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Hook length formulas for partially colored labeled
forests

FrRANCESCA CAMAGNI AND FABRIZIO CASELLI

Motivated by the study of the invariant theory of some finite
groups, we introduce and study the notion of partially colored la-
beled forest. A flag-major index is defined on these forests and we
study the distribution of this statistic on all partially colored la-
beled forests and on linear extensions of a fixed partially colored
labeled forest. The main results that we obtain are formulas for
such distributions which have a very simple factorization form and
generalize and unify several known results present in the literature.
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Introduction

In the early 1900s Percy MacMahon [14] introduced and studied the greater
inder of a permutation of a totally ordered set, and probably his most
known result on it is that it is equidistributed with the inversion number.
Apparently because of the military degree of MacMahon the greater index
was later renamed and is now widely known as major index. In the last
thirty years, this index has been generalized in two directions which are of
interest in this work.

In 1989 Bjorner and Wachs [6] generalized the major index defining a new
statistic on labeled forests (i.e. partially ordered sets whose Hasse diagram
is a rooted forest) in a very natural way. They presented in particular two
g-hook length formulas: one for the distribution of the major index over
permutations which correspond to linear extensions of a labeled forest, and
the other for the distribution of the new statistic over all labelings of a fixed
forest. These results have recently been extended to “signed-labeled” forests
by Chen, Gao and Guo [10].

In the early 2000s, Adin and Roichman [2] generalized the major index to
the case of colored permutation groups G(r,n), which are wreath products
of the form Z,1S,,, where Z, is the cyclic group of order r. They called this
new statistic the flag-major index because of a specific algebraic property
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that it satisfies and showed, in particular, that it is equidistributed with
the length function for the classical Weyl group of type B (i.e. in the case
r = 2). In 2004 Biagioli and the second author [4] defined an analogous
statistic for the Weyl groups of type D and in 2007 Bagno and Biagioli [3]
extended the definition of the flag-major index for complex reflection groups
G(r,p,n), which are normal subgroups of G(r,n) of index p. Finally, in 2011
the second author [8] introduced a new family of groups G(r, p, ¢, n), which
are concrete examples of a more general class of groups called projective
reflection groups, and that can be described as quotients of G(r, p,n) modulo
the cyclic scalar subgroup C,. He extended the notion of flag-major index to
these groups and showed how the combinatorics, and in particular the flag-
major index, of a group G(r,p,q,n) can be used to describe certain aspects
of the representation theory of the “dual” group G(r,q,p,n), providing a
unified description of many of the main results appearing in [2, 1, 4, 5].

In this work we give new definitions of labelings of a forest, which gen-
eralize the standard type in [6] and the signed type in [10] (strictly speaking
the specialization of our definitions and results to the signed type does not
coincide with those given in [10] but one can easily show that they are equiv-
alent in the most relevant cases). A first natural generalization is to consider
labels which are colored integers. We generalize the major index defined in
[6] introducing the flag-major index of a colored labeled forest. This allows us
to generalize in a natural way the two hook-length formulas recalled above.
As particular cases of them, we recover some known results for the distribu-
tion of the flag-major index on projective reflection groups G* = G(r,n)/C,
[8] and on sets of cosets representatives for some special subgroups of G* [9].
Motivated by the study of invariant and coinvariant algebras of some groups
related to the projective reflection groups G(r,p,q,n) in §2 and the above
mentioned study of the distribution of the flag-major index on sets of cosets
representatives, we have been naturally led to consider a more general class
of labelings that we call partially colored labelings (and also equivalence
classes of such labelings) in order to provide a general statement (Theorem
4.4), which is our main result and includes as special cases all the above
mentioned results.

This paper is structured as follows. In §1 we collect some notations and
preliminaries for the necessary background. In §2 we study invariant and
coinvariant algebras of some finite groups in order to have deeper motivations
to introduce and study the notion of partially colored labeling in §3. In §4 we
make a further generalization considering orbits of partially colored labelings
under the action of a specific cyclic group. We define also the flag-major
index for these labelings and we present an analogue of the g-hook length
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formula over all linear extensions of a colored labeled forests. Finally, in §5
we give a generalized version of the second g-hook length formula of Bjorner
and Wachs.

1. Notation and preliminaries
1.1. Some notations

We let Z be the set of integer numbers and N be the set of non-negative
integers. For a,b € Z, a < b, we let [a,b] := {a,a + 1,...,b}. For n € N,

n # 0, we let also [n] := [1,n]. If ¢ is an indeterminate, we let
1 _ N
g =~ =T qtg® o g
l—gq
be the g-analogue of n, and [n],! := [1]4[2]4 - - - [n]4. We let

Pn={f=(f1,fos- ., Ja) EN": 1> o> > fo}

be the set of partitions of length at most n, and |f|:= f1 + fo+ -+ f, be
the size of f.

Let S, be the symmetric group on n letters. A permutation o € S,, will
be denoted by o = [01,09,...,0,], where 0; = o(i) for i € [n]. We denote
the descent set of o by

Des(o) :=={i€n—1]: 0, > giq1},

and the major index of o by

maj(o) = Z i.

i€Des(o)

Ifr e N, welet Z, := Z/rZ. If p|r and a € Z,, when no confusion arises,
we will usually still denote by a the projection of a on Z,, including the case
r = 0, i.e. the case when a is a genuine integer. The following convention
will be very useful in this paper: if 7,7’ € N, p|r,r’/, a € Z, and b € Z,» we
write “a = b € Z,” to mean that the projections of a and b in Z, coincide.
Moreover, if a € Z, we let res,(a) be the smallest non-negative representative
of a in Z,, and for a,b € Z, we write a <, b if res,(a) < resy(b).

A r-colored integer is a pair (i,a), denoted also i*, where i € N\ {0}
and a € Z,. We define its absolute value to be |i*| := i, and its color to be
c(i®) == a.

Finally, we denote by ¢, the primitive 7-th root of the unity e2™/".
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1.2. Complex reflection groups and G(r,p,n)

Let V' be a complex vector space of finite dimension. An element r € GL(V)
is called a pseudo-refiection if it has finite order and its fixed point space
is of codimension 1. A finite subgroup W C GL(V) is a (finite) complex
reflection group if it is generated by pseudo-reflections.

In this paper we deal with the infinite family of complex reflection groups
G(r,p,n), where r,p,n are positive integers with p | r, that we are going to
describe.

When r = p = 1, the group G(1,1,n) is the symmetric group S,, the
group of the n x n permutation matrices.

When p = 1, the group G(r,n) := G(r, 1,n) is the wreath product Z,1S,,
also called generalized symmetric group, or group of colored permutations.
G(r,n) consists of all n x n matrices satisfying the following conditions:

e the entries are either 0 or r-th roots of unity;
e there is exactly one non-zero entry in every row and every column.

If p divides r, then G(r, p,n) is the subgroup of G(r,n) given by the matrices
such that:

e the product of the non-zero entries is a r/p-th root of unity.

For our exposition it is more convenient to consider wreath products not
as groups of complex matrices but as groups of colored permutations. So we
recall the following alternative notation.

Notation 1. If g € G(r,n), we write g = [0]",05%,...,05] if the non-zero

entry in the i-th row of ¢ is (" and appears in the o;-th column.

In this notation we reinterpret G(r,n) as the group of permutations g
of the set of r-colored integers i®, where i € [n| and a € Z,, such that

if g(i%) = j° then g(i%) = j**’. In fact the element g = [0{',05,...,05]
represents the unique such permutation such that g; := ¢(i°) = ot If
g=lo7",09,...,00] € G(r,n), we let |g| := 0 € S;, and we denote by

col(g) := Zci € Ly
i=1

the color weight of g. In this notation we have that
G(r,p,n):={g € G(r,n) : col(g) =0 € Z,}.

Note that G(r,p,n) is a normal subgroup of G(r,n) of index p, as it is the
kernel of the surjective map G(r,n) — Z, given by g — col(g).
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Example 1. If r = 2, the group G(2,n) is the Weyl group B,. In this
case one usually reinterprets 2-colored integers as signed integers, i.e. for
any positive integer i, we write i instead of i and —i instead of ', so that
the group B, is called the group of signed permutations. For example, the
element 3 = [2°, 41, 3%, 59 1] € G(2,5) becomes 3 = [2, —4, 3, 5, 1].

Example 2. If r = p = 2, the group G(2,2,n) is the Weyl group D,,, also
known as the group of even-signed permutations. In fact D,, is the subgroup
of B, consisting of signed permutations with an even number of minus signs,
or equivalently of 2-colored permutations in which the color 1 appears an
even number of times:

Dy = {g € By : neglg) =0 € Zo} = {g € By : col(g) = 0 € Zy},

where neg(g) = |{i € [n] : g(i) < 0}|. For example, v = [2, —4, 3, =5, 1] =
[20, 41, 3% 51 19 € G(2,2,5).

1.3. Projective reflection groups and G(r, p,q,n)

Let V' be a complex vector space of finite dimension n and S%(V') the ¢-th
symmetric power of V. Let C; be the cyclic scalar subgroup of GL(V') of
order g generated by (,/. Finally, let G be a finite subgroup of GL(S%(V)).
Then, according to [8], we say that the pair (G, q) is a (finite) projective
reflection group if there exists a finite complex reflection group W € GL(V)
such that C; C W and G = W/C,.

The infinite family of groups G(r,p,n) gives rise to the following family
of projective reflection groups.

Definition 1. Let 7, p,q,n be positive integers such that p | v, ¢ | r and
pq | rn. Then we let

G(r,p,n)
Cy
where Cj is the cyclic group generated by (1.

G(T’ p’ q7 n) =

In [7, 8, 9] it has been shown that the combinatorics and the repre-
sentation theory of the two projective reflection groups G(r,p,q,n) and
G(r,q,p,n) are intimately related. This is why it has been natural to let
G(r,p,q,n)* = G(r,q,p,n) and call this group the dual group of G(r,p,q,n).

Following our notation, for an element g € G(r,p,q,n) we also write
g =o7",05%,...,05] to mean that g can be represented by [07", 057, ...,05"]
in G(r,p,n).



598 Francesca Camagni and Fabrizio Caselli

Example 3. We have D} = G(2,1,2,n) = B,/ + id, where id := idp, is
the identity element of B,,. For example, g = [2, —4, 3, 5, 1] € G(2,1,2,5)
can be represented by g1 = [2, —4, 3, 5, 1] or g2 = [-2, 4, =3, —5, —1] in
G(2,5).

1.4. Flag-major index on G(r,p, g, n)
Let g = [0, 05%,...,05"] € G(r,p,q,n). According to [8], we let
HDes(g) :={i € [n—1]: ¢; = ¢it1 and 0; > 0441}

be the homogeneous descent set of g (note that, while the colors ¢;’s depend
on the chosen representative, the condition ¢; = ¢;41 is independent of such
choice),

di(g) = [{j € li;n = 1] : j € HDes(g)}|
for all i € [n], and

res,/, (cn if i =mn,
ki(g) = falen) o
kiv1(g) +res, (¢; —cip1) ifie€[n—1].

Note that the sequence d(g) := (di(g),d2(g),...,d,(g)) is a partition, and
observe that k(g) := (k1(g),k2(g),...,kn(g)) can be characterized as the
smallest element in &7, (with respect to the entrywise order) such that

g= [U’fl(g), 0’;2(9), ... 70‘2"(9)].

We also let
Ai(g) :==rdi(g) + ki(g)

for all i € [n], and similarly we note that A(g) := (A1(g), A2(9), .., An(g)) is
a partition such that

Al )\2

(1.1) g=lo] (g),02 (g),...,aé‘”(g)].

Finally, we define the flag-major indez of an element g € G(r,p,q,n) as
fmaj(g) := [A(g)]

Note that these definitions do not depend on the choice of the representative
of g in G(r,p,n).
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Example 4. Let g = [22, 73,63, 45, 8,17, 53, 32] € ((6,2,3,8). Then
HDeS(g) = {2’5}7 d(g) = (2727 1,1, 17070’0)7 k(g) = (18’ 13,13,9,5,5, 1,0)7
Ag) = (30,25,19,15,11,5,1,0) and fmaj(g) = 106.

All the interest around the fmaj statistic probably originated from the
following result.

Proposition 1.1. ([2], Theorem 4.1) Let t be an indeterminate. We have
Y O = [d]i[dale - [dale,
geG(r,n)
where d;’s are the fundamental degrees of G(r,n) (see §1.5).

This result has been extended to all groups G(r,p,q,n) in [8] and in
particular we have the following fact which is of interest in this paper.

Proposition 1.2. Let G = G(r,p,n) and G* = G(r,n)/C,. Then

Z tfmaj(g) = [dl]t[d2]t ce [dn]ta
geG*

where d;’s are the fundamental degrees of G.

In the rest of this section we let G = G(r,p,n) and G* = G(r,n)/C,.
Inspired by work of Garsia [12] the second author also studied in [9] the
distribution of the flag-major index on sets of cosets representatives for
some special subgroups of G*, defined as follows. For 1 < k < n, let

(1.2) G :={[6%,09,...,00, Ghs1s-. s gn] €EG*: 01 < 09 < --- < Oy}
We note that the subgroup of G* given by

{9€G :g=[g1,92, -, 91, (+1)°, ..., n"}

is isomorphic to G(r, k) for all k& < n. We may observe that %} contains
exactly p representatives for each (right) coset of G(r, k) in G*. Then we
have the following distribution which can be seen as a generalization of
Proposition 1.2.

Theorem 1.3. (][9], Theorem 5.5) Let €} be defined as in (1.2). Then

Z Hmaj(g™") _ [plgrrse [(k + 7] [(k + 2)7]e -+ [(n — D7)y [nr/ple.
gECk
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The following is an immediate consequence.

Corollary 1.4. (][9], Corollary 5.6) If p = 1, then 6% is a complete system
of coset representatives for the subgroup G(r, k) and

Z fmaj(g™) _ [(k+ )7 [(k+ 2)r]s -+« [nr];.
IS

We recall now some further technical results we will use in the present
work.

Lemma 1.5. ([9], Lemma 5.1) There exists a bijection
G* x Py x[0,p—1] = N", (9: A h) = f = (f1, fas -5 fn),

where fi = Ng-133)[(9) + T Ag-13) + h for alli € [n]. In this case we say
that f is g-compatible.

Lemma 1.6. ([9], Lemma 5.2) If g € G* we let Sy be the set of g-compatible
vectors in N™. Then

O M)
Z xll...x£" — ‘gl| |gn| / / ]
— T PN — T el _ /P e r/p
j€s, A =afy) - M =afy - oafy VA =z z00)

Lemma 1.7. (9], Lemma 5.3) If g € G* then there exists h € [0,p—1] such
that Ai(g) + Ng,(97") = he € Zy, for alli € [n].

1.5. Invariants and descent basis

Let V be a complex vector space of finite dimension n and W a finite complex
reflection group. Then W is characterized by the structure of its invariant
ring, in the following sense.

Let S[V*] be the symmetric algebra on V*, which can be seen as the
algebra of polynomial functions on V. Any finite subgroup W of GL(V)
acts naturally on S[V*]. Denote by S[V*]" the invariant ring of W. Then
Chevalley [11] and Shephard-Todd [15] proved that W is a complex reflection
group if and only if S[V*]" is generated by (1 and by) n algebraically
independent homogeneous elements, called basic invariants. Although these
polynomials are not uniquely determined, their degrees dy,...,d, are basic
numerical invariants of W, and they are called fundamental degrees of W.
Denote by I(WW) the ideal of S[V*] generated by the homogeneous elements
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of strictly positive degree in S[V*]". Then we recall that the coinvariant
algebra of W is defined by

_ SV
(W)’

Since I(W) is W-invariant, the group W acts naturally on R(WW). We recall
that R(W) is isomorphic to the left regular representation of W and in
particular that its dimension as a C-vector space is |[W].

In [8] the second author generalized this result to the case of projec-
tive reflection groups. Let S,[V*] be the g-th Veronese subalgebra of S[V*],
i.e. the algebra of polynomial functions on V generated by 1 and the ho-
mogeneous polynomial functions of degree ¢. For the reader’s convenience
we recall some results in the invariant theory of projective reflection groups
which are proved in [8].

Let G be any finite subgroup of graded automorphisms of S,[V*]. Then
(G, q) is a projective reflection group if and only if the invariant algebra
S,[V*]¢ is generated by (1 and by) n algebraically independent homogeneous
elements.

We denote by I(G) the ideal of S,[V*| generated by homogeneous ele-
ments of positive degree in S,[V*]%. Then the coinvariant algebra of G is
defined by

Sq[V7]
I(G)

Let W be the complex reflection group such that G = W/C,. We recall
that

R(G) =

(1.3) SVE = S|V

It follows that R(G) is the subalgebra of R(W) generated by the homo-
geneous elements of degree multiple of q. Moreover, we recall that R(G) is
isomorphic to the left regular representation as a G-module and in particular
that its dimension as a C-vector space is |G/|.

If welet X := (x1,...,xy) be a basis of V*, then S[V*] and S;[V*] can be
identified respectively with the polynomial algebra C[X] and its subalgebra
S¢[X] generated by 1 and the monomials of degree g.

Observe that G(r,n) acts on C[X] as follows:

(051,08, ...,05] - P(X) = P (7 20y, (07 Ty - - -, (7 T, ) -
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A set of basic invariants under this action is given by

(1.4) ei(zy,...,x)), 1€ n],

rrn

where the e;’s are the elementary symmetric functions. It follows that the
fundamental degrees of G(r,n) are

r,2r, ..., nr.

Moreover, dim R(G(r,n)) = |G(r,n)| = nlr™.
Now, consider the restriction to W = G(r,p,n) of the action of G(r,n)
on C[X]. Then a set of basic invariants is given by

{ ei(xh,...,al) ifien—1]

1.5
(1.5) m;/p B ,x;‘l/p

if i =n,
and the fundamental degrees of W are
r,2r, ..., (n—1)r, nr/p.

Moreover, dim R(W) = |W| = n!r" /p.
Finally, consider the action of G = G(r,p, ¢, n) on S,[X]. From (1.3) we
recall that a set of basic invariants is given by (1.5). Moreover,
nlr™

dimR(G) = |G| = 2 = |&7|.
pq

The following result shows that a basis of the coinvariant algebra of G is
naturally described by its dual group G*.

Theorem 1.8. ([8], Theorem 5.3) Let G = G(r,p,q,n). Then the set {ag :
g € G*}, where

n
Ai
() = [ o7,

i=1

is a monomial of degree fmaj(g), represents a basis for R(G).
1.6. Labeled forests and g-hook length formulas

According to [6] we consider a finite poset F' in which every element is
covered by at most one element, or equivalently such that its Hasse diagram

is a rooted forest with roots on top. For this reason we call also F' a forest
and we let V(F) and E(F) be the vertex set and the edge set of the Hasse
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diagram of F', respectively, and < the order relation in F'. We can also denote
an edge in E(F) by an ordered pair (z,y) of elements of F' such that z is
covered by y. Let

=|{aeF:a=<z}
be the hook length of the element x, for each x € F', and

h(w,y) = hy

the hook length of the edge (z,y), for each (x,y) € E(F). We recall that a
linear extension of F is an indexing x of the vertices of V(F') = {z1,...,zn}
such that x; < z; only if ¢ < j, and we denote by Z(F) the set of linear
extensions of F'. Let

W (F) :={w:V(F)— [n] s.t. w is a bijection}

be the set of labelings of F'.
For w € # (F') we denote the descent set of w by

Des(w) := {(z,y) € E(F) : w(z) > w(y)},

the major index of w by

maj(w Z he,

e€Des(w)

and the set of linear extensions of w by
ZL(w)={0€S,: if x <y then o (w(x)) < e (w(y))}.

Equivalently, if x1,xo,...,2, is a linear extension of F', then the element
[w(z1),w(x2),...,w(x,)] € S, is a linear extension of w and £ (w) is the
set of all such permutations.

Example 5. Let w be the labeling in Figure 1 (where the letters z,y, z
denote the vertices of interest in this example and the numbers 1, 2, 3,4, 5 the
labels). Then for example we have [3,2,5,4, 1] € £ (w). Moreover, Des(w) =
{(z,v), (y,2)} and maj(w) = hy + hy =1+ 3 =4.

The distributions of the major index on linear extensions of a fixed
labeling and on all labelings of a fixed forest have very nice factorization
formulas which have been obtained by Bjorner and Wachs.

Theorem 1.9. ([6], Theorem 1.2) Let F' be a finite forest with n elements
and w a labeling of F'. Then
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maj(o) _  maj(w) [n]q'
> g gt

ceZ(w)

Theorem 1.10. ([6], Theorem 1.3) Let F' be a finite forest with n elements
and W (F) the set of all labelings of F. Then

Z graw) = H h H

weW (F) CF zeF
2. Invariants and coinvariants

In this section we study the structure (such as generators, bases and Hilbert
series/polynomials) of the algebra of invariant polynomials and of the al-
gebra of coinvariant polynomials for some finite groups which are strictly
related to the groups G(r, p, ¢, n). This algebraic setting will serve as inspira-
tion for the appropriate definitions and as a motivation for the generalization
and unification of all the main results collected in §1.

Let N = (ny,...,n;) € NFand r € N, r > 0. Consider the direct product

G(r,N):=G(r,ny1) x -+ x G(r,ng)

of k groups of r-colored permutations. Let p be a positive divisor of r. By
extending the definitions given in §1, we consider the following two groups
obtained from G(r, N): its subgroup

G :=G(r,p,N)
:{(91,...,gk)6GrN ZcolgZ —OEZ}
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and its quotient

.- G(r, N),
Cp
where C), is the cyclic subgroup of G(r, N') of order p generated by
([lr/p, /P ,ng/p}, ce [1””,2””, e ,nkT/i”]).
For notational convenience we let X; := (z;1,...,%in,), where x;j’s are
variables, C[X;] = Clz;1,...,%ipn,], and

ClX]) =Cla;;: i € [k], j € [ni]]

be a polynomial ring in nj + --- 4+ ny variables. We also let ey) (X;) =
€j (x;-:l, . ,x;»",ni), where e; is the j-th elementary symmetric function. The
group H is a projective reflection group, since it is the quotient of a reflection
group modulo a cyclic scalar subgroup of order p, while the group G is not
in general. If we denote by

Sp|X] C C[X]

the subalgebra spanned by the homogeneous elements of total degree divis-
ible by p, we have that H acts on S,[X] and its invariants coincide with the
invariants of G(r, N), i.e.

SplX = Clel (X;), i € [K], j € [nil].

Observe that we already knew from §1.5 that the invariant algebra of H is
generated as a C-algebra by nq + - - - + ng algebraically independent homo-
geneous polynomials (together with 1).

Denote by I(H) the ideal of S,[X] generated by the homogeneous in-
variants of (strictly) positive degree and let

SplX]
I(H)

R(H) =

be the coinvariant algebra of H. We define the flag-major index of an element
Y= (glv"'agk) € G(TaN) as

fmaj(y) := > _ fmaj(g;)-
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We also let in this case

a’Y(X) ‘= Qg (Xl) T Qg (Xk)a

and we note that dega, = fmaj(y).

Proposition 2.1. The set {a, : v € G} represents a basis for the coinvari-
ant algebra R(H).

Proof. We observe that, since the invariants of H coincide with the invari-
ants of G(r, N) by Eq. (1.3), we have that R(H) is the subalgebra of

Clx]
R(G(r,N)) = ————
spanned by homogeneous elements of degree divisible by p. As R(G(r,N)) =
R(G(r,n1)) ® - -+ ® R(G(r,ni)) we have that the set {ay : v € G(r,N)} is
a basis of R(G(r,N)), by Theorem 1.8. Therefore, a basis for R(H) is given
by

{ay: dega, =0€Zy} ={ay: fmaj(y) =0€ Z,} = {a,: v € G},

as fmaj(g) = col(g) € Z, for all g € G(r,n). O

Therefore we have that a basis of R(H) can be naturally described by
elements in G and in particular dim R(H) = |G| = |H|. The next target is
to show a sort of inverse of this result: we will show that a basis of R(G)
can be described using elements in H, although this result is not as neat as
in the case of projective reflection groups.

To study the G-invariant polynomials we need the following technical
result.

Lemma 2.2. Let G be a finite group and V' a complex vector space of finite
dimension n. Consider a representation of G on V and suppose that such
representation is monomial, i.e. there erxists a basis B = (by,ba,...,by) of
V' such that, for every g € G and i € [n], g(b;) is a scalar multiple of some
basis element bj. Let v = a1b1 + ...+ apb, be an invariant element of V' and
suppose that there exists a subgroup H of G and | € [n] such that

> h(b) =0.
heH

Then a; = 0.
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Proof. Say that two basis elements b; and b; are in the same G-orbit if g(b;)
is a scalar multiple of b; for some g € G. Consider the G-orbit O of the
basis B containing b; and consider the projection vy = Ebi co aib; of v. The
element v is still invariant and therefore, by restricting the representation
of GG to the vector subspace spanned by the elements in O, we can assume
that the action of G on B is transitive.

Let S be a set of representatives of (left) cosets of H in G, ie. G =
S - H = d,cqgsH, where | denotes the disjoint union. Then

D glb)=>"> sh(b) =

geG seS heH

Since the representation is monomial and G is transitive, for any j € [n]
there exists an element g € G such that b; = cg(;) for a suitable ¢ € C. So

D ab) = glcg) =Y cggbi) =c Y ¢'(b)=0.

gelG geqG geqG g'eqG

Then, since v is invariant,

1 1
v= ’G|Zg @ZZaig(bi):@Zaizg(bz -

geG i geG
completing the proof. O

The following result provides a precise description of the G-invariant
polynomials.

Proposition 2.3. Let d = r/p. The invariant ring of G(r,p, N) is generated

as a C-algebra by (1 and by) the homogeneous polynomials e( )(XZ-), i€ [k],
J € [ni], and

() = e (X)) - D (Xy) = H:c”

Proof. It is a simple verification that all polynomials egr) (X;) and e(d) (X)
are G-invariant, so that we only have to show that if P is a G-invariant

polynomial then P can be expressed as a polynomial in the egr) (X;) and

eSfP(X ). We can clearly assume that P is homogeneous (since otherwise we

can consider its homogeneous components) and proceed by induction on
deg P, the case deg P = 0 being trivial. If eg\?)(X) divides P, the result
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easily follows by induction. If eg\cfl)(X ) does not divide P, then if we expand

P as a linear combination of monomials

P=> cyM,
M

there exists a monomial My = fol]] with a pair (ip,jo) such that 0 <
d;y.j, < d. Suppose cp, # 0. We first show that d;, j, = 0. In fact, consider
the element v = (y1,...,7%) € G given by

i) = {jp if (i, 1) = (io. jo)

7 otherwise,

for all i € [k] and j € [n;]. If d;, j, # 0 we have v(Mg) = ¢Z™0%0 My #£ M
and therefore, letting H = (y) we have

r/p
S h(Mg) = 3 P = o
heH s=1

Hence, by Lemma 2.2, we have cps, = 0 which contradicts our assumption
and therefore d;, j, = 0.

Now suppose that there exists a pair (i1, j1) such that r { d;, ;,. We first
claim that there exists a such that (ap—1)d;, j, # 0 € Z,. In fact, if d { d;, j,
and (p — 1)di1,j1 =0 € Z, then (2p — 1)di1,j1 = pdil,j1 7'é 0eZ,. Ifd ’ di1,j1
then (p — 1)d;, j, = —d;, j, # 0 € Z, by the choice of (i1, j1).

Choose such element a and consider the element v := (y1,...,7%) € G
given by
j' if (4, 4) = (i0 jo)
%i(7) = § 3t i (i) = (i1, 1)
j otherwise,

for all i € [k] and j € [n;].
If we let s := (ap — 1)d;, j, # 0 € Z, we have that v(My) = ¢ Mp.
Moreover, the subgroup (v) has order r as 7;,(jo) = j¢ and we have

S o) - ( 5 G ) Mo = 0,
m=0 m=0

since 7 1 s. Then, by Lemma 2.2, we have ¢y, = 0.
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Now we observe that, since the action of G preserves the set of exponents
of any monomial M, we can assume that every monomial M with cj; # 0 has
an exponent < d. So we can repeat the above argument to every monomial
M with ¢ps # 0 and conclude that all variables appear in P with exponents
divisible by r. In particular, if v = (y1,...,7) € G(r,N) then v(P) =
(Ivls-- -5 el (P) = P as, clearly, (|v],...,|7%|) € G. It follows that P is
also G(r, N)-invariant and in particular it is a polynomial in the ey) (X3),
i€ k], 7€ [ni]

Now we note that, since
Inv(G(r,N)) C Inv(G),

then R(G) is a quotient of R(G(r, N)). More precisely, by Proposition 2.3,

we have
R(G) = 4( (r.N))
(e (¥ ))
where (e%)(/l’)) is the ideal generated by e ( ) in R(G(r,N)).
For v € G(r,N) we let v; € G(r,n;) be its i-th coordinate, so that

Y= (717"',716)'
Proposition 2.4. Let d = r/p. We have:

o The set
{ay(X): v € G(r,N) is such that c((vi)n) =r d for alli € [k]}

is a basis for the ideal (eg\c,l)(X)) in R(G(r,N)),
o The set

{ay(X) : v € G(r,N) is such that c¢((vi)n) <r d for some i € [k}

is a basis for R(G).

Proof. We make the following claim.
Let P € C[X] be a polynomial such that 2¢--- 2% divides P. Then P
admits the following expansion in R(G(r,n)):

P = anag,

geN

where 7y, € C and Q := {g € G(r,n) : ¢(gn) =r d}.
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Since P is divisible by z¢---z¢ we can write P = Qu{---2¢. We can

expand the polynomial @ in R(G(r,n)) with respect to the basis {aq : g €
G(r,n)} and obtain the following expression for P:

P = z ngagas - x5 € R(G(r,n)).
geG(rn)

The result will follow if we can show that, for all ¢ € G(r,n), either
agzd---xd =0 € R(G(r,n)) or agaf---2¢ = ay, for some ¢’ € Q. In fact,
let g = [07",...,05"]. Then if ¢, >, r —d all the exponents in the monomial
ag are at least 7 —d and so @ - - a” | agzd- - - xd, therefore agad--- 28 =0 €
R(G(r,n)). Otherwise, if ¢, <, r — d we consider the element ¢’ € G(r,n)
given by

a.il +d O.cn,+d

J =] R Al P

It is clear that ¢’ € Q and a simple verification shows that \;(¢’) =
Ai(g) +d for all i € [n] and therefore ay = aga{--- 4. Now the first part of
the statement is a straightforward consequence of the claim and the second
part of the statement is an immediate consequence of the first, together with

the fact that R(G(r, p, N)) = R(G(r,N))/(e\? (X)) and Theorem 1.8. O

We can finally describe the desired basis of R(G) in terms of the ele-
ments of the group H, a result which can be seen as the “dual” version of
Proposition 2.1. For 6 € H, let II5 be the set of lifts v = (y1,...,7,) of § in
G(r,N) such that c((7i)n,) <r d for some i € [k].

Corollary 2.5. It follows from Proposition 2./ that the set
{ay: 0 € H, v e1ls}

is a basis for R(G).

So we have that the group H can still be taken as an indexing set for a
basis of the coinvariant algebra R(G) though the elements § € H must be
considered with multiplicity given by |II5|. And in some sense we may say
that the cardinalities of the sets IIs measure a defect for G from being a
projective reflection group.

The description of the coinvariant algebras for the groups G and H
that we have obtained serves as a motivation and inspiring example in the
development of a theory of “partially colored labeled forests” which is the
main subject of this paper. As an application we will also be able to describe
the Hilbert polynomial of the coinvariant algebras of G and H explicitly.
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3. Linear extensions of partially colored forest labelings

Let F' be a finite forest with n vertices (see §1.6). The following is a natural
generalization of a labeling of F'.

Definition 2. A r-colored labeling of F is a pair w = (o, c) where o is a
bijection ¢ : V(F) — [n] and ¢ is a map ¢ : V(F) — Z,. We denote by
W, (F) the set of all r-colored labelings of F'.

A r-colored labeling w = (o, ¢) of F' can be thought as the assignement
of the colored label w, = oS to each vertex x € V(F). As customary, we
also identify a colored integer i with the integer i for each i € [n], and vice
versa. Then, for w € #,(F') we define the set of linear extensions of w as

Z(w) = {g € G(r,n): c(g7 (wy)) =0 for all z € V(F), and
if 2,y € V(F) are such that z < y, then g~ ' (w,) < g~ (wy)}.

Note that this definition generalizes the one in §1.6, since the element
[w(z1), w(z2),. .., w(ry)| € G(r,n) is a linear extension of w if x1, z2, ...,z
is a linear extension of F' and then .Z(w), as defined above, is the set of all
such colored permutations.

If x € V(F) and x is not a root, we let p(x) be the unique element that
covers x in the forest. For each x € F' we let

2a(w) = {resr (cz) if  is a root of F,

res, (cx — cp(x)) otherwise
and we define the homogeneous descent set of w as
HDes(w) := {(z,y) € E(F): ¢z = ¢, and 05 > oy}.

Finally we define the flag-major index of w as
fmaj(w) := Z TXe(w)he + Z Zy(w)hy,
e€E(F) veV(F)

where

(w) 1 if e € HDes(w),
w) =
Xe 0 otherwise.



612 Francesca Camagni and Fabrizio Caselli
4 oy
5t 4

22 32 19

Figure 2: Example of 3-colored labeling.

Example 6. Let w be the 3-colored labeling in Figure 2. Then the ele-
ment [1°,22,32, 51, 4] € G(3,5) is a linear extension of w. We also have
HDes(w) = {(z,y)} and so fmaj(w) =3-3+(1-4+1-1+2-1+2-1) =18.

Remark 3.1. Note that if » = 1 then a 1-colored labeling w € #1(F) can be
thought as a standard labeling in # (F'). Then we have HDes(w) = Des(w)
and fmaj(w) = maj(w). Moreover, if F'is a linear tree (i.e. a totally ordered
set {x1,a,...,x,} in which x; < ;41 for i € [n—1]) we note that a r-colored
labeling w of F' can be thought as the unique linear extension g € G(r,n)
of w. And in this case we have fmaj(w) = fmaj(g).

Now we can give a generalized version of Theorem 1.9, which we can
recover from the following result when r = 1:

Theorem 3.2. Let F' be a finite forest with n elements and w a r-colored
labeling of F. Then

Z quaj(g) _ quaj(w) [dl]q[dﬂq U [dn]q
I [harly

9€Z(w) el

where d; = 1i, i =1,...,n are the fundamental degrees of G(r,n).

As we are planning to further generalize this result, we postpone its
proof to a more general case (see Proof of Theorem 3.3).

Starting from Theorem 3.2 and partly inspired by Corollary 1.4, we can
introduce a new notion of labeling that will allow us to generalize and unify
these results.

Definition 3. We define the set &2,.(F) of r-partial labelings of F' as the
set of triples w = (o, ¢, ) such that:

e o is a bijection o : V(F) — [n];
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e (isamap ¢ : V(F) — N such that ¢ := «(z) is a divisor of r for all
x € V(F) and x < y implies ¢y | ty;
e jisamap j: V(F) - |J Z, such that j, := j(x) € Z,, for all

m>0
x e V(F).

It is clear that a colored labeling can be interpreted as a partial labeling
with ¢, = r for all x € V(F). A partial labeling w = (o, ¢, j) assigns to each
vertex z € V(F) the partial label w, := o;77": the color of a label is not
uniquely determined modulo r, but only modulo a divisor of r. In this sense
such partial label can sometimes be interpreted as the set of /¢, distinct
r-colored integers:

{a%””,agw“x, in+2“, .. } .

For w = (0,1,7) € Z,(F) we define the set of linear extensions of w as

ZL(w):={g€G(r,n): c(g0)) = —ju € Z,, for all € V(F), and
if z,y € V(F) are such that 2 < y then |g~*(0,)| < |9~ (0|}

and for each z € V(F') we let

{resLI (Jz) if z is a root of F,
Zzp(w) =

res,, (jm — jp(z)) otherwise.
Finally we let
HDes(w) == {(z,y) € E(F) : jo = jy € Z,, and 0, > 0y}

be the homogeneous descent set of w and we define the flag-major index of
w as

fmaj(w) == Y texe(whe+ > z(w)hy,
e€E(F) veV (F)
where

1 if HD
Uay) = Lo for each (z,y) € E(F) and  x.(w):= { if e € HDes(w),

10 otherwise.

Example 7. Let w be the 6-partial labeling in Figure 3. Then the element
(32,420 1% 5%] € ZL(w) for all a € {1,4} and b € {1,3,5}. Moreover,
HDes(w) = {(z,y)} and fmaj(w) =3-1+(2-44+2-3+1-1)=18.

The following result is the natural generalization of Theorem 3.2 to this
context.
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56,2

Figure 3: Example of 6-partial labeling.

Theorem 3.3. Let F' be a finite forest with n elements and w a r-partial
labeling of F'. Then

Z quaj(g) _ quaj(w) [dl]q[dﬂq c [dﬂ]q

hfL’ X ’
9eL(w) wl;[F[ tala
where d; = ri, i = 1,...,n are the fundamental degrees of G(r,n).

Before proving Theorem 3.3 we need some further preliminary results.
Let w = (o,¢,7) be a r-partial labeling of F' and let

Ay ={fEN": fo, =js €L, forall z € V(F), fy, > f5, for each
(x,y) € E(F), and f,, = fo, only if j, = j, € Z,, and 0, < Jy}.
The next result gives an alternative description of the set .o7,.

Proposition 3.4. Let w be a r-partial labeling of F' and f € N™. Then
f €y, if and only if f is g-compatible for some g € £ (w).

Proof. Let g € G(r,n) be such that f is g-compatible, i.e. there exists A €
22, such that

(3.1) fi = Ng1@1(9) + g1
for all ¢ € [n]. We make two claims.
i) Ifz € V(F), then c(9~Y(0,)) = —jz € Z,, ifand only if f,, = jz € Z,,.

In fact we have

fo. = Jz € Ly, & Ng-1(0,)|(9) = Jz € Zy, (by the g-compatibility),
S X, (97") = —j2 €L, (by Lemma 1.7),
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& c(g7N(02)) = —ju € L, (by Eq. (1.1)).

i) If (x,y) € E(F), then |g~(0,)| < |g_1(ay)| if and only if fo, > fo,
and equality f, = f,, holds only if o, < 0.

Let us prove ii).

<) If fo, > fr, then [g7 (0)|] < |g7(0y)| by Eq. (3.1) since A(g)
and A are both partitions. If f, = f, with o, < o then A\g-1(5,)(9) =
Alg=1(a,)| (9). Now we make an easy observation that follows from the defini-
tion of the partition A(g): if h, k are such that A\,(g) = A\x(g) then |g(h)| <
|g(k)| if and only if h < k. Applying this observation to h = |g~!(0,)| and
k= |9 (0y)| we conclude that |[g7(0,)| < [g7(ay)].

=) If|g7 (0a)| < |97 (0y)| then f,, > f,, since A(g) and X are both par-
titions, by Eq. (3.1). Moreover, if f,, = f,, then necessarily A;-1(4,)/(9) =
Alg-1(,)|(9) and by the same observation above it follows that o, < oy.

By i) and ii) to complete the proof we only have to show that if f is
g-compatible, g € Z(w) and f,, = fo, then j, = j, € Z,,. But this follows
easily since by i) we have f,, = j, € Z,, and f, = j, € Z,,. O

For z € F we let %, = {a € F : a = x} be the filter at x, which is a
chain, and &, = {(y,2) € E(F) : y € #,} be the set of edges of .Z,.

If w=(0,t,7) is a fixed r-partial labeling of F' and m : V(F) — N, we
let f[m] € N be given by

flmlo, = Z (zy(w) + tymy) + Z teXe(Ww)

YEF, eEE,

and

By = {f[m] me NV<F>}.
Proposition 3.5. For all w € Z,.(F) we have <, = B, .

Proof. We first show that %, C 4, so let f € %,. We show by reverse
induction on < that for all z € V(F) we have f,, = j; € Z,,, fo, > [5, for
each (z,y) € E(F), and f,, = f,, only if j, = j, € Z,, and 0, < 0. If x
is a root we have f, = z;(w) € Z,, and the result is clear. Otherwise, by
definition, f, = fo, + (zx(w) + taMy + Lz X (2,y) (w)), where y = p(x). Then
our claim follows immediately from the definition of z,(w). It follows that
f € o,.

Now we show that 7, C %, so let f € o,. If uisaroot then f, = j, €
Z;,, so there exists m, € N such that f, =res,, (ju)+ tuMu = 2y + tuMy.
Let z be an element covered by u. Then there exists m, € N such that
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faw = fau + res,, (]:c - ]u) + b X (x,u) + tgmy = fau + 2z + b X (x,u) + tgMy.
We note that f, = j; € Z,. We obtain the result extending this argument
to every = € F. O

Now we are ready to complete the proof of the main result of this section:

Proof of Theorem 3.3. We follow a general idea that goes back at least to
Garsia and Gessel [13] and we compute the formal power series >, , /!
in two different ways. In the first computation we use Lemma 1.6 (for p = 1)
and Proposition 3.4 and we have

fmaj
Sy I Y g 2wy 4™ |
(I=g)--(1—¢") (1—g)1—¢*) - (1—-g")

fed geZ(w)

In the second computation we use Proposition 3.5: using the same notations,
for all m € NV() we have

‘f[m” = Z f[m}am = Z (Zv + Lvmv)hv + Z teXehe =

zeF veV(F) e€E(F)
=fmaj(w) + Z LeMghy
zeF

and then

. . 1

m]| __ fmaj(w)+ tomah, _ fmaj(w
S gfli= 3T e S o ey
flm]€RB.w meNV (F) 2V (F)
Therefore
Z fmaj(g) _ ,fmaj(w) (1 — qr)(l — qu) e (1 _ an) 0
q =dq R .
[T (1—g=")
9€Z (w) zeF

To complete this section we show that some of the results appearing in
§1 can be seen as particular cases of Theorem 3.3.

Remark 3.6. Consider the poset V,, = {z1,z2,...,2,} with no order re-
lation between any two distinct elements. The Hasse diagram of this poset
is a forest consisting of n disjoint vertices. Consider now the r-partial la-
beling w = (0,1,7) € P(V,) such that o(zs) = s, 1, = 1 and j,, = 0
for all s € [n]. Then fmaj(w) = 0 and Z(w) = G(r,n). Therefore in this
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N

€2

Z1 ° ° °

Th4+1 Thk42 Tn

Figure 4: T;, ; poset.

case Theorem 3.3 reduces to the distribution of fmaj on the group G(r,n)
(Proposition 1.1):

Z quaj(g) Z quaj(g) = [T]q[%]q T [nT]Q'

geZL (w) g€G(rn)

Remark 3.7. Let 1 < k < n and consider the poset T}, , = {z1,22,...,2n}
with the ordering given by zs < x; if and only if s < ¢ < k. The Hasse
diagram of T, ;, is a forest consisting of a linear tree of length k and n — &
disjoint vertices (see Figure 4). Consider now the r-partial labeling w =
(0,t,7) € Pr(Ty1) such that o(z) = s for all s € [n],

{7“ if s € [K]
Ly, =

1 otherwise,

and j,, = 0 for all s € [n]. We observe that the hook lengths are h,, = s for
s € [k] and hy, = 1 otherwise, that fmaj(w) = 0 and Z(w) = {g € G(r,n) :
c(g71(@) = 0ifi € [k] and g71(1°) < g71(20) < --- < g7 1(K")}. We finally
note that if ¢ € Z(w) then g~ € %, where %}, is the same set defined in
(1.2) when p = 1. Then in this case Theorem 3.3 reduces to Corollary 1.4:

ST gm0 = 37 ) — [(k 4 1l [(k + 2)r], - [r],.

geZL (w) gEGr
4. (r,p)-partial labelings

Inspired by the theory of projective reflection groups and the study of in-
variant and coinvariant algebras in §2 we are naturally lead to consider the
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40 40 42 44

Figure 5: Example of (6, 3)-colored labeling.

following generalization of a partial labeling of a forest. So let F' be a finite
forest with n vertices and %#,.(F') be the set of all colored labelings of F'. Let
C) be a cyclic group of order p generated by an element ¢ and consider the
action of C), on the set #.(F') defined by

5.(o,c) = (0,¢),

where ¢}, = ¢ + 1, for all z € V(F).

Definition 4. A (r,p)-colored labeling of F' is an orbit of #;(F') under the

action of Cp; the set of all (r, p)-colored labelings of F' is denoted by
Wrp(F) =W (F)/Cp.

See an example in Figure 5.

The action of C,, = (§) can also be extended to the set Z,.(F) of all
partial labelings by

d.(0,¢,3) = (0,4, 5")
where j; = j, + 7, for all z € V(F).
Definition 5. A (r, p)-partial labeling of F' is an orbit of &,(F') under the
action of Cp; the set of all (r, p)-partial labelings of F' is denoted by
Py p(F) = P (F)]Cy.

See an example of an orbit consisting of three partial labelings in Figure 6.

A Cp-orbit in #,(F) always consists of exactly p elements, but it is
not always the case for partial labelings. The following lemma is useful to
determine the cardinality of these orbits:
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112,10 112,10 112,6 112,2
4614 )\ A

.

241 321 53,1 24 1321 53,1 24 1 321 53.0 24 1321

Figure 6: Example of (24, 3)-partial labeling.

Lemma 4.1. Let F be a forest and vy, va, ..., vy its roots. Let w = (o,1,7) €
P (F) and consider the action of C, on Z,.(F) defined as above. Then the

orbit of w contains p/d distinct elements, where

r
4.1 d := ged
(4.1) 8¢ <lcm(L1,L2,---aLl)’p> ’

and 1y denotes ty,, fort € [l].

Proof. We consider first the case in which F' is a tree and then the case of
a general forest. So let F' be a tree and v be its root. In this case we have
to show that the orbit of w contains exactly p/d distinct elements, where

d = ged(r /iy, p).

For this it is enough to show that the number of distinct residue classes in
Z,, of the form j, + kr/p, for k € [p], is p/d. In other words, we have to
show that the order of r/p in Z,, is p/d. And in fact such order is

Ly . ly P _ p D

ged (r/p, 1) ged(r, top)  ged(r/iy, p)  d

Now let F' be any forest with connected components 77,75, ...,7; and
roots vq, v, ..., v;. It follows from the previous discussion that the orbit of

lem | £, 2 s
dy dy U
elements, where d; = ged(r/u, p) and v = ¢y, for t € [I].
Therefore we have to show that

lem (2, 2 Py_"P
dy dy’ T d d’

w contains exactly
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46,1 410,1
63,2 16,3 I 65,2 110,6
21,0 32,1 53,0 21,0 35,1 52,0

Figure 7: Examples of (30, 6)-partial labelings.

where p/d; is the order of r/p in Z,,.

Let m be any prime number that divides p. Let a and b be positive
integers and ¢ a non-negative integer, ¢ < a, such that 7@ || p, 7 || 7 and
¢ || d, where the symbol || means “exactly divides”.

If ¢ < a we have

,
“|l

T
lem(eq,t9, ..., 0)]

so there exists t € [I] such that 7°~¢ | 1;. Then 7¢ || d; and 7~ | p/d;. So
_ p P p
a1 — =]

r

If a = ¢ we have

a | 1
Cm([’la L2, ..+, Ll)

and so there exists ¢ € [I] such that 7°=9*! { 4. Tt follows that 7% | ds and
therefore m {lem(p/dy,...,p/d;).
By repeating the same argument for each prime in the factorization of

p, we have
Piem (2P, P
d dy’dy’ 7 dy )

The result follows, since d | d; for all ¢ € [I], and so we have

p D p p
1 — ., = =. O
Cm(dl’dQ’ ’dl>|d
Example 8. Let w be the labeling in Figure 7 (left). Note that

30
&8¢ <lcm(3,6)7 6> ged(5,6) ’
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and in fact one can easily check that the orbit of such partial labeling con-
tains 6 elements, while the orbit of the labeling in Figure 7 (right) contains
2 elements only, as in this case

30

d=ged [ —
8¢ <1cm(5,10)’

6> = gcd(3,6) = 3.

For w = (0,t,7) € Z,(F), we denote by [w] the corresponding class in
Py p(F). We extend the map j to the set of edges of F' by
Jaw) = Ju = Jy € L,

and we observe that this map depends on the class [w] of w only. Then, for
[w] € Py p(F) we define the set of linear extensions of [w] as

ZL(w]):={g € G : Vglift of g in G(r,n), 3w lift of [w] in L, (F),
W = (0,1,7), s.t. ¢(§ "How)) = —ju € Z,, for all z € V(F), and
if 2,y € V(F) are such that z < y, then g7 (05)| < g7 (o) |}
Example 9. Let w be the labeling in Figure 7 (right). Then for example

the element g = [5%,3!,126 41 219 627] € G(30,6,6) is a linear extension
of [w].

For [w] € &, ,(F) we let

HDes([w]) := {(z,y) € E(F) : jy =0 € Z,, and 0, > oy}

be the homogeneous descent set of [w] and finally we define the flag-major
index of [w] as the multiset

Fmaj([w]) := {{ > texe(whhe+ > 2(@)he,
ecE(F) veEV(F)

for each w lift of [w] in Z,(F) }}

where

1 ifee HDes([w]),
Xe([w]) = {0 otherwise.
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Remark 4.2. Let w = (0,¢,j) € Z-(F) and let d be defined as in (4.1).
Then |Fmaj([w])| = p/d.

Example 10. Let w be the labeling in Figure 7 (left). Then the flag-major

index of w is the multiset:

Fmaj(w) ={(2-1+3-1) + (2-res3(2 + 5k) + 4 - resg(1 + 5k) + 3 - 2),
k=0,1,...,5}} = {19,13,31,31,25,19}}.

Let w be the labeling in Figure 7 (right). Then the flag-major index of w is
the multiset:

Fmaj(w) ={(5-1+2-1) + (2 ress(2 4 5k) + 4 - res1o(1 + 5k) + 3 - 5),

k=0,1}} = {30,50}}.

For [w] € &, ,(F) with w = (0,1, j), let

) = {feN": 3w =(0,,,§) € [w] s.t. fo, =ji €L,
for all x € V(F), f5, > f5, for each (z,y) € E(F), and
fo, = fgy only if j(%y) =0€Z, and o, < O'y}.

Proposition 4.3. Let [w] be a (r,p)-partial labeling of F' and f € N™. Then
[ € S if and only if f is g-compatible for some g € £ ([w]).
Proof. Let f € N™ and g € G(r,p,n)* be such that f is g-compatible, i.e.
there exist A € &, and h € [0, p — 1] such that
,
fi = Mg i(9) + g +

for all i € [n]. We make the following claim: for any ¢ lift of ¢ in G(r,n)
there exists w = (o, ¢,j’) lift of [w] in Z,.(F) such that

C(?j_l(aa:)) = *J;: € Zy,

for all z € V(F) if and only if there exists w = (o, ¢,5") lift of [w] in Z,.(F)
such that f, = j” € 7Z,,. This is a consequence of the following facts.

e There exists k € [0, p — 1] such that fo, = \g-1(,/(9) +k7/p € Z; for
all x € V(F), since f is g-compatible;
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e if g is a lift of g in G(r,n) then there exists [ € [0,p — 1] such that
g (’gil(al’)D =0g A‘g_l(vmn(g)Jrlr/p
by Eq. (1.1), and therefore

(g N02)) = =Ng-1(0)(9) — Ir/p € Zy;

o there exists h € [0,p— 1] such that Ag-1(,,)(9) = =X, (g7 +hr/p €
Z, by Lemma 1.7.

The rest of this proof is analogous to the proof of Proposition 3.4 and is
therefore omitted. O

Now we are ready to give a generalization of Theorem 3.2 to (r, p)-partial
labelings:

Theorem 4.4. Let F' be a finite forest with n elements and [w] a (r,p)-
partial labeling of F'. Then

gm0 = Y g [dl]q[dﬂq”'[dn]q,

hx X
g 2([u)) vy AL atels
where d; = ri if i < n and d,, = rn/p are the fundamental degrees of

G(r,p,n).

Proof. The strategy of this proof is the same as in the proof of Theorem 3.3
and so we present only a sketch of it.

We observe that from the definition of 7, and Proposition 3.5 we have
that 7, is the (disjoint) union of the sets %y as w varies in the orbit [w].
Computing the series

Z qf!

fEA )

in two different ways using Proposition 4.3 and using the observation above,
the result follows. O

Also in this case some known results described in §1 can be obtained as
special cases of Theorem 4.4.

Remark 4.5. Consider the poset V,, = {x1,x2,...,2,} with no order rela-
tion between any two distinct elements. The Hasse diagram of this poset is
a forest consisting of n disjoint vertices. Consider now the (r, p)-partial la-
beling [w] of V;, such that w(zs) = sY for all s € [n]. Then Fmaj([w]) = {0}
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and .Z([w]) = G(r,p,n)*. Therefore in this case Theorem 4.4 reduces to the
distribution of fmaj on the group G(r,p,n)* (Proposition 1.2).

Remark 4.6. Let 1 < k < n and consider the poset T, = {x1,22,..., s}
with the ordering given by x5 < x; if and only if s < ¢t < k (see again Figure
4). Consider now the (r, p)-partial labeling [w] of T}, j, with w = (o, ¢, j) given
by o(zs) = s for all s € [n],

{r if s € [K]
Ly, =

1 otherwise,

and j,, = 0 for all s € [n]. Then h,, = s for s € [k] and h,, = 1 oth-
erwise, Fmaj([w]) = {0, kr/p,2kr/p,...,(p — 1)kr/p} and Z([w]) = {g €
G(r,p,n)*: 3h € {0,1,...,p— 1} s.t. ¢(g ~*(s)) = hr/p for each g lift of g
in G(r,n), s € [k] and [g71(1)| < |[¢71(2)] < --- < |g~(k)|}. We finally note
that if g € Z([w]) then g~! € %, where %, is the same set defined in (1.2).
Then in this case Theorem 4.4 reduces to Theorem 1.3.

5. g-counting colored labelings

Let F be a finite forest with n vertices (see §1.6). In this section we generalize
the result in Theorem 1.10 by g-counting the set of all partial labelings of a
fixed forest F' using the fmaj statistic. We recall from [6] that, for any fixed
o €S, there are
n!

I1 he

zeF
labelings w of F' such that o is a linear extension of w, since there is a
bijection between the set {w € #(F) : ¢ € Z(w)} and the set Z(F) of
linear extensions of F' (see §1.6). An analogous argument also applies to any
element g € G(r,n).

For g € G(r,n) we let

Y (9) :={w e #(F): g€ ZL(w)}

Lemma 5.1. For g € G(r,n), x € Z(F) and u € #.(F), the maps ¢ :
W (g) = ZL(F) and ¢ : L(F) — L (u), given by

d(w)i = w™ (g:)
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and
V() = ulz)

are both bijections. In particular,

7 (9) =12 W) = —7——

Proof. All the statements are simple verifications based on the definitions of
the involved sets. We prove only one of the corresponding statements, namely
that if w € # (g) then ¢(w) € Z(F'), and we leave the rest of the proof to the
reader. So assume that ¢(w ) < ¢(w); and we show that ¢ < j. By definition
of ¢ we have w™(g;) < w™l(g;). Letting z = w™l(g;) and y = w=(gy)
we have z < y. But since g € f(w) this implies g Hwg) < g7 Hwy), ie.
i< . O
Theorem 5.2. Let F be a finite forest with n elements and #,(F) the set
of all r-colored labelings of F'. Then

Z qua j(w H hm

weW(F)

Remark 5.3. We recall from the Introduction that for » = 2 an equivalent
result was given in [10, Theorem 2.3] by Chen, Gao and Guo.

Proof. We consider the double sum

Z Z quaj (9)

weW,.(F) ge£(w)

and we evaluate it in two different ways. In the first computation we use
Theorem 3.2 and we have

fmaj(g) _ fmaj(w [ ] "‘[nr]q
22 2 I [Pt

we,(F) ge&(w) we//(F) zEF
T
_ Il [H ¢ Y gmaite),
seF weH,.(F)

In the second computation we exchange the order of summations and use
Lemma 5.1 and Proposition 1.1. We have
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Z Z quaj (9) Z Z quaj (9)

weH(F) ge£(w) gEG(r,n) WeH (g)
_ () Y g
QGG(T,n)
n!

= ——[r]q[2r]q - [n7]q.

Therefore we conclude that

[T]q[?["]t[z};;;][jﬂq Z quaj(w): nl [r]q12r]q - -

CF weN(F)

and we are done. O

If we consider the analogous result for (r, p)-colored labelings, we do not
obtain anything new. A more interesting result shows up if we consider (r, p)-
colored labelings with a multiplicity motivated by the study of coinvariant
algebras in §2; this multiplicity will be determined by the possible coloring
of its lifts in #;.(F)). More precisely, we let #;,,(F) be the set of labelings in
#;(F) where some root receives a label with color in {0,1,..., 7 —1}.

Theorem 5.4. Let I be a forest with k connected components Fy, ..., Fy of
cardinality ny, . .., ng, respectively, and R = {p1,...,pr} be the set of roots
of . Then

T g Hh [T (harle [T thar/ply > (D= T 0lgnirss-

weh ,(F) ©¢R zER 0£IC K] il

Proof. We first assume that £ = 1. In this case we have that the set %,p(F )
is a set of orbit representatives of #;.,(F) and the other elements in the
same orbit are obtained by adding a multiple of £ to the color of all its
labels. From this observation one can deduce that

P I T
weA(F we%,p(F)

and so, by Theorem 5.2, we have

DR LR — | (PSR T y (7 R

WE%YP(F) zelF zEF el e R
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In the general case one can split the sum over all labelings in ¥ ,(F p( ) ac-
cording to the set of roots which receive a label colored in {0,1,..., p -1}
and then use a standard inclusion-exclusion argument to show that

Z quaj (w) _

we%,p(F)
n - ma, ma,
:<n n) > oL >0 ] Z qf o
b 0AIC (] el wE%p( ) i¢I weW,.(F
n
- (nl, e ,nk> Z \I| 1 H H . H [harlq - [nir/plg:
D#ICk] i€l jep " x€F\{p:}

T e

¢l 2EF, zeF;

H hatlg [TThar/ple > (=D T 0lgrirsr- 0

T 2¢R z€R PAIC K] il

Corollary 5.5. Let G(r,p, N) be the group studied in §2 and R(G(r,p, N))
its cotnvariant algebra. Then

n;—1 k

k
Hilbr(G(r.p.N H H[jr]qH[nir/p]q DRG] [/

i=1 DAIC[k] ¢l

Proof. This follows easily from Theorem 5.4 in the special case where F' is
the union of k disjoint linear trees of cardinality ni, ..., ng respectively. [

One can observe that in the special case where £k = 1 Corollary 5.5
reduces to the well-known fact that the Hilbert series of the coinvariant
algebra of G(r,p,n) is

n—1
H[jT]q[T”/p]Q‘
j=1
We conclude our work by showing how one can generalize Theorem 5.2
to the context of partial labelings of a fixed forest F. Let x1,xs,...,x, be
a linear extension of F. We fix a map ¢ : V(F) — N such that ¢ := ¢(zy)
is a positive divisor of r for k = 1,2,...,n, and ¢; is a divisor of ¢, if z; is

covered by zp in the forest F'. We let

P (F) :={we P(F): w=(0,t,j) for some o and j}.
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Let #,(9) = {w € Z,,(F): g € Z(w)}. The next result is analogous to
Lemma 5.1 and therefore we omit its proof.

Lemma 5.6. Let g € G(r,n). Then there exists a bijection ¢ : #,(g9) —

Theorem 5.7. Let F be a finite forest with n elements and &, ,(F) the set
of all r-partial labelings of F associated to v. Then

> =gy e

weZ, (F) sCF zeF

Proof. We consider the double sum

Z Z quaj(g)

weZ, (F) ge£(w)

and we evaluate it in two different ways. In the first computation by Theorem
3.3 we have

Z Z gfmai(9) — [r]qﬁ]Fh' 'L‘ 5nr]q Z gimai(w),

weP, (F) geZ(w) CF wePy. (F)

In the second computation we use Lemma 5.6 and Proposition 1.1 and we

have
Z Z quaj(g) — Z Z quaj(g)

weP, (F) geZ(w) g€G(r,n) weWi(9)

= i(g)l > ™9
geG(r,n)

n!
= I hm[r]q[%]q'”[nr]m [

zeF

References

[1] Adin, R. M., Brenti, F. and Roichman, Y. (2005). Descent represen-
tations and multivariate statistics. Trans. American Math. Soc. 357
3051-3082. MR2135735

[2] Adin, R. M. and Roichman, Y. (2001). The flag major index and
group actions on polynomial rings. Furopean J. Combin. 22 431-446.
MR1829737


http://www.ams.org/mathscinet-getitem?mr=2135735
http://www.ams.org/mathscinet-getitem?mr=1829737

3]

[11]

[12]

[13]

[14]

[15]

Hook length formulas for partially colored labeled forests 629

Bagno, E. and Biagioli, R. (2007). Colored-descent representations
of complex reflection groups G(r,p,n). Israel J. Math. 160 317-347.
MR2342500

Biagioli, R. and Caselli, F. (2004). Invariant algebras and major in-
dices for classical Weyl groups. Proc. London Math. Soc. 88 603-631.
MR2044051

Biagioli, R. and Caselli, F. (2004). A descent basis for the coinvariant
algebra of type D. J. Algebra 275 517-539. MR2052623

Bjorner, A. and Wachs, M. (1989). ¢-hook length formulas for forests.
J. Combin. Theory Ser. A 52 165-187. MR1022316

Caselli, F. (2010). Involutory reflection groups and their models. J. Al-
gebra 324 370-393. MR2651341

Caselli, F. (2011). Projective reflection groups. Israel J. Math. 185 155~
187. MR2837132

Caselli, F. (2012). Signed Mahonians on some trees and parabolic quo-
tients. J. Combin. Theory Ser. A 119 1447-1460. MR2925936

Chen, W. Y. C., Gao, O. X. Q. and Guo, P. L. (2013). g-hook length
formulas for signed labeled forests. Adv. in Appl. Math. 51 563-582.
MR3118545

Chevalley, C. (1955). Invariants of finite groups generated by reflections.
American J. Math. 77 778-782. MRO0072877

Garsia, A. M. (2010). Permutation g-enumeration with the Schur row
adder. Pure Math. Appl. 21 233-248. MR2810534

Garsia, A. M. and Gessel, 1. (1979). Permutation statistics and parti-
tions. Adv. in Math. 31 288-305. MR0532836

MacMahon, P. A. (1960). Combinatory Analysis. Chelsea Publishing
Co., New York. (Originally published in 2 volumes by Cambridge Univ.
Press, 1915-1916). MR0141605

Shephard, G. C. and Todd, J. A. (1954). Finite unitary reflection
groups. Canadian J. Math. 6 274-304. MR0059914


http://www.ams.org/mathscinet-getitem?mr=2342500
http://www.ams.org/mathscinet-getitem?mr=2044051
http://www.ams.org/mathscinet-getitem?mr=2052623
http://www.ams.org/mathscinet-getitem?mr=1022316
http://www.ams.org/mathscinet-getitem?mr=2651341
http://www.ams.org/mathscinet-getitem?mr=2837132
http://www.ams.org/mathscinet-getitem?mr=2925936
http://www.ams.org/mathscinet-getitem?mr=3118545
http://www.ams.org/mathscinet-getitem?mr=0072877
http://www.ams.org/mathscinet-getitem?mr=2810534
http://www.ams.org/mathscinet-getitem?mr=0532836
http://www.ams.org/mathscinet-getitem?mr=0141605
http://www.ams.org/mathscinet-getitem?mr=0059914

630 Francesca Camagni and Fabrizio Caselli

FRANCESCA CAMAGNI

DIPARTIMENTO DI MATEMATICA

UNIVERSITA DI BOLOGNA

P1azzA DI PORTA SAN DONATO 5

40126 BOLOGNA

ITALy

E-mail address: francesca.camagni@unibo.it

FABRIZIO CASELLI

DIPARTIMENTO DI MATEMATICA

UNIVERSITA DI BOLOGNA

P1azzA DI PORTA SAN DONATO 5

40126 BOLOGNA

ITAaLy

E-mail address: fabrizio.caselli@unibo.it

RECEIVED 31 AugustT 2015


mailto:francesca.camagni@unibo.it
mailto:fabrizio.caselli@unibo.it

	Introduction
	Notation and preliminaries
	Some notations
	Complex reflection groups and G(r,p,n)
	Projective reflection groups and G(r,p,q,n)
	Flag-major index on G(r,p,q,n)
	Invariants and descent basis
	Labeled forests and q-hook length formulas

	Invariants and coinvariants
	Linear extensions of partially colored forest labelings
	(r,p)-partial labelings
	q-counting colored labelings
	References

