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Duality for image and kernel partition regularity of
infinite matrices
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, Imre Leader, and Dona Strauss

A matrix A is image partition regular over Q provided that when-
ever Qzt0u is finitely coloured, there is a vector �x with entries in
Qzt0u such that the entries of A�x are monochromatic. It is kernel
partition regular over Q provided that whenever Qzt0u is finitely
coloured, the matrix has a monochromatic member of its kernel.
We establish a duality for these notions valid for both finite and
infinite matrices. We also investigate the extent to which this dual-
ity holds for matrices partition regular over proper subsemigroups
of Q.
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1. Introduction

We let N be the set of positive integers and ω “ N Y t0u. We shall be

concerned throughout this paper with matrices (finite or infinite) that have

rational entries and finitely many nonzero entries per row. We shall also

assume that every matrix that we consider has this property. (However,

elements of Qω are not assumed to have finitely many nonzero entries.)

For consistency of treatment between the finite and infinite cases, we

shall treat u P N as an ordinal. Consequently u “ t0, 1, . . . , u ´ 1u and

ω “ t0, 1, 2, . . .u is the first infinite ordinal. Thus, if u, v P NY tωu, and A is

a uˆv matrix, the rows and columns of A will be indexed by u “ ti : i ă uu

and v “ ti : i ă vu, respectively. (See [11] for an introduction to ordinals.)

As is standard in Ramsey Theory, a finite colouring of a set X is a

function whose domain is X and whose range is finite. Given a colouring f

of X, a subset B of X is monochromatic if and only if f is constant on B.

˚This author acknowledges support received from the National Science Founda-
tion via Grants DMS-1160566 and DMS-1460023.
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Definition 1.1. Let u, v P N Y tωu, let A be a u ˆ v matrix, let S be a
nontrivial subsemigroup of pQ,`q, and let G be the subgroup of Q generated
by S.

(a) The matrix A is kernel partition regular over S if and only if whenever
Szt0u is finitely coloured, there exists �x P pSzt0uqv such that A�x “ �0
and the entries of �x are monochromatic.

(b) The matrix A is image partition regular over S if and only if when-
ever Szt0u is finitely coloured, there exists �x P pSzt0uqv such that the
entries of A�x are monochromatic.

(c) The matrix A is weakly image partition regular over S if and only if
whenever Szt0u is finitely coloured, there exists �x P Gv such that the
entries of A�x are monochromatic.

Notice that, since it is Szt0u that is being coloured, the monochromatic
entry which is guaranteed has no zero entries.

Many of the classical theorems of Ramsey Theory assert that certain
matrices are kernel partition regular. For example, Schur’s Theorem is the
assertion that the matrix

`

1 1 ´1
˘

is kernel partition regular over N. It

is also the assertion that the matrix
´

1 0
0 1
1 1

¯

is image partition regular over

N.
For another example, the instance of van der Waerden’s Theorem that

says that whenever N is finitely coloured, there is a monochromatic length
4 arithmetic progression, is the assertion that the matrix

¨

˚

˚

˝

1 0
1 1
1 2
1 3

˛

‹

‹

‚

is image partition regular over N. The strengthened version that asks that
the increment also be the same colour is the assertion that the matrix

¨

˝

1 ´2 1 0 0
0 1 ´2 1 0
1 ´1 0 0 1

˛

‚

is kernel partition regular over N. (There is no kernel partition regular matrix
whose kernels consist exactly of length 4 arithmetic progressions. See [6,
Theorem 2.6]. Also see [6] for more background on partition regularity.)

In 1933 R. Rado [12] characterised those finite matrices that are kernel
partition regular over N. Rado proved that a finite matrix with entries from
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Q is kernel partition regular over N if and only if it satisfies the columns
condition and that the same requirement was necessary and sufficient for
kernel partition regularity over Q and also necessary and sufficient for kernel
partition regularity over Z.

Definition 1.2. Let u, v P N and let A be a u ˆ v matrix with entries from
Q. Denote the columns of A by x�ciy

v´1
i“0 . The matrix A satisfies the columns

condition if and only if there exist m P t1, 2, . . . , vu and a partition xIty
m´1
t“0

of t0, 1, . . . , v ´ 1u such that

(1)
ř

iPI0
�ci “ �0 and

(2) for each t P t1, 2, . . . ,m ´ 1u, if any,
ř

iPIt
�ci is a linear combination

with coefficients from Q of t�ci : i P
Ťt´1

j“0 Iju.

Call a set X Ď N large if whenever A is kernel partition regular over N,
there must exist �x with entries in X such that A�x “ �0. Rado conjectured
that if a large set is finitely coloured, there must exist a monochromatic
large subset. Rado’s conjecture was proved in 1973 by W. Deuber [3]. For the
proof, Deuber used a certain collection of image partition regular matrices,
whose images he called pm, p, cq-sets .

Definition 1.3. Let m, p, c P N. A matrix A is an pm, p, cq matrix if and
only if A has m columns and all rows of the form �r “

`

r0 r1 . . . rm´1

˘

such that each ri P t´p,´p ` 1, . . . , p ´ 1, pu and the first nonzero entry
ri “ c.

Deuber’s proof used three key facts. First [3, Satz 2.1], if B is any finite
kernel partition regular matrix, there exist m, p, c P N such that, if A is an
pm, p, cq matrix, �x P Nm, and the entries of A�x are nonzero, then the set of
entries of A�x contain the entries of a vector �y such that B�y “ �0. Second [3,
Satz 2.2], if m, p, c P N and A is an pm, p, cq matrix, then there exists a kernel
partition regular matrix B such that, if �y has nonzero entries and B�y “ �0,
then the set of entries of �y contains the entries of A�x for some �x P pZzt0uqm.
And finally [3, Satz 3.1], if a set X Ď N contains an image of every pm, p, cq-
matrix and X is finitely coloured, then there is a monochromatic Y that
contains an image of every pm, p, cq-matrix. (When we write “contains an
image” we really mean “contains every entry of an image”.)

In this paper we present versions of Deuber’s duality between kernel
partition regular and image partition regular matrices. In these results we
show in Theorem 2.4 that, given a matrix B that is kernel partition regular
over a nontrivial subsemigroup S of Q, there is a matrix C that is image
partition regular over S such that the set of relevant images of C is exactly
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equal to the set of relevant kernel elements of B. And, we show in Theorem

2.8 that, given a matrix A that is weakly image partition regular over Q,

there is a matrix B that is kernel partition regular over Q such that the set

of relevant kernel elements of B is exactly equal to the set of relevant images

of A. (Here “relevant” means those vectors that could be involved in kernel

or image partition regularity.) We also show that the latter result does not

work for proper subgroups of Q.

There are several questions that we are unable to resolve. These are

listed at various points.

It is of particular interest that most of our results make no distinction

between finite and infinite matrices. This is highly unusual. For example

many characterisations of finite image partition regular matrices are known,

and Rado’s characterisation of finite kernel partition regular matrices is

computable. By way of contrast, nothing resembling characterisations of

infinite kernel or image partition regular matrices is known. See the survey

[6] for information on this point.

We mention in passing that very few infinite partition regular systems

are known. One example is the Finite Sums Theorem [5], which states

that whenever the positive integers are finitely coloured, there exists a se-

quence xxny8
n“0 such that t

ř

nPF xn : F is a finite nonempty subset of ωu is

monochromatic. For other examples see [8] and [1].

Also, Rado’s conjecture is not valid for infinite matrices; there exist

infinite image partition regular matrices A and B and a colouring of Qzt0u

in two colours so that neither colour class contains an image of both A and

B, [10]. (And, as noted in [8], the corresponding statement applies to infinite

kernel partition regular matrices. This fact also follows from Theorem 2.8

below.)

We note that duality is not quite the correct word for our results, as

there are three notions involved, namely kernel partition regularity, image

partition regularity, and weak image partition regularity. However, in the

course of the preparation of this paper we noticed the following simple fact,

which says that the relationship between image partition regularity and weak

image partition regularity is much stronger than we had realised. Notice that

if v “ ω, then the matrix C in the following theorem is a u ˆ ω matrix. We

follow the convention of denoting the entries of a matrix by the lower case

letter whose upper case letter is the name of the matrix.

The content of the following two theorems is probably best understood

by supposing that C is
`

A ´A
˘

. We write it the way we do because, if

v “ ω, then 2 ¨ v “ ω so the dimensions of C are identical with those of A.
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Theorem 1.4. Let u, v P N Y tωu and let A be a u ˆ v matrix with entries
from Q. Define a u ˆ p2 ¨ vq matrix C by, for i ă u and j ă v, ci,2¨j “ ai,j
and ci,2¨j`1 “ ´ai,j. Then

tA�x : �x P Qv
u “ tC�y : �y P pQzt0uq

2¨v
u .

Also A is weakly image partition regular over Q if and only if C is image
partition regular over Q.

Proof. Except for the fact that we allow the entries of A to come from Q,
this is a special case of the following much more general theorem. And the
proof of that theorem is unchanged as long as multiplication by rationals
makes sense.

The various notions of partition regularity are defined for arbitrary com-
mutative and cancellative semigroups in exact analogy with Definition 1.1.

Theorem 1.5. Let pS,`q be a commutative cancellative semigroup with at
least three elements and let G “ S ´ S. Let u, v P N Y tωu and let A be a
uˆ v matrix with entries from Z. Define a uˆ p2 ¨ vq matrix C by, for i ă u
and j ă v, ci,2¨j “ ai,j and ci,2¨j`1 “ ´ai,j. Then

tA�x : �x P Gv
u “ tC�y : �y P pSzt0uq

2¨v
u .

Also A is weakly image partition regular over S if and only if C is image
partition regular over S.

Proof. Given �y P pSzt0uq2¨v, define �x P Gv by xj “ y2¨j ´ y2¨j`1 for j ă v.
Then A�x “ C�y.

Note that, since S has at least three elements, for each x P G there is
some s P Szt0u such that x ` s P Szt0u. Given �x P Gv, define �y P pSzt0uq2¨v

as follows. Given j ă v pick sj P Szt0u such that xj ` sj P Szt0u, define
y2¨j “ sj ` xj and y2¨v`1 “ sj . Then A�x “ C�y.

The fact that C is image partition regular over S if and only if A is weakly
image partition regular over S follows from the displayed equation.

The requirement that |S| ě 3 in Theorem 1.5 is needed. Indeed, if G “

S “ Z2 and A is the 2ˆ2 identity matrix, then there do not exist w P NYtωu

and a u ˆ w matrix C such that

tA�x : �x P G2
u “ tC�y : �y P pSzt0uq

w
u

because there are four elements of tA�x : �x P G2u and only one element of
tC�y : �y P pSzt0uqwu. However, from the point of view of image partition
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regularity and weak image partition regularity, what one cares about is the
images all of whose entries are in Szt0u. For this if A is a u ˆ v matrix that
is weakly image partition regular over S, and C is the uˆu identity matrix,
one does have that

tA�x : �x P Gv
u X pSzt0uq

u
“ tC�y : �y P pSzt0uq

u
u X pSzt0uq

u ,

for the trivial reason that pSzt0uqu is a singleton.

2. Duality for finite and infinite matrices

In this section, we prove several theorems for matrices over Q. Although
these are only stated for matrices over Q, we observe that the proofs are
valid for matrices over arbitrary fields.

Definition 2.1. If u, v P N Y tωu and if B is a u ˆ v matrix with rational
entries, we put KpBq “ t�x P Qv : B�x “ �0u, the kernel of B, and RpBq “

tB�x : �x P Qvu, the range of B.

In this paper we make use of many standard facts from linear algebra.
For the sake of completeness, we give proofs when these facts may be less
well known. For general background in linear algebra, including a discussion
of many related results, see for example [2] or [4].

Lemma 2.2. Let u, v P N Y tωu and let B be a u ˆ v matrix with rational
entries. Assume that the kernel K “ KpBq is nontrivial. Let V be the vector
space over Q of all linear transformations from K to Q. For i ă v define
πi P V by, for �x P K, πip�xq “ xi. Let T Ď v be maximal subject to the
requirement that tπi : i P T u is linearly independent. For each i ă v pick
xdi,jyjPT in Q such that πi “

ř

jPT di,jπj.

(1) If i, j P T , then di,j “ 0 if i ‰ j and di,j “ 1 if i “ j.
(2) If B has no row identically zero, then, for each k ă u there is some

l P vzT such that bk,l ‰ 0.
(3) For each �x P Qv, the following statements are equivalent.

(a) For all i P v, xi “
ř

jPT di,jxj.

(b) For all i P vzT , xi “
ř

jPT di,jxj.

(c) �x P K.

Proof. Conclusion (1) is immediate.
For the second conclusion, let k ă u and suppose that for all l P

vzT , bk,l “ 0. Then for each �x P K, 0 “
ř

jăv bk,jxj “
ř

jPT bk,jxj “
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ř

jPT bk,jπjp�xq, so 0 “
ř

jPT bk,jπj , where 0 is the constant linear transfor-
mation. But we are assuming that no row of B consists entirely of zeroes.
So for some j P T , bk,j ‰ 0 and thus tπi : i P T u is not linearly independent,
a contradiction.

For the third conclusion, let �x P Qv. The fact that (c) implies (a) is
trivial as is the fact that (a) implies (b). So assume that for all i P vzT , xi “
ř

jPT di,jxj . By conclusion (1) we have that for all i ă v, xi “
ř

jPT di,jxj .
For any k ă u

0 “
ř

iăv bk,iπi “
ř

iăv bk,i
ř

jPT di,jπj “
ř

jPT p
ř

iăv bk,idi,jqπj .

Since tπi : i P T u is linearly independent, we have that for each k ă u and
each j P T ,

ř

iăv bk,idi,j “ 0. Therefore

ř

iăv bk,ixi “
ř

iăv bk,i
ř

jPT di,jxj “
ř

jPT p
ř

iăv bk,idi,jqxj “ 0 .

Lemma 2.3. Let u, v P N Y tωu and let B be a u ˆ v matrix with rational
entries. There exists a v ˆ v matrix C with rational entries such that the
following statements hold.

(1) For every �x P Qv, B�x “ �0 if and only if C�x “ �x.
(2) BC is the u ˆ v matrix with all entries equal to 0.
(3) KpBq “ RpCq.
(4) C2 “ C.
(5) If S is a nontrivial subsemigroup of Q, then the following statements

are equivalent.

(a) B is kernel partition regular over S.

(b) C is image partition regular over S.

(c) C is weakly image partition regular over S.

Proof. If the kernel of B is trivial, our lemma holds with C “ O, the v ˆ v
matrix with all entries equal to 0. So we may suppose that the kernel of
B is nontrivial, and hence that the hypotheses of Lemma 2.2 are satisfied.
We define T and di,j for i ă v and j P T as in Lemma 2.2. Let C be the

v ˆ v matrix such that, for i, j ă v, ci,j “

"

di,j if j P T
0 if j R T .

It follows from

Lemma 2.2(3) that for each �x P Qv, B�x “ �0 if and only if C�x “ �x.
Let O be the uˆv matrix all of whose entries are 0. To see that BC “ O

we need that each column of C is inKpBq. If t P vzT , it is trivial that column
t of C is in KpBq, so let t P T and for j ă v, let xj “ cj,t. By Lemma 2.2(3),
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we need to show that for each i ă v, xi “
ř

jPT ci,jxj . So let i ă v be given.
Then

ř

jPT ci,jxj “
ř

jPT ci,jcj,t “ ci,t “ xi.
Since BC “ O, we have RpCq Ď KpBq. And if �x P KpBq, then C�x “ �x

so �x P RpCq. To see that C2 “ C, let �y P Qv and let �x “ C�y. Then
B�x “ BC�y “ �0 so C�x “ �x.

Finally, assume that S is a nontrivial subsemigroup of Q. That (a) im-
plies (b) follows from conclusion (1) and the fact that (b) implies (c) is
trivial. To see that (c) implies (a), let Szt0u be finitely colored and pick
�y P Qv such that the entries of �x “ C�y are monochromatic. By conclusion
(4) C�x “ �x so by conclusion (1), B�x “ �0.

The first part of our duality is valid for arbitrary nontrivial subsemi-
groups of Q. Notice that, as a consequence of this theorem, if Szt0u is
finitely coloured, then the sets of monochromatic kernel elements of B and
monochromatic images of C are equal.

Theorem 2.4. Let u, v P N Y tωu, let S be a nontrivial subsemigroup of
Q, and let B be a u ˆ v matrix with rational entries. Then there is a v ˆ v
matrix C with rational entries such that

t�x P pSzt0uq
v : B�x “ �0u “ tC�y : �y P pSzt0uq

v
u X pSzt0uq

v .

Further B is kernel partition regular over S if and only if C is image parti-
tion regular over S.

Proof. Let C be as in Lemma 2.3. For every x P Qv, B�x “ �0 implies C�x “ �x,
and so t�x P pSzt0uqv : B�x “ �0u Ď tC�y : y P pSzt0uqvu X pSzt0uqv. For the
reverse inclusion, let �z P pSzt0uqv and assume that �z “ C�y for some y P Sv.
Then B�z “ �0. The final assertion of the theorem is immediate.

If v is finite, the following lemma is a standard result in linear algebra.
This lemma is [9, Lemma 3.5], but the proof given here is much easier. In
this lemma,

À

iăv Q is the direct sum of v copies of Q, that is members of
the Cartesian product

Ś

iăv Q with finitely many nonzero entries.

Lemma 2.5. Let v P N Y tωu, let W “
À

iăv Q, let L Ď v, let x�riyiPL
be a sequence of linearly independent members of W , and let xyiyiPL be an
arbitrary sequence in Q. Then there exists �x P Qv such that for all i P L,
�ri ¨ �x “ yi.

Proof. If v “ ω, we may presume that vzL is infinite because then
À

iăv Q

is isomorphic to
À

iăv Q ‘
À

iăv Q. For i ă v, let �ei P W be the usual basis
vector defined by

�eipjq “

"

1 if j “ i
0 if j ‰ i .
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If x�riyiPL spans W , let J “ L. Otherwise, pick J Ď v such that L Ď J and

pick x�riyiPJzL such that x�riyiPJ is a basis for W . (If v “ ω, this is possible

because vzL is infinite.)

Define a linear transformation f : W Ñ Q by, for i P J ,

fp�riq “

"

yi if i P L
0 if i P JzL .

For each i P v let xi “ fp�eiq. Define a linear transformation g : W Ñ Q by,

for �z P W , gp�zq “ �z ¨ �x. Then for each i ă v, gp�eiq “ �ei ¨ �x “ xi “ fp�eiq.

Since f and g agree on a basis for W , they are equal. Therefore, for i P L,

yi “ fp�riq “ gp�riq “ �ri ¨ �x.

For finite matrices, the matrix B in the following lemma was introduced

in [7, Theorem 2.2].

Lemma 2.6. Let u, v P N Y tωu and let A be a u ˆ v matrix with rational

entries such that the rows of A are linearly dependent over Q. For i ă u, let

�ri be the ith row of A. Let L be a subset of u that is maximal with respect to

the property that t�ri : i P Lu is linearly independent without repeated rows

and let J “ uzL. For i P J , let xbi,tytPL be the rational numbers such that

�ri “
ř

tPL bi,t�rt and for i and t in J , let bi,t “ 0 if i ‰ t and bi,t “ ´1 if i “ t.

Let B be the J ˆ u matrix whose entry in row i and column t is bi,t. Then

BA “ O, where O is the J ˆ v matrix with all zero entries. Furthermore,

KpBq “ RpAq.

Proof. For every i P J , the ith row of BA is ´�ri `
ř

tPL bi,t�rt “ �0, and so

BA “ O.

Clearly, RpAq Ď KpBq. To see that KpBq Ď RpAq, let �y P KpBq. Then,

for every i P J , yi “
ř

tPL bi,tyt. By Lemma 2.5, there exists �x P Qv such that

�ri ¨ �x “ yi for every i P L. Hence, for every i P J , �ri ¨ �x “ p
ř

tPL bi,t�rtq ¨ �x “
ř

tPL bi,tyt “ yi and so �y “ A�x P RpAq.

Notice that if the rows of A are linearly independent and B is any matrix

with u columns and all entries equal to 0, then all entries of BA are 0 and

KpBq “ RpAq.

Corollary 2.7. Let u, v P N Y tωu, let S be a nontrivial subsemigroup of

Q, and let A be a u ˆ v matrix with rational entries that is weakly image

partition regular over S. Then there is a uˆu matrix C with rational entries

that is image partition regular over S for which RpCq “ RpAq and C2 “ C.
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Proof. If the rows of A are linearly independent, we may let C be the uˆ u
identity matrix, so assume that the rows of A are linearly dependent. Let
B be the matrix associated with A by Lemma 2.6, and let C be the matrix
associated with B by Lemma 2.3. Then B is kernel partition regular over S
and C is image partition regular over S. Since RpAq “ KpBq and RpCq “

KpBq, it follows that RpCq “ RpAq.

The next theorem is the second half of our duality.

Theorem 2.8. Let u, v P N Y tωu, let A be a u ˆ v matrix with rational
entries. Then there exist J Ď u and a J ˆ u matrix B such that

t�y P pQzt0uq
u : B�y “ �0u “ tA�x : �x P Qv

u X pQzt0uq
u .

Further, A is weakly image partition regular over Q if and only if B is kernel
partition regular over Q.

Proof. If the rows of A are linearly independent, we may let B be the u ˆ

u matrix with all zero entries, so assume that the rows of A are linearly
dependent. Let J and B be as in Lemma 2.6. Since KpBq “ RpAq, the
conclusions follow.

In contrast with Theorem 2.4, we see that there is no nontrivial proper
subgroup of Q` “ tx P Q : x ą 0u to which Theorem 2.8 extends, even if
the hypothesis is strengthened to require A to be image partition regular,
not just weakly image partition regular.

Theorem 2.9. Let S be a nontrivial proper subsemigroup of Q` or a non-
trivial proper subgroup of Q. Then there is a 3 ˆ 2 matrix A that is image
partition regular over S (whose rows are necessarily linearly dependent) and
has the property that there do not exist k P N and a k ˆ 3 matrix B such
that

t�y P pSzt0uq
3 : B�y “ �0u “ tA�x : �x P S2

u X pSzt0uq
3 .

In fact, there do not exist k P N and a k ˆ 3 matrix B such that

tA�x : �x P pSzt0uq2u X pSzt0uq3 Ď t�y P pSzt0uq3 : B�y “ �0u

Ď tA�x : �x P S2u X pSzt0uq3 .

Proof. If S is a nontrivial proper subgroup of Q, then tx P S : x ą 0u is a
nontrivial proper subsemigroup of Q` so tx P Q : x ą 0uzS ‰ H.

Assume first that 1 R S and let d “ minpS X Nq. Let A “

´

d 0
0 d
d d

¯

. To

see that A is image partition regular over S, let ϕ be a finite colouring of
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S and define a finite colouring ψ of N by, for x P N, ψpxq “ ϕpd2xq. Pick
by Schur’s Theorem x0 and x1 in N such that ψpx0q “ ψpx1q “ ψpx0 ` x1q.

Then �x “

´

dx0

dx1

¯

P pSzt0uq2 and A�x is monochromatic with respect to ϕ.

Suppose we have k P N and a k ˆ 3 matrix B such that

tA�x : �x P pSzt0uq2u X pSzt0uq3 Ď t�y P pSzt0uq3 : B�y “ �0u

Ď tA�x : �x P S2u X pSzt0uq3 .

Since A
`

d
d

˘

“

´

d2

d2

2d2

¯

, we have that B
´

d2

d2

2d2

¯

“ �0 and therefore B
´

d
d
2d

¯

“

�0. Consequently there is some �x P S2 such that A�x “

´

d
d
2d

¯

. But then

�x “ p 1
1 q R S2.

Now assume that 1 P S and pick some d P N such that 1
d R S. Let

A “

´

0 1
d 1
d 2

¯

. Since A is a first entries matrix, by [7, Theorem 3.1] A is image

partition regular over N and therefore over S. Suppose we have k P N and a
k ˆ 3 matrix B such that

tA�x : �x P pSzt0uq2u X pSzt0uq3 Ď t�y P pSzt0uq3 : B�y “ �0u

Ď tA�x : �x P S2u X pSzt0uq3 .

Since A
`

1
d

˘

“

´

d
2d
3d

¯

, we have that B
´

d
2d
3d

¯

“ �0 and therefore B
´

1
2
3

¯

“ �0.

Consequently there is some �x P S2 such that A�x “

´

1
2
3

¯

. But then �x “
´

1{d
1

¯

R S2.

It is well known, and was essentially a part of Deuber’s proof of Rado’s
conjecture, that if u, v P N and A is a u ˆ v matrix that is weakly image
partition regular over Z, then there is a matrix D that is kernel partition
regular over Z such that if �y has nonzero entries and D�y “ �0, then the set
of entries of �y contains the entries of A�x for some �x P Zvzt�0u.

We show in Theorem 2.11 that the corresponding statement is true for
a finite matrix that is weakly image partition regular over any nontrivial
subgroup of pQ,`q.

Lemma 2.10. Let S be a nontrivial subgroup of Q, let j, u P N, let B be a
j ˆ u matrix with rational entries that is kernel partition regular over Q, let
O be the j ˆ u matrix with all entries equal to 0, let I be the u ˆ u identity
matrix, let c P S, and let

D “

ˆ

B O O
I cI ´cI

˙

.
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Then D is kernel partition regular over S.

Proof. Since B is kernel partition regular over Q, it satisfies the columns

condition. Let m and a partition xIty
m´1
t“0 of t0, 1, . . . , u´1u be as guaranteed

by the columns condition for B.

Let I 1
0 “ tu, u ` 1, . . . , 3u ´ 1u and for t P t1, 2, . . . ,mu, let I 1

t “ It´1.

Then xI 1
ty

m
t“0 is a partition of t0, 1, . . . , 3u ´ 1u. It is routine to verify that

with this partition, D satisfies the columns condition. Therefore, D is kernel

partition regular over Z. Let d “ minpS X Nq. To see that D is kernel

partition regular over S, let ϕ be a finite colouring of Szt0u. Define ψ on

Z by ψpxq “ ϕpdxq. If �x is monochromatic with respect to ψ and D�x “ �0,

then d�x is monochromatic with respect to ϕ and Dd�x “ �0.

Theorem 2.11. Let S be a nontrivial proper subgroup of Q, let u, v P N, and

let A be a u ˆ v matrix with rational entries that is weakly image partition

regular over S and has linearly dependent rows. Then there exists j ă u and

a pj ` uq ˆ 3u matrix D that is kernel partition regular over S such that,

whenever �s P pSzt0uq3u and D�s “ �0, there exists �y P Svzt�0u such that all

entries of A�y are entries of �s.

Proof. We first show that it suffices to assume that the entries of A are in

S X Z. To see this pick d P N such that all entries of dA are in S X Z. (One

can take d to be the product of a common multiple of the denominators of

entries of A with the minimum of SXN.) Then dA is weakly image partition

regular over S. (If ϕ is a finite colouring of Szt0u, we define ψ on Szt0u by

ψpxq “ ϕpdxq. If the entries of A�x are monochromatic with respect to ψ,

then the entries of dA�x are monochromatic with respect to ϕ.) Assume that

we have j ă u and a pj`uqˆ3umatrixD that is kernel partition regular over

S such that, whenever �s P pSzt0uq3u and D�s “ �0, there exists �y P Svzt�0u

such that all entries of dA�y are entries of �s. If the entries of dA�y are entries

of �s and �z “ d�y, then the entries of A�z are entries of �s.

Thus we assume that the entries of A are in S X Z. Let l “ rankpAq.

By rearranging rows and columns, we may assume that the upper left l ˆ l

corner A˚ of A has linearly independent rows. Let c be the absolute value

of detpA˚q.

Since A is weakly image partition regular over S it is weakly image

partition regular over Q. Let B be as in Lemma 2.6 with L “ t0, 1, . . . , l´1u

so that J “ tl, l` 1, . . . , u´ 1u. Let j “ u´ l and let B1 be the j ˆu matrix

whose entry in row t and column i is b1
t,i “ bl`t,i. Since B1A “ O, we have

that B1 is kernel partition regular over Q.



Duality for image and kernel partition regularity of infinite matrices 665

Let O be the j ˆ u matrix with all entries equal to 0, let I be the u ˆ u
identity matrix, and let

D “

ˆ

B1 O O
I cI ´cI

˙

.

By Lemma 2.10, D is kernel partition regular over S.
Let �s P pSzt0uq3u such that D�s “ �0. Let �x P pSzt0uqu and �r P pSzt0uq2u

such that �s “
`

�x
�r

˘

. Then for i P t0, 1, . . . , u ´ 1u, xi “ cpru`i ´ riq. Letting
zi “ ru`i ´ ri we have that each zi P S. Let �z 1 be the first l entries of �z.
Let �w be the member of Ql such that A˚ �w “ �z 1. Then by Cramer’s rule, we
have that for each i P t0, 1, . . . , l ´ 1u, cwi P S.

For i P t0, 1, . . . , l´1u, let yi “ cwi and for i P tl, l`1, . . . , vu, let yi “ 0.
Then a routine computation establishes that A�y “ �x.

We ask now whether some version of Theorem 2.11 applies to matrices
with infinitely many rows. (Our proof of Lemma 2.10 uses Rado’s Theorem,
so is inherently finite.)

Question 2.12. Let v P NY tωu and let A be an ω ˆ v matrix with rational
entries. Is it true that for some or all nontrivial proper subgroups S of Q, if
A is weakly image partition regular over S, then there is a kernel partition
regular matrix D such that whenever �s is in the kernel of D with entries in
Szt0u there must exist �y P Sv such that all entries of A�y are entries of �s?

We note that if Q is given any reasonable topology (more precisely,
any topology in which 0 has a neighbourhood distinct from Q) and Qu

and Qv have the product topology, it is routine to establish that for any
u, v P NYtωu, the uˆv matrices with finitely many non-zero entries in each
row correspond precisely to the continuous linear transformations from Qv

to Qu. (One uses the fact that for each a P Qzt0u, there is some t P Q such
that at R U .)

We also remark that the theorems in this section, when proved in the
context of an arbitrary field F , provide us with information about continuous
linear maps from F v to F u. For example, Lemma 2.6 implies that the range
of every such map is closed.

3. Image partition regularity and weak image partition
regularity over Q

We saw in Theorem 1.4 that for any commutative cancellative semigroup S
with at least three elements and any u ˆ v matrix A that is weakly image
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partition regular over S there is a u ˆ p2 ¨ vq matrix that is image partition

regular over S and has exactly the same images as A. The following corollary

of the results of Section 2 shows that for S “ Q, one need not add additional

columns to at least get the same images with entries in Szt0u.

Corollary 3.1. Let u, v P NY tωu and let A be a uˆ v matrix with rational

entries that is weakly image partition regular over Q. Then there exist a set

T Ď u and a u ˆ T matrix D that is image partition regular over Q such

that |T | ď v and

tA�x : �x P Qv
u X pQzt0uq

u
“ tD�y : �y P pQzt0uq

T
u X pQzt0uq

u .

Proof. Assume first that the rows of A are linearly independent. Then u ď v

and by Lemma 2.5, tA�x : �x P Qvu X pQzt0uqu “ pQzt0uqu so one may let C

be the u ˆ u identity matrix.

So assume that the rows of A are linearly dependent over Q. By Theorem

2.8 pick J Ď u and a J ˆ u matrix B such that B is kernel partition regular

over Q and t�w P pQzt0uqu : B�w “ �0u “ tA�x : �x P Qvu X pQzt0uqu. Since B

is kernel partition regular over Q, the kernel of B is nontrivial so the proof

of Lemma 2.3 produces a u ˆ u matrix C, a set T Ď u, and di,j in Q for

i ă u and j P T such that |T | is the dimension of the kernel of B and for

i, j ă u, ci,j “

"

di,j if j P T
0 if j R T .

Let D be the uˆT matrix with entries di,j

for i ă u and j P T . As we saw in the proof of Theorem 2.4,

t�x P pQzt0uq
u : B�x “ �0u “ tC�y : �y P pQzt0uq

u
u X pQzt0uq

u ,

and trivially tC�y : �y P pQzt0uquu “ tD�y : �y P pQzt0uqT u.

Checking the proof of Theorem 2.8, we see that J “ uzL where |L| is

the rank of A. And we also see that B is of the form
`

E ´IJ
˘

, where E

is a J ˆ L matrix and IJ is the J ˆ J identity matrix so that the rank of B

is |J |. And we have seen that |T | is the dimension of the kernel of B, which

is |uzJ | “ |L| ď v.

We saw in Theorem 2.9 that Theorem 2.8 does not extend to any proper

subsemigroup of Q` or any proper subgroup of Q.

In Theorem 3.3 we will show that Corollary 3.1 does not extend to any

proper subgroup of Q.

Lemma 3.2. Let G be a proper subgroup of Q. If 1 P G, pick d P N such

that 1
d R G and let p “ 1. If 1 R G, pick d P N X G and let p “ d. Let
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A “

˜ 1 0
1 d
1 2d
...
...

¸

. Assume that C is an ω ˆ 2 matrix with rational entries such

that tA�x : �x P G2uXpGzt0uqω Ď tC�y : y P pGzt0uq2u. Then there exist x0, x1
in Gzt0u, m ‰ n in ω, and k P Q such that k “ dx0x1pm ´ nq and for all
l ă ω, kcl,0 “ pdx1pl ´ nq and kcl,1 “ pdx0pm ´ lq.

Proof. We have that p “ A p
p
0 q, where p is the vector all of whose entries

are p. So pick x0 and x1 in Gzt0u such that for all l ă ω, x0cl,0 ` x1cl,1 “ p.
Also A p

p
p q P tA�z : �z P G2u X pGzt0uqω so pick y0 and y1 in Gzt0u such that

for all l ă ω, y0cl,0 ` y1cl,1 “ p ` lpd.
Let k “ x1y0 ´ x0y1. Then for each l ă ω, kcl,0 “ x1pp ` pld ´ y1cl,1q ´

x0y1cl,0 “ ppx1 ´y1q `x1pld and kcl,1 “ ppy0 ´x0q ´x0pld. Since the values
change with l, we have that k ‰ 0.

We claim that there is some m ă ω such that y0 “ p1 ` mdqx0. To see
this, suppose not and let a “ x0 ´ y0 and b “ x0. Then for l ă ω, entry
l of A p

a
b q is x0 ´ y0 ` ldx0 P Gzt0u, so pick u and v in Gzt0u such that

A p
a
b q “ C p u

v q. Then kA p
a
b q “ kC p u

v q so ka “ ppx1´y1qu`ppy0´x0qv and
ka`kbd “ ppx1´y1qu`x1pdu`ppy0´x0qv´x0pdv. Solving these equations
for u and v we get u “

1
ppax0 ` by0 ´ bx0q and v “

1
ppax1 ` by1 ´ bx1q. But

then u “
1
ppx0px0 ´ y0q ` py0 ´ x0qx0q “ 0, a contradiction. Similarly, we

have some n ă ω such that y1 “ p1 ` ndqx1.
Now k “ x1y0 ´ y1x0 “ dx0x1pm ´ nq and since k ‰ 0, m ‰ n. Also for

l ă ω, kcl,0 “ ppx1 ´ y1q ` pldx1 “ pdx1pl ´ nq and kcl,1 “ pdx0pm ´ lq.

Theorem 3.3. Let G be a proper subgroup of Q. There is an ω ˆ 2 matrix
A that is weakly image partition regular over G, but there does not exist an
ω ˆ 2 matrix C with rational entries such that

tA�x : �x P G2
u X pGzt0uq

ω
“ tC�y : �y P pGzt0uq

2
u X pGzt0uq

ω .

Proof. If 1 P G, pick d P N such that 1
d R G and let p “ 1. If 1 R G, pick

d P N X G and let p “ d. Let A “

˜ 1 0
1 d
1 2d
...
...

¸

. Note that A is weakly image

partition regular over G since A
`

d
0

˘

“ d. Suppose we have an ω ˆ 2 matrix
C with rational entries such that

tA�x : �x P G2
u X pGzt0uq

ω
“ tC�y : �y P pGzt0uq

2
u X pGzt0uq

ω .

Pick x0, x1, m, n, and k as guaranteed by Lemma 3.2. Let u “ pm ` 1qx0
and v “ pn ` 1qx1. Then given l ă ω, entry l of kC p u

v q is kcl,0u ` kcl,1v “
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pdx0x1pm ´ nqpl ` 1q “ kppl ` 1q so entry l of C p u
v q is ppl ` 1q P Gzt0u.

Pick a and b in G such that A p
a
b q “ C p u

v q. Then a “ p and a ` db “ 2p so

db “ p. If p “ 1, this says b “
1
d R G. If p “ d, this says b “ 1 R G.

We do not know whether the result of Corollary 3.1 extends to arbitrary

proper subsemigroups of Q`, or even whether it extends to N. We know that

the proof of Theorem 3.3 does not work to show that it does not extend to

N and the proof of Corollary 3.1 does not work to show that it does extend

to N.

To see that the proof of Theorem 3.3 does not work for N, let d P Nzt1u

so that

A “

¨

˚

˚

˚

˝

1 0
1 d
1 2d
...

...

˛

‹

‹

‹

‚

.

Let

C “

¨

˚

˚

˚

˝

1 ´1
1 ´ d ´1 ` 2d
1 ´ 2d ´1 ` 4d

...
...

˛

‹

‹

‹

‚

.

Then tA�x : �x P Z2u X Nω “ tC�y : �y P N2u X Nω. (If A p
a
b q P Nω, then a P N,

b P ω, and A p
a
b q “ C

`

2a`b
a`b

˘

. And for any u and v in N, A
`

u´v
2v´u

˘

“ C p u
v q.)

To see that the proof of Corollary 3.1 does not work for N, let

A “

¨

˚

˚

˚

˝

1 0
1 2
1 4
...

...

˛

‹

‹

‹

‚

.

The matrix B produced by Lemma 2.6 is

B “

¨

˚

˚

˚

˝

´1 2 ´1 0 0 0 . . .
´2 3 0 ´1 0 0 . . .
´3 4 0 0 ´1 0 . . .
...

...
...

...
...

...
. . .

˛

‹

‹

‹

‚

.

This matrix is kernel partition regular over N since B1 “ 0. Then the matrix
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C produced by Theorem 2.4 is

C “

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 0
0 1

´1 2
´2 3
´3 4
...

...

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

If A�x “ C p 1
2 q, then x0 “ 1 and x1 “

1
2 .

Question 3.4. Let S be a nontrivial proper subsemigroup of Q` and let G
be the subgroup of Q generated by S. Let u, v P NY tωu and let A be a uˆ v
matrix with rational entries that is weakly image partition regular over S.
Must there exist w ď v and a u ˆ w matrix C such that

tA�x : �x P Gv
u X pSzt0uq

u
“ tC�y : �y P pSzt0uq

w
u X pSzt0uq

u ?

A matrix produced in answer to this question would necessarily be image
partition regular over S.

Notice that, by Theorem 1.4, Question 3.4 has an affirmative answer if
v “ ω, so we are concerned with Question 3.4 when v P N. In Theorem
3.7 we give a partial answer, not for every subsemigroup of Q`, but for
subsemigroups of Q` that are the intersection of the group they generate
with Q`. This partial answer is strong enough for us to conclude that for
any matrix A that is weakly image partition regular over such a semigroup,
there is an image partition regular matrix C every relevant image of which
is an image of A.

We recall the definition of the sign function.

Definition 3.5. Let x P R.

sgnpxq “

$

&

%

1 if x ą 0
0 if x “ 0

´1 if x ă 0 .

Lemma 3.6. Let S be a nontrivial proper subsemigroup of Q and let G be
the subgroup of Q generated by S, let u P N Y tωu, let v P N, and let A be
a u ˆ v matrix with rational entries that is weakly image partition regular
over S. Then there exists �a P t´1, 0, 1uv such that whenever Szt0u is finitely
coloured, there exists �x P Gv such that the entries of A�x are monochromatic
and for every i ă v, sgnpxiq “ ai. Further �a ‰ �0.
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Proof. Suppose not and for each �a P t´1, 0, 1uv pick a finite colouring ϕ�a of
Szt0u such that whenever �x P Gv and the entries of A�x are monochromatic
with respect to ϕ�a, there is some i ă v such that sgnpxiq ‰ ai. Let ψ be
a finite coloring of Szt0u such that for x, y P S, ψpxq “ ψpyq if and only if
for every �a P t´1, 0, 1uv, ϕ�apxq “ ϕ�apyq. Pick �x P Gv such that the entries
of A�x are monochromatic with respect to ψ. Letting �ai “ sgnpxiq for each
i ă v yields a contradiction. Trivially �a ‰ �0.

Theorem 3.7. Let G be a nontrivial subgroup of Q, let S “ G X Q`, let
u P NY tωu, let v P N, and let A be a uˆ v matrix with rational entries that
is weakly image partition regular over S. Then there exists a u ˆ v matrix
C with rational entries (whose entries are in the subgroup of Q generated by
the entries of A) such that

(1) tC�y : �y P Svu Ď tA�x : x P Gvu and
(2) whenever S is finitely coloured, there exists �x P Gv such that the entries

of A�x are monochromatic and there is some �y P Sv such that C�y “ A�x.

Proof. Pick �a as guaranteed by Lemma 3.6. Since �a ‰ �0 we may presume
(by permuting the columns of A) that a0 ‰ 0. Define a v ˆ v matrix E as
follows. For j ă v, ej,0 “ a0 and for i P t1, 2, . . . , v ´ 1u, let e0,i “ 0. For
j P t1, 2, . . . , v ´ 1u and i ă v,

ej,i “

$

&

%

1 if i “ j and ai ě 0
´1 if i “ j and ai ă 0
0 otherwise.

Then E is a lower triangular matrix whose diagonal entries are all 1 or ´1
so detpAq “ ˘1. Thus E is invertible and its inverse has integer entries. (In
fact, all entries of E´1 are 0, 1, or ´1.) Let C “ AE´1. Conclusion (1) is
immediate.

To verify (2), let S be finitely coloured and pick �x P Gv such that the
entries of A�x are monochromatic and for every i ă v, ai “ sgnpxiq. Let
y “ E�x. Then C�y “ A�x so it suffices to show that the entries of �y are
positive. We have that y0 “ a0x0 ą 0. For j ą 0, yj “ a0x0 if xj “ 0 and
otherwise yj “ a0x0 ` ajxj ą 0.

Corollary 3.8. Let G be a nontrivial subgroup of Q, let S “ G X Q`, let
u, v P N Y tωu, and let A be a u ˆ v matrix with rational entries. Then A is
weakly image partition regular over S if and only if there is a u ˆ v matrix
C with rational entries that is image partition regular over S and for every
�y P Sv, there exists �x P Gv such that A�x “ C�y.
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Proof. The sufficiency is trivial. For the necessity we can invoke Theorem
1.4 if v “ ω, so assume that v P N. Pick C as guaranteed by Theorem 3.7.
One has immediately that for every �y P Sv, there exists �x P Gv such that
A�x “ C�y.

To see that C is image partition regular over S, let S be finitely coloured.
Pick �x as guaranteed by Theorem 3.7(2) and pick �y P Sv such that C�y “

A�x.
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