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Decomposition of regular hypergraphs

Jeong Ok Choi and Douglas B. West
∗

A d-block is a 0, 1-matrix in which every row has sum d. Let Sn

be the set of pairs (k, l) such that the columns of any (k + l)-
block with n rows split into a k-block and an l-block. For n ≥ 5,
we prove the general necessary condition that (k, l) ∈ Sn only if
each element of {1, . . . , n} divides k or l. We also determine Sn

for n ≤ 5. Trivially, S1 = S2 = N × N. Also S3 = {(k, l) : 2 | kl},
S4 = {(k, l) : 6 | kl and min{k, l} > 1}, and S5 = {(k, l) : 3, 4, 5
each divide k or l, plus 11 �= min{k, l} > 7}.
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1. Introduction

Our problem is most simply expressed in the language of 0, 1-matrices. A
block is a 0, 1-matrix M whose rows all have the same sum; we denote the
common sum by σ(M). We use d-block to mean a block M with σ(M) = d.
Given a (k+ l)-block with k, l ∈ N (where N is the set of positive integers), a
(k, l)-split is a partition of the columns into two sets such that the resulting
submatrices are a k-block and an l-block. A d-block M is indecomposable if
for all (k, l) with k + l = d, there is no (k, l)-split of M .

Trivially, every (k+l)-block with one row has a (k, l)-split. This also holds
for two rows, since columns of the forms (0, 1)T and (1, 0)T are equinumerous
and can be paired. For n ∈ N, let Sn be the set of pairs (k, l) such that
every (k + l)-block with n rows admits a (k, l)-split. Adding a row imposes
additional restrictions, so Sn+1 ⊆ Sn for all n. We have noted S1 = S2 =
N× N. In this paper, we determine S3, S4, and S5, and we prove a general
necessary condition for n ≥ 5.

Splitting of d-blocks into blocks with smaller row-sums has been studied
in the language of hypergraphs. Each edge of a hypergraph is a subset of the
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vertex set, and distinct edges may have the same vertex set. A hypergraph
is d-regular if every vertex lies in exactly d edges. The incidence matrix
of a hypergraph is the 0,1-matrix with rows indexed by the vertices and
columns indexed by the edges such that entry (v, e) is 1 if and only if vertex
v row belongs to edge e. Thus a hypergraph is d-regular if and only if its
incidence matrix is a d-block. A regular hypergraph H is indecomposable if
has no nontrivial regular spanning proper subhypergraph, which is just the
statement that its incidence matrix is an indecomposable d-block.

Motivated by questions in game theory (see the survey [4]), researchers
studied the maximum possible degree of indecomposable regular n-vertex
hypergraphs. That is, the value D(n) is the maximum d such that some d-
block with n rows is indecomposable. Huckemann and Jurkat (see [4]) proved
that D(n) is finite for all n (reproved another way by Alon and Berman [1]),
and with Shapley they proved D(n) ≤ (n + 1)(n+1)/2 (again see [4]). As a
lower bound, Shapley proved D(n) > 2n−1/(n − 1) for n > 2, improved to
D(n) > 2n−3 for n > 2 by van Lint and Pollak. Alon and Vũ [2] later proved
the asymptotic formula D(n) = n(1+o(1))n/2 (they showed in fact that this
formula solves three problems). Their formula is close to the upper bound
of Huckemann, Jurkat, and Shapley. Füredi [3] considered the restriction of
the problem to hypergraphs in which every edge has size t. Kézdy, Lehel,
and Powers [5] gave an application of the bounds on D(n) to a problem
involving weighted hypergraphs and the selection of a “consensus” vertex.

As far as we know, the exact values ofD(n) are known only for 1 ≤ n ≤ 5
[4]; they are 1, 1, 2, 3, 5, respectively. We will use these values to study Sn.
Recall that Sn = N × N when n ≤ 2. For n = 3, a bit more thought yields
S3 = {(k, l) : 2 | kl}. We also prove S4 = {(k, l) : 6 | kl and min{k, l} > 1}
and S5 = {(k, l) : 3, 4, 5 each divide k or l, and 11 �= min{k, l} > 7}. Note
that the condition for S4 implies that (1, l) /∈ Sn for l ∈ N and n ≥ 4. Thus
there is no nontrivial (d, n) such that every d-regular hypergraph with n
vertices has a perfect matching.

The divisibility requirement for n = 5 is a special case of a general
necessary condition for membership in Sn, which we develop in Section 4:

Theorem 1.1. For n ≥ 5, if (k, l) ∈ Sn, then each element of {1, . . . , n}
divides k or l.

For 2 ≤ n ≤ 4, the condition is not quite necessary; changing {1, . . . , n}
to {1, . . . , n − 1} yields a weaker condition that characterizes Sn in those
cases. Since the result of van Lint and Pollak cited above yields D(n) > n
when n ≥ 6, while D(n) = n − 1 for 2 ≤ n ≤ 4, we pose the following
conjecture.
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Conjecture 1.2. A necessary condition for (k, l) ∈ Sn is that each element
of {1, . . . , D(n)} divides k or l. If min{k, l} is sufficiently large, then this
condition is also sufficient.

Our results for n ≤ 5 agree with Conjecture 1.2. Since D(n) ≥ n for
n ≥ 6, Conjecture 1.2 strengthens Theorem 1.1.

We use the known values of D(n) in proving both necessity and suffi-
ciency of the description of Sn for n ≤ 5. Section 2 characterizes S3 and
outlines our general approach to determining Sn; the details for n ∈ {4, 5}
follow in later sections. The method could perhaps settle Conjecture 1.2 for
more values of n once the corresponding values of D(n) are known.

Although we useD(n) to determine Sn, it is worth noting that (k, l) ∈ Sn

implies D(n) < k+l. Hence m(n) > D(n), where m(n) = min{k+l : (k, l) ∈
Sn}. A referee pointed out that, due to the divisibility requirement, Conjec-
ture 1.2 would yield a much larger threshold: m(n) ≥ eD(n)/2+o(D(n)).

2. General approach

To illustrate our method, we first characterize S3. An equivalent statement
was proved by André Kündgen (unpublished). When A and B are matrices
with the same number of rows, let A :B denote their concatenation, taking
the union of the column sets as multisets. We writemA for the concatenation
ofm copies of A. Also, when B is a submatrix of A consisting of full columns,
let A\B denote the matrix obtained by deleting those columns. We say that
B is a block in M when B is a block consisting of full columns of M .

Theorem 2.1. S3 = {(k, l) : 2 | kl}
Proof. Let M1 and M2 be the 1-block and 2-block with three rows shown
below. Note that M2 is indecomposable; it contains no 1-block.

M1 =

⎡
⎣
1
1
1

⎤
⎦ , M2 =

⎡
⎣
0 1 1
1 0 1
1 1 0

⎤
⎦

Necessity. Let M = k+l
2 M2; this is a (k + l)-block. We claim that every

block in M has even row-sum. If a block in M with odd row-sum contains
a copy of each column of M2, then deleting three columns yields a smaller
block with odd row-sum. Hence a minimal block B among those with odd
row-sum uses copies of at most two columns of M2. Now some row has no
0, while another row does have a 0, so B is not a block. Thus if kl is odd,
then M is a (k + l)-block with no (k, l)-split; this yields (k, l) /∈ S3.
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Sufficiency. By symmetry, we may assume 2 | k. Since k ≥ 2 and l ≥ 1,
we have d ≥ 3, where d = k + l. Since D(3) = 2, every d-block M with
d ≥ 3 (and three rows) decomposes into blocks with row-sum at most 2.
We therefore obtain a 2-block A in M (possibly the concatenation of two 1-
blocks). When k = 2, this completes the decomposition. To complete a proof
by induction on k, when k > 2 we combine A with a (k− 2)-block from the
(k − 2, l)-split that the induction hypothesis guarantees for M \A.

The sufficiency proof that the pairs not excluded from Sn actually do
belong to Sn uses the value of D(n) and induction on k+l. For the base case,
we will need to check that when (k, l) is in the specified set and k+l ≤ D(n),
every (k + l)-block has a (k, l)-split. When n ≤ 5, we have D(n) ≤ n, and
there is not much to check in the base case.

For the induction step, when k + l > D(n), every (k + l)-block M de-
composes into blocks with row-sum at most D(n). If we can always find a
block B in M with σ(B) ≤ D(n) such that reducing k or l by σ(B) yields
another pair (k′, l′) in the specified set, then combining B with one of the
blocks in a (k′, l′)-split of M \B completes the proof.

For the necessity of the characterization, our proofs that exclude a pair
(k, l) from Sn are implementations of the next lemma, which we implicitly
used in proving Theorem 2.1. Let [m] denote the set {1, . . . ,m}, and let M0

denote a matrix with no columns, so M :M0 = M .

Definition 2.2. A positive integer q is n-robust if for all r with 0 ≤ r < q,
there exist an indecomposable q-block Mq and an indecomposable r-block
Mr (both with n rows) such that for all p ∈ N the row-sum of any block in
pMq :Mr is congruent to 0 or r modulo q.

Lemma 2.3. If q is n-robust and (k, l) ∈ Sn, then q divides k or l.

Proof. Suppose that q is n-robust and does not divide k or l. Let s = �k/q�
and i = k − sq, and let t = �l/q� and j = l − tq. Choose r ∈ [q] such
that r ≡ i + j mod q. Given the resulting Mq and Mr guaranteed by the
definition of n-robust, let M = (s + t)Mq :Mr or M = (s + t + 1)Mq :Mr,
depending on whether i + j ≤ q or not. Now M is a (k + l)-block. By the
definition of n-robust, M does not contain a k-block, so (k, l) /∈ Sn.

Note that if q is n-robust, then q ≤ D(n); this motivates Conjecture 1.2.
The difficulty in applying Lemma 2.3 is finding the needed q-block and r-
block (for each r) and checking that the concatenations contain no blocks
with undesirable row-sums. The lemma does not save any work; it only states
the plan. If we supply the specified indecomposable q-block and r-block for
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each prime power q up to D(n) and each r ∈ [q], then a necessary condition
for (k, l) ∈ Sn will be that each prime power up to D(n) divides k or l.

It is not known whether there is an indecomposable d-block with n rows
(indecomposable d-regular n-vertex hypergraph) whenever d < D(n). Nev-
ertheless, our characterization of Sn for n ≤ 5 uses such blocks for n ≤ 5.

Recall that Sn+1 ⊆ Sn. Since (k, l) ∈ S3 requires kl to be even, it
therefore follows for n ≥ 3 that kl must be even when (k, l) ∈ Sn. For
larger n we can also eliminate the pairs containing a 1.

Definition 2.4. Let M1, M2, and M3 henceforth denote the matrices below.

M1 =

⎡
⎢⎢⎣
1
1
1
1

⎤
⎥⎥⎦ M2 =

⎡
⎢⎢⎣
0 1 1
1 0 1
1 1 0
1 1 0

⎤
⎥⎥⎦ M3 =

⎡
⎢⎢⎣
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤
⎥⎥⎦

Lemma 2.5. If n ≥ 4, then no pair (k, l) with k = 1 belongs to Sn.

Proof. Since Sn+1 ⊆ Sn, it suffices to prove this for n = 4. If (k, l) ∈ S4,
then kl must be even. Thus it suffices to provide, for each even l, an (l+1)-
block containing no 1-block. With M1,M2,M3 defined as above, let M =
(l/2− 1)M2 :M3. Since M2 is a 2-block and M3 is a 3-block, M is an (l+1)-
block. Since no column of M equals M1 and the sum of any two columns
has at least one 2, M contains no 1-block.

3. Matrices with four rows

When n = 4, the matrices M1,M2,M3 will play the roles of the matrices
needed to apply the necessary condition in Lemma 2.3. When we speak of
a matrix having a particular “form”, we are allowing permutations of the
columns.

Lemma 3.1. For p ∈ N and 0 ≤ r < q ≤ 3, every block in pMq :Mr has the
form p′Mq or p′Mq :Mr for some p′. Consequently, if (k, l) ∈ Sn for n ≥ 4,
then 3 divides k or l.

Proof. The second statement follows from the first by Lemma 2.3 and Sn+1 ⊆
Sn, since every block of the specified form has row-sum congruent to 0 or r
modulo q. For q ≤ 2 the first statement is trivial, so assume q = 3.

Let B be a smallest block in pM3 :Mr not having the desired form. If B
contains a copy of each column in M3, then there is a smaller such block.
Hence we may assume that some column of M3 is not used in B.
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For r = 0, B has a row with no 0 and a row with 0 and is not a block.
For r = 1, by the previous case we may assume that B contains the

columnM1. A block B containingM1 consists of that column and a (possibly
empty) block from pM3. Hence B has the specified form.

For r = 2, B must use the one column in M2 not in M3. If B contains
copies of both other columns of M2, then the case r = 0 applies. Otherwise,
B has a row having no 0 and a row that has a 0 and cannot be a block.

Theorem 3.2. (k, l) ∈ S4 if and only if 6 | kl and min{k, l} �= 1.

Proof. By Theorem 2.1 and Sn+1 ⊆ Sn, we have 2 | kl. By Lemma 3.1,
we have 3 | kl. By Lemma 2.5, min{k, l} �= 1. Hence the conditions are
necessary.

For sufficiency, suppose that 6 | kl. By symmetry, there are two cases:
either k = 3s and l = 2t for positive integers s and t, or k = 6s with s a
positive integer and l ≥ 2.

Case 1. k = 3s and l = 2t for positive integers s and t. We use induction
on s+ t. Let M be a (k+ l)-block. Since D(4) = 3, every d-block with d ≥ 4
decomposes into 1-blocks, 2-blocks, and 3-blocks. If these are all 1-blocks,
then M contains a k-block.

Thus, we may assume that M contains a 3-block or a 2-block A. If A
is a 3-block and s = 1, or A is a 2-block and t = 1 (covering the base case
(3, 2)), then A or its complement is the desired k-block. Otherwise, we apply
the induction hypothesis to M \A and combine A with a (k− 3)-block or a
(l − 2)-block in M \A to obtain a k-block or an l-block in M .

Case 2. k = 6s and l ≥ 2. We use induction on l. The cases with
l ∈ {2, 3, 4} appear in Case 1 as (3 · 2s, 2 · 1), (3 · 1, 2 · 3s), and (3 · 2s, 2 · 2),
respectively. For l ≥ 5, since we may assume that any (k+ l)-block contains
a 2-block or a 3-block A, we can apply the induction hypothesis using k and
l − 2 or l − 3 to M \A.

4. A general necessary condition

In this section we prove that when n ≥ 5 and 1 ≤ q ≤ n, membership of
(k, l) in Sn requires that q divides k or l. This necessary condition is not
sufficient. In the next section, we will exclude additional pairs when n = 5
to obtain the complete description of S5.

Definition 4.1. For 1 ≤ i ≤ n, we define an i-block Mi(n) with n rows.
For n = 5 these are listed below; note that M3(5),M4(5),M5(5) have 4, 6, 7
columns, respectively.
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⎡
⎢⎢⎢⎢⎣

1
1
1
1
1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0 1 1
1 0 1
1 1 0
1 1 0
1 1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0 1 1 1
1 0 1 1
1 1 0 1
1 1 0 1
1 1 1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0 0 1 1 1 1
1 1 0 1 1 0
1 1 1 0 0 1
1 1 1 0 1 0
1 1 1 1 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0 0 1 1 1 1 1
1 1 0 0 1 1 1
1 1 1 1 0 0 1
1 1 1 1 0 1 0
1 1 1 1 1 0 0

⎤
⎥⎥⎥⎥⎦

M1(5) M2(5) M3(5) M4(5) M5(5)

For n ≥ 6, let M1(n) be the all-1 column vector, and define M2(n) by
repeating the bottom row of M2(n− 1). For 3 ≤ q ≤ n, obtain Mq(n) from
Mq−1(n− 1) by first appending a 1 to the end of each row and then adding
an nth row in which the first q entries are 1 and the last one or two entries
are 0 (one 0 when q ≤ n−2, two when q ∈ {n−1, n}). Note that Mq(n) has
q + 1 columns when 2 ≤ q ≤ n− 2 and q + 2 columns when q ∈ {n− 1, n}.
Graphically,

Mq(n) =

⎡
⎢⎢⎢⎣

1

Mq−1(n− 1)
...
1

1 · · · 1 0

⎤
⎥⎥⎥⎦ ; Mq(n) =

⎡
⎢⎢⎢⎣

1

Mq−1(n− 1)
...
1

1 · · · 1 0 0

⎤
⎥⎥⎥⎦

for 3 ≤ q ≤ n− 2; for n− 1 ≤ q ≤ n.

Note also that for n = 5 the last column in Mq(n) is unique and is not
all 1. Therefore, inductively we obtain the same statement for all n ≥ 5; this
property will be important.

Lemma 4.2. For n, p, q ∈ N with n ≥ 5 and q ≤ n, every block in pMq(n)
has the form p′Mq(n) for some p′ with p′ ≤ p.

Proof. The statement is trivial for q = 1. For q ∈ {2, 3}, the statement of
the conclusion holds for the matrix Mq of Definition 2.4, by Lemma 3.1.
Hence it also holds for pMq(n), since the matrix Mq(n) arises from Mq by
making extra copies of some row.

For q ≥ 4, we use induction on n. We begin for n = 5 by proving
the statement for q ∈ {4, 5}. First for q = 5, let B be a block in pM5(5).
There are five types of columns from M5(5); from left to right, let a, b, c, d, e
denote their multiplicities in B, respectively. Since a block must have the
same number of 0s in each row, the five row constraints give a = b = c+d =
c + e = d + e. These equations require a = b = 2c = 2d = 2e, so there is
just one parameter. Also, since a = b = 2c, we view the block as having
equal multiplicity for each of the seven columns of M5(5). Hence B has the
desired form.

For q = 4 and n = 5, let B be a block in pM4(5). Each column of
M4(5) appears in M5(5) except the last. Let z be the multiplicity in B of
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the last column of M4(5), and let a, b, c, d be the multiplicities of the other
columns of M4(5), named as in M5(5). Since each row of B has the same
number of 0s, we obtain a = b+ z = c+ d = c+ z = d+ z. These equations
require a = 2b = 2c = 2d = 2z, and we view the block as having equal
multiplicity for each of the six columns of M4(5). Hence B has the desired
form.

For the induction step, consider n ≥ 6 and 4 ≤ q ≤ n. Let B be a block
in pMq(n). Let M

′ be the matrix consisting of the first n−1 rows of Mq(n).
Let v be the last column of Mq(n), and let z be the number of copies of v in
B. Let B′ be the matrix obtained by removing the copies of v from B and
deleting the last row. Since the copies of v contributed z to the sum of each
row in B other than the last row, B′ is a block in pM ′.

Since pM ′ = pMq−1(n − 1), the induction hypothesis implies that B′

consists of p′ copies of each column ofMq−1(n−1), for some p′. Thus σ(B′) =
p′(q− 1). Since Mq(n− 1) has q copies of 1 in the bottom row before v, and
each of those columns appears p′ times in B, we have σ(B) = p′q. Therefore,
z = p′, and B has the desired form.

Setting p = 1 in Lemma 4.2 yields the statement that Mq(n) is inde-
composable.

Lemma 4.3. For p ∈ N, every block in pMq(5) :Mr(5) for 0 ≤ r < q ≤ 5 has
the form p′Mq(5) :Mr(5) or p′Mq(5) for some p′ with p′ ≤ p. In particular,
q is 5-robust for 1 ≤ q ≤ 5.

Proof. Lemma 4.2 is the case r = 0. For r = 1, since the one column of
M1(5) is all 1s, Lemma 4.2 again applies.

Consider now r > 1. Observe that every column of Mr(5) lies in Mq(5)
except the last column of Mr(5). Hence Lemma 4.2 implies that a block B
in pMq(5) : Mr(5) with σ(B) not divisible by q must use the one copy of
the last column of Mr(5). Let the multiplicities of the other columns again
be a, b, c, d, e, using the notation for columns of M5(5) as in Lemma 4.2. In
considering r ∈ {2, 3, 4}, let x, y, z respectively be the multiplicity of the last
column in Mr(5). Except for copies of that column, we count all columns
used as copies of columns of Mq(5).

We again count the 0s in each row. For each case (q, r), these counts
appear in the table below from row 1 to row 5 under “constraints from
0s”; the five values must be equal. The equalities allow us to compute all
multiplicities in terms of c as in the next section of the table. The final
column then counts the 1s in each row of B. In each case, the row-sum is
congruent to r modulo q, and B has the desired form.
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q r constraints from 0s a b c d e x y z σ(B)

3 2 a b c+1 c+1 y+1 c+1 c+1 c 0 0 1 c 0 3c+2
4 2 a b+z c+d+1 c+z+1 d+z+1 2c+1 c+1 c c 0 1 0 c 4c+2
4 3 a b+z c+d c+z d+z+1 2c−1 c c c−1 0 0 1 c−1 4c−1
5 2 a b c+d+1 c+e+1 d+e+1 2c+1 2c+1 c c c 1 0 0 5c+2
5 3 a b c+d c+e d+e+1 2c−1 2c−1 c c−1 c−1 0 1 0 5c−2
5 4 a b+1 c+d c+e+1 d+e+1 2c 2c−1 c c c−1 0 0 1 5c−1

Lemma 4.4. For p, n ∈ N with n ≥ 5, every block in pMq(5) :Mr(5) for
0 ≤ r < q ≤ n has the form p′Mq(n) :Mr(n) or p′Mq(n) for some p′ with
p′ ≤ p. Thus q is n-robust for q ≤ n.

Proof. Lemma 4.3 is the case n = 5; we use that as the basis for induction
on n. For larger n, the claim for r ≤ 1 is Lemma 4.2. Consider r ≥ 2 (and
hence q > 2), and let B be a block in pMq(n) :Mr(n), with t = σ(B).

Let r′ = max{r− 1, 2}. Arrange the columns of B by placing the copies
of [1 · · · 1 0]T at the right end. This yields the following form of B.

B =

⎡
⎢⎢⎣

M J

H 0 · · · 0

⎤
⎥⎥⎦ ,

where J is an all-1 matrix. Let z be the number of columns in J . Since the
last columns of Mq(n) and Mr(n) are unique, M is a block in pMq−1(n−1) :
Mr′(n− 1), with σ(M) = t− z.

By the induction hypothesis,M consists of the columns of p′Mq−1(n−1) :
Mr′(n − 1) or p′Mq−1(n − 1), for some p′ with 0 ≤ p′ ≤ p. Thus t − z is
p′(q − 1) + r′ or p′(q − 1), respectively.

By the uniqueness of the final columns in Mq(n) and Mr(n), each copy
of Mq−1(n − 1) or Mr′(n − 1) in M extends by adding the portion of H
below it to become the matrix obtained from Mq(n) or Mr(n) by delet-
ing the final column (or that full matrix in the case of r = 2). Thus
t ∈ {p′q + r, p′q}, depending on whether Mr′(n− 1) appears in M . We con-
clude that z is p′+ r− r′ or p′, respectively. Hence the final columns provide
exactly what is needed to conclude that B has the form p′Mq(n) :Mr(n) or
p′Mq(n).

Applying Lemma 2.3, we now have the following theorem.

Theorem 4.5. For n ≥ 5, if (k, l) ∈ Sn, then q ∈ {1, . . . , n} divides k or l.
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5. Matrices with five rows

In this section, we determine S5. Lemma 4.3 showed that q is 5-robust for 1 ≤
q ≤ 5. Thus Lemma 2.3 implies that for (k, l) ∈ S5, each of {3, 4, 5} divides
k or l. Also min{k, l} = 1 is forbidden. These conditions are not sufficient;
the characterization of S5 excludes more pairs with min{k, l} small.

Lemma 5.1. If (k, l) ∈ S5, then 3, 4, 5 each divide k or l, plus 11 �=
min{k, l} > 7.

Proof. By Lemma 4.3, the divisibility condition is necessary. Restricting to
k ≥ l, in this proof we exclude pairs of the form

{(20s, 1), (20s, 2), (20s, 3), (15s, 4), (12s, 5), (20s, 6), (20s, 7), (20s, 11)}

for each positive integer s. Lemma 4.3 already excludes (20s, 2), (20s, 7), and
(20s, 11) when 3 � s, and Lemma 2.5 excludes (20s, 1), but the argument here
for the other cases also handles these.

For each case of (k, l), we list below a (k + l)-block that we will show
has no (k, l)-split. The matrices M3,M4,M5 are as in Definition 4.1. We set
M = (αs − β)Mi :γMj to consider k = iαs and l = γj − βi. We group the
cases by the matrix Mj . When 5 | k, we use M5 as the main repeated block;
in the one case where 5 � k and l = 5, we use M4.

k l (k + l)-block M k l (k + l)-block M

20s 1 (4s− 3)M5 :4M4 20s 2 (4s− 2)M5 :4M3

20s 6 (4s− 2)M5 :4M4 20s 7 (4s− 1)M5 :4M3

20s 11 (4s− 1)M5 :4M4 15s 4 (3s− 1)M5 :3M3

20s 3 (4s− 1)M5 :2M4 12s 5 (3s− 1)M4 :3M3

In Lemma 4.2, we showed that blocks formed using only columns from
pMq have row-sum divisible by q. Also, for i < q ≤ 5, each column of Mi

except the last appears in Mq, and we showed that a block using one copy
of this special column plus columns from Mq has row-sum congruent to i
modulo q. In each case l is outside the achievable class.

Now up to γ copies of the exceptional column are available to use in
forming an l-block. We use the same technique as before to eliminate these
cases; the fact that we only need to exclude row-sum l itself instead of a full
congruence class is crucial.

For M4, the special column is (1, 0, 1, 0, 0)T ; for M3, it is (1, 1, 1, 1, 0)
T .

Consider a block B in M using x copies of the special column. Again let
a, b, c, d, e, respectively, denote the number of copies of the five columns in
M5 that are used in B. In the last case, let z be the number of copies
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of the rightmost column of M4. As before, we first obtain constraints on
these multiplicities by ensuring that all rows have the same number of 0s.
These determine the multiplicities in terms of c and x, which in turn yields
a formula for the row sum. We then argue that l is not achievable. In the
computation, several cases combine.

M constraints from 0s a b c d e σ(B)

pM5 :γM4 a b+x c+d c+e+x d+e+x 2c 2c−x c c c−x 5c−x
pM5 :4M3 a b c+d c+e d+e+x 2c−x 2c−x c c−x c−x 5c−2x
pM4 :3M3 a b+z c+d c+z d+z+x 2c−x c c c−x 0 4c−x

To form an l-block in pM5 : γMj , we need x ≤ q. In each case, the
requirement that d and e are nonnegative yields c ≥ x. Also the row-sum in
the repeated block Mi is the coefficient on c in σ(B). To achieve σ(B) = l,
this fixes the congruence class of x modulo i. Since x ≤ γ and c ≥ x, in each
case this produces too large a value of l.

For 5 | k and l ≡ 1 mod 5, an l-block in pM5 : 4M4 requires x = 4, but
then l ≥ 16.

For 5 | k and l ≡ 2 mod 5, an l-block in pM5 : 4M3 requires x = 4, but
then l ≥ 12.

For 5 | k and l = 3, an l-block in pM5 : 2M4 requires x = 2, but then
l ≥ 8.

For 5 | k and l = 4, an l-block in pM5 : 3M3 requires x = 3, but then
l ≥ 9.

For 4 | k and l = 5, an l-block in pN4 : 3M3 requires x = 3, but then
l ≥ 9.

The final contradictions in the proof of Theorem 5.1 show how delicate
these exceptions are. Each case requires l to be at least in the next higher
congruence class modulo i. Indeed, after excluding these small values of l,
the conditions are sufficient.

Theorem 5.2. (k, l) ∈ S5 if and only if 3, 4, 5 each divide k or l, and also
11 �= min{k, l} > 7.

Proof. Necessity was established in Lemma 5.1. For sufficiency, we consider
explicitly the pairs that have not been excluded. We may assume by sym-
metry that k is divisible by at least two of {3, 4, 5}. Note that (60r, 8),
(60r, 9), and (60r, 10) have the form (15s, 4t), (20s, 3t), or (12s, 5t), respec-
tively. Hence it suffices to show that for s ≥ 1 the following lie in S5:

{(20s, 3t) : t ≥ 3} {(15s, 4t) : t ≥ 2}
{(12s, 5t) : t ≥ 2} {(60s, t) : t ≥ 12}.
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Since D(5) = 5, every block M with five rows decomposes into indecom-
posable blocks with row-sums at most 5. These blocks provide a partition
of the integer σ(M). Our task is to show that every partition of k+ l whose
parts are all at most 5 splits into portions summing to k and to l when
(k, l) lies in a family listed above. Let br be the number of copies of r in the
partition. We may assume that no two parts sum to at most 5, because it
then suffices to consider the partition obtained by replacing them with one
part equal to their sum. In particular, b1 + b2 + b3 ≤ 1, except that b3 > 1
is possible when b1 = b2 = 0.

For each family, we use induction on s + t. In each family, the claim
trivially holds for the degenerate case s = 0. We first verify splittability
for the instances with s ≥ 1 and smallest t. Subsequently, we may assume
that s ≥ 1 and that t exceeds the smallest value, which allows us by the
induction hypothesis to assume when l = jt that there is no j-block. In the
last family, the gap for l = 11 forces us to consider (60s, t) separately for t ∈
{8, 9, 10}.

Case 1. (20s, 3t) with t ≥ 3, so σ(M) ≥ 29. For t = 3 and s ≥ 1, suppose
that M contains no 20-block or 9-block. We have b3 ≤ 2 and 4b4+5b5 ≤ 16,
since b4b5 = 0. Hence σ(M) ≤ 22, a contradiction. For larger t, we may
assume b3 = 0, b4 ≤ 4, and b5 ≤ 3. Also b1 + 2b2 ≤ 2. Hence σ(M) ≤
33, which leaves only the case (20, 12). This arises only when (b1, b4, b5) =
(1, 4, 3), but then three 4-blocks yield the split.

Case 2. (15s, 4t) with t ≥ 2, so σ(M) ≥ 23. For t = 2 and s ≥ 1,
suppose that M contains no 15-block or 8-block. We have b4 ≤ 1 and
3b3 + 5b5 ≤ 12, since b3b5 = 0. Hence σ(M) ≤ 16, a contradiction. For
larger t, we may assume b4 = 0, b3 ≤ 4, and b5 ≤ 2. Hence σ(M) ≤ 22, a
contradiction.

Case 3. (12s, 5t) with t ≥ 2, so σ(M) ≥ 22. For t = 2 and s ≥ 1,
suppose that M contains no 12-block or 10-block. We have b5 ≤ 1 and
3b3 + 4b4 ≤ 11. Hence σ(M) ≤ 16, a contradiction. For larger t, we may
assume b5 = 0, b4 ≤ 2, and b3 ≤ 3. Hence σ(M) ≤ 17, a contradic-
tion.

Case 4. (60s, l) with l ≥ 12. Since D(5) = 5, it suffices to obtain the
split for 12 ≤ l ≤ 16. For l ∈ {12, 15}, apply Case 1 above. For (60s, 13), any
single part in {1, 3, 4, 5} reduces the search to an earlier case; since 60s+13
is odd, the parts cannot all equal 2. Similarly, for (60s, 14) it suffices to have
a part in {1, 2, 4, 5}, and the parts cannot all equal 3.
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