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Graded Betti numbers of cycle graphs and standard
Young tableaux

Steven Klee and Matthew T. Stamps

We give a bijective proof that the graded Betti numbers of a min-
imal free resolution of the Stanley-Reisner ring of a cycle graph
(viewed as a one-dimensional simplicial complex) are given by the
number of standard Young tableaux of a given shape.

1. Introduction

In a recent paper, Dochtermann [3] studied the (graded) Betti numbers
βi,j(Cn) of a minimal free resolution of the Stanley-Reisner ring of the cy-
cle graph Cn, viewed as a one-dimensional simplicial complex. He showed
in [3, Theorem 4.3] that the nonzero Betti numbers of the resolution are
β0,0(Cn) = βn−2,n(Cn) = 1 and

(1) βj−1,j(Cn) = #{standard Young tableaux of shape (j, 2, 1n−j−2)}

for 2 ≤ j ≤ n− 2. Specifically, he showed that the left- and right-hand sides
of Equation (1) satisfy a common recursion formula. This result was also
discovered by Bruns-Hibi [1] and Choi-Kim [2] without the connection to
standard Young tableaux. In this note, we offer a bijective proof of this fact
that preserves a natural duality present in each of the respective objects of
interest.

2. Preliminaries

For the sake of brevity, we will adhere to the standard definitions and nota-
tion established by Miller and Sturmfels [4] and Stanley [5, 6], and we refer
to these books for any undefined terms presented throughout this paper. We
use the convention that Young tableaux are arranged in left-justified rows
of weakly decreasing length in which the first (top) row is the longest. For
a standard Young tableau T , we denote by T (i, j) the entry in the ith row
(from the top) and jth column (from the left) in T .
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For a simplicial complex Δ on vertex set V and W ⊆ V , we use Δ[W ] :=
{F ∈ Δ : F ⊆ W} to denote the restriction of Δ to the vertices in W , W
to denote the set complement of W in V , and Cn to denote the standard
cycle graph on n vertices, i.e., the graph on vertex set [n] := {1, 2, . . . , n}
whose edge set consists of all pairs {i, j} such that i− j ≡ ±1 mod n.

We recall Hochster’s formula, which will be the main tool in our analysis.

Theorem 2.1 (Hochster’s formula). Let Δ be a simplicial complex on vertex
set V , let k be a field, and let k[Δ] be the Stanley-Reisner ring of Δ. Then
the graded Betti numbers of a minimal free resolution of k[Δ] are given by

(2) βi,j(Δ) =
∑

W∈(Vj )

dimk H̃j−i−1(Δ[W ];k).

When Δ = Cn, it is clear from Equation (2) that β0,0(Cn) = 1 and that
βn−2,n(Cn) = 1 by taking W = ∅ and W = [n], respectively. Furthermore,
the restriction of Cn to any proper, nonempty subset of vertices can only
have non-vanishing homology in dimension 0, so the only remaining nonzero
Betti numbers in the resolution of Cn are those βj−1,j(Cn) with 2 ≤ j ≤ n−2.
(If j = 1 or j ≥ n − 1, the restriction of Cn to any subset of j vertices is
connected, and hence does not contribute to the sum in Equation (2).)

3. The bijection

Our primary goal is to understand the combinatorics of βj−1,j(Cn) for 2 ≤
j ≤ n − 2. By Theorem 2.1, we know every subset W ∈

(
[n]
j

)
contributes

one less than the number of connected components of Δ[W ] to βj−1,j(Cn),
so our initial aim will be to associate to every standard Young tableau of
shape (j, 2, 1n−j−2) a unique pair (W,X), where W ∈

(
[n]
j

)
and X represents

a distinguished connected component of Cn[W ].

Definition 3.1. For n ≥ 4 and 2 ≤ j ≤ n− 2, let Y(j, n) denote the set of
standard Young tableaux of shape (j, 2, 1n−j−2).

Every standard Young tableau filled with the numbers in [n] has a box
labeled 1 in its upper left corner. In contrast, the vertices of the cycle graph
are, a priori, indistinguishable from one another. Therefore, vertex 1 must
somehow become distinguished in terms of the restriction sets Cn[W ] for any
bijection under consideration. At the same time, for any proper, nonempty
W ⊂ [n], the restrictions Cn[W ] and Cn[W ] have the same number of con-
nected components. Thus any proposed bijection must somehow condition
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on the presence/absence of 1 in a set W , along with the connected compo-

nents of the restrictions Δ[W ] or Δ[W ], based on which of these sets contains

vertex 1. These observations motivate the following definition.

Definition 3.2. For every subset W ⊂ V , let

m(W ) :=

{
{min(X) : X is a connected component of Cn[W ]} if 1 /∈ W,

{min(X) : X is a connected component of Cn[W ]} if 1 ∈ W,

and m′(W ) := m(W ) \min(m(W )).

Since Cn[W ] and Cn[W ] have the same number of connected compo-

nents, it follows that |m(W )| is equal to (and |m′(W )| is one less than)

the number of connected components of Δ[W ]. Note that the knowledge of

1 ∈ W and a ∈ m(W ) is sufficient to determine a component of Cn[W ] (or

Cn[W ] if 1 /∈ W ).

Definition 3.3. For n ≥ 4 and 2 ≤ j ≤ n− 2, let

S(j, n) =
{
(W,a) : W ∈

(
[n]

j

)
and a ∈ m′(W )

}
.

Remark 3.4. Observe that m′(W ) is implicitly required to be nonempty

and hence Cn[W ] has at least two connected components for each W under

consideration here.

At this point we are ready to present our bijection between Y(j, n) and

S(j, n), but before we continue, let us first turn our attention to the set

Y(j, n) for some brief motivation: If T is an element of Y(j, n), then the first

row of T has j boxes filled by unique elements of [n], the first column of T

has n − j boxes filled by unique elements of [n], and, since T is standard,

we know the element 1 must be located at position T (1, 1). Thus, for a

given W ∈
(
[n]
j

)
, it is natural to associate a standard Young tableau to W

by first filling the first row of the table with the elements of W if 1 ∈ W

and otherwise filling the first column of the table by the elements of W if

1 /∈ W . The set W is not sufficient to determine a single standard Young

tableau under this rule, however, because Cn[W ] and Cn[W ] may have many

connected components. To account for the different components, we make

use of the box at position (2, 2) of our Young diagram.

Definition 3.5. For every T ∈ Y(j, n), let aT := T (2, 2), let B be the box

in T that contains the number aT − 1, and set
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WT :=

{
{T (1, i) : 1 ≤ i ≤ j} if B lies in the first row of T ,

{T (2, 2)}∪ {T (1, i) : 2≤ i≤ j} if B lies in the first column of T .

We now proceed with the main result of this paper:

Theorem 3.6. For every n ≥ 4 and 2 ≤ j ≤ n − 2, the function φ :
Y(j, n) → S(j, n) given by φ(T ) = (WT , aT ) is a bijection.

Example 3.7. We exhibit φ : Y(2, 5) → S(2, 5). The subsets W ⊆ [5] for
which C5[W ] has multiple connected components correspond to the chords
of C5, so S(2, 5) consists of the following ordered pairs:

({2, 4}, 4), ({2, 5}, 5), ({3, 5}, 5), ({1, 3}, 4), ({1, 4}, 5).

Moreover, Y(2, 5) consists of the following five fillings of the shape (2, 2, 1),
which are shown below with their corresponding images under φ.

T1 =
1 2

3 4

5

T2 =
1 3

2 4

5

T3 =
1 2

3 5

4

T4 =
1 3

2 5

4

T5 =
1 4

2 5

3

φ(T1) = ({2, 4}, 4) φ(T2) = ({1, 3}, 4) φ(T3) = ({2, 5}, 5) φ(T4) = ({3, 5}, 5) φ(T5) = ({1, 4}, 5).

Example 3.8. The case that n = 6 and j = 3 is the first case in which
we can have a restricted subcomplex with more than two connected compo-
nents. IfW = {2, 4, 6}, thenm′(W ) = {4, 6} and the tableaux corresponding
to ({2, 4, 6}, 4) and ({2, 4, 6}, 6), respectively, are

1 2 6

3 4

5
and

1 2 4

3 6

5 .

Proof of Theorem 3.6. We begin by showing that φ is injective: Suppose
that T and T ′ are tableaux for which φ(T ) = φ(T ′). Let B be the box in T
containing the number aT −1 and B′ be the box in T ′ containing the number
a′T − 1. We consider two cases based on whether or not 1 ∈ WT = WT ′ .

Case 1.1. Suppose 1 ∈ WT = WT ′ . Then the entries of the first rows of T and
T ′ are the elements of WT = WT ′ . Since T and T ′ are standard, these entries
must be written in increasing order, so the first rows of T and T ′ must be
the equal. Since aT = aT ′ , we also get that T (2, 2) = T ′(2, 2). Again, since
T and T ′ are standard, it follows that the remaining entries, which must all
lie in the respective first columns of T and T ′, are equal. Therefore, T = T ′.
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Case 1.2. Suppose 1 /∈ WT = WT ′ . Then the entries of the first columns of
T and T ′ are the elements of the complement of WT = WT ′ in [n]. Since T
and T ′ are standard, these entries must be written in increasing order, so
the first columns of T and T ′ must be equal. Since aT = aT ′ , we also get
that T (2, 2) = T ′(2, 2). Again, since T and T ′ are standard, it follows that
the remaining entries, which must all lie in the respective first rows of T and
T ′, are equal. Therefore, T = T ′.

Next, we show that φ is surjective: Let (W,a) be an element in S(j, n).
We consider two cases based on whether or not 1 ∈ W . Recall by our con-
struction that 1 ∈ W if and only if a /∈ W .

Case 2.1. Suppose 1 ∈ W and consider the tableau T of shape (j, 2, 1n−j−2)
filled in the following way:

• Sort W and fill it into the first row of T ;
• Enter a in the (2, 2) position of T ;
• Sort W − {a} and fill it into the rest of the first column of T .

It is clear that this filling is well-defined and that each element of [n] belongs
to one of the boxes of T . Let b = T (1, 2) and c = T (2, 1). To show that T
is a standard filling, it suffices to prove that a > b and a > c. Observe that
b is the second-smallest element of W . If b = 2, then it is clear that a > b.
Otherwise 2 /∈ W , which means {2, . . . , b− 1} is a connected component of
Cn[W ], which implies that min(m(W )) = 2. Thus, every element of m′(W ),
in particular a, is greater than b, since the remaining connected components
of Cn[W ] are subsets of {b + 1 . . . , n}. This proves that a > b. To see that
a > c, we recall that a /∈ W and, by construction, that a cannot be the
smallest element of W . It follows that c must be the smallest element of W ,
and hence a > c. This establishes that T is standard.

Case 2.2. Suppose 1 /∈ W and consider the tableau T of shape (j, 2, 1n−j−2)
filled in the following way:

• Sort W and fill it into the first column of T ;
• Enter a in the (2, 2) position of T ;
• Sort W − {a} and fill it into the rest of the first row of T .

Let b = T (1, 2) and c = T (2, 1) as before. To show that the filling of T
is standard, it suffices to prove that a > b and a > c. Observe that c is
the second-smallest element of W . If c = 2, then it is clear that a > c.
Otherwise 2 ∈ W , which means {2, . . . , c− 1} is a connected component of
Cn[W ], which implies that min(m(W )) = 2. Thus, every element of m′(W ),
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in particular a, is greater than c. To see that a > b, we observe that b
is the smallest element of W and hence min(m(W )) = b. Therefore, each
element of m′(W ), in particular a, is greater than b. This establishes that T
is standard.

In both Cases 2.1 and 2.2, it is clear from our definition that φ(T ) =
(W,a).

Remark 3.9. We noted earlier that for any proper, nonempty subset W ⊂
[n], the restrictions Cn[W ] and Cn[W ] have the same number of connected
components, which implies that βj−1,j(Cn) = βn−j−1,n−j(Cn) for any 1 ≤
j ≤ n − 1. This duality is expected since k[Cn] is known to be Gorenstein.
The duality is reflected in the combinatorics on standard Young tableau in
the form of transposition. (The transpose T ∗ of a standard Young tableaux T
of shape (j, 2, 1n−j−2) is a standard Young tableaux of shape (n−j, 2, 1j−2).)
The bijection defined in Theorem 3.6 establishes that these two notions of
duality are compatible, that is WT ∗ = W T and aT ∗ = aT for the transpose
T ∗ of any tableau T .
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