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The number of permutations with the same peak
set for signed permutations
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A signed permutation m = my7s . .. T, in the hyperoctahedral group

B,, is a word such that each m; € {m,...,1,1,...,n} where i = —i,
and {|m|, |mal,..., |7} = {1,2,...,n}. An index ¢ is a peak of
7 if mi_1 < m > w41 and Pp(w) denotes the set of all peaks of
7. Given any set S, we define Pg(S,n) to be the set of signed
permutations 7 € B, with Pg(m) = S. In this paper we show
that |Pg(S,n)| = p(n)22"~1%1=1 where p(n) is a polynomial that
takes integral values when evaluated at integers. In addition, we
have partially extended these results to the more complicated case
where we add g = 0 at the beginning of the permutations, which
gives rise to the possibility of a peak at position 1, for both the
symmetric and the hyperoctahedral groups. In both cases we es-
tablish recursive formulae to compute the number of permutations
(signed permutations in the case of B,,) with a given peak set.

KEYWORDS AND PHRASES: Peak sets, permutations, signed permuta-
tions.

1. Introduction

A permutation m = mmy... 7, in the symmetric group S, has a peak at
index i if m;—1 < m > ;1. The peak set of 7 is defined to be P(w) =
{i| i is a peak of 7}, then we define

P(S,n)={reS,|P(r)=S}

to be the set of all permutations with the same peak set S. For example,
the permutation m = 2 6 5 1 4 3 has peaks at position 2 and 5, hence
P(m,6) ={2,5}.

Peaks occur frequently in the literature. For instance, Stembridge [12]
gave a peak analog of Stanley’s theory of poset partitions. Billey and Haiman
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[7] also introduced a version of the fundamental quasisymmetric function
that uses peaks instead of descents. Additional interest in the study of peaks
arose when Nyman [10] showed that summing permutations according to
their peak sets leads to a non-unital subalgebra of the group algebra of the
symmetric group.

In a recent paper [5] Billey, Burdzy and Sagan considered the cardinal-
ities of the sets P(S,n). They discovered that |P(S,n)| = p(n)2"~1¥I-1 for
some polynomial p(n) depending on S; they also computed special cases of
the polynomial p(n). One motivation for studying peaks of permutations
lies in probability theory; in a recent paper Billey, Burdzy, Pal and Sagan
[6] studied distributions on graphs that are related to random permuta-
tions with certain peak sets. Besides the applicability to probability theory,
the problem of enumerating permutations and signed permutations with re-
spect to a given statistic is an interesting problem on its own, for example
the enumeration of permutations related to peak sets has also been studied
in [9, 13, 14].

It is natural that when a result related to the symmetric group (the
Coxeter group of type A) is obtained one wishes to generalize it to other
Coxeter groups. In this paper we generalize the results in [5] to the group of
signed permutations, the hyperoctahedral group B,, (the Coxeter group of
type B). A signed permutation 7w = 77y . .. 7, is a word such that each 7; €
{m,...,1,1,...,n} where i = —i, and {|m|,|m2|,...,|m|} = {1,2,...,n}.
A peak of a signed permutation is defined in exactly the same way as for
regular permutations. We will denote by Pg(7) the set of peaks of a signed
permutation 7 and define

PB(S,TL) = {7‘(’ € Bn|PB(7T) = S}

We show that |Pg(S,n)| = 22"~ 15I=1pp(n), where pp(n) is the same poly-
nomial as for the symmetric group, this generalizes Theorem 3 in [5]. We
also consider special cases of the polynomials pp(n).

Peaks for signed permutations are also of interest in the construction
of algebraic structures. In [3] Bergeron and Hohlweg have described peak
analogues of the peak algebras for the hyperoctahedral group and Petersen
[11] considered peak algebras of the hyperoctahedral group when the signed
permutations are grouped by number of peaks.

The second part of our paper considers the enumeration of peak classes
when we put a zero at the beginning of the permutations for both the sym-
metric and hyperoctahedral groups. That is, we consider permutations of
the form w7y - - - m, where my = 0. These permutations arose in the study of
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unital peak algebras of the symmetric group [1, 2]. In the case of the sym-
metric group, adding a zero at the beginning of every permutation has the
effect of having the identity as the unique permutation with no peaks. We
denote by P (S,n) the set of permutations with a zero added in S,, with peak
set S and Pp(S,n) the corresponding set for the hyperoctahedral group. We
generalize results obtained in [5] to P(S,n) and Pgp(S,n). In particular, we
give a method for computing |P(S,n)| and |Pg(S,n)| and compute these
numbers for special sets S.

We now give a more detailed description of the contents of this paper.
In Section 2, we prove that |Pg(S,n)| = pp(n)22*~1¥1=1 where pp(n) is an
integral polynomial in terms of n, and equal to the polynomial p(n) in S,
found in [5]. We also show that the values for |Pg(S,n)| are symmetric for a
fixed n as we vary the set S. In Section 3, we provide a method to compute
|Pp(S,n)| for any S. We find that if S = ), | Pg(S,n)| can be written in terms
of the Stirling numbers of the second kind. Another result in this section
gives us the parity of [Pg(S5,n)|. Additionally, we find that |Pg(S,n)| can
be written as the sum of [Pg(5,n)| and |Pp(S U {1},n)| which gives us the
results of the previous section when 2 € S. Finally, we calculate |Pg(S,n)|
for various specific sets S.

In Section 4, we focus on the symmetric group, we provide a method
to compute |P(S,n)| for any S. We also find that |P(S,n)| can be written
as the sum of |P(S,n)| and |P(S U {1},n)| which gives us the results in [5]
when 2 € S. Another result in this section gives us the parity of |ﬁ(5, n)|.
Finally, we calculate |P(S,n)| for various special cases of the set S.

2. Signed permutations in B,,

Let B,, be the hyperoctahedral group, i.e., the group of signed permutations,
and let 7 = mymo...m, be a permutation in B,. Recall that we define a
position i € {2,...,n — 1} as a peak if m;_; < m; > m;+1, and the set Pp(m)
as the set of all peaks of 7.

Define a set S = {i1 <--- <is} to be n-admissible if |Pp(S,n)| # 0.
Note that we assume that the elements in S are listed in increasing order.
Notice that S cannot contain two consecutive integers and S is a subset of
{2,...,n—1}. The minimum possible value of n for which S is n-admissible
is is + 1, and in that case S is n-admissible for all n > is 4+ 1. If we make
a statement about an admissible set S, we mean that S is n-admissible for
some n and the statement holds for every n such that S is n-admissible.
It is well-known that the number of n-admissible sets is the n-th Fibonacci
number. We include a proof for completeness.
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Proposition 2.1. Let A, be the set of n-admissible peak sets S. Then the
size of A, is given by the n-th Fibonacci number.

Proof. Note that A1 = Ay = {0}, thus the result holds for n = 1 and n = 2.
For n > 3 write A, as a union of disjoint sets A, and Ag where A, is
the set of n-admissible sets that do not contain n — 1, and Ag is the set
of n-admissible sets that do contain n — 1. Since A,,_; contains all (n — 1)-
admissible peak sets S which cannot contain the element n — 1, it must be
equal to A,. Also, adding n — 1 to all the peak sets in A,_o gives us Ag.
Therefore we get |A,| = |An—1| + |An—2|- O

If we fix n and the cardinality of the set .S, then there exists a set T' of
the same cardinality as S such that |Pg(S,n)| = |P(T,n)|. We make this
symmetry property more explicit in the following proposition.

Proposition 2.2. Let S = {i1,io,...,ix} and T = {n + 1 — ig,...,
n+1—i1}. Then |Pg(S,n)| = |Pg(T,n)|.

Proof. Let f : B, — B, be the function defined by the rule f(m) =
T -+ -momy for m = mmg---m, € B,. Note that f is an involution (i.e.,
f(f(r)) = 7). Let p = p1p2...pp € Pp(S,n). If j is a peak of p then
n+ 1 —jis a peak of f(p), hence the peak set of f(p) is

{n+1—ig....,n+1—dig,n+1—i1}.
Thus f(p) € Pp(T,n). Similarly, if f(7) € Pg(T,n) then f(f(7)) € Pp(S,n).
Therefore |Pp(S,n)| = |Pp(T,n)|. O
Remark. Note that since S,, C B,,, this result holds in S,, as well.

We now show that the results in [5] for S, extend to B,,.
Theorem 2.3. Let S = {i1,i2,...,is} be admissible. Then

|PE(S,n)| = pp(n)22" =7,

where pp(n) = pp(S,n) is a polynomial depending on S such that pg(n) is
an integer for all integral n. In addition, the degree of pp(n) =1is—1 (when
S =0, the degree of pp(n) = 0). Moreover, pp(n) is the polynomial p(n)
appearing in [5, Theorem 3J.

The first proof of this theorem appeared in a pre-print version of this
paper, [8, Theorem 2.3]. The proof was similar to that of Theorem 3 in [5].
Later Billey, Farbach and Talmage published a much shorter proof in [4],
which we present here for completeness.
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Proof. We partition B, into 2" disjoint subsets described by the signage of
the permutations. For example

Bg == S+++ U S7++ U S+7+ U S++7 U SJF,, U S7+7 U SJF,, U 57777

where S;4_ is the set of permutations of {1,2, -3} (and similarly for all
other sets in the partition). Each set of the partition is a copy of S,. It
follows that |Pg(S,n)| = 2"|P(S,n)|. The result now follows from Theorem
3 in [5). 0

In [5], the polynomials p(n) have been computed for several special cases
of S. Hence using Theorem 2.3 we obtain the following corollary.

Corollary 2.4. If S is admissible then

e -1, if S = {m}
S,n) = " B B
pu(s) Lm—@@%%wm—m@éww%% ¥ = {2m).

If S ={2,m,m+ 2} then

(s =mim=3)(,," ) =200 =97 7%

m +
n—2 n—2
—2(m —2 2 .
() (")
Proof. The result follows from similar corollaries for p(n) in [5]. O

The following special case of Theorem 2.3 will be used in subsequent
sections.

Corollary 2.5. Let S = (), then |Pg(S,n)| =221
3. Permutations in B,, with g =0

Recall that a peak is defined such that the permutation m € B,, has a peak at
position ¢ if ;1 < m; > ;4 1. Therefore if we introduce the assumption that
mo = 0 for all 7 € B, then a permutation 7 can have a peak at position 1 if
0 < 71 > 7o, that is if 7y is positive and 7 has a descent at 1 (i.e. w1 > m3).
We define ]33(5, n) to be the set of all permutations in B,, with peak set S
with the assumption that wy = 0. The number of n-admissible sets is also
given by the Fibonacci sequence.
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Figure 1: General shape for 7 € ]3]3(@, n).

Proposition 3.1. Let A, be the set of n-admissible peak sets S. Then the
size of Ay, is given by the (n 4 1)th Fibonacci number.

Proof. The proof is exactly the same as for Proposition 2.1 with initial values
Ap = {0} and Ay = {0,{1}}. O

The next two propositions, together with Theorem 3.4, allow us to com-
pute the cardinality of any peak set recursively.

Proposition 3.2. Let S = (. Then

=~ 3"+1

Proof. Let 7 € ]3]3(@, n). A general shape for 7 is given by Figure 1, where
the section labeled A is negative and decreasing, the section labeled B is
negative and increasing, and the section labeled C is positive and increasing.
According to these sections, we can partition 7 into sections m = mowATRTC.
In general, up to two of these sections can be empty. We also assume that g
contains the entire section of the permutation that is negative and ascending,
73 =621 and ¢ = 3.

Now, define a function f from B, to the set of partitions of [n + 1] into
at most 3 blocks. Let m € B,. If m = mgmanwpnc, then we let A, B, and C
be the subsets of [n] that correspond to the absolute values of the sections
A, 7B, and 7c, respectively. Then f maps 7 to the partition of [n + 1] into
at most 3 blocks, given by {4, B,C U {n + 1}}, where if a section is empty
it is not represented in the partition. Then f(7) is in the set of partitions of
[n + 1] into at most 3 blocks.

Next, we define the inverse of f from the set of partitions of [n + 1]
into at most 3 blocks to B,. Let P be such a partition. We write P as a
set of three blocks, where we allow some of the blocks to be empty. lLe., if
P ={P1, P}, we write P = { Py, P»,0}. If P; is the block containing n + 1,
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then we let C' = P; — {n + 1}. If P; is the block containing the maximum
value of the remaining two blocks, then we let B = P;, and we let A be the
remaining block. Hence, P maps to the signed permutation # = mgma7p7C,
such that w4 is given by negating the elements of A and ordering them so
they are decreasing, wp is given by negating the elements of B and ordering
them so they are increasing, and 7¢ is given by ordering the elements of C'
so they are increasing.

It is known that the size of the set of partitions of [n + 1] into at most
3 blocks is given by the first three Stirling numbers of the second kind,
S(n+1,1)+S(n+1,2)+ S(n+1,3) = £+ Therefore, the size of Pp(0,n)
is (3" +1)/2. O

We should note [P(f,n)| is given by sequence A007051 in the OEIS.
Proposition 3.3. Let S = {1} be an admissible set, then

3" +1

[Py (8,m)] =21 = =

Proof. First note that Pp(,n) is the disjoint union of Pp(0,n) and
Pp({1},n). Thus |Pg(D,n)] = [Pp(d,n)| + [Pp({1},n)|. Solving for
[Pe({1},n)| we get

|Pa({1},n)| = |Pp(0,n)| — |Pp(B,n)].

Applying Corollary 2.5 and Proposition 3.2 we obtain the desired result. [

The next theorem shows a recursive formula for computing the val-
ues of |Pg(S,n)|. We then proceed to compute special cases for various
n-admissible peak sets .S.

Theorem 3.4. Let S = {iy,i2,...,is} be a non-empty admissible set such
that iy + iy + - + i > 2 then,

’ﬁB(S,n)‘ - <Z71 1) \133(51,% = 1)‘ 22<’H‘s>*1—‘ﬁB(sl,n)’—‘ﬁB(smn)].

where S; = S — {is} and So = S1 U {is — 1}.

Proof. Let k =i,—1, thus k > 1. For any n > i, let 1I be the set of all signed
permutations m = womwi 7y . . . T, such that ﬁB(Troﬂ'lT{'Q i) =81 =85 —{is}
and Pp(m;, ...m,) = (. We can partition II into blocks by the peak set of 7.
In addition to the peaks given by S = S — {is}, there could be a peak at
Tk, & peak at m;_, or no peak at both m; and 7;_ . Note that these are all the
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possibilities, and that the three are disjoint. Thus, if we let Sy = S1U{is — 1},
then

(1) |TI| = |Pp(Sa,n)| + | Ps(S,n)| + | Ps(S1,n)|.

First, we find [II]. Recall that for 7 € II, we have Pg(mom ... m) = Si
and Pp(m;, ...m,) = (. Therefore to construct any , first we choose k =
is — 1 elements to be in the first section. For signed permutations, if an
integer m € [n] is in the permutation, then —m cannot be, and vice versa.
Therefore we choose k elements from a set of n elements. Then we create a
signed permutation (with mp = 0) from these k elements, arranged in a way
such that their peak set is S1. We have denoted the number of ways to do so
by |Pg(S1, k)|. Finally we arrange the last n — k items such that their peak
set is (). The number of ways to do this is |Pg(0,n — k)| (notice that we no
longer have the first entry being zero, as we are considering the last n — k
entries and k > 1). Therefore

1= () Pa(si. 01 Pa0.n - ).

Using this expression for |II| and substituting in equation (1), and using
Corollary 2.5 we obtain the desired result. O

3.1. Parity of 133(5, n)

In the previous section we showed that Pp(S,n) was always a multiple of a
power of 2, and hence always even. This is no longer the case for Pg(S,n)
as we show in the next theorem.

Theorem 3.5. Let S = {iy, iy, ..., is}. Then |Pg(S,n)| is even if S contains
some even number or if n is odd, and is odd otherwise.

Proof. We first consider the case when S = (). Clearly, S contains no even
elements. Note that |Pg(0,n)| = (3™ + 1)/2 is even if n is odd and odd if n
is even, thus our claim holds.

For the general case we induct on iy 4+ i9 + - - - 4+ 45 and will make use of
Theorem 3.4. Our base case is i1 +iz2--- +1is = 1, thus S = {1}. We note
S contains no even elements. Note that |Pg({1},n)| = 22"t — (3" +1)/2 is
even if n is odd and odd if n is even, thus our claim holds.

Recall Theorem 3.4, which states that if S; = S — {is} and Sy = S; U
{is — 1}, then

-~ n ~ . n—i ~ -~
|Pp(S,n)| = (Z - 1>|PB(51,15 —1)[220=%)+ _ | Pg(Sy,n)| — | Pp(S2,n)|.

s
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Note that the first term will always be even, since it is multiplied by 2
with some positive exponent. Therefore |PB(S n)| is even if and only if
\PB(Sl, n)| + | Pg(Ss, n)| is even. If n is odd, then by our inductive assump-
tion, |P(S1,n)| and |Pg (S, n)| are both even, so their sum is even.

Now, consider the case where n is even. If S has at least one even element,
let i; be the first even element in S. Either i; € S1 or i¢j = ,. In the first case,
our inductive hypothesis implies that |Pg(S1,n)| and |Pg(S2,n)| are both
even, then their sum is even. In the second case, S1 has no even elements,
thus by our inductive hypothesis, |Pz(S1,n)| is odd. Note that if i5 is even,
then i, — 1 is odd and Sy has no even elements. Therefore | Pg(Ss, n)| is also
odd, thus their sum is even.

Now consider the case where S contains no even elements and n is
still even. Since S; contains no even elements, by our inductive hypothe-
sis |Pp(S1,n)| is odd. But since is is odd, i5 — 1 must be even. Therefore by
our inductive hypothesis \PB(SQ, n)| is even, hence their sum is odd. O

3.2. Relationship between |Pg(S,n)| and |Pg(S,n)|

The following relation between |Pp(S,n)| and |Pp(S,n)| allows us to ex-
trapolate some results from Section 2.

Proposition 3.6. If S is admissible, then
|P5(S,n)| = [P5(S,n)| + |Ps(S U{1},n)].

Proof. For any m € Pg(S,n), either 7 has a descent at position 1 (i.e. 7 <
mg), or it does not. Therefore we can write Pp(S,n) as a union of disjoint
sets Pp(S,n) = Pu(S,n) U Pg(S,n) where m € P,(S,n) has a descent at
position 1 and 7 € Pg(S,n) does not. Note that 7 € P,(S,n) correspond to
an element in PB(S U{1},n) by adding a zero at the beginning of 7. Hence,
1Py (S,n)| = |Pp(S U{1},n)|. Similarly, any T € P3(S,n) corresponds to an
element in PB(S n) and thus |P5(S n)| = |Pg(S,n)|. Therefore | P5(S,n)| =
Proposition 3.6 implies the following corollary.

Corollary 3.7. If S is admissible and 2 € S, then
|Pa(S,n)| = |Pg(S,n)|.

Proof. If 2 € S, then 1 ¢ S. Thus, |Pg(S U {1},n)| = 0, implying that
|P5(S,n)| = |Ps(S,n)| using Proposition 3.6. O
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Below, we compute |Pg(S,n)| for different sets S.

Proposition 3.8. Let S = {m} be admissible, then

‘ﬁB({m}, |_ gn—m— 12( > 3m i 1)4i(_1)i+1

~ (m mod 2) [3”1}

2

Proof. We will induct on m. First let m = 1 then using Proposition 3.2 and
Proposition 3.6,

|Pa({1},n)| = |Ps(0,n)| — [Pp(0,n)|

_ 921 _ [3n + 1}

2

— a2 2)) - |

- 4"—1—1;:1; <1f l) (37 + 1)4%(— 1)"™ —(1 mod 2) [Sn + 1] :

3" +1
2

2

We assume our claim is true for m and we consider m -+ 1. Apply Theorem
3.4 for the peak set S = {m + 1} to obtain the following

Pattm 1)) = () Po@m)lLPa(0, )|~ P (0,)  Po{m) )

Apply Corollary 2.5, Proposition 3.2 and the inductive hypothesis, then

Pa({m+1},n)| = ( ) (3m2+1> 2 <3n2+1>

- IZ K > (3™~ 1)42'(—1)"“] + (m mod 2) (3n2+1>
= —4"_m_1<( " )(3m‘0+1)(4)0(_1)0+1

m—0

+i(m”_i>(3mz 1)4i (— )Z+1>—(m+1 mod 2) <3n+1>
I

i=1

—1
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m+1
4n (m+1)—1 Z < >(3(m+1) + 1)4i(_1)i+1
41
—(m+1 m0d2)<32+ ) O

Corollary 3.9. Let S = {1, m} be admissible, then

|Pg(S,n)|
::?”2[<”_i> } 4"”11§:< >3mi+1x®%—m”1
+ (m mod 2) [Sn; 1] :

Proof. Apply Proposition 3.6 to obtain the following
|Pe({m},n)| = [Ps({m},n)| +|Ps({m} U {1},n)|

We then use Theorem 2.3 together with Corollary 2.4 for |Pg({m},n)| and
Proposition 3.8 for |Pg({m},n)|. The rest follows. O

The following result is a general result for a two-element peak set S.
Proposition 3.10. Let S = {m, m+z} be admissible, then |Pp(S,n)| equals

z—2

Z 22 n—m—z+i+1)— n
= m+z—1—1
e : L +z—i—1
427172 m—j 47 (=1 J+1 m
< <(3 o

—(m moil;) <3M+Z+H+1>]
(=1 mod2) {4n—m—1 i ((3’”—" +1)4 (—1)"*! (mn_ Z))

=1

~(m mod2) <3n2+1ﬂ

Proof. Let S = {m,m + z} be admissible, let S; = {m} and Sy = {m,m +
z — 1}. Apply Theorem 3.4 to obtain the following recursive formula,

n

|Pp(S.n)| = <m+ L 1) |Pp(S1,m+ 2 —1)|[Pa(0,n — (m+2) + 1)
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~|Pp(S1,n)| — | Pp(Sa,n)|.

Then apply the recursion |PB(S’2, n)| until m + 2z — 1 approaches m + 1,
then if @ = m + z — 1 we arrive at the following formula for |Pg(S,n)|

z—2

Z [(—1)i<aii>\ﬁ3({m},m+z —1—9)||Pe(0,n— (m+2)+1—1i)]

=0
— (=1 mod 2)|Pz({m},n)|.

Using Proposition 3.8 and Corollary 2.5 we obtain the result. O
We have the following special case when S is a three element set.

Proposition 3.11. Let S = {1, m,m + 2} be admissible, then

|Pp(S,n)|

=4y (3T @D [(mn Z> N %(mi 1) <T:z+ m

ne1 |m—1 n _(n—1
i) oG]
n 3m+1 + ]. 2(nim71)71 3” + ].
+ (m mod2)[<m+1)<T>2 -5 ]

Proof. Let S1 = {1,m} and let Sy = {1,m,m + 1} and apply Theorem 3.4.
Note that |Pg(S2,n)| =0, then

Pasl =, ) IPa(Stm+ DIIPa(O,1 — (1 +2) + 1) = [Pa(S1.0)]

The result follows from Corollary 3.9 and Corollary 2.5. O
4. Permutations in S,, with wg = 0

Let S, be the set of all permutations m# = mmy... 7, of [n]. Recall that
we define the set P(m) as the set of all peaks of 7. Now, we introduce the
condition mp = 0, which will allow our peak set to contain i = 1. Define
P(7r) as the set of all peaks of m with my = 0, and P(S n) as the set of all
permutations of S,, having 7y = 0 and peak set S.

We need the following result in order to prove future cases.

Lemma 4.1. (1) Let S = () then |P(S,n)| = 1.
(II) Let S = {1} then |P(S,n)| =271 — 1.
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Proof. To prove part (I), let # = mo7my ... 7, be a permutation in ﬁ(@,n).
Since m; > mp = 0 then m must be always increasing, otherwise we would
have a peak. Clearly, the identity i.e., 7 = 012...n is the only permutation
satisfying this condition. R

To prove part (II), let 7 € P((,n). Then either 7 € P({1},n) or by
Lemma 4.1 (I), 7 is the identity in S, therefore |[P({1},n)| = [P(0,n)| — 1.
By [5, Proposition 2] we have |P({1},n)| = 2""1 — 1. O

We first give the recursive method that will allow us to compute formulas
for the special peak sets S = {{m}, {1,m}, {1, m,m+2},{1,m,n—1}}. This
recursive formula is based on Theorem 3.4.

Theorem 4.2. Let S = {iy,i2,...,is} be a non-empty admissible set such
that i1 + io + + - 4+ ip > 2, then

Pl = (" )IP(S1ie = D2 = [P(S10] = [Pl

where S1 =5 — {is} and Sy = 51 U {i, — 1}.

Proof. For any n > is we let II be the set of all permutations m = mgmima ...
7p, such that P(momima...m,—1) =S1 =5 — {is} and P(m;, ... m,) = 0. By
a similar argument to that in the proof of Theorem 3.4 we get that

11| = |[P(Sa,n)| + | P(S,n)| + | P(S1,n)],

and
| = (Zﬁ 1) |P(Sh,is = DI|IP@,n — (is — 1))].

Equaling both equations and solving for |P(S,n)| we get the desired result.
We have used the fact that by Proposition 2 in [5] we get |P(0,n—(is—1))| =
2n—is . ]

Now we make use of the recursive formula in Theorem 4.2 and the result
in Lemma 4.1 (I) to obtain a recursive formula for the case when S = {m}.
This will lead us to have a closed formula for this case.

Proposition 4.3. Let S = {m} be admissible. Then

Pi=3 2 (" ) mod2)

. 1 —1
=1

Proof. We induct on m. Our base case is m = 1. Then by Lemma 4.1 (II),
our claim is true. Now, by our inductive assumption,
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~ m—l . n .
P({m—1},n)= )" 2n—l< >(—1)m—1—% —(m—1 mod 2).

, 1 —1
=1

Using this value for ﬁ({m —1},n) in the recursive formula given in
Theorem 4.2, we find

|P(S,n)]
— gn—m (m”_ 1>_ 1 (Wé gn—i (Z " 1) (—1)™ 1" — (m—1 mod 2))
—nm (m”_ 1) (—1)° + m;l on—i <Z 7_"‘ 1) (-=1)™ " — (m mod 2)

- izm;z“ (l " 1) (—1)™ — (m mod 2). O

From Proposition 4.3 we notice that we can factor a power of two out of
the summation, in this way we obtain a new formula for the case S = {m}.

Proposition 4.4. Let S = {m} be admissible, then

2 P((m), )| = 22T mod 2

where pm—1(n) = p(S,n) is a polynomial depending on S such that p(n) is
an integer for all integral n. Also, deg(pm-1(n)) =m — 1.

Proof. We will prove this by induction on m. The case where m = 1 is true
since we already found that |ﬁ({1}, n)| = 2"~ — 1 where p(n) = 1 and is of
degree 1 — 1 = 0. We will first use the recurrence relation in Theorem 4.2
with our inductive assumption to get

|P({m+1},n)| = (")2"—(m+1> —1- (M —(m mod 2))

m (m—1)!
2nf(m+1) nl
- m!

—m) 2mpm(n)> —(m+1 mod 2).

We now have to prove that
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is a polynomial in terms of n with degree m. Because m is fixed, we can see
that this expression is a polynomial in terms of n and we can also clearly
see that n!/(n —m)! has degree m and because of the inductive hypothesis
2m - pm(n) has degree m — 1 which means that the whole expression has
degree m which completes the induction. O

Corollary 4.5. Additionally,

) ) =mr > 20, ")

Proof. From Proposition 4.4 we have a recursive formula for p,,(n),

|
Pm(n) = ﬁ —2mpp,—1(n).
We will prove this by induction on m. The case where m = 0 is obvi-
ously true since using the formula we get that po(n) = 1 which agrees with
|[P({1},n)] = 2"~ 1.1 — 1. We will assume that the proposition is true for m
and we will it prove it for the m + 1 case. Using the recursive formula and
the inductive hypothesis we get

Pm+1 (n)

= #l“‘l))' —2(m+1) - pp(n)

n! [an n
:m+(m+1)!;w(—1y<m+l_i>

= (m + 1)!§2¢(1)i(m +”1 - Z)

which is what we wanted thus completing the induction. O

In the following proposition we compute |P({m},n)| using a different
approach. The new formula we obtain will help us to compute other special
cases such when S = {1,n — 1} in a simpler way.
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Proposition 4.6. Let S = {n —m} be admissible. Then

~ ! /n (m —1)
1
|P(S,n)| = ;;2 ( i )
Proof. Let m = mymime ..., be a permutation in .S,. We will prove this
proposition by induction on m. We will first prove the base case, when m = 1.
Letting m = 1 means that we will have a peak only in the (n—1)-th position.
Note that 7,1 = n because otherwise there would either be no peaks (if
7p, = m) or more than one peaks (if m; = n for some i € {1,2...,n—2}). We
know that the numbers before the (n — 1)-th position must be in increasing
order, thus the permutation is completely determined by the element in the
n-th position. There are ("Il) =n — 1 ways to choose the last element.

Now assume the proposition is true for m > 1, we will prove that it is
true for m~+1. This means that we have a peak at the n— (m+1)-th position,
then using reasoning similar to the one used in the inductive hypothesis, we
know that n is either in position n — (m + 1) or in the last position. If n
is in the position of the peak, the number of permutations that satisfy this
condition is equal to the number of ways to choose the last m+ 1 numbers in
the permutation times the number of ways to arrange these m + 1 numbers
so that they do not form a peak. This number is equal 2™ (:1;11)

If n is in the n-th position of the permutation, then we can reduce the
computation to the m-th case of the induction. Thus,

~ n—1\ <= n— (m—1) o m—(m+1—1)
P =2m 2 = 2° .
pa= (0 ) e () - ()
=0 1=0
O
Note that doing a change of variable in the previous result will lead us

to obtain better results for the case S = {m}.

Remark 4.7. Let S = {m} be admissible. Notice from the Proposition 4.6
that we can write |P(S,n)|, as

n—(m+1) —
1B(S,n)| = ; 2(i+1).

Proposition 4.8. Let S = {1,m} be admissible, then

Pl = 3 (") @t -y
=1
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— (m mod 2)(2" 1 —1).
Proof. Let S = {1, m} be admissible and let S; = {1} and Sy = {1, m — 1}.
Recall Theorem 4.2 provides the following recursive fomula
~ n ~
Psl = (" )IPCatom = DIP0.0 -+ 1)
— |P{1}, )| = [P({1,m — 1}, n)]

To obtain the terms (2™~2 — 1) and (2"~! — 1) apply Lemma 4.1 (II) and
the term (27" 171 follows from Proposition 2 in [5]. The result follows by
induction. O

Proposition 4.9. Let S = {1, m,m+2} be admissible, then ]ﬁ(S, n)| equals

> G- 0]
+(m mod 2) <2"—1 —1- <m”+ 1> gn—m=2(gm _ 1)) .

Proof. We apply the same method as in Proposition 4.8. For this we let
S1 = {1,m} and So = {1,m,m + 1}. Note that |P({1,m,m + 1},n)| =0
since we can not have consecutive peaks. Then we construct II based on the
number of ways to arrange the permutations in S7 and S2 and use Theorem
4.2 to obtain the recursive formula.

[P({Lm,m +2},n)| = [1] — [P({1,m},n)|
= ()P PO+ 2) 4 D] = [P({1, ). )
Now for the terms |P({1,m},m + 1)| and |P({1,m},n)| apply Proposition

4.8, and for |P(0,n — (m + 2) + 1)| apply Proposition 2 in [5]. The result
follows. O

Proposition 4.10. Let S = {1,m,n — 1} be admissible, then we have the
following recursive formula for |P(S n)|

S w6 ()
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n

—(m mod 2) <(2"—2 — 2)(2

) —only 1) — |P({1,m,n — 2} ,n)|.

Proof. Let S; = {1,m} and Sy = {1, m,n—2}. Apply Theorem 4.2 to obtain
the recursive formula.
Pt = 1)) = 25 )IP({1mbon = DIPO.0 ~ (0= 1)+ 1)

Now for |P({1,m},n—2)| and |P({1,m},n)| apply Proposition 4.8. The
result follows. O

4.1. Relationship between |P(S,n)| and |13(.S’, n)|

In this section we use the relationship between |P(S,n)| and |P(S,n)| to
find new formulas for special cases. We begin by giving this relationship.

Proposition 4.11. If S is admissible then
[P(S,n)| = |P(S,n)| + |P(SU{1},n)].

We omit the proof of this proposition since it is identical to the proof of
Proposition 3.6.

Corollary 4.12. Let S = {1,m} be an admissible set, then

Pty = ((170) <1) 2 = Pmb o)

Proof. We apply Proposition 4.11 to the case S = {m}, using the fact that
|[P({m},n)| = <(g@__11) - 1) 272 from Theorem 6 in [5]. O
Corollary 4.13. Let S = {1,n — 1} be an admissible set then,

P(S,m)] = 2"(n~2) ~ (n— 1),

Proof. Note that S = {1,n — 1} is a special case of S = {1,m} with m =
n — 1. Now apply Corollary 4.12 and Remark 4.7. Then we have,

n—((n—1)+1)

pr-=(( 00 ) ) S (M)

=0
=2"2(p —2) — (n—1). O
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The following is a consequence of Proposition 4.11.

Corollary 4.14. Let S = {i1,12,...,is} where iy = 2. Then
|P(S,n)| = p(n)2" "

where p(n) = p(S,n) is an polynomial depending on S with degree is — 1,
such that p(n) is an integer for all integral n.

Furthermore, if we let m = max(S), S1 = S — {m}, and S2 = S1 U
{m — 1}, then

p(S.n) = p(S1,m 1) (m’i 1) ~2p(S1.m) — p(S2.m).

Proof. We apply Proposition 4.11, and note that |]3(SU{1} ,n)=0if2 € S.
Thus,

[P(S,n)| = |P(S,n)|.

Hence, we can apply Theorem 3 in [5] for [P(S,n)| to this special case of
[P(S,n)l. 0

4.2. Parity of |P(S,n)|

Notice from the previous results how the number of permutations varies
according to the parity of some integer related to the peaks. This lead us to
establish a relation between the parity of the numbers of permutations with
a given peak set and the parity of the numbers in the peak set.

Theorem 4.15. Let S = {i1,i2,...,is} be admissible. Then |P(S,n)| is
even if and only if there exists i; € S such that i; is even.

Proof. We induct on i1 + i3 + - - - + i5. Our base case is i1 + i3+ +1is = 0,
where, S = (). Clearly, S contains no even elements. By Lemma 4.1 (I),
|P(0,n)| =1 for all n, thus our claim holds.

Now, by Theorem 4.2 if we let S; = S — {is} and S2 = 51 U {is — 1},
then

[P(S,n)| = ( B 1)2"*@(51,% = 1) = [P(S1,n)| = |P(S2,)].

S admissible implies i3 < n. Since n —is > 0, then (iﬁl)Z”_iSIﬁ(Sl,is —1)]
is even in all cases.
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Assume that ]ﬁ(S, n)| is even. Then either |P(S1,n)| and |ﬁ(52,n)\ are
both even, or they are both odd. If |[P(S}, n)| is even, then, by the inductive
hypothesis, S contains some even element. Since S; C .S, S then contains
some even element. If |]3(Sg, n)| is odd, then, by the inductive hypothesis, all
its elements are odd, including i; — 1. Therefore i is even, hence S contains
some even element.

Assume that S contains some even element. Then either S| contains
some even element and 75 is even, or S contains some even element and i,
is odd, or S7 does not contain any even elements and i, is even. In the first
case and the second case, by inductive hypothesis |P(S1,n)| and |P(S2,n)]
are both even, then |P(S,n)| is even. In the third case, is — 1 is odd, thus
by the inductive hypothesis |P(S1,7)| and |P(S2,n)| are both odd, hence
|P(S,n)| is even. O

Acknowledgements

We thank Ivelisse Rubio, and MSRI for their help and support. We thank
our referee for many helpful comments and suggestions. This work was con-
ducted at MSRI-UP and supported by the National Security Agency (NSA)
grant H-98230-13-1-0262 and the National Science Foundation (NSF) grant
1156499. R. Orellana has been partially supported by NSF Grant DMS-
130512.

References

[1] M. Aguiar, N. Bergeron and K. Nyman, The peak algebra and the
descent algebras of types B and D. Aguiar. Trans. Amer. Math. Soc.
356 (2004), no. 7, 2781-2824. MR2052597

[2] M. Aguiar, K. Nyman and R. Orellana, New results on the peak algebra.
J. Algebraic Combin. 23 (2006), no. 2, 149-188. MR2223685

[3] N. Bergeron and C. Hohlweg, Colored peak algebras and Hopf algebras.
J. Algebraic Combin. 24 (2006), no. 3, 299-330. MR2260020

[4] S. Billey, M. Fahrbach and A. Talmage, Coefficients and roots of peak
polynomials. Exp. Math. 25 (2016), no. 2, 165-175. MR3463566

[5] S. Billey, K. Burdzy and B. Sagan, Permutations with given peak set.
J. of Integer Seq. 16 (2013), Article 13.6.1, 18 pages. MR3083179

[6] S. Billey, K. Burdzy, S. Pal and B. Sagan, On meteors, earthworms and
WIMPs. Ann. Appl. Probab. 25 (2015), no. 4, 1729-1779. MR3348994


http://www.ams.org/mathscinet-getitem?mr=2052597
http://www.ams.org/mathscinet-getitem?mr=2223685
http://www.ams.org/mathscinet-getitem?mr=2260020
http://www.ams.org/mathscinet-getitem?mr=3463566
http://www.ams.org/mathscinet-getitem?mr=3083179
http://www.ams.org/mathscinet-getitem?mr=3348994

7]

8]

Number of permutations with same peak set 651

S. Billey and M. Haiman, Schubert polynomials for the classical groups.
Journal of AMS 8 (1995), no. 2, 443-482. MR1290232

F. Castro-Velez, A. Diaz-Lopez, R. Orellana, J. Pastrana and R.
Zevallos, Number of permutations with same peak set. Pre-print,
http://arxiv.org/pdf/1308.6621.pdf (2013).

A. Kasraoui, The most frequent peak set in a random permutation.
Preprint, http://arxiv.org/abs/1210.5869 (2012).

K. Nyman, The peak algebra of the symmetric group. J. Algebraic Com-
bin. 17 (2003), 309-322. MR2001673

T. K. Petersen, Enriched P-partitions and peak algebras. Adv. Math.
209 (2007), no. 2, 561-610. MR2296309

J. Stembridge, Enriched P-partitions. Trans. Amer. Math. Soc. 349
(1997), no. 2, 763-788. MR1389788

V. Strehl, Enumeration of alternating permutations according to peak
sets. J. Combin. Theory Ser. A 24 (1978), 238-240. MR0469778

D. Warren and E. Seneta, Peaks and Eulerian numbers in a random
sequence. J. Appl. Probab. 33 (1996), 101-114. MR1371957

FrANCIS CASTRO-VELEZ
183 MEMORIAL DRIVE
CAMBRIDGE, MA 02139

USA

E-mail address: fncv@mit.edu

ALEXANDER Di1Az-LOPEZ

SWARTHMORE COLLEGE

DEPARTMENT OF MATHEMATICS AND STATISTICS
500 COLLEGE AVENUE

SWARTHMORE, PA 19081

USA

E-mail address: adiazlol@swarthmore.edu

RoOsA ORELLANA

DEPARTMENT OF MATHEMATICS

DARTMOUTH COLLEGE

6188 KEMENY HALL

HANOVER, NH 03755

USA

FE-mail address: Rosa.C.0rellana@dartmouth.edu


http://www.ams.org/mathscinet-getitem?mr=1290232
http://www.ams.org/mathscinet-getitem?mr=2001673
http://www.ams.org/mathscinet-getitem?mr=2296309
http://www.ams.org/mathscinet-getitem?mr=1389788
http://www.ams.org/mathscinet-getitem?mr=0469778
http://www.ams.org/mathscinet-getitem?mr=1371957
mailto:fncv@mit.edu
mailto:adiazlo1@swarthmore.edu
mailto:Rosa.C.Orellana@dartmouth.edu

652 Francis Castro-Velez et al.

JOSE PASTRANA

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF NOTRE DAME
255 HURLEY HALL

NoTRE DAME, IN 46556

USA

E-mail address: jpastran@nd.edu

RITA ZEVALLOS

SWARTHMORE COLLEGE

DEPARTMENT OF MATHEMATICS AND STATISTICS
500 COLLEGE AVENUE

SWARTHMORE, PA 19081

USA

FE-mail address: rzevalll@swarthmore.edu

RECEIVED 17 AugustT 2015


mailto:jpastran@nd.edu
mailto:rzevall1@swarthmore.edu

	Introduction
	Signed permutations in Bn
	Permutations in Bn with 0 = 0
	Parity of P"0362PB(S,n)
	Relationship between |PB(S,n)| and |P"0362PB(S,n)|

	Permutations in Sn with 0 = 0
	Relationship between |P(S,n)| and |P"0362P(S,n)|
	Parity of |P"0362P(S,n)|

	Acknowledgements
	References

