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A note on rank complement of rational Dyck paths
and conjugation of (m,n)-core partitions

Guoce Xin
∗

Given a coprime pair (m,n) of positive integers, rational Cata-
lan numbers 1

m+n

(
m+n
m,n

)
counts two combinatorial objects: ratio-

nal (m,n)-Dyck paths are lattice paths in the m×n rectangle that
never go below the diagonal; (m,n)-cores are partitions with no
hook length equal to m or n. Anderson established a bijection be-
tween (m,n)-Dyck paths and (m,n)-cores. We define a new trans-
formation, called rank complement, on rational Dyck paths. We
show that rank complement corresponds to conjugation of (m,n)-
cores under Anderson’s bijection. This leads to: i) a new approach
to characterizing n-cores; ii) a simple approach for counting the
number of self-conjugate (m,n)-cores; iii) a proof of the equiv-
alence of two conjectured combinatorial sum formulas, one over
rational (m,n)-Dyck paths and the other over (m,n)-cores, for ra-
tional Catalan polynomials.

1. Introduction

Rational Catalan numbers are defined for a coprime pair (m,n) of positive
integers by

Catm,n =
1

m+ n

(
m+ n

m, n

)
=

1

m

(
m+ n− 1

m− 1, n

)
=

(m+ n− 1)!

m!n!
.

This formula is known to count the set Dm,n of rational (m,n)-Dyck paths
in the m× n rectangle (see, e.g., [7]). To be precise, (m,n)-Dyck paths (for
general (m,n)) are lattice paths from (0, 0) to (m,n) that use unit steps (1, 0)
or (0, 1) and never go below the main diagonal line y = nx/m. The ordinary
Dyck path in an n×n rectangle is counted by the classical Catalan number
Catn+1,n, which is known [33] to count more than 200 distinct families of

∗This work was done during the author’s stay at UCSD. The author is very
grateful to Professor Adriano Garsia for inspirations and encouraging conversations.
This work was partially supported by the National Natural Science Foundation of
China (11171231).

705

http://www.intlpress.com/JOC/


706 Guoce Xin

combinatorial objects. Since (n + 1, n)-Dyck paths are easily seen to be
in bijection with (n, n)-Dyck paths, this case is always referred to as the
classical case.

Rational Catalan numbers also appear in the context of partitions. An-
derson [1] established a bijection α from the set Dm,n of rational Dyck paths
to the set Pm,n of (m,n)-cores, which are partitions having no hook lengths
equal to m or n. Recently, Armstrong et al. [4] established some interesting
results and conjectures on (m,n)-cores. Some of the conjectures have been
solved (See, e.g., [9], [25], [34]), some of them are still open.

Our first contribution is to define the rank complement transformation
on (m,n)-Dyck paths in Section 2. Then we claim in Theorem 11 that un-
der Anderson’s map, rank complement of (m,n)-Dyck paths corresponds
to conjugation of (m,n)-cores. Conjugation of (m,n)-cores was also de-
scribed using semimodules in [19, Lemma 2.21]. This correspondence was
not known before. See Armstrong’s talk [3] in 2012. Using this correspon-
dence, we give a simple proof of the following result, which appear as [10,
Theorem 1].

Theorem 1 ([10]). Let (m,n) be a coprime pair. Then the number of self
conjugate (m,n)-cores is given by

(
�m/2�+ �n/2�
�m/2�, �n/2�

)
.(1)

The original proof of Theorem 1 gives a direct bijection from self-conju-
gate (m,n)-cores to lattice paths from (0, 0) to (�m/2�, �n/2�). It is based on
the fact that self conjugate partitions are uniquely determined by their hook
lengths of the main diagonal. These main diagonal hook lengths are charac-
terized by certain conditions for self conjugate n-cores (hence (m,n)-cores)
[10, Proposition 3].

Rational Catalan polynomials are q-analogous of Catm,n defined by

Catm,n(q) =
1

[m+ n]q

[
m+ n

m, n

]
q

=
[m+ n− 1]q!

[m]q![n]q!
,

where [a]q = 1 + q + · · · + qa−1 and [a]q! = [a]q · · · [1]q. It is a nontrivial
fact1 that Catm,n(q) is a polynomial in q with N coefficients when m and
n are coprime. For this fact, Haiman gives an algebraic proof in [24, Prop.

1Christian Kratternthaler pointed out that an elementary proof of this fact is
given by Andrews [2].
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2.5.2] and also gives an algebraic interpretation for these polynomials as the

Hilbert series of a suitable quotient ring of a polynomial ring [24, Prop. 2.5.3

and 2.5.4]. This polynomial also appears to be connected to certain modules

arising in the theory of rational Cherednik algebras. Recently, it is shown in

[13] that the modified version [gcd(m,n)]qCatm,n(q) for arbitrary m and n

is also a polynomial in q with N coefficients.

An interesting problem is to explain the fact by finding a combinatorial

interpretation of the rational Catalan polynomial Catm,n(q), especially of

the form

Catm,n(q) =
∑

D∈Xm,n

qstat(D),

where stat is certain statistic on D, and Xm,n is a set counted by Catm,n.

Such a solution was only known for the classical case by MacMahon [28]

using the major index, and for the m = kn + 1 case by [26] using the area

and bounce statistic. In the general case, there are two conjectured formulas.

One came up as a consequence of a more general rational Shuffle conjecture

from algebraic combinatorics.

Conjecture 2. Let (m,n) be a coprime pair of positive integers. Then we

have

∑
D∈Dm,n

qarea(D)+codinv(D) = Catm,n(q) =
1

[m+ n]q

[
m+ n

m, n

]
q

(2)

where the sum ranges over all (m,n)-Dyck paths D, area(D) is the number

of lattice squares between D and the main diagonal, and codinv(D) is a Dyck

path statistic that can be given a simple geometric construction.

The conjecture was also made in [5, Conjecture 6], where dinv is denoted

h+m,n.

The other conjecture was made in the context of partitions by Armstrong

et al. [4], where they introduced the statistics length �(λ) and skew-length

s�(λ) of an (m,n)-core λ.

Conjecture 3. [4] Let m and n be coprime positive integers. Then we have

∑
λ∈Pm,n

q�(λ)+s�(λ) = Catm,n(q) =
1

[m+ n]q

[
m+ n

m, n

]
q

,(3)

where the sum ranges over all (m,n)-cores λ.
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Both conjectured formulas are specialization of rational q, t-Catalan num-
bers at t = 1/q. The similarity of the two conjectures suggests that they are
equivalent. Indeed, our major contribution is Theorem 17, which shows that
under Anderson’s α map, codinv(D) of a Dyck path D is taken to s�(λ) of
the (m,n)-core λ = α(D). Since it is clear that area(D) = �(λ), we prove
the equivalence of Conjectures 2 and 32.

It is worth mentioning the well-known Shuffle conjecture, which repre-
sents the Hilbert series of the diagonal Harmonics as a combinatorial sum
over certain labeled Dyck paths, called parking functions. The Shuffle con-
jecture was one of the major open problems in algebraic combinatorics. Since
it was formulated in 2003 and published in [21], little progress was made un-
til a refinement of the conjecture was found 5 years later and published in
[23]. Three special cases of the refined shuffle conjecture have been proved
in [17], [15], [16]. Recently, the refined shuffle conjecture was proved by Erik
Carlsson and Anton Mellit [8].

While the classical shuffle conjecture was too hard to attack, its natural
extension, the rational shuffle conjecture, has been discovered recently. The
conjecture was found to be connected with many other area of mathemat-
ics, such as: the Elliptic Hall Algebra of Burban-Shiffmann-Vasserot, the
Algebraic Geometry of Springer Fibers of Hikita, the Double Affine Hecke
Algebras of Cherednik, the HOMFLY polynomials, and the truly fascinat-
ing Shuffle Algebra of symmetric functions. Its specializations at t = q−1

(including the classical cases) are still open to this date. What makes this
specialization particularly fascinating is that both sides of the stated iden-
tities have combinatorial interpretations. As a consequence, Conjecture 2 is
already quite challenging3.

The paper is organized as follows. Section 1 is this introduction. Sec-
tion 2 introduces notations on rational Dyck paths and the rank comple-
ment transformation. In trying to understand its relation with conjugation
of (m,n)-cores, we find Theorem 9 in Section 3, which gives a relation be-
tween n-cores λ and their conjugate λT . This leads to a new approach to
characterizing n-core partitions. In Section 4, we introduce Anderson’s bi-
jection between (m,n)-Dyck paths and (m,n)-cores and give a new proof of
Theorem 1. In Section 5, we introduce the dinv statistic and establish the
equivalence of Conjectures 2 and 3.

2The referee pointed out that this equivalence is a consequence of (an earlier
work) [6, Theorem 4.8]. Our proof is simpler.

3Recently, Mellit claimed a proof of the refined rational shuffle conjec-
ture [30].
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2. Rational Dyck paths and the rank complement
transformation

2.1. Notations

In this note, a path P = p1 · · · pn is an (N,E)-sequence depicted in the
plane as a sequence of lattice points (P0, . . . , Pn) such that P0 = (0, 0) (if
not specified) and Pi−Pi−1 equals (0, 1) if pi = N and (1, 0) if pi = E. Thus
N simply means a north step and E means a east step. The product of two
paths P and Q are the juxtaposition PQ of the NE sequences of P and Q.
Or equivalently, PQ is the path obtained by putting the starting point of Q
at the end point of P .

Let m and n be positive integers. We denote by Fm,n the set of (free)
paths from (0, 0) to (m,n). An (m,n)-Dyck path D is a path in Fm,n that
never goes below the diagonal line y = n

mx. We denote by Dm,n the set
of all such rational (slope) Dyck paths. Define the rank of a lattice point
(a, b) by r(a, b) = mb − na. When (m,n) is a coprime pair, all the lattice
points {(a, b) : 0 ≤ a ≤ m, 0 ≤ b ≤ n} in the m by n rectangle are in
bijection with their ranks except for r(0, 0) = r(m,n) = 0. Thus we can
encode a path P ∈ Fm,n by its rank set r(P ) = {r(P0), . . . , r(Pm+n−1)} =
{r(P1), . . . , r(Pm+n)} of m+n distinct ranks. The ranks can also be defined
recursively by r(P0) = 0 and for i = 1, . . . ,m + n, r(Pi) = r(Pi−1) + m if
pi = N and r(Pi) = r(Pi−1)− n if pi = E. Then P ∈ Fm,n is a Dyck path if
and only if all its ranks are nonnegative.

Denote by S(D) the set of south ends of D, i.e, starting points of an N
step of D. By abuse of notation, it is convenient to denote also by S(D) =
{s0, s1, . . . , sn−1} the set of the ranks of the south ends of D. We claim
that S(D) mod n = {0, 1, . . . , n − 1}. This is because two lattice points
with the same y-coordinate must have the same rank when taken modulo
n, and the y-coordinates of the si are all different. We can similarly define
E(D), N(D),W (D) to be the ranks of the east ends, north ends, and west
ends of D respectively. We have the following equalities:

E(D) = W (D)− n, S(D) = N(D)−m,(4)

r(D) = S(D) �W (D) = E(D) �N(D),(5)

where � means disjoint union. Equations in (4) are obvious; Equations in (5)
follow from the fact that each node of D is either a south end or a west end,
and similarly is either an east end or a north end. Note that 0 is a south end
as the node (0, 0) and an east end as the node (m,n). On the other hand,
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given the rank sequence r(D), one can easily reconstruct the Dyck path D.
For a rank r ∈ r(D), it is in S(D) if and only if r +m ∈ r(D), and similar
results hold for W (D), N(D) and E(D).

2.2. Transformation of lattice paths

There are two elementary transformations of paths (not necessarily in Fm,n).
Denote by P rev the reverse path of P obtained by reversing the NE-sequence
of P , without changing the starting and ending point. Geometrically, this
corresponds to rotating P by 180 degrees. The rank sequence of P and P rev

are related by

r(P rev) = r( end point of P ) + r( start point of P )− r(P ).

Denote the transpose of P by P T = P rev
∣∣
N=E,E=N

. Geometrically, P T

is obtained from P by flipping along the line y = −x by 180 degrees. The
following two results are immediate.

Lemma 4. Suppose m and n are coprime. A set R = {r0, . . . , rm+n−1}
is the rank sequence of a path P ∈ Fm,n if and only if it is also the rank
sequence of the transpose P T ∈ Fn,m of P . The result still holds if we restrict
to nonnegative rank sequences and Dyck paths.

Lemma 5. Suppose m and n are coprime. A set R = {r0, . . . , rm+n−1} is the
rank sequence of a path P ∈ Fm,n if and only if −R = {−r0, . . . ,−rm+n−1}
is the rank sequence of the path P rev ∈ Fm,n.

The reversing map is clearly an involution on Fm,n. Its fixed points are
self-reversing paths, or equivalently, palindromic NE-sequences. Then such
P can be factored as QrevεQ for some path Q. Since Qrev and Q have the
same number of N steps and E steps, ε is empty if m and n are both even,
is N if n is odd, and is E if m is odd. We have

#{P ∈ Fm,n : P = P rev}=

⎧⎨
⎩

(
�m/2�+ �n/2�
�m/2�, �n/2�

)
, if m or n is even;

0, if m and n are both odd.

(6)

2.3. Rank complement of rational Dyck paths

The situation is a little subtle when restricted to the rank sequences of
Dyck paths: Drev has negative ranks. To settle this problem, define the rank
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complement D̄ of D as follows: if we write the NE-sequence of D as Q1Q2

so that the end point of Q1 has the highest rank, then D̄ = (Q2Q1)
rev =

Qrev
1 Qrev

2 . Geometrically, this corresponds to first sliding the part before the
highest rank to get Q2Q1 (starting at the highest level), and then rotating
the path by 180 degrees, and finally shifting the path to get (Q2Q1)

rev (now
starting at level 0). See Figure 1 for an example.

Figure 1: The transpose DT , the Dyck path D, and the rank complement D̄.

The following result justifies the name of “rank complement”.

Lemma 6. Suppose m and n are coprime positive integers. A set R =
{r0, . . . , rm+n−1} is the rank sequence of a Dyck path D if and only if its rank
complement R̄ = M −R = {M − r0, . . . ,M − rm+n−1}, where M = maxR,
is the rank sequence of D̄.

Proof. For the sufficient part, we prove the equality r(D̄) = r(D) in two
ways. From the geometric construction, we notice that sliding along the di-
agonal does not change the ranks, rotating the path gives the rank sequence
−R with minimum rank −M , and the final shifting will give −R + M , as
desired.

The alternative proof is by using the formula D̄ = Qrev
1 Qrev

2 , where we
split D as Q1Q2, and regard Q2 and Qrev

2 as paths starting at the highest
rank M . The desired formula follows by observing that r(Qrev

i ) = M−r(Qi)
for i = 1, 2.

The necessary part follows from the sufficient part and the fact ¯̄D = D,
or equivalently ¯̄R = R, which is obtained by max R̄ = M − (minR) = M .
Alternatively, note that Qrev

1 ends at the highest rank M of D̄, so that
D̄ = Qrev

1 Qrev
2 is the desired splitting at the highest rank.
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The rank complement transformation is an involution on Dm,n, i.e.,
¯̄D =

D. When restricted to the ranks of the south ends or east ends, we have the
following result.

Lemma 7. Suppose m and n are coprime and D is an (m,n)-Dyck path.
Then we have S(D̄) = max(S(D))−S(D) and E(D̄) = max(E(D))−E(D).

Proof. We only prove the equality for south ends. The equality for east ends
is similar.

First observe that M = max(r(D)) = max(S(D)) +m = Ms +m. If si
is a south end, then si +m ∈ r(D) is a north end of D. Thus M − si and
M− (si+m) both belongs to r(D̄). It follows that M−si−m = Ms−si is a
south end of D̄. Together with ¯̄D = D, we deduce that S(D̄) = Ms − S(D),
as desired.

One can also see that south ends of D become north ends of D̄ by the
geometric construction of D̄.

We conclude this section by the following analogous result of Equa-
tion (6).

Theorem 8. Let (m,n) be a coprime pair. Then the number of self rank
complement (m,n)-Dyck paths is given by

#{D ∈ Dm,n : D = D̄} =

(
�m/2�+ �n/2�
�m/2�, �n/2�

)
.(7)

Proof. We construct a bijection Ψ from the set A of self-rank complementary
Dyck paths to the set B of paths with m′ = �m/2� E steps and n′ = �n/2�
N steps. The theorem then follows since the latter set clearly has cardinality(
m′+n′

m′,n′

)
.

It is convenient to allow the use of half N and half E steps. We use the
rank system of Fm,n through out the proof of the theorem. That is, a point
(a, b) has rank bm− an.

Given a Dyck path D with D̄ = D, we split D at its highest rank
2M (M might not be an integer) into two palindromic paths. Then we can
write D = Qrev

1 Q1Q
rev
2 Q2 where each Qi may start with a half step. Let

Q = Q1Q
rev
2 . If Q starts with E1/2 or ends with N1/2 (or both), then set

Ψ(D) to be the path Q with the half steps (if any) removed; otherwise, set
Ψ(D) to be the path Qrev with the half steps removed. See Figure 2 for an
example.

To see that Ψ(D) ∈ B, we observe that even m and even n can not be
coprime, and that half N step appears if and only if n is odd and half E step
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appears if and only if m is odd. Thus the type of the half steps is determined
by the parity of m and n.

Conversely, given a path in B, adding N1/2 at the end if n is odd, adding
E1/2 at the beginning if m is odd, and reversing the resulting path if needed,
we get a new path Q′ satisfying max(r(Q′)) + min(r(Q′)) > 0. Note that
this is always possible since r(Q′rev) = −r(Q′) (Q′ starts at (0, 0) of rank
0 and ends at (m/2, n/2) of rank 0). Split Q′ at the highest rank to get
Q′ = Q′

1Q
′
2
rev. Finally set D′ = Q′

1
revQ′

1Q
′
2
revQ′

2 to be the inverse image.

Figure 2: An example for the bijection Ψ, where (m,n) = (11, 7). The top
right picture is the intermediate step.

To see that D′ ∈ A, we only need to check that min r(D′) = 0 and
Q′ = Q. Indeed, if we set M = max(r(Q′)), then

r(Q′
1
rev

Q1) = r(Q′
1
rev

) ∪ (M + r(Q′
1)) = (M − r(Q′

1)) ∪ (M + r(Q′
1)).

Thus Q′
1
revQ′

1 is a path starting at lowest rank 0 and ending at the highest
rank 2M if and only if Q′

1 is a path starting at rank 0 ending at highest
rank M and having all ranks larger than −M . Similarly, Q′

2
revQ′

2 is a path
starting at highest rank 2M and ending at lowest rank 0 if and only if Q′rev

2

is a path starting at the highest rank M , ending at rank 0 and having all
ranks larger than −M . Therefore Q′ satisfies max(r(Q′)) + min(r(Q′)) > 0
if and only if D′ ∈ A and max(r(D′)) = 2max(r(Q′)).

3. An alternative approach to n-core partitions

A partition of n ∈ N is a weakly decreasing sequence λ = λ1 ≥ · · · ≥ λa > 0
of positive integers such that n = |λ| = λ1 + · · · + λa. The integer n is also
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called the size or area of λ and denoted by λ 	 n. The i-th part is λi. The
length of λ is �(λ) = a, the number of parts of λ. The empty sequence is
regarded as the unique partition of 0 with length 0. A partition λ is usually
identified with its Ferrers-Young diagram, which consists of λi left justified
boxes (or nodes, cells) in the i-th row from the top. Then a cell c = (i, j)
belongs to λ if and only if i ≤ �(λ) and j ≤ λi. The hook number h(c) of
a cell c is defined by h(c) = 1 + arm(c) + leg(c), where 1 corresponds to
c itself, the arm arm(c) is the number of cells to the right of c, and the
leg leg(c) is the number of cells that are below c. Flipping along the main
diagonal gives the Ferrers-Young diagram of the conjugate of λ, denoted
λT = (λ′

1, . . . , λ
′
b)≥. Then |λT | = |λ| and λ′

i is just the number of boxes
in the i-th column of the diagram of λ. Conjugation transposes c = (i, j)
in λ to c′ = (j, i) in λT , with arm(c) = leg(c′), leg(c) = arm(c′) and hence
h(c) = h(c′). For example, λ = (5, 4, 2, 1) is a partition of 12 with 4 parts. Its
conjugate λT = (4, 3, 2, 2, 1) has λ1 = 5 parts. See Figure 3 for an illustration
of the above terminologies.

Figure 3: Partition λ = (5, 4, 2, 1), the conjugate λT = (4, 3, 2, 2, 1), λ with
hook numbers put in the boxes, and similar for λT .

A partition λ is said to be an n-core if all the hook lengths of λ are not
divisible by n (or equivalently, equal to n). The λ in Figure 3 is a 5-core.
Core partitions were introduced by Nakayama in the theory of symmetric
group representations [31, 32].

Denote by Hλ = {λ1 + a − 1, λ2 + a − 2, . . . , λa}> the set (arranged in
decreasing order) of the first column hook lengths of λ. Then a set of positive
integers H uniquely determines a partition λ such that H = Hλ.

Given a positive integer n and a set H = {h1, . . . , ha}> of positive
integers, define

si = sni (H) = max((n+H) ∪ {i} ∩ (nZ+ i)), for 0 ≤ i ≤ n− 1,

and let Sn(H) = {s0, . . . , sn−1}. (We will often omit the superscript n when
it is clear from the context.) In words, if there exists an h ∈ H with h ≡



Rational Dyck paths and (m,n)-cores 715

i mod n then si −n is the maximum of such h, otherwise si = i. Clearly, we
have max(S(H)) = h1 +n. We say H is n-flush at i if H ∩ (nZ+ i) is either
empty (hence si = i) or {i, n+ i, . . . , si − n}. The set H is called n-flush if
it is n-flush at i = 1, 2, . . . , n− 1 and s0 = 0. In other words, every h ∈ H is
not divisible by n and h ∈ H implies that h−n is either negative or belongs
to H. Thus S(H) is a natural encoding of the n-flush set H. Later we will
see that in a different context, S(H) corresponds to the ranks of the south
ends of a Dyck path.

Theorem 9. Suppose the first column hook lengths Hλ = {h1, . . . , ha}> of
a partition λ is an n-flush set. Then HλT is also n-flush and

S(Hλ) = h1 + n− S(HλT ).(8)

Proof. We prove the theorem by induction on the length a of λ. Equation
(8) clearly holds when λ is empty. If a = 1 then h1 = λ1 < n for otherwise
h1−n ∈ Hλ, a contradiction. Now S(Hλ) = {0, 1, . . . , n−1}\{h1}∪{h1+n}
and

S(H ′
λ) = S({h1, h1 − 1, . . . , 1}) = {0, n+ 1, . . . , n+ h1, h1 + 1, . . . , n− 1}

= {h1+1, . . . , h1+n}\{n}∪{0} = h1+n−({0, . . . , n−1}\{h1}∪{h1+n}),

which is just h1 + n− S(Hλ) as desired. It is also clear that {h1} is n-flush
if and only if h1 < n, if and only if λ = (h1)> is an n-core.

Now assume a ≥ 2 and we proceed the induction on a for the theorem.
Denote by H ′ = H ′

λ = {h′1, . . . , h′b}> the first row hook lengths of λ. This is
also the first column hook lengths of λT . Then b = λ1 is the length of λT .
Clearly h1 + n = h′1 + n is the maximum of both S(Hλ) and S(H ′

λ). Let μ
be the partition obtained from λ by removing the first row. Then the hook
lengths of the first column of μ is just Hμ = {h2, . . . , ha}>, which is also
n-flush. Since Hλ is n-flush, h1 − n is either negative or belongs to Hλ. It
follows that h2 ≥ h1 − n, or equivalently h1 − h2 ≤ n, and that S(Hλ) and
S(Hμ) differ by only one element, i.e., S(Hλ) has h1 + n but S(Hμ) has h1.
We have

S(Hλ) = S(Hμ) \ {h1} ∪ {h1 + n}.(9)

Let G′ = H ′
μ = {g′1, . . . , g′c}> be the first row hook lengths of μ. Then

c = λ2 and g′1 = h2. By the induction hypothesis, G′ is n-flush and Equation
(8) holds for μ:

S(Hμ) = h2 + n− S(H ′
μ) = h2 + n− S(G′).(10)
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In particular h1 ∈ S(Hμ) implies that h2 + n − h1 ∈ S(G′), that is,
sn−h1+h2

(G′) = n− h1 + h2.
Claim: the set H ′

λ is n-flush, and the following equation holds.

S(H ′
λ) = (S(H ′

μ) + h1 − h2) \ {n} ∪ {0}.(11)

Assuming the claim holds, we can complete the induction by the following
computation.

h1 + n− S(Hλ) = h1 + n− (S(Hμ) \ {h1} ∪ {h1 + n}) (by (9))

= (h1 + n− S(Hμ)) \ {n} ∪ {0}
(by (10)) = (h1 − h2 + S(H ′

μ)) \ {n} ∪ {0}
(by (11)) = S(H ′

λ).

To show the claim, observe that h′j − g′j = b − c + 1 for j = 1, 2, . . . , c
and h′c+1, . . . , h

′
b are given by h′1 − g′1 − 1, . . . , 2, 1. In formula we have

H ′ = (b− c+ 1 +G′) ∪ {1, 2, . . . , b− c} = (δ +G′) ∪ {1, 2, . . . , b− c},

where we have set δ = b− c+ 1 = h1 − h2 for convenience.
Since G′ is n-flush, it is n-flush at i for each i. Thus G′ ∩ (i + nZ) =

{i, n+ i, . . . , si(G
′)− n}, where this set is taken to be empty if si(G

′) < n.
We have

H ′ ∩ (δ + i+ nZ) = ((δ +G′) ∪ {1, 2, . . . , b− c}) ∩ (δ + i+ nZ)

= (δ + (G′ ∩ (i+ nZ))) ∪ ({1, 2, . . . , b− c} ∩ (δ + i+ nZ))

= {i+ δ, i+ n+ δ, . . . , si(G
′)− n+ δ} ∪A,

where A is {δ + i − n} if δ + i > n and is empty otherwise. In the former
case, since h1 − h2 ≤ n, we have 0 < δ + i − n < n so that H ′ is flush at
δ + i− n with δ + si(G

′) ∈ S(H ′); In the latter case, if δ + i < n then H ′ is
flush at δ + i with δ + si(G

′) ∈ S(H ′); in the only remaining case δ + i = n,
by the assumption sn−δ(G

′) = n − δ < n, we have H ′ ∩ (n + nZ) = ∅ with
δ + sn−h1+h2

(G′) = n 
∈ S(H ′) but s0(H
′) = 0 instead. This completes the

proof since when i ranges over 0, 1, . . . , n− 1, so does h′1− g′1+ i mod n.

Theorem 9 establishes a simple connection between Hλ and HλT for n-
core λ. It is an important tool in our study of (m,n)-cores. One consequence
of Theorem 9 is the following classical result. This result has an elegant proof
using the abacus notation of partitions. See, e.g., [1]. As a warm up and also
for self-containedness, we include a new proof of this classical result.
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Corollary 10 ([1]). A partition λ is an n-core if and only if Hλ is n-flush.

Proof. The necessity follows by the fact that the n-flushness of Hλ implies
the n-flushness of Hμ and HλT , where μ is the partition obtained from λ by
removing the first row. Thus inductively the hook lengths of each row of λ
is n-flush, and hence contains no multiple of n.

We prove the sufficiency part of the theorem by contradiction. We follow
notations in the proof of Theorem 9. Assume a is minimal such that λ is an
n-core of length a but Hλ is not n-flush. Clearly we may assume a ≥ 2. Use
the notation for λ and μ as before. By the minimality of a, Hμ is n-flush. If
b−c = h1−h2−1 ≥ n then H ′

λ has n as a hook length of λ. A contradiction.
So assume h1 − h2 ≤ n. By definition h1 is not a multiple of n. Let j be the
smallest number such that h1− jn is negative or belongs to Hμ. Then j ≥ 2
since Hλ is not n-flush but μ is n-flush.

By Theorem 9, (10) holds. It follows that h2 + n − (h1 − jn + n) =
h2−h1+ jn ∈ S(H ′

μ), so that jn+h2−h1−n > 0 appears as a hook length
g′k inH ′

μ for some k ≤ c. Then g′k+h1−h2 = jn+h2−h1−n+h1−h2 = jn−n
appears as the hook length h′k, contradicting the assumption that λ is an
n-core partition.

4. Conjugation of (m,n)-cores and rank complement of Dm,n

A partition λ is said to be an (m,n)-core if it is both an m-core and n-core.
By Corollary 10, λ is (m,n)-core if and only if Hλ is (m,n)-flush, i.e., Hλ is
both m-flush and n-flush. When m and n are relatively prime, h ∈ Hλ can
be uniquely written as h = bm− an for 0 ≤ a < m. We claim that b < n, so
that h is the rank of a lattice point in the m by n rectangle. If b ≥ n then we
can write h = (b−n)m+(m− a)n. Then the n-flushness of Hλ implies that
b 
= n and that h − (m − a)n = (b − n)m is also in Hλ, which contradicts
the m-flushness of Hλ.

Now for a coprime pair (m,n), we identify Hλ with the ranks of lattice
points V inside the m by n rectangle. Then the (m,n)-flush property says
that h ∈ Hλ implies that h−m and h− n, if positive, are also in Hλ. This
corresponds to that if (a, b) ∈ V then (a+ 1, b) and (a, b− 1) are also in V ,
provided that they are above the diagonal. Such V are exactly the lattice
points to the right of an (m,n)-Dyck pathD. This gives Anderson’s bijection
[1] that takes D to α(D) = λ by setting Hλ to be the the positive ranks of
the lattice points to the right of the (m,n)-Dyck path D. The set S(Hλ) is
exactly the ranks of the south ends of D. See Figure 4 for examples.

If a partition λ is an (m,n) core, then clearly so is its conjugate λT . It is
natural to ask what is the relation between the paths α−1(λ) and α−1(λT ).



718 Guoce Xin

Figure 4: Anderson’s bijection for (m,n) = (8, 5): Dyck path D, λ = α(D),
and the rank complement D̄. The first column hook lengths of λ are the
ranks to the right of D, and the first row hook lengths of λ are the ranks to
the right of D̄.

See Figure 4 for an example. At the first glance, the two paths seem very

different. But we have the following result.

Theorem 11. Suppose m and n are coprime and D is an (m,n)-Dyck path.

Then the (m,n)-core α(D̄) is just the conjugate of the (m,n)-core α(D).

Proof. Denote by λ = α(D) and λ′ = α(D̄). Then max(S(D)) =

max(S(D̄)) = h1(λ) + n = h1(λ
′) + n. By Lemma 7,

S(Hλ′) = S(D̄) = h1 + n− S(D) = h1 + n− S(Hλ),

where Hλ and Hλ′ are regarded as n-flush set.

By Theorem 9, we also have S(HλT ) = h1 + n − S(Hλ). It follows that

S(HλT ) = S(Hλ′), and hence HλT = Hλ′ and λT = λ′. This completes the

proof.

Combining Theorems 11 and 8, we recover Theorem 1.

5. The dinv statistic on Dm,n and the skew-length for
(m,n)-cores

5.1. The area and dinv statistics for rational Dyck paths

We recall two important statistics on an (m,n)-Dyck path D ∈ Dm,n for

general pair (m,n) of positive integers. The area area(D) of D is the number

of lattice boxes between D and the diagonal line y = n
mx. The dinv statistic

arose in the theory of parking functions. When restricted to Dyck paths,

dinv(D) of D specializes to the following geometric construction: It counts
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the number of cells c of the partition above the path whose arm and leg
satisfy the inequalities

arm(c)

leg(c) + 1
≤ m

n
<

arm(c) + 1

leg(c)
.

In Figure 5 we have placed a green square in each of the cells that contribute
to the dinv(D) (in the left picture) and dinv(DT ) (in the right picture).

Figure 5: The dinv statistic and transpose of Dyck paths.

An immediate consequence of the geometric construction is the following.

Proposition 12. For every rational Dyck path D ∈ Dm,n, we have

dinvD = dinvDT .

The dinv statistic also appeared as the h+ statistic. See, e.g., [5]. Alter-
native descriptions of dinv have been found useful. The one in [5, Lemma 11]
can be stated as follows: If D is encoded by a sequence (P0, . . . , Pm+n) of
lattice points, then we have

dinv(D) = #{i < j : Pi ∈ W (D), Pj ∈ S(D), and(12)

0 < r(Pi)− r(Pj) ≤ m+ n}.

Now we concentrate on the case when (m,n) is a coprime pair. Our
language translate the dinv statistic as follows.



720 Guoce Xin

dinv(D)=#{0 < rw − rs ≤ m+ n : rw ∈W (D), rs ∈S(D), rw proceeds rs},
(13)

where “proceeds” refers to the corresponding lattice points of rw and rs
in D.

For a coprime pair (m,n), consider the m× n rectangle. The number of

lattice boxes to the left of the diagonal is (m− 1)(n− 1)/2, as the diagonal

hits a ribbon ofm+n−1 boxes (the purple boxes in Figure 5), and the ribbon

divides the rest of the rectangle into two equal pieces. Thus the maximum

value of area(D) over D ∈ Dm,n is (m−1)(n−1)
2 . This is also the maximum of

dinv(D) by the geometric construction. It is natural to use the notations

coarea(D) =
(m− 1)(n− 1)

2
− area(D),

codinv(D) =
(m− 1)(n− 1)

2
− dinv(D).

Definition 13 (The Sweep Map [6]). Suppose a Dyck path D ∈ Dm,n is

encoded by its NE-sequence D = p1 · · · pm+n. Then the sweep map Φ(P ) is

obtained by sorting the steps pi into increasing order according to the ranks

of their starting points.

For example, take (m,n) = (7, 5), and P = NNEENNENEEEE.

Then the path and the ranks are computed as

[
N N E E N N E N E E E E
0 7 14 9 4 11 18 13 20 15 10 5

]
.

Sorting the path according to the ranks gives

[
N N E N E E N N E E E E
0 4 5 7 9 10 11 13 14 15 18 20

]
,

and thus Φ(P ) = NNENEENNEEEE.

It is true but not obvious that Φ(D) is still in Dm,n. See [6] for a proof.

The dinv statistic is closely related to the Φ map by the following result.

Theorem 14. Let (m,n) be a coprime pair. Then for an (m,n)-Dyck path

D, we have dinv(D) = area(Φ(D)), and consequently,

codinv(D) = coarea(Φ(D)) = #{(rs, rw) : rs ∈ S(D), rw ∈ W (D), rs < rw}.
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Theorem 14 holds for general m and n with certain modifications. This
is one of the results in [27, Theorem 16]. A bijective proof of codinv(D) =
coarea(Φ(D)) can be found in [18].

Corollary 15. Let (m,n) be a coprime pair. Then the rank complement
transformation preserves the dinv statistic. In other words, for any (m,n)-
Dyck path D, we have

dinv(D̄) = dinv(D).

Proof. It is sufficient to show that codinv(D̄) = codinv(D). Recall that
r(D̄) = M − r(D), where M = max(r(D)). We have

codinv(D̄)

= #{(r̄s, r̄w) : r̄s ∈ S(D̄), r̄w ∈ W (D̄), r̄s < r̄w}
= #{(rn, re) : rn ∈ N(D), re ∈ E(D),M − rn < M − re} (work in D)

= #{(re, rn) : rn ∈ N(D), re ∈ E(D), re < rn}
= #{(rs, rw) : rw ∈ W (DT ), rs ∈ S(DT ), rs < rw} (work in DT )

= codinv(DT ) = codinv(D).

Remark 16. The sweep map has become an active subject in the recent
15 years. Variations and extensions have been found, and some classical
bijections turn out to be the disguised version of the sweep map. See [6].
One major conjecture in this area was the invertibility of the sweep map4.

5.2. Skew-length of (m,n)-cores

For an (m,n)-core λ, its skew length s�m,n(λ) (the superscript m,n will be
omitted if it is clear from the context) was defined in [4] to be the number
of boxes that are both in the m boundaries and in the n-rows. The m
boundaries are the set of boxes whose hook length is less than m; the n-
rows are better described in our language: if H = Hλ = (h1, . . . , ha)> is
the first column hook lengths of λ, then the i-th row is called an n-row if
hi + n ∈ Sn(H) for the n-flush set H.

The following is an example of an (8, 5)-core λ = (9, 5, 3, 2, 1, 1). The
hook lengths of λ are put to the right of ||. The left most column are hi mod 5
and we have underlined the 5-rows, and bold faced the 8-boundaries. Thus
s�(λ) = 6 + 3 + 1 = 10.

4The invertibility of the sweep map now becomes a theorem, due to Nathan
Williams’ recent work on modular sweep maps [35]. For the rational case, see [14].



722 Guoce Xin

4 = (14 mod 5) 14 11 9 7 6 4 3 2 1

4 = (9 mod 5) 9 6 4 2 1
1 = (6 mod 5) 6 3 1

4 = (4 mod 5) 4 1
2 = (2 mod 5) 2

1 = (1 mod 5) 1

Theorem 17. Let m and n be coprime positive integers. Then for any
(m,n)-Dyck path D we have

codinv(D) = s�(α(D)).

Consequently, the skew length statistic of an (m,n)-core λ is invariant under
conjugation and switching the roles of m and n. We have

s�m,n(λ) = s�n,m(λ) = s�m,n(λT ) = s�n,m(λT ).

To prove Theorem 17, we need a better description of s�(λ). Let λ =
λ1 ≥ · · · ≥ λa > 0 be an (m,n)-core with H = Hλ = {h1, . . . , ha}>. Denote
by λi = λi ≥ · · · ≥ λa the partition obtained from λ by removing the first
i − 1 rows. Then λ1 = λ. Denote by H i = H(λi) = (hi, . . . , ha). Then the
i-th row hook lengths of λ is just the fist row hook lengths of λi, which is
H(λi)T .

Proof of Theorem 17. The number of boxes in row i and also in the m-
boundaries is:

|H(λi)T ∩ {1, 2, . . . ,m− 1}| = |Sm
(
H(λi)T

)
∩ Z>m|

(by Theorem 9) = |
(
hi +m− Sm(H i)

)
∩ Z>m|

= |
(
hi − Sm(H i)

)
∩ Z>0|

= |
(
Sm(H i)− hi

)
∩ Z<0|

= | (Sm(H)− hi) ∩ Z<0|,

where in the last step, we use the m-flushness of H, which implies that
(recall that smj (H i)−m ≤ hi by definition)

H i∩(j+mZ) = {smj (H i)−m, . . . ,m+j, j} = {smj (H)−m, . . . ,m+j, j}∩Z≤hi
,

and hence smj (H i) < hi if and only if smj (H) < hi.
If λ = α(D) then Sn(Hλ) is just S(D) and Sm(Hλ) is just E(D). With

these arguments handy, we derive that
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s�(λ) =
∑

hi+n∈Sn(H)

|H(λi)T ∩ {1, 2, . . . ,m− 1}|

=
∑

hi+n∈Sn(H)

| (Sm(H)− hi) ∩ Z<0|

= |{(rs, re) : rs ∈ S(D), re ∈ E(D), rs − re − n < 0}|
= |{(rs, rw) : rs ∈ S(D), rw ∈ W (D), rs − rw < 0}|.

This is exactly the coarea of Φ(D), which is equal to codinv(D) by Theo-
rem 14.
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