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A hamilton cycle in which specified vertices are
located in polar opposite

Hui Du and Kiyoshi Yoshimoto

Enomoto conjectured that if a graph G of order n has minimum
degree at least n/2 + 1, then for any two vertices x and y, there is
a hamilton cycle C such that dC(x, y) = �n/2�. In this paper, we
show the existence of a hamilton cycle C in G such that dC(x, y) ≥
(n− 4)/3.
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1. Introduction

In this paper, we consider finite simple graphs. The order and the size, i.e.,
the number of edges, of a graph G are denoted by |G| and ||G||, respectively.
The set of all neighbours of a vertex x ∈ V (G) is denoted by N(x) = NG(x),
and d(x) = dG(x) = |N(x)| is the degree of x. The minimum degree of G is
denoted by δ(G). For both the vertex set, V (G), and the edge set, E(G), of
G we will eventually use G whenever the context is clear. And we denote the
order and the minimum degree of G by simply n and δ, respectively. The
distance dG(x, y) of two vertices x and y in G is the length of a shortest path
joining x and y. For terminology and notation not defined in this paper, we
refer the readers to [3]. The following result is well known.

Theorem A (Dirac [4]). If G is a 2-connected graph of n vertices with min-
imum degree at least δ, then there is a cycle C such that |C| ≥ min{2δ, n}.

This result immediately implies that a graph with δ ≥ n/2 is hamilto-
nian. Ore [14] improved this as follows: a graph with

σ2(G) = min{dG(u) + dG(v) : uv /∈ E(G)} ≥ n

is hamiltonian.
A graph is called pancyclic if the graph contains cycles of all lengths from

3 to n. Bondy suggested an interesting metaconjecture that any nontrivial
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condition which implies the graph is hamiltonian also implies the graph is
pancyclic and showed that a graph with σ2(G) ≥ n is pancyclic or G is
isomorphic to Kn/2,n/2 in [2]. Pancyclicity is studied by many researchers
and so we refer readers to the surveys [16] or [12] for details.

Ore [15] considered a property strengthening hamiltonicity and proved
that a graph with σ2(G) ≥ n + 1 is hamilton-connected, i.e., for any two
vertices in G, there is a hamilton path joining the specified vertices. If the
vertices are adjacent, then we can obtain a hamilton cycle from the hamilton
path by adding the edge.

Alavi and Williamson [1] introduced panconnectivity. A graph is called
panconnected if for any two vertices and an integer 2 ≤ k ≤ n − 1, there is
a path joining the vertices of length k. Williamson [17] proved a graph with
δ ≥ n/2 + 1 is panconnected. As in hamilton-connectivity, panconnected
graphs are necessarily pancyclic. A similar result for bipartite graphs, bi-
panconnectivity, was given by Du et al. [5].

Enomoto conjectured the following:

Conjecture B ([6]). If G is a graph with δ ≥ n/2 + 1, then for any two
vertices x and y in G, there is a hamilton cycle C of G such that dC(x, y) =
�n/2�.

In this conjecture, the minimum degree condition is sharp because in
the graph K(n−3)/2 ∨K3 ∨K(n−3)/2, the minimum degree is (n + 1)/2 and
dC(x, y) ≤ (n − 3)/2 for any x and y in one of K(n−3)/2 and any hamilton
cycle C.

Motivated by Conjecture B, Kaneko and Yoshimoto [11] showed that if
G is a graph with δ ≥ n/2 and d an integer such that 0 < d ≤ n/4, then
for any vertex subset A ⊂ V (G) with |A| ≤ n/2d, there is a hamilton cycle
C such that dC(x, y) ≥ d for any x and y ∈ A. Sárkőzy and Selkow [13]
generalized this result by applying the Regularity Lemma. Furthermore by
using k-linkage, Faudree et al. [7] also gave interesting facts relating to the
result.

On the other hand, Faudree and Li gave a natural conjecture generalizing
the conjecture by Enomoto.

Conjecture C ([10]). If G is a graph with δ ≥ n/2+1, then for any vertices
x and y and any integer 2 ≤ k ≤ n/2, there is a hamilton cycle C of G such
that dC(x, y) = k.

This conjecture generalizes also the panconnectivity result by William-
son. Faudree and Li [10] proved that if the order of G is sufficiently large for
k, then the statement of Conjecture C holds. Recently Faudree, Lehel and
Yoshimoto improved the lower bound of n as follows:
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Theorem D ([8]). If G is a graph with δ ≥ n/2 + 1, then for any vertices
x and y and any integer 2 ≤ k ≤ n/6, there is a hamilton cycle C of G such
that dC(x, y) = k.

A similar result for bipartite graphs was given by Faudree, Lehel and
Yoshimoto [9].

The purpose of this paper is to propose new conjectures implying the
conjecture by Enomoto and give partial results for them. A path P with
ends x and y is denoted by xPy and for any two vertices u and v of P , the
subpath joining u and v in P is denoted by uPv.

Conjecture 1. If G is a graph with δ ≥ n/2+1, then for any three vertices
x, y and z ∈ V (G), there is a hamilton path P joining x and z such that
�n2 � ≤ ||xPy|| ≤ 	n2 
.

This conjecture implies Conjecture B because if we choose x and z which
are adjacent in G, then P ∪{xz} is a hamilton cycle satisfying the condition
in the conjecture.

Let u ∈ V (G) and S ⊂ V (G)− u. A path joining u and some vertex in
S is called a (u, S)-path. A path factor of G is a spanning subgraph of G in
which all components are paths.

Let Y = NG(y). If G − y has a path factor consisting of an (x, Y )-
path xPy′ and a (z, Y )-path y′′Qz such that �n2 � − 1 ≤ ||P || ≤ 	n2 
 − 1,
then xPy′yy′′Qz is a desired hamilton path in Conjecture 1. Therefore the
following conjecture also implies Conjecture B.

Conjecture 2. If G is a graph with δ ≥ (n+1)/2, then for any two vertices
x and z ∈ V (G) and Y ⊂ V (G)− {x, z} with at least (n− 1)/2 vertices, G
has a path factor consisting of an (x, Y )-path P and a (z, Y )-path Q such
that �n−1

2 � ≤ ||P || ≤ 	n−1
2 
.

Our main results are the following:

Theorem 1. If G is a graph with δ ≥ (n+1)/2, then for any two vertices x
and z ∈ V (G) and Y ⊂ V (G)− {x, z} with at least (n− 1)/2 vertices, there
exist disjoint (x, Y )-path P and (z, Y )-path Q such that min{||P ||, ||Q||} ≥
n/3− 2.

Theorem 2. Let G be a graph with δ ≥ (n + 2)/2 and x, y and z be any
three vertices in G. If there are disjoint paths xPy and yQz such that s =
min{||P ||, ||Q||} ≥ (n− 1)/3− 2, then there is a hamilton path R joining x
and z such that

min{||xRy||, ||yRz||} ≥ s+ 1.

By Theorem 1 and Theorem 2, we have the following immediately.
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Corollary 3. If G is a graph with δ ≥ (n+ 2)/2, then for any two vertices
x and y ∈ V (G), there is a hamilton cycle C such that dC(x, y) ≥ (n−4)/3.

First we give a proof of Theorem 2 in Section 2, which is easier and the
proof of Theorem 1 is given in Section 3.

Notice that in Conjecture 2, it is difficult to improve the minimum degree
condition and the lower bound of |Y | at the same time because K(n−2)/2 ∨
K2 ∨K(n−2)/2 has no desired path factor if we choose the vertices in K2 as
{x, z} and one of K(n−2)/2 as Y .

Finally, we give some additional notations. For a subgraph H of G, we
denote NG(x) ∩ V (H) by NH(x) and its cardinality by dH(x). Let C =
v1v2 · · · vcv1 be a cycle with a fixed orientation. The segment vivi+1 · · · vj
is written by viCvj where the subscripts are to be taken modulo c. The
successor of vi is denoted by v+i and the predecessor by v−i . For a vertex
subset A in C, we write {u+i : ui ∈ A} and {u−i : ui ∈ A} by A+ and A−,
respectively. For a path with fixed orientation, we define similar notations.

2. Proof of Theorem 2

Let x, y, z ∈ V (G) and Y = N(y)− {x, z}. Then

δ(G− y) ≥ n+ 2

2
− 1 =

n

2
=

|G− y|+ 1

2
and

|Y | ≥ n+ 2

2
− 2 =

n− 2

2
=

|G− y| − 1

2
.

Thus by Theorem 1, in G − y, there are vertex disjoint (x, Y )-path xPy′

and (z, Y )-path zQy′′ both of which have length at least s ≥ n−1
3 − 2. Then

there is the path R0 = xPy′yy′′Qz in G with

|R0| ≥ 2(s+ 1) + 1 ≥ 2(
n− 1

3
− 2 + 1) + 1 =

2n− 5

3

and min{dR0
(x, y), dR0

(y, z)} ≥ min{||xPy||, ||zQy||} ≥ s+ 1.
Let R be a longest path joining x and z such that

min{dR(x, y), dR(z, y)} ≥ s+ 1.(1)

Then

|R| ≥ |R0| ≥
2n− 5

3
.(2)

Suppose R is not a hamilton path. Since R is longest, no vertex in G−R is
adjacent to consecutive vertices on R. Thus dR(v) ≤ (|R| + 1)/2 ≤ n/2 for
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any v ∈ G − R. Since dG(v) ≥ δ ≥ n/2 + 1, there is no isolated vertex in
G−R. Let v1Lv2 be a longest path in G−R and l = |L|. By (2),

2 ≤ l ≤ n− |R| ≤ n+ 5

3
.(3)

Let di = dR(vi) for i ∈ {1, 2}. Since dG−R(vi) ≤ l − 1,

di ≥
n+ 2

2
− dG−R(vi) ≥

n

2
− l + 2.(4)

Let NR(v1) ∪ NR(v2) = {u1, u2, . . . , up} which occur in the order on
R. Let Ii = u+i Ru−i+1 for i < p. Since R is longest, |Ii| ≥ 1. If {v1, v2} ⊂
N(ui)∪N(ui+1) and y /∈ Ii, then |Ii| ≥ l; otherwise we can construct a path
satisfying (1) which is longer than R.

Suppose M = NR(v1) ∩NR(v2) = ∅. Since every interval Ii contains at
least one vertex, by (4),

∑
i<p |Ii| ≥ p− 1, and so

n− l ≥ |R| ≥
∑
i<p

|Ii|+ |NR(v1) ∪NR(v2)|

≥ (p− 1) + p = 2(d1 + d2)− 1

≥ 4(
n

2
− l + 2)− 1 = 2n− 4l + 7

→ l ≥ n+ 7

3
.

This contradicts (3).

Suppose M �= ∅, and let m = |M |.

Case 1. NR(v1) = M or NR(v2) = M .

In this case, m ≥ n/2 − l + 2 by (4). If y ∈ M , then there are at least
m − 1 intervals corresponding to vertices in M which contains at least l
vertices; otherwise we can construct a path satisfying (1) which is longer
than R. If y is in an interval corresponding to a vertex in M , then the
interval may contain less than l vertices. Hence there are at least m − 2
intervals corresponding to vertices in M which contains at least l vertices.
Therefore

∑
i<p |Ii| ≥ (m− 2)l + 1. Thus

n− l ≥ |R| ≥
∑
i<p

|Ii|+ |NR(v1) ∪NR(v1)|

≥ (m− 2)l + 1 +m

≥ (
n

2
− l + 2− 2)l + 1 +

n

2
− l + 2
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→ 0 ≥ (l − 1) n− 2 l2 + 6

2
.(5)

If the equality holds, then

l =
±
√
n2 − 8n+ 48 + n

4
.

Since by (3),

−
√
n2 − 8n+ 48 + n

4
< 2 ≤ l ≤ n+ 5

3
<

√
n2 − 8n+ 48 + n

4
,

the inequality (5) does not hold. This is a contradiction.

Case 2. NR(vi)−M �= ∅ for each i ∈ {1, 2}.
There are p − 1 = d1 + d2 − m − 1 intervals. Since NR(vi) − M �= ∅

for each i ∈ {1, 2}, there are at least m + 2 − 1 intervals u+i Ru−i such that
{v1, v2} ⊂ N(ui) ∪ N(ui+1). Therefore if y ∈ NR(v1) ∪ NR(v2), then there
are at least m + 1 intervals containing at least l vertices. In the case of
y /∈ NR(v1)∪NR(v2), there are at least m such intervals as in Case 1. Thus,

∑
i<p

|Ii| ≥ ml + (d1 + d2 −m− 1−m),

and hence by (4)

n− l ≥ |R| ≥
∑
i<p

|Ii|+ |NR(v1) ∪NR(v2)|

≥ ml + (d1 + d2 − 2m− 1) + (d1 + d2 −m)

≥ ml + 4(
n

2
− l + 2)− 3m− 1

≥ ml + 2n− 4l + 7− 3m

→ 0 ≥ ml + n− 3l + 7− 3m

0 ≥ m(l − 3) + n− 3l + 7.

If l = 2, then m ≥ n+ 1, a contradiction. If l ≥ 3, then l ≥ (n+ 7)/3. This
contradicts (3). �

3. Proof of Theorem 1

We will use the following lemma.
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Lemma 1. Let A and B be vertex subsets of a path L. Then there is a
subpath in L joining a vertex in A and a vertex in B of length at least
(|A|+ |B|)/2− 1.

Proof. Let A∪B = {u1, . . . , ul} which occur in the order on L. By symmetry,
we may assume u1 ∈ A, and let s = min{i : ui ∈ B} and t = max{i :
ui ∈ B}. If u1Lut is not a desired path, i.e., |u1Lut| < (|A| + |B|)/2, then
|u+t Lul| > |A| − (|A|+ |B|)/2 = (|A| − |B|)/2. Thus |usLul| > |B|+ (|A| −
|B|)/2 = (|A|+ |B|)/2.
Proof of Theorem 1. Let x and z be two distinct vertices in G and Y ⊂
V (G) − {x, z} with at least n−1

2 vertices. Without of generality, we may
assume Y contains exactly 	n−1

2 
 vertices by ignoring several vertices in
Y . We will construct disjoint (x, Y )-path P and (z, Y )-path Q such that
min{||P ||, ||Q||} ≥ n/3− 2.

Since δ(G) ≥ n+1
2 , G is 3-connected, and so G′ = G−{x, z} is connected.

Claim 1. If G′ has a cut vertex, then G has desired paths P and Q.

Proof. Suppose G′ has a cut vertex u, and let H1 and H2 be two components
of G′ − u. For any vertex v ∈ Hi for i ∈ {1, 2},

|Hi| − 1 ≥ dHi
(v) ≥ d(v)− |{x, z, u}| ≥ n+ 1

2
− 3 =

n− 5

2
,

and so |Hi| ≥ n−3
2 . Since |H1| + |H2| ≤ n − 3, we have |H1| = |H2| = n−3

2 .
Thus Hi is isomorphic to Kn−3

2
and every vertex in Hi is adjacent to all of

x, z and u.
Suppose there are y1 ∈ Hi ∩ Y and y2 ∈ Hj ∩ Y for {i, j} = {1, 2}.

By symmetry, we may assume yi ∈ Hi. Let wi ∈ Hi − {yi} and Pi be a
hamilton path of Hi joining wi and yi for i ∈ {1, 2}. Then P = xw1P1y1 and
Q = zw2P2y2 are desired paths because ||P || = (n−3)/2+1−1 = (n−3)/2
and also ||Q|| = (n− 3)/2.

Suppose H1 ∩ Y = ∅ or H2 ∩ Y = ∅. By symmetry, we may assume
H1 ∩ Y = ∅, and then Y ⊂ H2 ∪ {u}. Since |Y | ≥ n−1

2 and |H2| = n−3
2 ,

we have Y = V (H2) ∪ {u}. Thus for any hamilton path wiPiw
′
i of Hi for

i ∈ {1, 2}, the paths P = xw1P1w
′
1u and Q = yw2P2w

′
2 are desired paths as

in the previous case.

Thus we suppose G′ = G − {x, z} is 2-connected. Let C = v1v2 · · · vcv1
be a longest cycle of G′. By Theorem A,

n− 2 ≥ c = |C| ≥ min{2(δ(G)− 2), n− 2} ≥ n− 3.(6)
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Claim 2. If N+
C (x) ∩NC(z) = N−

C (x) ∩NC(z) = ∅, then there are desired

paths P and Q.

Proof. Suppose that N±
C (x) ∩NC(z) = ∅.

When c = n− 2, we have dC(x), dC(z) ≥ n−1
2 , then

n− 1

2
≤ dC(z) ≤ |C| − dC(x) ≤

n− 3

2
,

a controdiction.

When c = n− 3, we have dC(x), dC(z) ≥ n−3
2 , then

n− 3

2
≤ dC(z) ≤ |C| − dC(x) ≤

n− 3

2
,

and we obtain dC(z) = dC(x) =
n−3
2 . We claim that the distance of every

pair of consecutive neighbors of x along C is exactly 2. Suppose not. If

vi, v
+
i are consecutive neighbors of x along C, then there exist a pair of

consecutive neighbors of x along C such that their distance along C is more

than 3, for otherwise we have c ≤ 2(dC(x) − 1) + 1 = n − 4. If vi, vj are

consecutive neighbors of x along C with vj = v+k
i (k ≥ 3), then v−j �= v+i and

v−j /∈ N+
C (x), so |N±

C (x)| ≥ |N+
C (x)|+ 1 ≥ n−1

2 . Thus we have

n− 3

2
= dC(z) = |NC(z)| ≤ |C| − |N±

C (x)| ≤ n− 5

2
,

a controdiction.

By the same reason, we obtain that the distance of every pair of con-

secutive neighbors of z along C is also 2. Without loss of generality, let

NC(x) = {v1, v3, v5, · · · , vn−4}. If NC(z) = {v2, v4, v6, · · · , vn−3}, then it

contracts to N±
C (x)∩NC(z) = ∅, so NC(z) = NC(x) = {v1, v3, v5, · · · , vn−4}.

Since |Y ∩ C| ≥ n−3
2 , there are vs and vt ∈ Y such that 1 ≤ t − s ≤ 2.

Then for two vertices vi and vi+2 in vt+�n

3
�Cvs−�n

3
� ∩ NC(x), P = vtCvix

and Q = zvi+2Cvs are desired paths.

By Claim 2, we may assume that (N+
C (x)∩NC(z))∪(N−

C (x)∩NC(z)) �= ∅,
say N+

C (x) ∩ NC(z) �= ∅. Without loss of generality, we may assume that

v1 ∈ NC(x) and vc ∈ NC(z). Let

m1 = dC(x), m2 = dC(z), k = |Y ∩ C| and d = 	n
3

 − 2.
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Figure 1.

Notice that

⎧⎨
⎩

m1,m2 ≥
n− 1

2
and k = 	n− 1

2

 if c = n− 2.

m1,m2 ≥
n− 3

2
and 	n− 1

2

 ≥ k ≥ n− 3

2
if c = n− 3.

(7)

If R = vdCvc−d+1 contains two vertices vi and vj (i < j) in Y , then
P = xv1Cvi and Q = vjCvcz are desired paths because

||P || ≥ d+ 1− 1 ≥ 	n
3

 − 2 and also ||Q|| ≥ 	n

3

 − 2.

See Figure 1a.
Thus we suppose R = vdCvc−d+1 contains at most one vertex in Y . Let

CS = C −R = vc−d+2Cvd−1.

Then |CS | = 2(d− 1) (≈ 2n/3) and |CS ∩ Y | ≥ k− 1. We define intervals of
length 2d− k (≈ n/6) in CS as follows:

let Si = viCvi+(2d−k) for vi ∈ vc−d+2Cvd−1−(2d−k) = vc−d+2Cvk−d−1.

Then CS =
⋃
{Si : vi ∈ vc−d+2Ck−d−1}. Since |CS ∩ Y | ≥ k − 1 and

|CS | − |Si| = 2d− 2− (2d− k + 1) = k − 3,

each interval Si contains at least two vertices in Y . For each Si, let

S′
i = vi+(2d−k)+(d−1)Cvi−(d−1) (⊂ C − Si).
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Figure 2.

See Figure 1b. Then

|S′
i| = c− |Si| − 2(d− 2) = c− 4d+ k + 3 (≈ n/6).(8)

If there is an S′
i which contains distinct vertices vs and vt adjacent to x and

z, respectively, then since Si ∩Y contains at least two vertices, by using the
vertices of Y , us and ut, we can construct desired paths P and Q as in the
case of |R ∩ Y | ≥ 2.

Thus we suppose that there is no S′
i containing distinct vertices adjacent

to x and z, respectively. Let CS′ =
⋃
{S′

i : vi ∈ vc−d+2Cvk−d−1}. Then for
any vs ∈ NCS′ (x) and vt ∈ NCS′ (z),

vs = vt or dC(vs, vt) ≥ |S′
i| = c− 4d+ k + 3 (≈ n/6).(9)

Since

S′
c−d+2 = vc−d+2+(2d−k)+(d−1)Cvc−d+2−(d−1) = v2d−k+1Cvc−2d+3 and

S′
k−d−1 = vk−d−1+(2d−k)+(d−1)Cvk−d−1−(d−1) = v2d−2Cvc+k−2d,

we have

CS′ = v2d−k+1Cvc+k−2d and
|CS′ | = c+ k − 2d− (2d− k) = c+ 2k − 4d (≈ 2n/3).(10)

See Figure 2. Thus

|NCS′ (x)| ≥ |NC(x)| − (|C| − |CS′ |) = m1 − 4d+ 2k (≈ n/6) and
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|NCS′ (z)| ≥ m2 − 4d+ 2k.(11)

Let

a = min{i : vi ∈ NCS′ (x)}, b = max{i : vi ∈ NCS′ (x)},
X = vaCvb(⊂ CS′),

a′ = min{i : vi ∈ NCS′ (z)}, b′ = max{i : vi ∈ NCS′ (z)},
Z = va′Cvb′(⊂ CS′).

Then by (11),

|X| ≥ |NCS′ (x)| ≥ m1 − 4d+ 2k (≈ n/6) and
|Z| ≥ |NCS′ (z)| ≥ m2 − 4d+ 2k.(12)

Later we will take a path P or Q by using X and Z.

Claim 3. X ∩ Z = ∅.
Proof. First we show NCS′ (x) ∩ NCS′ (z) = ∅. Suppose l = |NCS′ (x) ∩
NCS′ (z)| ≥ 1, and let U = CS′ −NCS′ (x) ∪NCS′ (z).

Suppose l < min{|NCS′ (x)|, |NCS′ (z)|}. Then both of NCS′ (x)−NCS′ (z)
and NCS′ (z) − NCS′ (x) are not empty. Since, by (9), U has at least l + 1
components containing at least |Si| − 1 vertices, |U | ≥ (l + 1)(|S′

i| − 1).
Therefore by (10), (11), (9) and (8),

|CS′ | = c+ 2k − 4d

= |NCS′ (x)|+ |NCS′ (z)| − l + |U |
≥ (m1 − 4d+ 2k) + (m2 − 4d+ 2k)− l + (l + 1)(c− 4d+ k + 2)

= m1 +m2 − 8d+ 4k + l(c− 4d+ k + 1) + c− 4d+ k + 2

≥ m1 +m2 − 8d+ 4k + (c− 4d+ k + 1) + c− 4d+ k + 2

→ 0 ≥ c− 12d+ 4k +m1 +m2 + 3

≥ n− 3− 12(	n
3

 − 2) + 4× n− 3

2
+ 2× n− 3

2
+ 3

≥ n− 3− 12(
n+ 2

3
− 2) + 4× n− 3

2
+ 2× n− 3

2
+ 3 > 0,

a contradiction.
Suppose l = min{|NCS′ (x)|, |NCS′ (z)|}. By (11),

l ≥ mi − 4d+ 2k ≥ n− 3

2
− 4(	n

3

 − 2) + 2

n− 3

2
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≥ n− 3

2
− 4(

n+ 2

3
− 2) + 2

n− 3

2

≥ n+ 5

6
.

Since, by (9), U has at least l − 1 components containing at least |Si| − 1
vertices, |U | ≥ (l − 1)(|S′

i| − 1). Thus, by (10), (11), (9) and (8),

|CS′ | = c+ 2k − 4d

= |NCS′ (x)|+ |NCS′ (z)| − l + |U |
≥ (m1 − 4d+ 2k) + (m2 − 4d+ 2k)− l + (l − 1)(c− 4d+ k + 2)

= m1 +m2 − 8d+ 4k + l(c− 4d+ k + 1)− (c− 4d+ k + 2)

→ 0 ≥ l(c− 4d+ k + 1) +m1 +m2 + k − 2c− 2

≥ n+ 5

6
(n− 3− 4(	n

3

 − 2) +

n− 3

2
+ 1) + 2× n− 3

2

+
n− 3

2
− 2(n− 2)− 2

≥ n+ 5

6
(n− 3− 4(

n+ 2

3
− 2) +

n− 3

2
+ 1) + 2× n− 3

2

+
n− 3

2
− 2(n− 2)− 2

≥ n2 − 2n− 35

36
> 0 if n > 7,

a contradiction. Thus NCS′ (x) ∩NCS′ (z) = ∅.
If X ∩Z �= ∅, then |U | ≥ 2(|S′

i| − 1), and so again by (10), (11), (9) and
(8),

|CS′ | = c+ 2k − 4d

= |NCS′ (x)|+ |NCS′ (z)|+ |U |
≥ (m1 − 4d+ 2k) + (m2 − 4d+ 2k) + 2(c− 4d+ k + 2)

→ 0 ≥ m1 +m2 − 12d+ 4k + c+ 4

≥ 2× n− 3

2
− 12(	n

3

 − 2) + 4× n− 3

2
+ n− 3 + 4

≥ 2× n− 3

2
− 12(

n+ 2

3
− 2) + 4× n− 3

2
+ n− 3 + 4 > 0,

a contradiction.

By symmetry, we may assume a < a′, i.e., by (10),

2d− k + 1 ≤ a < b < a′ < b′ ≤ c+ k − 2d.
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Figure 3.

In the next claim, we show that the ends of R = vdCvc−d+1 are contained

in X and Z, respectively. See Figure 3.

Let T = vb+1Cva′−1 and then by (9),

|T | ≥ |S′
i| − 1 = c− 4d+ k + 2.(13)

Claim 4. a < d < b < a′ < c− d+ 1 < b′.

Proof. If d ≤ a, then by (12) and (13),

c+ k − 2d ≥ b′ ≥ a− 1 + |X|+ |T |+ |Z|
≥ d− 1 + (m1 − 4d+ 2k) + (c− 4d+ k + 2)

+ (m2 − 4d+ 2k)

≥ m1 +m2 + 5k − 11d+ c+ 1

→ 0 ≥ m1 +m2 + 4k − 9d+ 1

≥ 2
n− 3

2
+ 4

n− 3

2
− 9(

n+ 2

3
− 2) + 1 > 0,

a contradiction. Thus d > a. Since |X| = b − (a − 1) ≥ |NCS′ (x)| ≥ m1 −
4d+ 2k and a ≥ 2d− k + 1,

b ≥ (a− 1) +m1 − 4d+ 2k ≥ m1 − 4d+ 2k + (2d− k + 1− 1)

= m1 + k − 2d ≥ n− 3

2
+

n− 3

2
− 2(	n

3

 − 2)

≥ n− 3

2
+

n− 3

2
− 2(

n+ 2

3
− 2) =

n− 1

3
> d.
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Figure 4.

Thus a < d < b. By symmetry, we have a′ < c− (d− 1) < b′.

Let vh ∈ NX(x) and vh′ ∈ NZ(z) be vertices which are closest to vd and
vc−d+1, respectively. Possibly vh = vd and vh′ = vc−d+1. By symmetry, we
may assume

|h− d| ≤ |h′ − (c− d+ 1)|.(14)

Since R = vdCvc−d+1 contains at most one vertex of Y , there are at
least k − 1 vertices of Y in C −R = vc−d+2Cvd−1.

If vh ∈ vaCvd, then let vt be the vertex in Y ∩(C−R) = Y ∩vc−d+2Cvd−1

which is closest to vc−d+1. See Figure 4a. Then P = xvhCvt is a desired
(x, Y )-path because

||P || ≥ |{x}|+ |vdCvc−d+2| − 1 ≥ c− 2d+ 3

≥ n− 3− 2× (
n+ 2

3
− 2) + 3 =

n+ 8

3
> d.

If vh ∈ vd+1Cvb, then let vt be the vertex in Y ∩ vh+d−1Cvc which is
closest to vh+d−2. See Figure 4b. Then P = xvhCvt is a desired (x, Y )-path
because

||P || ≥ |{x}|+ |vhCvh+d−1| − 1

≥ 1 + (h+ d− 1)− (h− 1)− 1 = d.

Next we will construct a (z, Y )-path Q by using C − P . Since R =
vdCvc−d+1 contains at most one vertex in Y ,

|vc−d+2Cvd−1 − Y | = (d− 1) + (d− 2) + 1− (k − 1) ≤ 2d− k − 1.(15)
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We divide our argument into two cases.

Case 1. vh ∈ vaCvd.
Recall that vt is the vertex in Y ∩vc−d+2Cvd−1 which is closest to vc−d+1

and P = xvhCvt. See Figure 4a.

Claim 5. P − x = vhCvt ⊂ CS′ .

Proof. Since vh ∈ NX(x) ⊂ CS′ , it is enough to show vt ∈ CS′ . By (15), we
have

c− d+ 2 ≤ t ≤ (c− d+ 2) + |vc−d+2Cvd−1 − Y |
≤ (c− d+ 2) + (2d− k − 1) = c+ d− k + 1.

Since vc+k−2d is an end of CS′ and

(c+ k − 2d)− (c+ d− k + 1) ≥ 2k − 3d− 1

≥ 2× n− 3

2
− 3(

n+ 2

3
− 2)− 1 ≥ 0,

we have

t ≤ c+ d− k + 1 ≤ c+ k − 2d,

and so vt ∈ CS′ .

We will construct a (z, Y )-path Q by using vertices in NC−P (z) and
Y ∩ (C − P ) and Lemma 1.

Claim 6. 1. |NC−P (z)| ≥ m1 +m2 − 4h+ k.
2. |Y ∩ (C − P )| ≥ k + h− d− 2.

Proof. If vh = vd, by (10), (12) and (13)

|NP−x(z)| ≤ |NCS′ (z)| ≤ |Z| ≤ |CS′ | − |X| − |T |
≤ (c+ 2k − 4d)− (m1 − 4d+ 2k)− (c− 4d+ k + 2)

= 4d−m1 − k − 2,

and so

|NC−P (z)| ≥ |NC(z)| − |NP−x(z)|
≥ m2 − (4d−m1 − k − 2) = m2 +m1 − 4d+ k + 2.

Since |Y ∩ P | = |Y ∩R|+ |{vt}| ≤ 1 + 1 = 2,

|Y ∩ (C − P )| ≥ k − 2.
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Suppose vh ∈ vaCvd−1. By the definition of vh, x is adjacent to no vertex
in vh+1Cvd+(d−h)−1. Since vh+1Cvd+(d−h)−1 ⊂ X, by (12),

|X| ≥ |NCS′ (x)|+ |vh+1Cvd+(d−h)−1|
≥ (m1 − 4d+ 2k) + (2d− 2h− 1)
= m1 − 2d− 2h+ 2k − 1.(16)

Similarly, by (14), z is adjacent to no vertex in v(c−d+1)−(d−h−1) ×
Cv(c−d+1)+(d−h−1),

|Z| ≥ |NCS′ (z)|+ |v(c−d+1)−(d−h−1)Cv(c−d+1)+(d−h−1)|
= |NCS′ (z)|+ |vc−2d+h+2Cvc−h|.

Thus by (10), (16) and (13),

|NP−x(z)| ≤ |NCS′ (z)| ≤ |Z| − |vc−2d+h+2Cvc−h|
≤ |CS′ | − |X| − |T | − ((c− h)− (c− 2d+ h+ 1))

≤ (c+ 2k − 4d)− (m1 − 2d− 2h+ 2k − 1)− (c− 4d+ k + 2)

−(2d− 2h− 1)

= 4h− k −m1.

Thus, we have |NC−P (z)| = |NC(z)| − |NP−x| ≥ m2 +m1 − 4h+ k.
Since

|Y ∩ P | = |Y ∩ vhCvd−1|+ |Y ∩R|+ |{vt}|
≤ (d− 1− (h− 1)) + 1 + 1 = d− h+ 2,

we have

|Y ∩ (C − P )| ≥ k − (d− h+ 2) = k + h− d− 2.

By Lemma 1, there is a subpath Q0 in C − P joining NC−P (z) and
Y ∩ (C −P ) of length at least (|NC−P (z)|+ |Y ∩ (C −P )|)/2− 1. Let Q be
the path obtained from Q0 ∪ {z} by adding the edge joining z and the end
of Q0 in NC−P (z). Then Q is a desired (z, Y )-path because

||Q|| ≥ |NC−P (z)|+ |Y ∩ (C − P )|
2

− 1 + 1

≥ 1

2
((k + h− d− 2) + (m2 +m1 − 4h+ k))

≥ 1

2
(m2 +m1 − 3h− d+ 2k − 2)
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≥ 1

2
(m2 +m1 − 4d+ 2k − 2)

≥ 1

2
(2× n− 3

2
− 4(	n

3

 − 2) + 2× n− 3

2
− 2)

≥ 1

2
(2× n− 3

2
− 4(

n+ 2

3
− 2) + 2× n− 3

2
− 2) =

n

3
− 4

3
≥ d.

Case 2. vh ∈ vd+1Cvb.
Recall that vt is the vertex in Y ∩ vh+d−1Cvc which is closest to vh+d−2

and P = xvhCvt. See Figure 4b. In Case 2, P − x = vhCvt may not be in
CS′ .

Claim 7. 1. If h+ (d− 1) < c− d+ 2, then P − x ⊂ CS′ .
2. If h+ (d− 1) ≥ c− d+ 2, then |P − x− CS′ | ≤ h− n+8

3 .

Proof. Since vh ∈ CS′ , it is enough to show t ≤ c+ k − 2d.
1. Since

t ≤ (h+ d− 1) + |vh+d−1Cvd−1 − Y |

and by (15),

|vh+d−1Cvd−1 − Y | = |vh+d−1Cvc−d+1 − Y |+ |vc−d+2Cvd−1 − Y |
≤ ((c− d+ 1)− (h+ d− 1) + 1) + (2d− k − 1)

= c− h− k + 2,

we have t ≤ (h+ d− 1) + (c− k − h+ 2) = c− k + d+ 1. Therefore

t− (c+ k − 2d) ≤ (c− k + d+ 1)− (c+ k − 2d)

= 3d− 2k + 1 ≤ 3(
n+ 2

3
− 2)− 2× n− 3

2
+ 1 = 0.

2. Notice that

h ≥ c− d+ 2− (d− 1) = c− 2d+ 3 ≥ n− 3− 2(
n+ 2

3
− 2) + 3 =

n+ 8

3
.

If t ≤ c+ k − 2d, then P − x ⊂ CS′ and so we are done. Hence we suppose
t > c+ k − 2d. Since by (15),

|vh+d−1Cvd−1 − Y | ≤ |vc−d+2Cvd−1 − Y | ≤ 2d− k − 1,

we have t ≤ (h+ d− 1) + (2d− k − 1) = 3d+ h− k − 2. Thus

|P − x− CS′ | = t− (c+ k − 2d)
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≤ (3d+ h− k − 2)− (c+ k − 2d)

= 5d+ h− c− 2k − 2

≤ 5(
n+ 2

3
− 2) + h− (n− 3)− 2× n− 3

2
− 2

≤ h− n+ 8

3
.

As in Case 1, we will construct a (z, Y )-path Q by using vertices in
NC−P (z) and Y ∩ (C − P ) and Lemma 1.

Claim 8. 1. If h+ (d− 1) < c− d+ 2, then

|NC−P (z)| ≥ m1 +m2 − 8d+ 4h+ k and |Y ∩ (C − P )| ≥ k − 2.

2. If h+ (d− 1) ≥ c− d+ 2, then

|NC−P (z)| ≥ m1 +m2 − 8d+ 3h+ k +
n+ 8

3
and

|Y ∩ (C − P )| ≥ k − h− 2d+ c+ 1.

Proof. Since vh ∈ vd+1Cvb, by (12) and (14),

|X| ≥ |NCS′ (x)|+ |cd−(h−d−1)Cvh−1|
≥ (m1 − 4d+ 2k) + (2h− 2d− 1)
= m1 − 6d+ 2k + 2h− 1 and(17)

|Z| ≥ |NCS′ (z)|+ |v(c−d+1)−(h−d−1)Cv(c−d+1)+(h−d−1)|
≥ |NCS′ (z)|+ 2h− 2d− 1.(18)

1. Since P − x ⊂ CS′ , by (18), (10), (17) and (13), we have

|NP−x(z)| ≤ |NCS′ (z)| ≤ |Z| − (2h− 2d− 1)

≤ |CS′ | − |X| − |T | − (2h− 2d− 1)

≤ (c+ 2k − 4d)− (m1 − 6d+ 2k + 2h− 1)− (c− 4d+ k + 2)

−(2h− 2d− 1)

= 8d− 4h−m1 − k.

Therefore |NC−P (z)| = |NC(z)| − |NP−x(z)| ≥ m1 +m2 − 8d+ 4h+ k.
Since

|P ∩ Y | = |vhCvt ∩ Y | = |vhCvh+d−2 ∩ Y |+ |vh+d−1Cvt ∩ Y |
≤ |vdCvc−d+1 ∩ Y |+ |vh+d−1Cvt ∩ Y | ≤ 1 + 1 = 2,

we have |Y ∩ (C − P )| ≥ k − 2.
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2. Since |P − x− CS′ | ≤ h− (n+ 8)/3, by (18), (10), (17) and (13),

|NP−x(z)| ≤ |NCS′ (z)|+ |(P − x)− CS′ |

≤ |Z| − (2h− 2d− 1) + (h− n+ 8

3
)

≤ |CS′ | − |X| − |T | − (2h− 2d− 1) + (h− n+ 8

3
)

≤ (c+ 2k − 4d)− (m1 − 6d+ 2k + 2h− 1)− (c− 4d+ k + 2)

−(2h− 2d− 1) + (h− n+ 8

3
)

= 8d− 3h−m1 − k − n+ 8

3
.

Thus

|NC−P (z)| = |NC(z)| − |NP−x(z)| ≥ m1 +m2 − 8d+ 3h+ k +
n+ 8

3
.

If h+ d− 1 = c− d+ 2, then

|P ∩ Y | = |vhCvt ∩ Y |
= |vhCvc−d+1 ∩ Y |+ |vh+d−1Cvt ∩ Y | ≤ 2.

Since h+d−1 = c−d+2, we have |Y ∩(C−P )| ≥ k−2 = k−h−2d+c+1.

If h+ d− 1 > c− d+ 2, then

|P ∩ Y | = |vhCvt ∩ Y |
= |vhCvc−d+1 ∩ Y |+ |vc−d+2Cvh+d−2 ∩ Y |+ |vh+d−1Cvt ∩ Y |
≤ 1 + (h+ 2d− c− 3) + 1 = h+ 2d− c− 1.

Thus |Y ∩ (C − P )| ≥ k − h− 2d+ c+ 1.

By Lemma 1, there is a subpath Q0 in C−P joining a vertex in NC−P (z)
and a vertex in Y ∩(C−P ) of length at least (|NC−P (z)|+|Y ∩(C−P )|)/2−1.
Let Q be the path obtained from Q0 ∪ {z} by adding the edge joining z
and the end of Q0 in NC−P (z). Then Q is a desired (z, Y )-path. In fact, if
h+ (d− 1) < c− d+ 2, as d < h,

||Q|| ≥ |NC−P (z)|+ |Y ∩ (C − P )|
2

− 1 + 1

≥ 1

2
((m1 +m2 − 8d+ 4h+ k) + (k − 2))
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=
1

2
(m1 +m2 − 8d+ 4h+ 2k − 2)

>
1

2
(m1 +m2 − 4d+ 2k − 2)

≥ 1

2
(2× n− 3

2
− 4(

n+ 2

3
− 2) + 2× n− 3

2
− 2)

=
n− 4

3
> d.

In the case of h+ (d− 1) ≥ c− d+ 2,

||Q|| ≥ |NC−P (z)|+ |Y ∩ (C − P )|
2

− 1 + 1

≥ 1

2
((m1 +m2 − 8d+ 3h+ k +

n

3
+

8

3
) + (k − h− 2d+ c+ 1))

=
1

2
(m1 +m2 − 10d+ 2h+ 2k + c+

n

3
+

11

3
)

≥ 1

2
(m1 +m2 − 14d+ 2k + 3c+

n

3
+

29

3
)

≥ 1

2
(2× n− 3

2
− 14(

n+ 2

3
− 2) + 2× n− 3

2
+ 3(n− 3) +

n

3
+

29

3
)

=
n+ 20

3
> d.

Now we complete the proof. �
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