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Open questions for operators related to rectangular
catalan combinatorics∗

François Bergeron

We formulate many open questions, most ot them new, regarding
Schur positivity, Schur inclusion, e-positivity, and e-inclusion of in-
teresting symmetric functions arising from operators in the elliptic
Hall algebra, and give supporting evidence for why one should ex-
pect such behavior. This ties in with many recent advances in the
study of Rectangular Catalan Combinatorics and other subjects
pertaining to Algebraic Geometry, Representation Theory, and the
Homology of Torus Knots.
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Introduction

The aim of this text is to present, in a concise manner, a set of open questions
relating to operators on symmetric functions that are relevant to rectangular
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Catalan combinatorics. In some form or another special cases of these ques-
tions have partly been considered, but we thought it good to have them all
stated together with the new ones that are presented here, so that a clearer
picture could emerge. There has been significant recent advances on some
of them, such as the still to be thoroughly reviewed proof [8] of the “Shuf-
fle Conjecture”, but by and large most questions remain wide open. The
questions considered are elegantly linked to the combinatorics of rectangu-
lar Dyck paths, and associated parking functions (see [1, 17]). In particular,
this is made explicit when one specializes one of the underlying parame-
ters to be equal to 1. In recent years, there has also been a flurry of new
developments concerning the link between elliptic Hall algebras and rect-
angular Catalan combinatorics (see [13]), and this gives more importance
to the questions that we state, especially since these developments make
apparent deep ties with problems of Algebraic Geometry [15, 19], Represen-
tation Theory [12], and Homology of Torus Knots [9, 10]. We would like to
stress that, on top of giving proofs for some interesting specializations, the
identities and properties considered here have been thoroughly checked by
extensive direct computer algebra calculations. Hence they are stated with
a rather good degree of confidence.

1. Elliptic Hall algebra

In a fashion somewhat similar to how creation operators are used in quantum
mechanics, the main actors of our story are operators on symmetric functions
that we eventually apply to the simplest symmetric function 1, aiming at
constructing interesting symmetric functions. Although we will not go into
much detail here, we recall that these operators belong to a realization of the
“positive part” E of the “elliptic Hall algebra” (see below for more details)
as a subalgebra of End(Λ), where

Λ =
⊕
d≥0

Λd,

is the degree-graded algebra of symmetric functions (polynomials) in a denu-
merable set of variables x = x1, x2, x3, . . . over the field Q(q, t). It is shown
in [7, 22, 24, 23] that the positive part E of the elliptic Hall algebra1 be
realized as a (N× N)-graded algebra of operators on Λ

1The full algebra is Z2-graded, but we only need the positive components for our
purpose.
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E =
⊕

(m,n)∈N2

Em,n,

with the operators in the homogeneous component Em,n sending Λd to Λd+n.
Back in 1999, special cases of these operators were introduced in [5, see Thm
4.4], where relevant properties were also stressed out.

Generating operators

The elliptic Hall algebra operators that we consider here are generated by
two families of “well-known” operators. The first of these corresponds simply
to multiplication by symmetric functions:

(−) · f : Λd −→ Λd+n, (that is g �→ g · f , for any f ∈ Λn),

with (−) ·f considered to belong to the (0, n) component of E ; while the sec-
ond is the family {Dk}k∈Z of some interesting operators that occur (see [5])
in the study of Macdonald polynomials, with Dk considered to belong to
E1,k. Let us recall that these operators Dk, send degree d symmetric func-
tion to degree d+ k

Dk : Λd −→ Λd+k.

They are jointly defined by the generating function equality

∞∑
k=−∞

Dk(g(x)) z
k := g[x+M/z]

∑
n≥0

en(x) (−z)n,

here written using plethystic notation (see [5] for more on this), for any
g(x) ∈ Λd, and writing M = M(q, t) for (1 − t)(1 − q). It may be shown
that D0 is a Macdonald eigenoperator. This is to say that it affords the
(combinatorial) Macdonald polynomials as joint eigenfunctions. It may also
be worth recalling that, for all k, we have

Dk+1 =
1

M
[Dk, p1],

with [−,−] standing for the usual Lie bracket of operators, and e1 correspond
to multiplication by the degree 1 elementary symmetric function. In other
words, all of the Dk (for k > 0) are obtained as order k Lie-derivatives, with
respect to the operator of multiplication by p1/M . Maybe even better for
calculation purposes, we have
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Dk+j =
1

(1− tj)(1− qj)
[Dk, pj ],

for all k and j. Indeed, considering the above operator generating series
D(z) =

∑∞
k=−∞Dk zk, one may check that

zj [D(z), pj(x)] = (1− tj)(1− qj)D(z),

simply by calculating that2

zj [D(z), pj ] g(x) =

∞∑
k=−∞

[Dk, pj ](g(x)) z
k

= zj
(
g[x+M/z] pj [x+M/z]− g[x+M/z] pj(x)

)
×
∑
n≥0

en(x) (−z)n

= zj
(
g[x+M/z] (1− tj)(1− qj)/zj

)∑
n≥0

en(x) (−z)n

= (1− tj)(1− qj)D(z) g(x).

In particular, we get (1− tj)(1− qj)Dj = [D0, pj ], reducing the calculation
of Dj to that of D0, modulo a single bracket operation.

The special symmetric functions πd

It is established in [7] that, for each pair of coprime integers (a, b), there are
ring monomorphisms

Θa,b : Λ −→ E ,

explicitly described below, such that Θa,b(Λd)) ⊆ E(ad,bd). In particular, this
says that one has commutation of operators belonging to the image of Θa,b,
for any given coprime pair (a, b). We will often consider (m,n) = (ad, bd),
with (a, b) coprime and thus d = gcd(m,n), and exploit the fact that
operators in E(m,n) commute with operators in E(m′,n′) when gcd(m,n) =
gcd(m′, n′).

The easiest way to give an explicit definition for the above monomor-
phisms (see [13]), is to describe (see next subsection for this) the Θa,b-image

2Recall that, in plethystic notation, one has pj [x+M/z] = pj(x) + (1− tj)(1−
qj)/zj .
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of a “new” family of algebraic generators for Λ. These are simply the fol-
lowing twisted version of the classical power-sums:

πd = πd(x; q, t) :=
∑

j+k=d−1

(−qt)−j s(j | k)(x),

where s(j | k)(x) stands3 for the hook indexed Schur symmetric functions,
with one part of size j + 1 and k parts of 1. For instance,

π1(x) = s1(x) = e1(x),

π2(x) = s11(x)−
1

qt
s2(x),

π3(x) = s111(x)−
1

qt
s21(x) +

1

q2t2
s3(x),

π4(x) = s1111(x)−
1

qt
s211(x) +

1

q2t2
s31(x)−

1

q3t3
s4(x),

π5(x) = s11111(x)−
1

qt
s2111(x) +

1

q2t2
s311(x)−

1

q3t3
s41(x) +

1

q4t4
s5(x).

When the parameters q and t are specialized in such a way that qt = 1, the
symmetric function πd(x) are simply the power sum symmetric functions
(−1)d−1pd(x), since we have the well-known identity

(−1)d−1pd(x) =
∑

j+k=d−1

∑
j+k=d−1

(−1)js(j | k)(x).

It follows that {πd((x)}d is an independent algebraic generator set for Λ.
Equivalently, the set of symmetric functions

πμ(x) := πμ1
(x)πμ2

(x) · · ·πμk
(x),

with μ = μ1μ2 · · ·μk running over the set of integer partitions of d, consti-
tutes a linear basis of Λ. It is usual to write μ � n when μ is a partition of n,
and �(μ) := k is the length of the partition. With these definitions at hand,
we can now describe the construction of our fundamental operators.

Definition of the basic operators

For coprime a, b ≥ 1, the basic operators Θa,b(πd) are obtained (see [7, 13])
as iterated bracketings of the operators Dk and multiplication by πj . These

3This is known as Frobenius notation for hooks.
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are respectively considered as being of degree (1, k) and (0, j). The operator
Q0j is multiplication by the symmetric function πj(x), and Qk1 := (−1)k Dk.
For m,n ≥ 1, we then recursively define Qmn by the Lie bracket formula

Qmn :=
1

M
[Quv, Qkl],

where we choose (k, l) such that (m,n) = (k, l)+(u, v), with (k, l) and (u, v)
lying in N2, l − (kn/m) is minimal, and such that

det

(
u v
k l

)
= d,

with d standing for the greatest common divisor of m and n. Moreover, if
(m,n) = (ad, bd), we ask that (k, l) be chosen to be the same as it would for
(a, b). For example, we get the Lie bracket expressions

Q43 =
1

M6
[[e1, D0], [[e1, D0], [[e1, D0], D0]]],

or

Q63 =
1

M8
[[e1, D0], [[[e1, D0], D0], [[[e1, D0], D0], D0]]].

For sure, the monomials that occur in the expansion of Qmn involve m copies
of D0, and n copies of e1. With these operators at hand, we may now define
the monomorphisms Θa,b by setting

Θa,b(πd) := Qad,bd,

hence, since the Θa,b are ring-homomorphisms, we have

(1) Θa,b(πμ) = Θa,b(πμ1
) · · ·Θa,b(πμk

).

Observe that we need not worry about the order in which the operators
Θa,b(πμi

) should be applied, since they commute. Clearly Θ0,1 = IdΛ.

Seeds for operator families

For each degree d symmetric function gd, which we call a seed, and any
coprime pair (a, b), the construction above allows us to define operators
Θa,b(gd) ∈ Ead,bd. Indeed, assume that we have the expansion

(2) gd(x) =
∑
μ�d

cμ πμ(x),
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in the {πμ(x)}μ�d basis. Since the Θa,b are ring-homomorphisms, we may
set

Θa,b(gd) :=
∑
μ�d

cμΘa,b(πμ),

which can be evaluated using (1). In this manner gd becomes a seed for the
family of operators Θa,b(gd) (indexed by coprime pairs (a, b)). One of the
striking implications of the properties of E , see [3, 4], is that, for all (a, b)
coprime, all d ∈ N, and all gd, one has the operator identity

(3) ∇Θa,b(gd)∇−1 = Θa+b,b(gd).

Here ∇ stands for the much-discussed Macdonald eigenoperator, which is
such that ∇(en) gives the Frobenius transform of the bigraded character of
the diagonal coinvariant space of the symmetric group Sn (see [2] for more on
this). Recall that the Frobenius transform is the linear map that sends irre-
ducible characters to Schur functions, hence the resulting symmetric function
expands with positive integer (or positive integer coefficient polynomials in
the graded version) coefficients in the Schur basis. In terms of the Hall scalar
product 〈−,−〉 on symmetric function, for which the Schur symmetric func-
tions are orthonormal, this means that we have 〈M(x; q, t), sμ(x)〉 ∈ N[q, t],
for all μ � n, whenever M(x; q, t) corresponds to the (graded) Frobenius
transform of some (bi)graded Sn-module

M =
⊕
j,j

Mi,j .

Recall that the graded version of Frobenius transform sends the degree (i, j)
homogeneous component Mi,j to qitjMi,j(x), where Mi,j(x) stands for the
Frobenius transform of the character of Mi,j . Because of ties with repre-
sentation theory, we are interested in seeds gd such that all the associated
operators Θa,b(gd) send the constant symmetric function 1 to Schur-positive
symmetric functions. In formula, this is to say that

〈Θa,b(gd)(1), sμ(x)〉 ∈ N[q, t], for all μ � n.

When this is so, we write

0 �s g
(a,b)
d (x; q, t),

and say that g
(a,b)
d (x; q, t) is Schur-positive. denoting by g

(a,b)
d (x; q, t) the

symmetric function Θa,b(gd)(1), and we will say that gd is a good seed.
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More generally we consider the partial order relation

(4) g(x) �s g
′(x), if and only if 0 �s g

′(x)− g(x),

and say that g(x) is Schur-included in g′(x).
Observe that for any seed gd, and any coprime (a, b), we have

g
(a+b,b)
d (x; q, t) = Θa+b,b(gd)(1)

= ∇Θa,b(gd)∇−1(1)

= ∇Θa,b(gd)(1)

= ∇
(
g
(a,b)
d (x; q, t)

)
,(5)

since ∇(1) = 1. In particular,

(6) g
(r,1)
d (x; q, t) = ∇r(gd),

will be Schur-positive for good seeds.

2. Interesting seeds for family of operators

To get good seeds for a family of operators we need to suitably normalize
well known symmetric functions. To make our formulas more elegant, we
introduce the following notations, assuming all through that μ is a partition
of d, and setting

ι(μ) :=

�(μ)∑
i=1

χ(μ(i)− i),

where χ(k) is equal to 1 if k is positive, and 0 if k is negative. We then
define:

1. The renormalized Schur functions

(7) ŝμ(x) := (−qt)−ι(μ)sμ(x),

with the particular case of hook shapes giving

ŝ(k | j)(x) := (−qt)−j s(j | k)(x),

and the normalized complete homogeneous symmetric functions

ĥd(x) := (−qt)−(d−1)hd(x).
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2. The normalized monomial symmetric functions

(8) m̂μ(x) := (−1)d−�(μ)mμ(x),

including the special case m̂(d)(x) = p̂d(x) := (−1)d−1pd(x).

3. The normalized forgotten symmetric functions

f̂μ(x) := (−qt)−(�(μ)−1) fμ(x).

Manifestly, all these symmetric functions are equal for d = 1, and per-
force the associate operators will coincide. Clearly, since Θa,b is a ring-
homomorphism, the associated operators are linked by the same relations as
those between their seeds. In particular, we immediately get the following.

Lemma 1. For all μ partition of d, and (a, b) coprime, we have

π
(a,b)
d (x; q, t) =

∑
j+k=d−1

ŝ
(a,b)
(j | k)(x; q, t),

p̂
(a,b)
d (x; q, t) =

∑
j+k=d−1

(qt)j ŝ
(a,b)
(j | k)(x; q, t).

The compositional (ad, bd)-shuffle conjecture (theorem)

Recall from [3] the conjectured combinatorial formula for the effect on 1 of
the operators having as seed the symmetric function Cα(x; q, t) := Cα(1).
Here, for any composition α = a1a2 . . . a� of d, one defines the operator
Cα := Ca1

Ca2
· · ·Ca�

as the composition of the individual integer indexed
operators Ca specified by the formula

Caf [x] := (−t)1−af [x− (t− 1)/(tz)]
∑
m≥0

zmhm[x]
∣∣∣
za
,

where (−)
∣∣
za means that we take the coefficient of za in the series considered.

With these notations, the compositional (ad, bd)-shuffle conjecture (of [3])
states that

(9) C(a,b)
α (x; q, t) =

∑
γ

qarea(γ)
∑
π

tdinv(π)sco(π)(x),

where the first sum runs over all (ad, bd)-Dyck paths that return to the di-
agonal at positions specified by the composition α, and the second is over



682 François Bergeron

parking functions whose underlying path is γ (necessary concepts and nota-
tions are defined in the appendix). It is known (see [14]) that for any given
(m,n)-Dyck path γ,

(10) γm,n(x; t) :=
∑
π

tdinv(π)sco(π)(x),

is a LLT-polynomial4, which is Schur-positive. Hence it would follow from
Conjecture (9) that we have the Schur-positivity

(11) 0 �s C
(a,b)
α (x; q, t).

In other words, the conjecture states that Cα(x; q, t) is a good seed.
It is also known (Loc. cit.) that the particular LLT polynomial that

corresponds to (10) specializes at t = 1 to the elementary symmetric function
eρ(γ)(x). Hence proving (9) would also show that, for all α and all coprime
(a, b) we have the “e-positivity”:

0 ≤e C
(a,b)
α (x; q, 1).

This is to say that we have an expansion in the elementary symmetric func-
tion basis with coefficients in N[q, t] (for more on this, see Section 4). A proof
of (9) has been announced by Carlson and Mellit (see [8]), and their paper
is currently under review.

First questions

As underlined previously, see (6), the image under ∇ of good seeds must
be Schur-positive. It is thus natural to consider all situations for which this
is believed to be the case. The oldest such conjecture (formulated in [5])
suggests the following.

Question. 1. Can we prove the Schur positivity

(12) 0 �s ŝ
(a,b)
μ (x; q, t),

for all partition μ of d, and all coprime a, b ≥ 1? Can we explain this in
terms of bigraded subrepresentations5 of the Sn-module of generalized diag-
onal harmonics?

4The indices underline that the calculation of dinv(π) and co(π) are dependent
on m = ad and n = bd.

5For a clearer statement concerning this, see Section 3.
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For example, we have

ŝ
(1,2)
3 (x; q, t) = (q + t) s222(x) + s321(x) + (q + t) s3111(x)

+
(
q2 + qt+ t2 + q + t

)
s2211(x)

+ (q + t)
(
q2 + t2 + q + t

)
s21111(x)

+(q4 + q3t+ q2t2 + qt3 + t4 + q2t+ qt2)s111111(x),

ŝ
(1,2)
21 (x; q, t) =

(
q2 + qt+ t2

)
s222(x)

+ (q + t)
(
q2 + t2 + q + t

)
s2211(x)

+ (q + t) s321(x) +
(
q2 + qt+ t2

)
s3111(x)

+(q4 + q3t+ q2t2 + qt3 + t4 + q3

+2 q2t+ 2 qt2 + t3)s21111(x)

+
(
q2 + qt+ t2

) (
q3 + t3 + qt

)
s111111(x).

Answering Question-1 in the positive would settle many previous conjec-
tures. The special case μ = 1d (which coincides for both this open question
and the one below) corresponds to the known Schur positivity of ∇(en); and
for (a, 1), it corresponds the original Shuffle Conjecture [16, Conjecture 3.1].
For μ = (d), it corresponds to a special case of [18, Conjecture 3.3]. For
general μ, and b = 1, it corresponds to [5, Conjecture I]. Indeed, this last
assertion follows from (3) and (6).

Clearly, if a seed gd(x) expands positively in the basis ŝμ(x; q, t), then

the associated g
(a,b)
d (x; q, t) will perforce be Schur-positive if Question-1 is

answered positively. Thus we would have

0 �s e
(a,b)
d (x; q, t), and 0 �s ĥ

(a,b)
d (x; q, t),

as well as

0 �s π
(a,b)
d (x; q, t), and 0 �s p̂

(a,b)
k (x; q, t),

by Lemma 1.
Another conjecture of [5] asserts the Schur-positivity of ∇ applied to

the seeds (8). Together with related experiments, this leads us to our next
question.

Question. 2. Can we prove that the following symmetric functions are
Schur-positive

(13) 0 �s m̂
(a,b)
μ (x; q, t), and 0 �s f̂

(a,b)
μ (x; q, t),
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for all partition μ of d, and all coprime a, b ≥ 1?

Preferably, this would be explained by introducing adequate bigraded Sn-

modules whose bigraded Forbenius characteristic would correspond to these

Schur-positive expressions. For example, we have

m̂
(1,1)
21 (x; q, t) = 2 s3(x) + (q2t+ qt2 + 2 q2 + 2 qt+ 2 t2 + 2 q + 2 t) s21(x)

+ (q3t+ q2t2 + qt3 + 2 q3 + 2 q2t

+ 2 qt2 + 2 t3 + 2 qt) s111(x),

f̂
(1,1)
21 (x; q, t) = (2 qt+ q + t) s21(x) +

(
2 q2t+ 2 qt2 + q2 + qt+ t2

)
s111(x).

Once again Question-2 relates to previous conjectures. For instance, the case

b = 1 corresponds to Conjecture IV of [5], which asserts the Schur-positivity

of ∇a(m̂μ). For both Inequalities (12) and (13), we have checked by explicit

computer algebra calculations that we do indeed have Schur-positivity for

all possible cases of μ � d with 1 ≤ ad, bd ≤ 12.

Lemma 2. When ν is a hook, the positivity in (12) implies 0 �s

m̂
(a,b)
ν (x; q, t).

Proof. We need only verify that, for μ a hook, the symmetric function

m̂ν(x) expands as a linear combination of the symmetric functions ŝμ(x),

with coefficients in N[q, t]. This simply follows from the fact that, for ν a

hook, the sign of 〈m̂ν(x), sμ(x)〉 is precisely (−1)ι(μ).

3. Schur inclusions

The following considerations (greatly) extend the second observation of [5,

Conjecture III]. We now consider Schur-positive differences of operators.

From the point of view of representation theory, this corresponds to inclu-

sions of graded Sn-modules. For our current purpose, it is convenient to

denote by gm,n(x; q, t) the symmetric function g
(a,b)
d (x; q, t), when (m,n) =

(ad, bd) and d = gcd(m,n). As before, we write gm,n(x; q, t) �s gm,n(x; q, t),

if and only if the difference gm,n(x; q, t)− gm,n(x; q, t) is Schur-positive. Our

first observation6 is that

(14) qα em−1,n(x; q, t) �s em,n(x; q, t),

6Experimentally supported by calculating all cases with m,n ≤ 9.
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where α = α(m,n) is the number of cells between the corresponding staircase
paths (see (42) for the definition of the (m,n)-staircase path). At t = 1, we
may explain combinatorially that

(15) em,n(x; q, 1)− qα em−1,n(x; q, 1) ∈ N[q][e1, e2, . . .],

since the difference between the right-hand side and left-hand side corre-
sponds to a weighted enumeration of the (m,n)-Dyck paths that cannot
be obtained from (m − 1, n)-Dyck paths by the simple addition of a final
horizontal step. On the other hand, the Schur-positivity of (14) is surpris-
ing, since it suggests that there is some “dinv” weight-correcting injection
between (m − 1, n)-Dyck paths and (m,n)-Dyck paths. Such a correction
seems far from obvious.

To state our next observed property, we need to introduce the following
linear operator. For a partition μ, let us denote by μ the partition obtained
by removing the first column of μ. Then, we set sμ(x) := sμ(x), and ex-
tend linearly to all symmetric functions. We this notation at hand, we have
observed that, similarly to (15), we have

(16) qα
′
em,n−1(x; q, t) �s em,n(x; q, t).

In this case, much as before, α′ = α′(m,n) is the number of integer points
between the (m,n− 1)-staircase path and the minimal (m,n)-staircase. For
example, we have

e4,6(x; q, t)− q2 e4,5(x; q, t) =

(qt7 + t8 + q2t5 + qt6 + q4t2 + q3t3 + 2 q2t4 + qt5) s0(x)

+t (q + t) (t5 + qt3 + t4 + q3 + q2t+ 2 qt2 + t3 + qt)s1(x)

+t(qt3 + t4 + q3 + q2t+ 2 qt2 + t3 + q2 + 2 qt+ t2)s2(x)

+(qt5 + t6 + q2t3 + 2 qt4 + t5 + q4 + 2 q3t+ 4 q2t2

+4 qt3 + 2 t4 + q2t+ qt2) s11(x)

+t (q + t) s3(x) + (q + t)
(
t3 + q2 + qt+ 2 t2 + q + t

)
s21(x)

+
(
q2 + qt+ t2

) (
q3 + t3 + qt+ q + t

)
s111(x)

+ (q + t) s31(x) +
(
q2 + qt+ t2

)
s22(x)

Among other interesting inequalities, we have

(17) q ŝ
(a,b)
(j+1 | k−1)(x; q, t) �s ŝ

(a,b)
(j | k)(x; q, t),
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for two “consecutive” hooks7. For instance, the inequalities

q3 ŝ
(a,b)
4 (x; q, t) �s q2 ŝ

(a,b)
31 (x; q, t)

�s q ŝ
(a,b)
211 (x; q, t) �s ŝ

(a,b)
1111 (x; q, t),

correspond to the respective Schur-positive differences

ŝ
(a,b)
31 (x; q, t)− q ŝ

(a,b)
4 (x; q, t)

= t2s22(x) + ts31(x) + t
(
t2 + q + t

)
s211(x) + t2

(
t2 + q

)
s1111(x),

ŝ
(a,b)
211 (x; q, t)− q ŝ

(a,b)
31 (x; q, t)

= t2s31(x) + t
(
t2 + q

)
s22(x) + t2

(
t2 + q + t

)
s211(x)

+ t3
(
t2 + q

)
s1111(x),

ŝ
(a,b)
1111 (x; q, t)− q ŝ

(a,b)
211 (x; q, t)

= s4(x) +
(
t4 + qt2 + q2 + qt+ t2

)
s22(x)

+
(
t3 + q2 + qt+ t2 + q + t

)
s31(x)

+
(
t5 + qt3 + t4 + q3 + 2 q2t+ 2 qt2 + t3 + qt

)
s211(x)

+ t
(
t5 + qt3 + q3 + q2t+ qt2

)
s1111(x).

The compositional (ad, bd)-shuffle conjecture implies inequality (17). Indeed,

we have the identity (shown in [5])

∑
α�k

CjCα(1) = ŝ(j | k)(x) +
1

q
ŝ(j+1 | k−1)(x).

This also shows that recent settling of the compositional (ad, bd)-shuffle

conjecture answers in the affirmative the first part of Question-1 for any

hook shapes (see [18, Proposition 5.3]).

For all (m,n), we have also observed (calculating all cases for m,n ≤ 8)

that the following inequality seems to hold

(18) qβ em−1,n(x; q, t) �s ĥm,n(x; q, t),

with β = α(m,n) − d + 1, for d = gcd(m,n). In other words, this is the

number of points that lie between the diagonal avoiding (m,n)-staircase

7Notice that j is the ι-function value of the hook (j | k).
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path, and the (m − 1, n)-staircase path. Once again, there seems to be a
transpose version of this

(19) qβ
′
em,n−1(x; q, t) �s ĥm,n(x; q, t),

with β′ defined suitably. Together with (17), inequality (18) refines the in-
equality in (14). Hence we are led to ask the following:

Question. 3. Can we prove that, for all coprime a, b ≥ 1, all j and k, and
all m,n ≥ 1, the Schur inclusions (17) and (18) hold?

As well as

Question. 4. Can we prove that, for all pair m,n ≥ 1, the Schur inclu-
sions (16) and (19) hold?

Preferably, these “facts” would be explained in terms of inclusion of bi-
graded representations. Observe that, up to applying a sequence of such in-
clusions, we may include any of the relevant expressions as sub-expressions
of ∇a(en) = ean,n(x; q, t) which is conjectured to give the bigraded Frobe-

nius characteristic of the Sn-module C(a)
n of the generalized diagonal coin-

variant Sn-module8. Hence, Schur-positivity of the above differences would
imply that we have bigraded-monomorphism between associated Sn mod-

ules, all of which included in C(a)
n , for a large enough. Experiments suggest

that these modules are ideals, generated by correctly chosen lowest degree
components.

Transpose sub-symmetry

Following a somewhat different track, we have another kind of inclusion
involving a matrix like “transposition”. This seems to be a very general
phenomenon that we have checked for all positive seeds considered here,
as well as in the cases that correspond to the compositional (ad, bd)-shuffle
conjecture (see [3]). The most general question may be coined as follows:

Question. 5. Can we prove the Schur-inclusion

(20) g
(b,a)
d (x; q, t) �s g

(a,b)
d (x; q, t),

for all coprime b ≥ a ≥ 1, and any good seed gd?

8Recall that the case a = 1 has been shown to hold in [15].
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We underline that the functions g
(b,a)
d (x; q, t) and g

(a,b)
d (x; q, t) are of different

degrees; equal to ad in the first case, and bd in the second. Hence they
can only be compared after applying the (−) operator, which results in a
symmetric function having components of various degrees. For example, we
have

e
(5,3)
1 (x; q, t) = (q + t) s2(x) + (q + t)

(
q2 + t2 + q + t

)
s1(x)

+
(
q4 + q3t+ q2t2 + qt3 + t4 + q2t+ qt2

)
s0(x),

e
(3,5)
1 (x; q, t) = e

(5,3)
1 (x; q, t) + s21(x) +

(
q2 + qt+ t2 + q + t

)
s11(x).

As alluded to above, statement (20) has been checked by explicit computer

algebra calculations for all cases involving either ŝ
(a,b)
μ (x; q, t), m̂

(a,b)
μ (x; q, t),

or f̂
(a,b)
μ (x; q, t), for all partitions μ, all compositions α, and all coprime pairs

(a, b) for which the overall degree of the resulting function is at most 12.
Hence it holds for all situations that can be expressed as positive linear
combinations of these.

4. e-positivity and specializations at t = 1, and t = 1 + r

Our next considerations concern an interesting feature of the specialization
of the operators at t = 1. Indeed, the resulting operators appear to be
much simpler operators than their general counterpart. Indeed, one observes
experimentally9 that

(21) Θa,b(gd)(g(x))
∣∣∣
t=1

= g
(a,b)
d (x; q, 1) · g(x).

This states that the effect of the operator Θa,b(gd)
∣∣
t=1

on any symmetric
function g(x) corresponds to multiplication of g(x) by the fixed symmet-

ric function10 g
(a,b)
d (x; q) := g

(a,b)
d (x; q, 1). In other words, at t = 1, the

monomorphism Θa,b may be considered as graded-algebra homomorphism

Θa,b

∣∣∣
t=1

:
⊕
d≥0

Λd −→
⊕
d≥0

Λbd.

sending gd to (multiplication by) g
(a,b)
d (x; q). Notice here the “multiplicative”

shift in grading, d �→ bd. Implicit in statement (21) is the “multiplicativity”

9This will be supported by actual results in the sequel.
10Henceforth we make our notation more compact by dropping the “1”.
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(22) (gd g
′
k)

(a,b)(x; q) = g
(a,b)
d (x; q) g′(a,b)k (x; q).

Thus all of this would be implied by a positive answer to the following:

Question. 6. Can we prove that the operator Θa,b(gd)
∣∣
t=1

operates by mul-

tiplication by g
(a,b)
d (x; q, 1), for all seed gd and all coprime a, b ≥ 1?

Observe that it is clearly sufficient to answer this question for any given
family of algebraic generators of Λ, say {πd}d∈N or {ed}d∈N. Recall also
from [5] that ∇̃, the linear operator obtained from ∇ by specializing t to 1,
is multiplicative. Hence, we get the following.

Proposition 1. If Θa,b(gd)
∣∣
t=1

operates by multiplication by g
(a,b)
d (x; q),

then Θa+b,b(gd)
∣∣
t=1

also operates by multiplication by g
(a+b,b)
d (x; q).

Proof. Using (3) and (5) specialized at t = 1, we calculate that, for any
symmetric function g(x),

Θa+b,b(gd)
∣∣
t=1

(g(x)) = ∇̃Θa,b(gd)
∣∣
t=1

∇̃−1(g(x))

= ∇̃
[
g
(a,b)
d (x; q) · ∇̃−1(g(x))

]
= ∇̃(g

(a,b)
d (x; q)) · ∇̃(∇̃−1(g(x)))

= g
(a+b,b)
d (x; q) · g(x),

which shows the required property.

Observe also that, to answer Question-6 positively in all instances, we
need only show that Θa,b(ed)

∣∣
t=1

operates by multiplication. To this end, let
us recall the following conjectured constant term formula of Negut (see [20]),

Θa,b(ed)(g(x)) = CT
(g[x+M

∑m
i=1 z

−1
i ]

zm,n

m−1∏
i=1

ziΩ
′[x; zi]

zi − qtzi+1
×

∏
1≤i<j≤m

(zi − zj)(zi − qtzj)

(zi − qzj)(zi − tzj)

)
(23)

for the calculation of the operators Θa,b(ed), where the constant term is
calculated with respect to the variables z = z1, . . . , zm, and

zm,n :=

m∏
i=1

z
�i n/m	−�(i−1)n/m	
i .
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We use here the notation Ω′[x; z] :=
∑

n≥0 en(x) z
n for the dual Cauchy

kernel11.

Specializing at t = 1 this constant term formula, one finds the following
further support for the “fact” that our operators have this multiplicative
property at t = 1.

Proposition 2. Let (m,n) be equal to (ad, bd), with d = gcd(m,n), then
Negut’s conjecture (23) implies that

(24) Θa,b(ed)
∣∣
t=1

(g(x)) = CT

(
1

zm,n

m−1∏
i=1

zi
zi − qzi+1

Ω′[x; zi]

)
· g(x),

It is noteworthy that a combinatorial argument, discussed in [3], shows
that the constant term involved in the right-hand side of (24) corresponds
to the enumeration of (m,n)-Dyck paths by area and risers, that is

em,n(x; q) = CT

(
1

zm,n

m−1∏
i=1

zi
zi − qzi+1

Ω′[x zi]

)
=

∑
γ

qarea(γ) eρ(γ)(x),(25)

with the sum running over the set of (ad, bd)-Dyck paths. One easily gets
a similar constant term formula for the enumeration of (m,n)-Dyck paths
with no return to the diagonal, except at both ends. To this end, one simply
replaces zm,n by zm,n/(z1z2 · · · zm), and it corresponds (conjecturally) to the

specialization at t = 1 of a constant term formula for ĥ
(a,b)
d (x; q, t).

Another interesting feature of this specialization at t = 1 is made appar-
ent for special seeds. Indeed, for these special cases, the symmetric function

g
(a,b)
d (x; q) appears to expand with coefficients in N[q] in the basis of elemen-
tary symmetric functions eμ, for μ partitions of bd. As previously mentioned,

we then say that g
(a,b)
d is e-positive, and write 0 ≤e g

(a,b)
d . This is clearly

stronger than Schur-positivity, since it is classical that each eμ is itself Schur-
positive. In fact, an even stronger version of e-positivity seems to be at play
here, as stated by the following, which has been checked explicitly for all
j + k = d− 1, and all a, b such that 1 ≤ ad, bd ≤ 8.

Question. 7. Can we prove the following e-positivity and e-inclusion

11The Cauchy kernel Ω[x; z], obtained by replacing en(x) replaced by hn(x), is
naturally related to the standard scalar product of symmetric functions.
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0 ≤e ĥ
(a,b)
d (x; q, 1+ r), and q ŝ

(a,b)
(j+1 | k−1)(x; q, 1+ r) ≤e ŝ

(a,b)
(j | k)(x; q, 1+ r),

for all j + k = d− 1, and all coprime a, b ≥ 1?

Exploiting the transitivity of the order, this would imply that

ŝ
(a,b)
(j | k)(x; q, 1 + r)

itself is e-positive, since hd(x) = s(d−1|0)(x). This also implies (setting r = 0)

that

0 ≤e e
(a,b)
d (x; q), and 0 ≤e π

(a,b)
d (x; q),

in view of the definition of πd(x; q, t). For example, for the seed ed(x), some

explicit values are

e
(1,3)
2 (x; q) = q3 e6(x) + q2e51(x) + q e42(x) + e33(x),

e
(1,2)
2 (x; q) = q6 e6(x) + q4 (q + 1) e51(x) + q2 (q2 + 2) e42(x)

+ q3e411(x) + q3e33(x) + q (q + 2) e321(x) + e222(x),

e
(2,3)
2 (x; q) = q8 e6(x) + q5 (q2 + q + 1) e51(x) + q4(q2 + 2) e42(x)

+ q3(q2 + q + 1) e411(x) + q2 (q3 + 2 q2 + 2 q + 1) e33(x)

+ q (q3 + 3 q2 + q + 2) e321(x) + q2e3111(x)

+ q2e222(x) + (q + 1) e2211(x)
2.

Now, as discussed in [3], the e-positive symmetric functions g
(a,b)
d (x; q) con-

sidered often appear to expand as a weighted sum, over combinatorial ob-

jects, of powers of q multiplied by some elementary symmetric function,

giving a combinatorial explanation why they are e-positive. The relevant

combinatorial objects are discussed in Appendix.

It is interesting to underline the following fact, which reduces the proof

of e-positivity to the cases where a ≤ b.

Proposition 3. If g
(a,b)
d (x; q) is e-positive, then so is g

(a+b,b)
d (x; q).

Proof. Recall from [5] that on top of ∇̃ being is multiplicative, we have

that ∇̃(ek) is e-positive. Hence, ∇̃(eλ) =
∏

k∈λ ∇̃(ek) is e-positive for all λ,

and we get the announced property since we get g
(a+b,b)
d (x; q) by applying

∇̃ to the e-positive expression g
(a,b)
d (x; q).
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Many other instances of e-positivity seem to occur, but they still have to
be explained combinatorially. A tantalizing fact along these lines, discussed
in [15, see Prop 2.3.4], is that the expression

〈p1(x)n, en,n(x; 1, 1 + r)〉

enumerates connected graphs, r-weighted by the number of edges. Extensive
experiments, including all cases of degree ≤ 8, lead to the following.

Question. 8. Can we prove that, for any partition μ of d, and any coprime
a, b ≥ 1, we have the e-positivity

(26) 0 ≤e m̂
(a,b)
μ (x; q, 1 + r),

Furthermore, can we explain this e-positivity in terms of a combinatorial
enumeration in the style of (25)?

For example, we have

m̂
(1,1)
21 (x; q, 1 + r)

= 2 e1(x)
3 +

(
q2r + qr2 + 3 q2 + 4 q r + 2 r2 + 5 q + 6 r

)
e1(x)e2(x)

+
(
q3r + q2r2 + qr3 + 3 q3 + 3 q2r + 4 qr2 + 2 r3 + 5 q r + 4 r2

)
e3(x).

Positive answers to these and Question-6 would imply many relations be-
tween Schur-positive expressions. For instance, one obtains Bizley-like for-
mulas in the form12∑

d≥0

e
(a,b)
d (x; q) zd = exp

(∑
j≥1

p̂
(a,b)
j (x; q) zj/j

)
,(27)

∑
d≥1

ĥ
(a,b)
d (x; q) zd = q − q exp

(∑
j≥1

−p̂
(a,b)
j (x; q) (z/q)j/j

)
.(28)

Other interesting observations concern the compositional (ad, bd)-shuffle con-
jecture of [3], specialized at t = 1. Indeed, as discussed in [18], the evaluation

at 1 of the operator Cα specializes, at t = 1, to the product of the ĥk(x)
with k running over parts of α, where α is a composition of d. Hence, modulo
our above observations and if (9) holds, we should have

12The differences in signs from the analogous generating function formulas for
ed and hd correspond to the use of p̂d and ĥd which contain signs.
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(29) C(a,b)
α (x; q) =

∑
γ

qarea(γ)eρ(γ)(x),

where γ runs over the set of (m,n)-Dyck paths that return to the diagonal
at the points

(aαi, b αi), for αi = k1 + . . .+ ki,

with i varying between 0 and �. Thus, some cases that are common to (26)
and (29) are consequences of the (9), in particular this is so for em,n(x; q).

Using the combinatorial interpretation (29), we may readily see that the
specialization at t = 1 of (14) and (18) hold. In fact, the relevant differences
are in fact Schur-positive, since we have inclusion between the sets of paths
enumerated by each expression. Hence we get the following.

Proposition 4. For all m and n, we have the e-inclusions

qα em−1,n(x; q) ≤e em,n(x; q), and(30)

qβ em−1,n(x; q) ≤e ĥm,n(x; q).(31)

This raises the question of whether we have e-positivity when setting
t = 1 + r, namely

Question. 9. Can we prove the e-inclusions

qα em−1,n(x; q, 1 + r) ≤e em,n(x; q, 1 + r), and(32)

qβ em−1,n(x; q, 1 + r) ≤e ĥm,n(x; q, 1 + r).(33)

for all m,n ≥ 1, and explain this combinatorially?

These statements have been explicitly checked to hold for all m,n ≤ 8.
We might get a possible explanation for these properties if we could show
that the relevant symmetric functions expand positively in terms of the
LLT-polynomials γm,n(x; t) (see (10)) associated to certain paths γ (for
some (m,n)). Recall that this is essentially the content of the (ad, bd)-
compositional shuffle conjecture, which covers part of the story here. As
we have mentioned earlier, it has been shown that γ(x; t) is Schur-positive,
and that γm,n(x; 1) is an elementary symmetric function.

Moreover, for m ≥ n, we have experimentally observed that these LLT-
polynomials expand positively in the elementary function basis when spe-
cialized at t = 1 + r, so that

(34) 0 ≤e γm,n(x; 1 + r).
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Which is to say that coefficients of the e-expansion of the right-hand side
are positive integer polynomials in the variable r. This (apparently) new
property has been explicitly checked for all (m,n)-Dyck paths, with n ≤ 6

and all values13 of m. Thus, having positive expansions of some g
(a,b)
d (x; q, t)

in terms of LLT-polynomials satisfying (34) would give a joint explana-

tion for both: the Schur positivity of g
(a,b)
d (x; q, t), and the e-positivity of

g
(a,b)
d (x; q, 1 + r).

5. Specialization at q = t = 1

We simplify our notation in this section, writing g
(a,b)
d (x) instead of

g
(a,b)
d (x; 1, 1), and follow the logic of our previous conventions so that

π(a,b)
μ (x) := π(a,b)

μ1
(x)π(a,b)

μ2
(x) · · ·π(a,b)

μ�
(x).

Once again we assume that (m,n) = (ad, bd), with (a, b) a coprime pair.
Then, an argument similar to that of [6] (using (27) and (25)) shows that

π
(a,b)
d (x) = p̂

(a,b)
d (x)(35)

=
d

m
en[mx] =

1

a
edb[dax],(36)

so that, using the multiplicativity property (22),

(37) π(a,b)
μ (x) =

∏
k∈μ

1

a
ekb[kax].

From this it follows, using the expansion of gd in the πμ bases (2), that we
have a generalized Bizley-like formula

g
(a,b)
d (x) =

∑
μ�d

cμ π
(a,b)
μ (x)

=
∑
μ�d

cμ
∏
k∈μ

1

a
ekb[kax],(38)

if we have the expansion

13Up to a global power of t, there are but a finite number of LLT-polynomials
that may occur for a given value of n.
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gd(x) =
∑
μ�d

cμ πμ(x).

For example,

e
(a,b)
3 (x) =

1

3
π
(a,b)
3 (x) +

1

2
π
(a,b)
2 (x)π

(a,b)
1 (x) +

1

6
π
(a,b)
1 (x)3,

=
1

3 a
e3 b[3 ax] +

1

2 a2
e2 b[2 ax] eb[ax] +

1

6 a3
(eb[ax])

3 ,

ŝ
(a,b)
21 (x) =

1

3
π
(a,b)
3 (x)− 1

3
π
(a,b)
1 (x)3,

=
1

3 a
e3 b[3 ax]−

1

3 a3
(eb[ax])

3 ,

h
(a,b)
3 (x) =

1

3
π
(a,b)
3 (x)− 1

2
π
(a,b)
2 (x)π

(a,b)
1 (x) +

1

6
π
(a,b)
1 (x)3,

=
1

3 a
e3 b[3 ax]−

1

2 a2
e2 b[2 ax] eb[ax] +

1

6 a3
(eb[ax])

3 .

Let us now consider the linear transformations on symmetric functions

δ(g(x)) := 〈p1(x)n, g(x)〉, and ε(g(x)) := 〈en(x), g(x)〉,

for which we clearly have

δ(gd1
(x))gd2

(x)) · · · gd�
(x)) =

(
n

d1, d2, . . . , d�

) �∏
i=1

δ(gdi
(x)),

ε(gd1
(x))gd2

(x)) · · · gd�
(x)) =

�∏
i=1

ε(gdi
(x)),

where n = d1 + d2 + . . .+ d�. Also recall that

δ(g
(a,b)
d (x)) = dim(M (a,b)

gd ), and ε(g
(a,b)
d (x)) = dim

(
M (a,b)

gd

)±
,

whenever g
(a,b)
d (x) may be interpreted as the Frobenius characteristic of

some Sn-module M
(a,b)
gd , with (M

(a,b)
gd )± standing for the alternating isotypic

component of this Sn-module. Since

δ(π
(a,b)
d (x)) = dmn−1 = dbdabd−1,

and

ε(π
(a,b)
d (x)) =

d

m+ n

(
n+m

n

)
=

1

a+ b

(
(a+ b)d

bd

)
,
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for any partition μ of d, with (m,n) = (ad, bd) and d = gcd(m,n) as before,

we have

δ(π(a,b)
μ (x)) =

(
n

aμ

)
an−�(μ)

∏
k∈μ

kbk,

ε(π(a,b)
μ (x)) =

1

(a+ b)�(μ)

∏
k∈μ

(
(a+ b)k

bk

)
,

where we use14 the partition multinomial notation(
n

aμ

)
:=

n!

(aμ1)! · · · (aμ�)!
.

Thus, for M
(a,b)
gd the be the required Sn-module would have to have the

dimension formulas

dim(M (a,b)
gd ) =

∑
μ�d

cμ

(
n

aμ

)
an−�(μ)

∏
k∈μ

kkb−1, and(39)

dim(M (a,b)
gd )± =

∑
μ�d

cμ

(a+ b)�(μ)

∏
k∈μ

(
(a+ b)k

bk

)
,(40)

with the coefficients cμ coming from the expansion (2). Observe that, in view

of the dual Cauchy formula, the right-hand side of (36) affords a positive

integer coefficient expansion in the e-basis given by the formula

d

m
en[mx] =

∑
λ�n

eλ(x)
d

m
hλ[m]

=
∑
λ�n

eλ(x)
d

m

∏
k∈λ

(
m+ k − 1

k

)
,

with d = gcd(m,n) as before. Recalling that 〈en(x), eλ(x)〉 = 1 for all parti-

tion λ of n, it follows that the sum of the coefficients of (38), when expanded

in the e-basis, must be equal to the number of copies of the alternating rep-

resentations in Mgd . In other words, it is the dimension of (M
(a,b)
gd )±, as given

by (40).

14Observe that aμ is a partition of n, with parts aμi.
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Other specializations

Other specializations of q and t have been considered in the “classical”
context of en,n(x; q, t). The case t = 1/q gives rise to many interesting
formulas, with recent advances discussed in [11]. Also, in [21], the authors set
t = −1 and q = 1 and get interesting combinatorial considerations. Similar

specializations of g
(a,b)
d (x; q, t), for good seeds, seem to give rise to many

interesting combinatorial questions.

Appendix: combinatorics of (m,n)-Dyck paths

Recall that a (m,n)-Dyck path can be presented as a south-east lattice
path, going from (0, n) to (m, 0), which stays above the (m,n)-diagonal.
This is the line segment joining (0, n) to (m, 0). See Figure 1 for an example.

Figure 1: The (10, 5)-Dyck path encoded as 00367.

We may encode such paths as (weakly) increasing integer sequences
(words)

(41) γ = a1a2 · · · an, with 0 ≤ ak ≤ (k − 1)m/n.

Each ak gives the distance between the y-axis of the (unique) south step
that starts at level n + 1 − k. If we have equality ak = (k − 1)m/n, then
k must be equal to j b + 1, for some 1 ≤ j < d := gcd(m,n). When this
is the case, we say that we have a return to the diagonal at position j.
The resulting set of returns may be encoded as a composition of d, using a
classical correspondence with subsets of {1, . . . , d − 1} and compositions α
of d. Recall that this bijective correspondence associates to a composition
α = (c1, . . . , ck) the set of partial sums S(α) = {s1, s2, . . . , sk}, where

si = c1 + c2 + · · ·+ ci, with 1 ≤ i < k.

The (m,n)-Dyck that stays “closest” to the diagonal is called the (m,n)-
staircase path
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(42) δm,n := d1d2 · · · dn, with dk := �(k − 1)m/n�.

For example, we have

δ1,4 = 0000, δ2,4 = 0011, δ3,4 = 0012, δ4,4 = 0123,

δ5,4 = 0123, δ6,4 = 0134, δ7,4 = 0135, δ8,4 = 0246,

δ9,4 = 0246, δ10,4 = 0257, δ11,4 = 0258, δ12,4 = 0369.

It is easy to check that δkn,n = δkn+1,n. We denote by Dm,n, the set of
(m,n)-Dyck paths, and by Cm,n its cardinality. For example, we have

D5,4 = {0000, 0001, 0002, 0003, 0011, 0012, 0013,
0022, 0023, 0111, 0112, 0113, 0122, 0123}.

It follows from the observation that δkn,n = δkn+1,n, that we have the set
equality

(43) Dkn,n = Dkn+1,n.

When m and m are coprime, the enumeration of (m,n)-Dyck path is given
by the “well” known formula

Cm,n =
1

m+ n

(
m+ n

n

)
.

For the more general situation, when m and n have greatest common divisor
d ≥ 1, the formula was obtained by Bizley [6] in 1954. His argument may be
given a more general understanding, using a symmetric function encoding
of the multiplicities of parts in (m,n)-Dyck paths. To this end, we consider
the riser composition ρ(γ) of a path γ, which is simply the sequence
of multiplicities of the entries of γ. We may then count (m,n)-paths with
weight eρ(γ)(x) := er1(x)er2(x) · · · erk(x), if ρ(γ) = r1r2 · · · rk.

Let (m,n) = (ad, bd), with a and b coprime. It may be shown that
(see [3])

π
(a,b)
d (x; 1, 1) =

d

m
en[m,x],

in which one considers m as a constant15 for the pletystic evaluation of the
right-hand side. Then, a symmetric function version of Bizley’s formula may

15This means that pk[mx] = mpk(x).
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be written as

(44)
∑
μ�d

π(a,b)
μ (x; 1, 1)/zμ =

∑
γ∈Dad,bd

eρ(γ)(x).

Recall that, for a partition μ of d having ci parts of size i, the integers zμ
are defined as

zμ :=
∏
k

kck ck!

Expressed in generating function terms, formula 44 takes the form

(45)

∞∑
d=0

∑
γ∈Dad,bd

eρ(γ)(x)x
d = exp

⎛⎝∑
k≥1

1

a
ebk[ak x]

xk

k

⎞⎠.

For example, we have∑
γ∈D2a,2b

eρ(γ)(x) =
1

2

(
1

a
eb[ax]

)2

+
1

2

(
1

a
e2b[2ax]

)
,

∑
γ∈D3a,3b

eρ(γ)(x) =
1

6

(
1

a
eb[ax]

)3

+
1

2

(
1

a
eb[ax]

)(
1

a
e2b[2ax]

)

+
1

3

(
1

a
e3b[3ax]

)
.

One obtains Bizley’s formula as the coefficient of en(x) in the resulting
elementary symmetric function expansion. Bizley also obtained a formula
for the number of primitive (ad, bd)-Dyck paths. These are the paths that
remain strictly above the diagonal (except at both ends). The symmetric
function enumerator for these is

(46) ĥ
(a,b)
d (x; 1, 1) =

1

a
hbk[ak x].

Using this expression as a basic block, we may easily enumerate (m,n)-Dyck
paths with specified return positions to the diagonal.

Area of (m,n)-Dyck paths

The area of a (m,n)-Dyck path α is the number of cells16 lying entirely
between the path α and the (m,n)-staircase:

16These are the 1 × 1 squares in the N × N-grid, and they are labeled by their
southwest corner.
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(47) aream,n(α) :=

n∑
i=k

dk − ak,

where the δm,n = d1 · · · dn is the (m,n)-staircase. In particular, δm,n is the
unique (m,n)-Dyck path having area zero.

Figure 2: The areas of (3, 3)-Dyck paths.

Parking functions

A (m,n)-parking function is simply a permutation of the entries of a (m,n)-
Dyck path encoded as in (41). As observed by Garsia, it may be represented
as a labeling of the south steps of the path. To this end, a step is labeled i if
the corresponding entry appears in the ith-position in a parking function π.
If this step starts at (x, y), we write π(x, y) = i. In other words, i appears
in the cell having coordinates (x, y). This is illustrated in Figure 3, for the
parking functions such that π(0, 5) = 2, π(0, 4) = 4, π(3, 3) = 3, π(6, 2) = 1,
and π(7, 1) = 5.

Figure 3: The (10, 5)-parking function 60307.

As illustrated in Figure 4, the (m,n)-rank of a cell (x, y) is defined as
being equal to rank(x, y) := nm− ym− xn. The descent set des(π) of a
parking function π is the set of i (< n) for which i+ 1 sits in a cell of lower
or equal rank to that of the cell in which i appears, hence

des(π) := {i | π(x, y) = i, π(u, v) = i+ 1, rank(x, y) ≥ rank(u, v)}.

We write co(π) for the composition of n that encodes this subset of {1, . . . ,
n − 1}. In the next section, we will need to consider composition indexed
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...
...

...
...

...
...

...
...

0 −5 −10 −15 −20 −25 −30 −35 · · ·

7 2 −3 −8 −13 −18 −23 −28 · · ·

14 9 4 −1 −6 −11 −16 −21 · · ·

21 16 11 6 1 −4 −9 −14 · · ·

28 23 18 13 8 3 −2 −7 · · ·

35 30 25 20 15 10 5 0 · · ·

Figure 4: Examples of (m,n)-ranks (with m = 7 and n = 5).

Schur functions. These are obtained by extending to compositions the classi-

cal Jacobi-Trudi formula. More explicitly, for a composition α = (c1, · · · , ck),
one sets

sα(x) := det(hci−i+j(x))1≤i,j≤k.

It may easily be seen that this evaluates either to 0, or to a single Schur

function up to a sign.
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