—a}. If No(2) = {va,v4,v6, - ,vp—3}, then it
contracts to NZ (z)NNe(z) = 0, so No(2) = Ne(x) = {v1,v3,05, -+, Up_a}-

Since Y NC| > ”7_3, there are vs and vy € Y such that 1 <t —s < 2.
Then for two vertices v; and v; 49 in th%WCvS_[%} N Ne(z), P = v.Cvx
and @) = zv;42Cv, are desired paths. O

By Claim 2, we may assume that (N, (z)NNe(2))U(NG (2)NNe(z)) # 0,
say N (z) N Ne(z) # 0. Without loss of generality, we may assume that
v1 € No(x) and v, € No(z). Let

my = do(x), mo = do(2), k=Y N C| and d = [%1 —2.



A hamilton cycle in which specified vertices 43

vi
/m
Cs Si

Vi+(2d-k)
Ve-d+2 Vd-1
Ve-d+1 Vd
R @ (O

Vi+(2d-k)+(d-1)

Figure 1.
Notice that
—1 1
ml,mQZn—andk:[n 1 ifc=n-—2.
(7) 2 2
n—3 n—1 n—3 .
my, mo > and | 5 1>k> 5 ife=n-3.

If R = vqCvc_q4+1 contains two vertices v; and v; (¢ < j) in Y, then
P = 2v1Cv; and Q = vjCv.z are desired paths because

1P| >d+1-1> [%1 — 2 and also [|Q| > (%1 —2.

See Figure 1la.
Thus we suppose R = v4Cv.—441 contains at most one vertex in Y. Let

CS =C-R= Uc—d+2CUd—1'

Then |Cs| =2(d—1) (= 2n/3) and |CsNY| > k — 1. We define intervals of
length 2d — k (= n/6) in Cg as follows:

let S; = viCViy (24— for vi € ve—g12CVg_1_(2a—k) = Ve—d+2CVE—d—1
Then Cs = |J{S; : vi € ve—g42Ck—q—1}. Since |CsNY| >k — 1 and
|ICs| —|Si|=2d—2—(2d—k+1) =k — 3,
each interval S; contains at least two vertices in Y. For each 5;, let

Si = Vit (2d—k)+(d-1)CVi—(a-1) (C C = S)).
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Vetk-2d

Figure 2.

See Figure 1b. Then
(8) |S!| =c—1Si| —2(d—2)=c—4d + k+3 (=~ n/6).

If there is an S, which contains distinct vertices vs and v; adjacent to z and
z, respectively, then since S; MY contains at least two vertices, by using the
vertices of Y, us and us, we can construct desired paths P and @) as in the
case of |[RNY| > 2.

Thus we suppose that there is no S/ containing distinct vertices adjacent
to x and z, respectively. Let Cs» = |J{S] : v; € ve—g12CVk_q—1}. Then for
any vs € N¢g, () and v, € Ng, (2),

(9) vs = v or do(vs,vp) > |Si| =c—4d+ k + 3 (=~ n/6).
Since

/
c—dt+2 = Ve—dt2+(2d—k)+(d—1)CVc—dy2—(d—1) = V2d—k+1CVc—2d+3 and
/

Sh—d—1 = vk—d—l+(2d—k)+(d—l)Cvk—d—l—(d—l) = v2q—2CVc1 k24,

we have

Csr = v24—k+1CVc4—2q and
(10) Cor| = c+ k —2d — (2d — k) = ¢ + 2k — 4d (~ 2n/3).

See Figure 2. Thus

[Neg, (x)] = [Ne ()] = (IC] = |Cs[) = m1 — 4d + 2k (= n/6) and
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(11)  |Ne (2)] = mo — 4d + 2k.
Let

=min{i:v; € Ne,, (v)}, b=max{i:v; € No, (x)},
= vanb(C CS/),

=min{i : v; € Ne,, (2)}, b =max{i:v; € Ne,(2)},
Z = vy Cuy (C Cg/).

8. = o

Then by (11),

| X| > |Ney, ()] > m1 —4d + 2k (= n/6) and
(12) |Z] = [Ny, (2)| =2 ma — 4d + 2k.

Later we will take a path P or @) by using X and Z.
Claim 3. XN Z = 0.

Proof. First we show N¢, (z) N N¢g, (2) = 0. Suppose | = |N¢,, (x) N
Nc. (2)] > 1, and let U = Cs» — N¢,, () U N¢, (2).

Suppose | < min{|N¢,, (z)|, |Nc,, (2)|}. Then both of N¢, () — Ne,, (2)
and Ncg, (2) — N, (z) are not empty. Since, by (9), U has at least [ + 1
components containing at least |S;| — 1 vertices, |U| > (I + 1)(]S} — 1).
Therefore by (10), (11), (9) and (8),

|Cs/| = c+2k—4d

= [Neg, (@) +[Neg, (2)] = 1+ U]

> (my —4d + 2k) + (mg — 4d + 2k) — 1+ (1 + 1)(c — 4d + k + 2)

= my+mg—8d+4k+Il(c—4d+k+1)+c—4d+k+2

> mi+mo—8d+4k+(c—4d+k+1)+c—A4d+k+2
—0 > c—12d+4k+m1+m9o+3

> n—3—12([§1—2)+4xn;3+2xn;3+3

2 _ _

> onogo12(" 2 gy a3 03 s

a contradiction.
Suppose | = min{|N¢,, (z)], |Nc., (2)|}. By (11),
n—3 n—3

42— 2) 42

l > i —4d + 2k >
= m + = 3 5
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n—3 n+ 2 n—3
> —4 -2 2
- 2 ( 3 )+ 2
S n+5.
- 6

Since, by (9), U has at least [ — 1 components containing at least |.S;| — 1
vertices, |U| > (I —1)(|S}| — 1). Thus, by (10), (11), (9) and (8),

|CS/’:C—|—2/€—4d
= Ny, ()] + INey, (2)] = 1+ U]
> (my — 4d + 2k) + (my — 4d + 2k) — 1+ (1 — 1)(c — 4d + k + 2)
=my+me—8d+4k+1l(c—4d+k+1)—(c—4d+k+2)
—>02l(c—4d+k:—|—1)+m1+m2+k—2c—2

SR PO SV 405 NP S k. SISV P SVl
6 3 2

+ 3 o2y —2

n+5 n+ 2 n—3 n—3

> 3.4 9 1) +2

>~ (n—3—4( 3 ) + 5+ )+2x 5
F3 o9y

n? —2n — 35
>
- 36
a contradiction. Thus N¢, (z) N N, (2) = 0.
If XNZ #0, then |U| > 2(|S}| — 1), and so again by (10), (11), (9) and
(8),
|CSI| = c+2k—4d
= |Neg (2)] + [Ney, (2)] + U]
(my — 4d + 2k) + (mg — 4d + 2k) + 2(c — 4d + k + 2)
mi1+mo —12d + 4k +c+ 4
”_3712([g172)+4>< tn-3+4
n—3 n+2 n—3

> 2 —12 —2)+4
> 2x o1t g ax

>0ifn>7,

v v

n—3

Y

2 X

+n—-3+4>0,

a contradiction. O

By symmetry, we may assume a < o, i.e., by (10),

2d—k+1<a<b<d <b <c+k-—2d.
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Vetk-2d

Figure 3.

In the next claim, we show that the ends of R = v4Cv._411 are contained
in X and Z, respectively. See Figure 3.
Let T' = vp41Cve—1 and then by (9),

(13) IT| > |S]| —1=c—4d+k + 2.

Claim4. a<d<b<d <c—d+1<V.
Proof. 1f d < a, then by (12) and (13),

ct+k—2d>b>a—-1+|X|+|T|+1|Z
>d— 1+ (my —4d +2k) + (c — 4d + k + 2)
+ (mg — 4d + 2k)
>mi+mg+5k—11d+c+1
—-0>my+mo+4k —9d+1
3 n—3 n+2

/”L_
> 2 4 -9
- 2 * 2 ( 3

-2)+1>0,

a contradiction. Thus d > a. Since |X| =b— (a — 1) > |N¢,, (z)] > m1 —
4d+ 2k and a >2d —k+1,

b > (a—1)+my—4d+2k>m; —4d+2k+(2d—k+1-1)
n—3 n-—3 n

n—3 n-—3 n+ 2 n—1
-2 —-2)= d.
- 2 + 2 ( 3 ) 3 >
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Figure 4.

Thus a < d < b. By symmetry, we have o/ <c— (d—1) <¥'. O

Let v, € Nx(z) and vy € Nz(z) be vertices which are closest to vy and
Ve—d+1, Tespectively. Possibly vy, = vg and vy = ve—gq41. By symmetry, we
may assume

(14) |h —d| <|h' — (c—d+1)|.

Since R = v4Cv._q+1 contains at most one vertex of Y, there are at
least k — 1 vertices of Y in C' — R = v._g12Cvq_1.

If v, € v,Cvg, then let v; be the vertex in YN(C'—R) = Y Nue_g12Cv04-1
which is closest to v._4y1. See Figure 4a. Then P = zv;,Cuv; is a desired
(z,Y)-path because

1Pl = [z} +[vaCve—are| =1 > c—2d+3

n—+ 2 n—+8

> n—3-2x( ~2)+3=

> d.

If vy, € vgy1Cup, then let v; be the vertex in Y N vpyq—1Cv. which is
closest to vp4q—2. See Figure 4b. Then P = zv,Cv; is a desired (z,Y)-path
because

1P| Kz} + lonConya-r| =1

>
> 14+ (h+d—1)—(h—1)—1=4d.

Next we will construct a (z,Y)-path @ by using C — P. Since R =
vqCV.—_q11 contains at most one vertex in Y,

(15) |ve—qsaCvg1 —Y|= (d=1D+d-2)+1—(k—1)<2d—k—1.
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We divide our argument into two cases.

Case 1. vy, € v,Cvy4.
Recall that vy is the vertex in Y Nwv._g42Cv4—1 which is closest to ve—q+1
and P = zvpCv;. See Figure 4a.

Claim 5. P —z = v,Cv; C Cgr.
Proof. Since vy, € Nx(z) C Cg, it is enough to show v, € Cg. By (15), we

have

c—d+2<t (c—d+2)+ |ve—qr2Cv4_1 = Y|

<
< (c—d+2)+@2d—k—1)=c+d—k+1.

Since v.y;_oq4 is an end of Cg» and

(c+k—2d)— (c+d—k+1) > 2k—3d—1

v
N
X

we have
t<c+d—-k+1<c+k—2d,
and so vy € Cg. O

We will construct a (z,Y)-path @ by using vertices in No_p(z) and
Y N(C — P) and Lemma 1.

Claim 6. 1. |Nc_p(z)| >mq+mo —4h + k.
2. YN (C—P)|>k+h—d—2.

Proof. 1f v, = vq, by (10), (12) and (13)
INp—2(2)] < [Nog (2)] < 2] < |Cs| = | X[ = [T

< (c+2k—4d) — (m1 —4d+2k) — (c—4d+ k +2)
= 4d—mq1 — k-2,

and so

[Ne—p(2)] [Ne(2)] = [Np—a(2)]

>
> mo— (4d—m1—k—2)=ma+mg —4d+k + 2.
Since [Y NPl =Y NR|+ [{v}| <1+1=2,

YnC-pr)| > k-2
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Suppose vy, € v,Cvy_1. By the definition of vy, x is adjacent to no vertex
in v41CV44(4—p)—1- Since vy 110V (g—n)—1 C X, by (12),

X > |Nco ()] + [vn+1CVay (a—n)-1]
> (m1 — 4d + 2k) + (2d — 2h — 1)

(16) my —2d — 2h + 2k — 1.

Similarly, by (14), z is adjacent to no vertex in V(e—d4+1)—(d—h—1) X
CV(c—dt1)+(d—h—1)s

1Z| > |Ncs ()] + [ve—dr1)—(d—n-1)CV(c—dr1)+(d—h—1)]
= ’Ncs/ (2)| + |ve—2d4h+2CVc—n].

Thus by (10), (16) and (13),

INp—(2)] < [Neg (2)| < 1Z] = |ve—2d41h12C 4]
< |Cs|—|X|—=|T|—((c=h)—(c=2d+ h+1))
< (e+2k—4d)—(m1 —2d—2h+2k—1)— (c—4d+ k+2)
—(2d —2h —1)
= 4h—k:—m1.
Thus, we have |[No_p(z)| = |[No(2)| — |[Np—z| = mo + m1 — 4h + k.
Since
YNnP| = |Yﬂthvd,1\ + ‘Y NR| + |{vt}|
< (d=1—(h=1)+14+41=d—h+2,
we have

YN({C—-P)|>k—(d—h+2)=k+h—d-—2. O

By Lemma 1, there is a subpath @y in C' — P joining N¢_p(z) and
Y N (C — P) of length at least (|[Ne—p(2)|+|Y N(C — P)|)/2—1. Let @ be
the path obtained from Qo U {z} by adding the edge joining z and the end
of Qo in No_p(z). Then @Q is a desired (z,Y)-path because

[No—p(2)|+ Y N (C = P)|

Ql > ! 141
1
> 5((k+h—d—2)+(mg+m1—4h+k))
1
> —(m2—|—m1—3h—d—|—2k:—2)

2
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1
> §(m2—|—m1—4d—|—2k—2)

1 _ _
> 5(2><”23—4((21—2)+2><” 39

1 n—3 n+ 2 n—3 n 4
> (2 4 —9) 42 _="_2>4
= (x5 (= ) +2x )=3732

Case 2. vy, € v441Cvy.

Recall that v, is the vertex in Y Nwvy44-1Cv. which is closest to vj,+q—2
and P = xvpCus. See Figure 4b. In Case 2, P — x = v, Cvy may not be in
Cg.

Claim 7. 1. Ifh+(d—1)<c—d+2, then P—x C Cg.
2. If h+(d—1) > c—d+2, then |[P —z — Cg/| < h — 2.

Proof. Since v, € Cg, it is enough to show t < ¢+ k — 2d.

1. Since
t<(h+d—1)+|vprg-1Cvq-1 = Y|
and by (15),
[Vh4d-1Cv4—1 = Y| = |vh4d-1CVc—ar1 — Y|+ [Ve—gr2Cv4-1 = Y|
< ((c—d+1)—(htd—1)+1)+(2d—k—1)
= c—h—k+2,

we have t < (h+d—1)4 (¢c—k—h+2)=c—k+d+ 1. Therefore

t—(c+k—-2d) < (c—k+d+1)—(c+k—2d)

— sd—ok+1<3(tEZ gy a3 1
2. Notice that
2
h>c—dt2—(d-1)=c-2d+3>n-3-2"L —2)+3:”‘;8.

Ift <c+k—2d, then P —x C Cg and so we are done. Hence we suppose
t > ¢+ k — 2d. Since by (15),

[Vt d-1C0va—1 = Y| < [ve—g2Crvg1 — Y] <2d -k — 1,
we have t < (h+d—1)4+(2d—k—1)=3d+ h — k — 2. Thus

P—2—Cg|=t—(c+k—2d)
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<(3d+h—k—2)—(c+k—2d)
=5d+h—c—2k—2

2 _
n ) i h—(n—3)—2x 3

n+8
< h— .
- 3

-2

< 5(

As in Case 1, we will construct a (z,Y)-path @ by using vertices in

Nc_p(z) and Y N (C — P) and Lemma 1.
Claim 8. 1. Ifh+(d—1) <c—d+2, then

INc—p(2)| > m1+mo—8d+4h+k and Y N (C —P)| > k —2.

2. Ifh+(d—1)>c—d+2, then

n+8

INc—p(2)| > mi1+mo —8d+3h+Fk+ and

YN(C=P)|>k—h—2d+c+1.

Proof. Since vp, € v441Cup, by (12) and (14),

X = [Ney, (@)] + [ca—(h—a-1)Cvn-1]
> (m1 — 4d +2k) + (2h — 2d — 1)
(17) — my—6d+2k+2h—1 and
1Z| > |Neg (2)] + [v(c—ds1)—(h—d—1)CV(c—dt1)+(h—d—1)|
(18) > |Neo, (2)] +2h —2d — 1.

1. Since P — z C Cg/, by (18), (10), (17) and (13), we have

INp—a(2)| < [Ncy (2)] < 1Z] = (2h —2d - 1)
< |Co|—|X]—|T] - (2h—2d—1)
<

—(2h —2d—1)

8d — 4h —my — k.

Therefore |[No_p(z)| = |No(2)| — |Np—s(2)] > m1 + mo — 8d + 4h + k.
Since

|P N Y| = |’UhCUt N Y| = |UhC’Uh+d_2 N Y’ + |’L)h+d_1CUt N Y|
< ”UdC’Ucde N Y‘ + ”Uthd,lC’Ut N Y| <141=2

we have Y N (C — P)| >k —2.

O

(c+2k—4d) — (m; —6d+2k+2h —1) — (c —4d+ k + 2)
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2. Since |P — 2z — Cg/

< h—(n+8)/3, by (18), (10), (17) and (13),

IN

INp—2(2)] [New (2)[ + (P —2) = Cs

Z] — (2h — 2d — 1) + (h —

n+8)

3
Corl = 1X] = IT| = (2h = 2d = 1) + (h — ——)
(c+2k—4d) — (m1 —6d+2k+2h—1)— (c—4d+ k +2)

—(2h—2d—1)+(h—n§8)
n+8
o

IN

n-+8

IN

IN

8d—3h—mi1 —k —

Thus

+8
INc—p(2)| = [No(2)] = INp_o(2)] > m1 +ma — 8d + 3h + k + —

Ifth+d—1=c—d+2, then

IPNY| = |vpCuNY|
= ]thvc_dH N Y’ + |Uh+d—lcvt N Y| < 2.

Since h+d—1=c—d+2, we have Y N(C—P)| > k—2=k—h—2d+c+1.
Ifh+d—1>c—d+ 2, then

|IPNY| = |vCuNY|
= \th’vc_dH N Y| + \vc_d+20vh+d_2 N Y| + |vh+d_10vt N Y‘
< 1+(h+2d—c—-3)+1=h+2d—c—1.

Thus Y N(C—P)|>k—h—2d+c+1. 0

By Lemma 1, there is a subpath @y in C'— P joining a vertex in No_p(z)
and a vertex in Y'N(C'—P) of length at least (|No_p(z)|+|Y N(C—P)|)/2—1.
Let @ be the path obtained from Qo U {z} by adding the edge joining z
and the end of Qo in No_p(2). Then @ is a desired (z,Y)-path. In fact, if
h+(d—1)<c—d+2, asd < h,

[No-p(2)| +]Y N(C = P)
el = !

1
2 5((m1+m2—8d+4h+k‘)+(k‘—2))

-1+1
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1
= §(m1+m2—8d—|—4h+2k—2)

1
> §(ml+mg—4d+2lc—2)
1 -3 2 -3
—(2><”2 —4(”;: —2)+2x =

2
n—4

= > d.

3

Y

—2)

In the case of h+ (d — 1) > c—d + 2,

[Ne—p(z)| +Y N (C = P)|

2
1 0 8
5((m1+m2—8d+3h—|—k+§+§)+(kz—h—2d+c+l))
1 11
_ 5(mlerg—10d+2h+2k+c+%+§)
1 2
§(m1+m2—14d+2k+30+g+?9)
1 _ 9 B )
_(2Xn 3_14<n+ —2)+2Xn—3+3(n—3)+2+_9)
2 2 33
n + 20

= 3 > d.

eIl —1+1

v

v

v

AV

Now we complete the proof. |
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