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Teaching dimension, VC dimension, and critical
sets in Latin squares

Hamed Hatami
∗
and Yingjie Qian

A critical set in an n × n Latin square is a minimal set of entries
that uniquely identifies it among all Latin squares of the same size.
It is conjectured by Nelder in 1979, and later independently by
Mahmoodian, and Bate and van Rees that the size of the smallest
critical set is �n2/4�. We prove a lower-bound of n2/104 for suffi-
ciently large n, and thus confirm the quadratic order predicted by
the conjecture. This improves a recent lower-bound of Ω(n3/2) due
to Cavenagh and Ramadurai.

From the point of view of computational learning theory, the size
of the smallest critical set corresponds to the minimum teaching
dimension of the set of Latin squares. We study two related no-
tions of dimension from learning theory. We prove a lower-bound of
n2− (e+o(1))n5/3 for both of the VC-dimension and the recursive
teaching dimension.

Keywords and phrases: Latin square, critical set, VC-dimension,
teaching dimension, recursive teaching dimension, defining set, forcing
set.

1. Introduction

Latin squares and critical sets: Recall that a Latin square of order n is an
n × n array filled with elements from the set {1, 2, . . . , n} such that every
element occurs exactly once in each row and each column. Note that a Latin
square L can also be represented as the set of the triples

(1) {(i, j, k) | the (i, j)-th entry is equal to k}.

Following the notation of computational learning theory, we call a set of
entries in a Latin square L that uniquely identifies it among all Latin squares
of order n, a teaching set for L. The minimal teaching sets in Latin squares
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were introduced and studied under the name critical set by statistician John
Nelder [Nel77], and they have been studied extensively since then. We refer
the reader to the two surveys [Kee96] and [Cav08] for more on this topic.

Note that a partially filled Latin square can determine the values of
certain empty entries (i, j) in a straightforward manner: if all the values
{1, . . . , n} \ {k} already appear in the i-th row and j-th column, then the
(i, j)-th entry is determined to be k. One can start from a partially filled
Latin square P and iteratively set the values of the entries that are deter-
mined in this manner. If this finally leads to a full Latin square L, then P
is called a strong teaching set for L. Obviously every strong teaching set is
also a teaching set. Bate and van Rees [BvR99] showed that every strong
teaching set is of size at least �n2/4�. Figure 1 illustrates an example of a
strong teaching set of size �n2/4� for a 4× 4 Latin square.

1
2

4 2

1 3 4 2
4 2 1 3
2 1 3 4
3 4 2 1

Figure 1: An example of a strong teaching set for a 4× 4 Latin square.

Moreover, Bate and van Rees [BvR99] conjectured that this bound holds
for every teaching set. This was also independently conjectured earlier by
Nelder1, and Mahmoodian [Mah95].

Conjecture 1.1. Every critical set for a Latin square of order n is of size
at least �n2/4�.

The existence of critical sets of size �n2/4� was shown by Curran and van
Rees [CVR79] and Cooper, Donovan and Seberry [CDS91]. However, despite
several efforts, there has been little progress towards resolving this conjec-
ture. Fu, Fu, and Rodger [FFR97] showed a lower-bound of �(7n− 3)/6� for
n ≥ 20. This bound was improved by Horak, Aldred, and Fleischner [FFR97]
to �(4n − 8)/3� for n ≥ 8. Cavenagh [Cav07] gave the first superlinear
lower-bound of n�(log n)1/3/2� in 2007. Recently, Cavenagh and Ramadu-
rai [CR16] improved this bound to Ω(n3/2).

In Theorem 1.2 below, we use recent results of Barber, Kühn, Lo, Os-
thus and Taylor [BKL+16] and Dukes [Duk15] about edge-decomposition
of graphs into triangles to show that for sufficiently large n, every critical
set in a Latin square is of size at least n2/104, thus establishing that as it

1John Nelder: Private communication to Jennifer Seberry (1979).
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was predicted in Conjecture 1.1, the size of the smallest critical set is of
quadratic order.

Theorem 1.2. For sufficiently large n, every critical set for a Latin square
of order n is of size at least 10−4n2.

VC, teaching, and recursive teaching dimensions: The notion of teaching
set for Latin squares, as defined above, is quite natural, and can be easily
defined for other combinatorial objects. Indeed similar notions have been de-
fined and studied independently under various names in different contexts.
For example, the term defining set is used for block designs and graph col-
orings, and the term forcing set, coined by Harary [Har93], is used for other
concepts such as perfect matchings, dominating sets, and geodetics (see the
survey [DMRS03]).

The general concept of identifying an object by a small set of its at-
tributes arises naturally in the area of computational learning theory. Con-
sider a finite set Ω, and let F(Ω) denote the power set of Ω. In computational
learning theory, a subset C ⊆ F(Ω) is refered to as a concept class, and the
elements c ∈ C are called concepts. A set S ⊆ Ω is called a teaching set for
a concept c ∈ C if c ∩ S uniquely identifies c among all other concepts. In
other words, (c ∩ S) �= (c′ ∩ S) for every concept c′ �= c. The notion of a
teaching set was independently introduced by Goldman and Kearns [GK95],
Shinohara and Miyano [SM91] and Anthony et al. [ABCST92]. It has also
been studied under the names witness set by Kushilevitz et al. in [KLRS96],
discriminant in [Nat91], and specifying set in [ABCST92].

Recall from (1) that every Latin square of order n can be represented
as a subset of {1, . . . , n}3. Hence the set Ln of all Latin squares of order n
can be considered as a concept class. It is worth noting that our definition
of a teaching set for a Latin square coincides with its definition when Ln is
considered as a concept class.

The concept of a teaching set naturally gives rise to various notions of
dimension associated to concept classes. Let TD(c; C) denote the smallest
size of a teaching set for a concept c ∈ C. The teaching dimension and the
minimum teaching dimension of a concept class C are respectively defined
as TD(C) = max

c∈C
TD(c; C) and TDmin(C) = min

c∈C
TD(c; C). It turns out that

for some purposes, due to its local nature, the minimum teaching dimension
do not capture the characteristics of teaching and learning, and thus the
related notion of recursive teaching dimension is often considered:

RTD(C) = max
C′⊆C

TDmin(C′).
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Note that TDmin(C) ≤ RTD(C) ≤ TD(C) for every concept class C.
Finally let us recall one of the most celebrated notions of dimension

associated to a concept class, i.e. its VC dimension (for Vapnik-Chervonenkis
dimension). A subset S ⊆ Ω is said to be shattered by C if for every T ⊆ S
there exists a concept c with c∩S = T . The size of the largest set shattered by
C is called the VC-dimension of C. Recently in [CCT16], using a surprisingly
short argument, Chen, Cheng and Tang showed that RTD(C) ≤ 2d+1(d −
2) + d+ 4, where d = VC(C).

VC, teaching, and recursive teaching dimensions for Latin Squares: Our
main result, Theorem 1.2, says that TDmin(Ln) ≥ 10−4n2 for sufficiently
large n. Ghandehari, Hatami and Mahmoodian [GHM05] showed that every

Latin square contains a critical set of size at most n2−
√
π
2 n3/2, and moreover

there are Latin squares with no critical sets of size smaller than n2 − (e +
o(1))n5/3. In other words, for sufficiently large n, we have

n2 − (e+ o(1))n5/3 ≤ TD(Ln) ≤ n2 −
√
π

2
n3/2.

On the other hand, RTD(Ln) does not seem to correspond to any of the
previously studied parameters related to critical sets. In Theorem 1.4 below,
we show that one can adopt the argument of [GHM05] to obtain a stronger
result that RTD(Ln) ≥ n2− (e+ o(1))n5/3. Surprisingly, a similar argument
combined with a lemma of Pajor (Lemma 2.6) implies the same bound for
the VC-dimension.

Theorem 1.3. The VC-dimension of the class of Latin squares of order n
is at least n2 − (e+ o(1))n5/3.

Theorem 1.4. The recursive teaching dimension of the class of Latin
squares of order n is at least n2 − (e+ o(1))n5/3.

2. Proof of main theorems

In this section we present the proofs of our results, Theorem 1.2, Theo-
rem 1.3, and Theorem 1.4.

2.1. The size of the smallest critical set, Theorem 1.2

We give some remarks before proceeding to the proof of Theorem 1.2. A
graph G has a K3-decomposition if its edge set can be partitioned into
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(edge-disjoint) copies of K3. We call a 3-partite graph G balanced if each
part has the same number of vertices, and we call it locally balanced if every
vertex of G has the same number of neighbours in each of the other two
parts (however, these numbers might be different for different vertices). The
following theorem is immediate from results of Barber, Kühn, Lo, Osthus
and Taylor [BKL+16] and Dukes [Duk15].

Theorem 2.1 (See [BKL+16, Corollary 1.6] and [Duk15, Theorem 1.3]).
Let γ > 0 and n > n0(γ). Every balanced and locally balanced 3-partite
graph on 3n vertices with minimum degree at least (101/52 + γ)n, admits a
K3-decomposition.

Noting that a Latin square of order n is a K3-decomposition of the com-
plete 3-partite graphKn,n,n, Barber, Kühn, Lo, Osthus and Taylor [BKL+16]
obtained the following corollary to Theorem 2.1.

Corollary 2.2 ([BKL+16]). Let P be a partial Latin square of order n ≥ n0

such that every row, column, and symbol is used at most 0.0288n times.
Then P can be completed to a Latin square.

We will take a similar approach to prove Theorem 1.2.

Proof of Theorem 1.2. Set ε = 10−4. A partial Latin square P of order n
is a partially filled n × n array with elements chosen from {1, . . . , n} such
that each element occurs at most once in every column and at most once in
every row. In other words, some of the cells of the array are empty and the
filled entries agree with the Latin property. The size of P , denoted by |P |, is
the number of filled entries. We need to show that providing n is sufficiently
large, if a partial Latin square P of size at most εn2 can be completed to a
Latin square L, then P can also be completed to a different Latin square L′.

For such a P , let R,C, S be respectively the set of all rows, columns
and symbols in P that have at least δn filled entries, where δ = 0.012. We
extend P to a larger partial Latin square P1 by completing all those rows,
columns and symbols by filling the empty cells with the entries of L. Let
m = max{|R|, |C|, |S|}, and note m ≤ ε

δn ≤ 0.0084n. We obtain P2 by filling
m−|R| additional rows, m−|C| additional columns, and m−|S| additional
symbols with entries of L. Since m + δn < n, exactly m rows, m columns,
and m symbols are all fully filled in P2.

Let (x, y, z) ∈ L\P2. Such an element exists because |P2| ≤ |P |+3mn ≤
(ε + 3ε

δ )n
2 < n2. Let z′ be any symbol such that (x, j, z′), (i, y, z′) �∈ P2 for

all i, j ∈ {1, . . . , n}. Such a z′ exists because the number of symbols in the
x-th row and the number of symbols in the y-th column of P2 are each at
most δn+2m, and thus there are in total at most 2δn+4m < 0.06n symbols
appearing in the x-th row and the y-th column.
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Let P3 = P2 ∪ {(x, y, z′)} and we claim that P3 can be completed to a
Latin square. Note that P3 still has exactly m completed rows, columns and
symbols as filling (x, y, z′) in P2 cannot create another complete row, column
or symbol. Start from the complete 3-partite graph Kn,n,n where the vertices
of each part are labeled with {1, . . . , n}, and for every entry (i, j, k) ∈ P3

remove the three edges of the triangle (i, j, k) from the graph. Let G be
the resulting graph. Note that G has 3m vertices of degree 0 corresponding
to the completed rows, columns and symbols in P3. Ignoring the 0-degree
vertices, G is balanced and locally balanced, and it is of minimum degree at
least 2n− 2(δn+ 2m+ 1) > 1.9426n > 101

52 (n−m). Hence by Theorem 2.1,
it admits a K3-decomposition, which in turn corresponds to a completion
to a Latin square L′. Note that L′ �= L as the two Latin squares disagree on
the (x, y)-th entry.

Remark 2.3. A conjecture of Daykin and Häggkvist [DH84] (see [BKL+16,
Conjecture 1.3]) suggests that Theorem 2.1 holds under the weaker condition
that the minimum degree of G is at least 3n/2. If this is true, the proof
of Theorem 1.2 provides a better lower-bound of 2−7n2 on the size of the
smallest critical set. However, this is still far from the conjectured bound of
�n2/4�.

2.2. VC and recursive teaching dimension, Theorems 1.3 and 1.4

The van der Waerden conjecture, proved in [Gyi80, Ego81, Fal81], can be
used to obtain a lower-bound for the number of Latin squares of order n.

Lemma 2.4 ([vLW92, Theorem 17.2]). Let Ln be the set of all Latin squares
of order n. Then

|Ln| ≥
(n!)2n

nn2 .

Ghandehari, Hatami and Mahmoodian [GHM05, Theorem 3] used Breg-
man’s theorem [Bre73] to obtain an upper-bound for the number of partial
Latin squares of a given size.

Lemma 2.5 ([GHM05, Theorem 3]). Let Tn,k be the set of all partial Latin
squares of order n and of size k. Then

|Tn,k| ≤
(
n2

k

)
n!2n−

k

n en(3+
ln(2πn)2

4
)

(n− k
n)!

2nek
.

The VC-dimension of Latin squares The most basic result concerning VC-
dimension is the Sauer-Shelah lemma. This lemma that has been indepen-
dently proved several times (e.g. in [Sau72]), provides an upper-bound on



Critical sets in Latin squares 15

the size of a concept class C ⊆ F(Ω) in terms of |Ω| and VC(C). Formally it

says |C| ≤
∑d

i=0

(|Ω|
i

)
where d = VC(C). Note that for the set of n× n Latin

squares Ln ⊆ {1, . . . , n}3, we have |Ω| = n3. Then it is not difficult to see
that the Sauer-Shelah lemma together with Lemma 2.4 implies VC(Ln) ≥
n2

(
1
3 − o(1)

)
. The 1/3 factor in this bound is due to the cubic size of |Ω| in

terms of n. To obtain the n2(1−o(1)) bound of Theorem 1.3, we will use the
following strengthening of the Sauer-Shelah lemma due to Pajor [Paj85].

Lemma 2.6 ( [Paj85]). Every finite set family F shatters at least |F| sets.

Proof of Theorem 1.3. We will prove that n2 − e1+
1√
nn5/3 < VC(Ln) for

sufficiently large n. Note that if a set S ⊆ {1, . . . , n}3 is shattered by Ln,
then in particular S ∩L = S for some L ∈ Ln, and thus S ⊆ L. Hence every
shattered set S corresponds to a partial Latin square. By Lemma 2.6, the
set of all Latin squares of order n shatters at least |Ln| sets. It follows that
for d = VC(Ln), we have

(2)

d∑
k=0

|Tn,k| ≥ |Ln|.

Hence to prove n2 − e1+
1√
nn5/3 < VC(Ln), it suffices to show that for

every k ≤ n2 − e1+
1√
nn5/3, we have |Tn,k| < |Ln|

n2 , or equivalently |Ln| ≤
n2|Tn,k| implies k > n2 − e1+

1√
nn5/3.

We can follow a similar calculation as in [GHM05]: Assume |Ln| ≤
n2|Tn,k|. Then by Lemma 2.4 and Lemma 2.5,

(3)
(n!)2n

nn2 ≤ n2

(
n2

k

)
n!2n−

k

n en(3+
ln(2πn)2

4
)

(n− k
n)!

2nek
.

Setting c = 1− k
n2 , and using

(
n2

k

)
=

(
n2

n2−k

)
≤

(
e
c

)cn2

, we obtain

n!n−cn

nn2 ≤ n2ecn
2

en ln(2πn)2

ccn2(cn)!2nen2−cn2 .

Using n! ≥ (ne )
n, we obtain

nn2−cn2

en2−cn2nn2 ≤ n2e3cn
2

en ln(2πn)2

ccn2(cn)2cn2en2−cn2 ,

and thus
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(4) c3cnc ≤ e3ce
ln(2πn)2

n n
2

n2 .

Fix a sufficiently large n. If c = e
1+ 1√

n

n1/3 , then c3cnc > e3ce
ln(2πn)2

n n
2

n2 ,

and moreover c3cnce−3c is an increasing function of c in [n−1/3,∞). So in-

equality (4) implies c < e
1+ 1√

n

n1/3 , which in turn shows k > n2 − e1+
1√
nn5/3 as

desired.

The recursive teaching dimension of Latin squares The proof of Theo-
rem 1.4 will use a similar counting argument as it was used in the proof
of Theorem 1.3.

Proof of Theorem 1.4. Recall that Ln denotes the set of all Latin squares of
order n, and Tn,k denotes the set of all partial Latin squares of order n and
of size k. Set L = Ln, and while there are partial Latin squares P ∈ Tn,k that
have unique extensions to full Latin squares L ∈ L, remove such L’s from L.
Repeat this process with the updated L until no such partial Latin square
can be found. Denote by R the set of all Latin squares that are removed
from the initial L, and note that |R| ≤ |Tn,k|. Note further that if L \ R
is not empty, then its minimum teaching dimension is at least k. We know
from the proof of Theorem 1.3 that |Ln| > |Tn,k| if k ≤ n2 − (e+ o(1))n5/3,
and thus RTD(Ln) ≥ TDmin(Ln \R) ≥ n2 − (e+ o(1))n5/3 as desired.

3. Concluding remarks

In Theorem 1.2 we proved that the size of the smallest critical set for Latin
squares of order n is of quadratic order, however Conjecture 1.1 still remains
unsolved.

In Theorems 1.3 and 1.4 we established a lower-bound of n2 − (e +
o(1))n5/3 for both VC-dimension and the recursive teaching dimension of
the set of Latin squares of order n. One can easily obtain an upper-bound of
the form n2 − Ω(n) for the VC-dimension, but obtaining a stronger upper-
bound, and more ambitiously, determining the exact asymptotics of the VC-
dimension seems highly nontrivial. For the teaching dimension and conse-

quently recursive teaching dimension, a stronger upper-bound of n2−
√
π
2 n3/2

follows from the results of [GHM05]. Hence for sufficiently large n,

n2 − (e+ o(1))n5/3 ≤ RTD(Ln) ≤ TD(Ln) ≤ n2 −
√
π

2
n3/2.

It would be interesting to improve either of the constants 5/3 and 3/2 ap-
pearing in the power of n in the above bounds.
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tions (Tartu-Kääriku, 1991), pages 15–19. Tartu Univ., Tartu,

1993. MR1223833

[Kee96] Anthony D. Keedwell. Critical sets for Latin squares, graphs

and block designs: a survey. Congr. Numer., 113:231–245, 1996.

Festschrift for C. St. J. A. Nash-Williams. MR1393712

[KLRS96] Eyal Kushilevitz, Nathan Linial, Yuri Rabinovich, and Michael

Saks. Witness sets for families of binary vectors. J. Combin.

Theory Ser. A, 73(2):376–380, 1996. MR1370141

[Mah95] Ebadollah S. Mahmoodian. Some problems in graph colorings.

In Proceedings of the 26th Annual Iranian Mathematics Confer-

ence, Vol. 2 (Kerman, 1995), pages 215–218. Shahid Bahonar

Univ. Kerman, Kerman, 1995. MR1492638

[Nat91] Balas K. Natarajan. Machine Learning: A Theoretical Ap-

proach. Morgan Kaufmann, 1991. MR1137519

[Nel77] John Nelder. Critical sets in Latin squares. CSIRO Division of

Math. and Stats Newsletter 38, 1977.

[Paj85] Alain Pajor. Sous-Espaces ln1 des Espaces de Banach, volume 16

of Travaux en Cours [Works in Progress]. Hermann, Paris, 1985.

With an introduction by Gilles Pisier. MR0903247

[Sau72] Norbert Sauer. On the density of families of sets. J. Combina-

torial Theory Ser. A, 13:145–147, 1972. MR0307902

[SM91] Ayumi Shinohara and Satoru Miyano. Teachability in compu-

tational learning. New Gen. Comput., 8(4):337–347, 1991.

[vLW92] Jacobus H. van Lint and Richard M. Wilson. A Course in

Combinatorics. Cambridge University Press, Cambridge, 1992.

MR1207813

Hamed Hatami

School of Computer Science

McGill University

Montreal

Canada

E-mail address: hatami@cs.mcgill.ca

http://www.ams.org/mathscinet-getitem?mr=1223833
http://www.ams.org/mathscinet-getitem?mr=1393712
http://www.ams.org/mathscinet-getitem?mr=1370141
http://www.ams.org/mathscinet-getitem?mr=1492638
http://www.ams.org/mathscinet-getitem?mr=1137519
http://www.ams.org/mathscinet-getitem?mr=0903247
http://www.ams.org/mathscinet-getitem?mr=0307902
http://www.ams.org/mathscinet-getitem?mr=1207813
mailto:hatami@cs.mcgill.ca


20 Hamed Hatami and Yingjie Qian

Yingjie Qian

Department of Mathematics and Statistics

McGill University

Montreal

Canada

E-mail address: yingjie.qian@mail.mcgill.ca

Received 2 June 2016

mailto:yingjie.qian@mail.mcgill.ca

	Introduction
	Proof of main theorems
	The size of the smallest critical set, Theorem 1.2
	VC and recursive teaching dimension, Theorems 1.3 and 1.4

	Concluding remarks
	Acknowledgement
	References

