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Links in the complex of weakly separated collections

Su Ho Oh and David E. Speyer

Plabic graphs are combinatorial objects used to study the totally
nonnegative Grassmannian. Faces of plabic graphs are labeled by k-
element sets of positive integers, and a collection of such k-element
sets are the face labels of a plabic graph if that collection forms
a maximal weakly separated collection. There are moves that one
can apply to plabic graphs, and thus to maximal weakly separated
collections, analogous to mutations of seeds in cluster algebras. In
this short note, we show if two maximal weakly separated collec-
tions can be mutated from one to another, then one can do so
while freezing the face labels they have in common. In particular,
this provides a new, and we think simpler, proof of Postnikov’s re-
sult that any two reduced plabic graphs with the same decorated
permutations can be mutated to each other.

1. Introduction

Fix two positive integers k ≤ n. Let [n] := {1, . . . , n}. We will generally

consider [n] as cyclically ordered. We will say that i1, i2, . . . , ir in [n] are

cyclically ordered if is < is+1 < · · · < ir < i1 < i2 < · · · < is−1 for some

s ∈ [r].

Fix positive integers k < n. Let I and J be two k-element subsets of

{1, 2, . . . , n}. The following definition is due to Leclerc and Zelevinsky [2],

see also [9] and [6]: The sets I and J are called weakly separated if there

do not exist a, b, c and d cyclically ordered with a, c ∈ I \J and b, d ∈ J \I.
Graphically, I and J are weakly separated if we can draw a chord across the

circle separating I \ J from J \ I. We write I ‖ J to indicate that I and J

are weakly separated.

Write
([n]
k

)
for the set of k element subsets of [n]. We will use the term

collection to refer to a subset of
([n]
k

)
. We define a weakly separated

collection to be a collection C ⊂
([n]
k

)
such that, for any I and J in C, the

sets I and J are weakly separated. We define amaximal weakly separated
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collection to be a weakly separated collection which is not contained in any

other weakly separated collection.

Following Leclerc and Zelevinsky [2], Scott [9] observed the following:

Proposition 1.1. [9], cf. [2] Let S ∈
( [n]
k−2

)
and let a, b, c, d be cyclically or-

dered elements of [n]\S. Suppose that a maximal weakly separated collection

C1 contains S ∪ {a, b}, S ∪ {b, c}, S ∪ {c, d}, S ∪ {d, a} and S ∪ {a, c}. Then
C2 := (C1 \ {S ∪ {a, c}}) ∪ {S ∪ {b, d}} is also a maximal weakly separated

collection.

When C1 and C2 are related as in this proposition, we will say that C1 and
C2 are mutations of each other. Relying on results of [7], in [6] the authors

proved that any two maximal weakly separated collections are linked by a

sequence of mutations. As a corollary, any two maximal weakly separated

collections have the same cardinality – namely k(n− k) + 1.

In other words, if we form a simplicial complex whose vertices are indexed

by
([n]
k

)
, and whose faces are the maximal weakly separated sets, then this

complex is pure of dimension k(n − k) and is connected in codimension 1.

This complex was further studied in [3].

In this paper, we will study the links of faces in this complex. Namely,

our main result is:

Theorem 1.2. Let B ⊂
([n]
k

)
be a weakly separated collection. Let C and C′

be two maximal weakly separated collections containing B. Then C and C′

are linked by a chain of mutations C = C1 → C2 → · · · → Cr = C′ where all

the Ci contain B.

In other words, if σ is a face of the simplicial complex described above,

with codimension greater than 1, then the link of σ is connected in codi-

mension 1.

In the case B = ∅, using the equivalence between maximal weakly sepa-

rated collections and reduced plabic graphs [6], Theorem 1.2 is equivalent to

a result of Postnikov ([7, Theorem 13.4], in the case of the largest positroid).

Our proof is new and independent of Postnikov’s.

2. Notations

We will use the following notations through out the paper: We write (a, b)

for the open cyclic interval from a to b. In other words, the set of i such

that a, i, b is cyclically ordered. We write [a, b] for the closed cyclic interval,

[a, b] = (a, b) ∪ {a, b}, and use similar notations for half open intervals.
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If S is a subset of [n] and a an element of [n], we may abbreviate S∪{a}
and S \ {a} by Sa and S \ a.

In this paper, we need to deal with three levels of objects: elements
of [n], subsets of [n], and collections of subsets of [n]. For clarity, we will
denote these by lower case letters, capital letters, and calligraphic letters,
respectively.

The use of the notation I \ J does not imply J ⊆ I.

3. Positroids

Postnikov and the authors more generally studied weakly separated col-
lections within combinatorial objects known as positroids. We review this
material briefly here; see [7] and [6] for more. A Grassmann necklace is a
sequence I = (I1, · · · , In) of k-element subsets of [n] such that, for i ∈ [n],
the set Ii+1 contains Ii \{i}. (Here the indices are taken modulo n.) If i 
∈ Ii,
then we should have Ii+1 = Ii.

Define a linear order <i on [n] by

i <i i+ 1 <i i+ 2 <i · · · <i i− 1.

We extend <i to k element sets, as follows. For I = {i1, · · · , ik} and J =
{j1, · · · , jk} with i1 <i i2 · · · <i ik and j1 <i j2 · · · <i jk, define the partial
order

I ≤i J if and only if i1 ≤i j1, · · · , ik ≤i jk.

Given a Grassmann necklace I = (I1, · · · , In), define the positroid MI to
be

MI := {J ∈
(
[n]

k

)
| Ii ≤i J for all i ∈ [n]}.

Fix a Grassmann necklace I = (I1, · · · , In), with corresponding positroid
MI . Then C is called a weakly separated collection inside MI if C is a weakly
separated collection and I ⊆ C ⊆ MI . We call C a maximal weakly separated
collection inside MI if it is maximal among weakly separated collections
inside MI .

Our actual main result is

Theorem 3.1. Let I be a Grassmann necklace and let B be a weakly sep-
arated collection in MI . Let C and C′ be two maximal weakly separated
collections in MI containing B. Then C and C′ are linked by a chain of
mutations C = C1 → C2 → · · · → Cr = C′ where all the Ci contain B and are
in MI .
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Figure 1: Example of a plabic tiling.

The case Ii = {i, i+1, . . . , i+k− 1} corresponds to taking MI to be all

of
([n]
k

)
; this case is Theorem 1.2. It is also possible to deduce Theorem 3.1

from Theorem 1.2, but we do not take this route.

Theorem 3.1 also implies the main result (Theorem 2.2) of [1]. See the
discussion at the end of Section 4.

4. Plabic tilings

In this section, we review the plabic tiling construction from [6]. The mo-
tivation for this construction is as follows: The main result of [6] is that
maximal weakly separated collections are in bijection with certain planar
bipartite graphs called “reduced plabic graphs”. The planar dual of a re-
duced plabic graph is thus a bi-colored CW complex, homeomorphic to a
two-dimensional disc. The plabic tiling construction assigns a bi-colored two-
dimensional CW complex to any weakly separated collection, maximal or
not. For the purposes of this paper, we only need plabic tilings, not plabic
graphs.

Let us fix C, a weakly separated collection in MI . For I and J ∈ MI ,
say that I neighbors J if

|I \ J | = |J \ I| = 1.

Let K be any (k − 1) element subset of [n]. We define the white clique
W(K) to be the set of I ∈ C such that K ⊂ I. Similarly, for L a (k + 1)
element subset of [n], we define the black clique B(L) for the set of I ∈ C
which are contained in L. We call a clique nontrivial if it has at least three
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elements. Observe that, if X is a nontrivial clique, then it cannot be both

black and white.

Observe that a white clique W(K) is of the form {Ka1,Ka2, . . . ,Kar}
for some a1, a2, . . . , ar, which we take to be cyclically ordered. Similarly,

B(L) is of the form {L\b1, L\b2, . . . , L\bs}, with the bi’s cyclically ordered.

If W(K) is nontrivial, we define the boundary of W(K) to be the cyclic

graph

(Ka1) → (Ka2) → · · · → (Kar) → (Ka1).

Similarly, the boundary of a nontrivial B(L) is

(L \ b1) → (L \ b2) → · · · → (L \ bs) → (L \ b1).

If (J, J ′) is a two element clique, then we define its boundary to be the graph

with a single edge (J, J ′); we define an one element clique to have empty

boundary.

We now define a two dimensional CW-complex Σ(C). The vertices of

Σ(C) will be the elements of C. There will be an edge (I, J) if

1. W(I ∩J) is nontrivial and (I, J) appears in the boundary of W(I ∩J)

or

2. B(I ∪ J) is nontrivial and (I, J) appears in the boundary of B(I ∪ J)

or

3. W(I ∩ J) = B(I ∪ J) = {I, J}.

There will be a two-dimensional face of Σ(C) for each nontrivial clique X of

C. The boundary of this face will be the boundary of X . We will refer to each

face of Σ(C) as black or white , according to the color of the corresponding

clique. We call a CW-complex of the form Σ(C) a plabic tiling . An implicit

claim here is that, if W(I ∩ J) and B(I ∪ J) are both nontrivial, then (I, J)

is a boundary edge of both, so that 2-dimensional faces of Σ(C) are glued

along boundary edges. This is not obvious, but it is true; see [6, Lemma 9.2].

So far, Σ(C) is an abstract CW-complex. Our next goal is to embed it

in a plane.

Fix n points v1, v2, . . . , vn in R2, at the vertices of a convex n-gon in

clockwise order. We write e1, e2, . . . , en for the standard basis of Rn. We

define a linear map π : Rn → R2 by ea �→ va. For I ∈
(
[n]
t

)
, set eI =

∑
a∈I ea.

We abbreviate π(eI) by π(I).

We extend the map π to a map from Σ(C) to R2 as follows: Each vertex

I of Σ(C) is sent to π(I) and each face of Σ(C) is sent to the convex hull of
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the images of its vertices. We encourage the reader to consult Figure 1 and
see that the vector π(Si)− π(Sj) is a translation of vi − vj .

1

We define π(I) to be the closed polygonal curve whose vertices are, in
order, π(I1), π(I2), . . . , π(In), π(I1). For example in Figure 1, we consider
the closed polygonal curve given by π({1, 2, 3}), π({2, 3, 4}), . . . , π({7, 1, 2}),
π({1, 2, 3}), coming from the Grassmann necklace

({1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}, {5, 6, 7}, {6, 7, 1}, {7, 2, 1}).

We now summarize the main results of [6] concerning plabic tilings:

Proposition 4.1 ([6, Prop. 9.4, Prop. 9.8, Prop 9.10, Theorem 11.1]). With
the above notation, π(I) is a simple closed curve, except that if I has repeated
elements then π(I) may touch itself at those vertices, in a manner which can
be perturbed to a simple closed curve. If C is a weakly separated collection
in MI , then the map π : Σ(C) → R2 is injective, and its image lands inside
the curve π(I)

The collection C is maximal among weakly separated collections in MI
if and only if Σ(C) fills the entire interior of the curve π(I).

If J is weakly separated from all elements of I, then J ∈ MI if and only
if π(J) is inside the curve π(I).

We will sometimes speak of triangulating Σ(C), meaning to take each
2-cell of Σ(C) and divide it into triangles. Coloring these triangles with the
color of the corresponding 2-cells, the vertices of a white triangle are of the
form (Sa, Sb, Sc) for some k − 1 element set S and some a, b, c ∈ [n] \ S.
The vertices of a black triangle are of the form (S \ a, S \ b, S \ c) for some
k + 1 element set S and some a, b, c ∈ S. Note that the image of a triangle
under π is a translate of Hull(va, vb, vc) or Hull(−va,−vb,−vc) respectively.
The triangle is oriented clockwise if (a, b, c) are cyclically ordered.

We now explain why we say that Theorem 3.1 implies Theorem 2.2
of [1]. Let S be what in that paper is termed a “simple cyclic pattern”, a
sequence (S1, S2, . . . , Sr) of distinct k-elements subsets of [n], all pairwise
weakly separated, such that Si neighbors Si+1 and Sr borders S1. Then
joining the π(Sj) by line segments forms a curve within Σ(S) which projects
to a simple closed curve2 Γ(S) in π(Σ(S)). Note that the position of this

1This figure is extremely similar to [6, Figure 9], we have redrawn it to avoid
issues of figure reuse.

2We believe the authors of [1] have missed a condition, or else we are missing a
difference between their definitions and ours. The sequence S = ({1}, {2}, {4}, {3})
obeys these conditions, but π(Sj) forms a self crossing curve. The missing condition
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curve in the plane is determined solely by S and the linear map π so, for
any other J ∈

([n]
k

)
, it makes sense to talk about whether J is inside Γ(S) or

outside without regard to any larger weakly separated colleciton in which we
consider J and S. If C and C′ are two maximal weakly separated collections
containing S, then we have just shown that they are linked by a sequence
of mutations which, at each step either replace a vertex of π(Σ(S)) inside
Γ(S) by another, or replace a vertex outside by another. (Because we replace
Sac by Sbd inside the square made of (Sab, Sbc, Scd, Sad), which is also in
the planar complex π(Σ(C)) and thus cannot cross Γ(S).) So the number of
vertices of C inside Γ(S) is the same as for C′, and the same holds for the
number of vertices outside, which is what we want to show.

5. A lemma regarding mutations

We will need the following lemma.

Lemma 5.1. Let H be a subset of [n] of cardinality k − 2; let a, b, c, d
be circularly ordered elements in [n] \H. Let J be another k element subset
of [n]. Suppose that Hac and Hbd are weakly separated with J . Then Hab,
Hbc, Hcd and Hda are weakly separated with J .

The relevance of this lemma is as follows: Suppose that C is a weakly
separated collection which contains Hac and all of whose elements other
than Hac are weakly separated from Hbd. Then the lemma shows that
C′ := C ∪ {Hab,Hbc,Hcd,Had} is weakly separated. Extending C′ to some
maximal weakly separated collection Cmax, we can mutate Cmax to change
Hac to Hbd. So the lemma shows that, if a weakly separated collection looks
like it should be mutable in a certain manner, then it can be extended to a
maximal weakly separated collection which is mutable in that manner.

Proof. We will show Hab ‖ J , the cases of Hbc, Hcd and Had are similar
due to cyclic symmetry. Assume for the sake of contradiction that Hab and
J are not weakly separated. Set J ′ = J \ {a, b, c, d}.

Case 1: J ′ = H. In this case, J is one of Hab, Hac, Had, Hbc, Hbd
and Hcd. In each case, Hab ‖ J .

Case 2: J ′ � H. Then |J ′| − |H| ≤ |J | − |H| = 2, so J ′ \H has either
one or two elements.

occurs when (Si, Si+1, . . . , Sj) are all mutually neighboring (with indices cyclic
modulo r). In this case, we must either have Sp = K ∪ {ap} for i ≤ p ≤ j,

where K is in
(

[n]
k−1

)
and we have some sequence (ai, ai+1, . . . , aj), or else must have

Sq = L \ {bq} in a similar manner. The extra condition is that (ai, ai+1, . . . , aj) or
(bi, bi+1, . . . , bj), as appropriate, should occur in circular order.
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Case 2a: J ′ = H ∪{p} for some p 
∈ H. The equation |Hab| = |J | shows
that J \ J ′ has three elements, which are among {a, b, c, d}. Checking all
four possibilities for J \ J ′ and all four possible positions for p relative to
the circularly ordered set {a, b, c, d} checks the claim.

Case 2b: J ′ = H ∪ {p, q} for some p and q 
∈ H. Then |J \ J ′| = 4, so
a, b, c and d are in J . Checking all possible positions for {p, q} among the
circularly oriented set {a, b, c, d} proves the claim.

Case 3: H � J ′. This is extremely similar to Case 2, we omit the details.

Case 4: H 
⊂ J ′ and J ′ 
⊂ H. We must have H ‖ J ′ as subsets of the
circularly ordered set [n] \ {a, b, c, d}. Let p, q, r and s be the circularly
ordered elements of [n] \ {a, b, c, d} so that {p, q} ⊆ H \ J ′ ⊆ [p, q] and
{r, s} ⊆ J ′ \H ⊆ [r, s]. Using that Hac ‖ J and Hbd ‖ J , we see that it is
impossible for any of {a, b, c, d} to lie in (p, q)∩J , or in (r, s)\J . Thus there
are no elements of J \H in [p, q] and no elements of Habcd \ J in [r, s].

Suppose for the sake of contradiction that Hab 
‖ J . Thinking about how
this can be compatible with the above restrictions on J \H and Habcd \ J ,
we see that we are in one of the following two cases:

Case 4a: There are u and v, with (q, u, v, r) circularly ordered, with
u ∈ J \ Hab and v ∈ Hab \ J . We must have u ∈ {c, d} and v ∈ {a, b}. If
(u, v) = (d, a), then Hac 
‖ J . If (u, v) = (c, a), then Hac 
‖ J implies d ∈ H
and Hbd ‖ J implies d 
∈ H. If (u, v) = (d, b), then Hac ‖ J implies a 
∈ H
and Hbd ‖ J implies a ∈ H. Finally, if (u, v) = (c, b), then Hbd 
‖ J .

Case 4b: There are u and v, with (s, u, v, p) circularly ordered, with
u ∈ Hab \ J and v ∈ J \Hab. This case is very similar to case 4a, and we
omit the details.

6. Main result

In this section, we will prove our main result: if C1 and C2 are maximal weakly
separated collections of some positroid MI , then C1 can be mutated to C2
while preserving the sets they have in common. Throughout this section, we
will fix a positroid M and its Grassmann necklace I.

Let B be a weakly separated collection contained in W . We will say
that two maximal weakly separated collections C and C′ are B-equivalent
within MI if there is a chain of maximal weakly separated collections
C = C1 → C2 → · · · → Cq−1 → Cq = C′, such that:

• B ⊆ C1, . . . , Cq,
• Ci+1 is obtained from Ci by one mutation move,
• All the Ci obey I ⊆ Ci ⊆ MI .
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We restate Theorem 3.1 as

Theorem 6.1. If C and C′ are maximal weakly separated collections within
MI containing B, then C and C′ are B-equivalent within MI .

Proof. Since weakly separated collections in MI contain I by definition, we
may assume that I ⊂ B. So the condition I ⊆ Ci will follow from B ⊆ Ci,
and we will only need to check the other conditions.

Let Σ(B) be the 2-dimensional CW-complex defined in the previous sec-
tion associated to B. We fix a map π as in the previous section. So π(Σ(B)) is
a closed region of R2, whose exterior boundary is π(I). Let A(B) be the area
of the bounded regions of R2 \ π(Σ(B)). Let δ = minArea(Hull(va, vb, vc))
where the minimum is over 1 ≤ a < b < c ≤ n. So δ is the smallest possi-
ble area of triangle appearing in a triangulation of some Σ(C). Our proof is
by induction on 
A(B)/δ�. If t := 
A(B)/δ� = 0 then A(B) = 0 and Σ(B)
fills the entire interior of π(I), so B is maximal in MI and B is the only
maximal weakly separated collection in MI containing B, so the Theorem
is vacuously true.

Now, suppose that A(B) > 0. So there is some hole, meaning a bounded
connected component of R2 \ π(σ(B)), within π(Σ(B)). Let K and L be the
k-element sets labeling two consecutive elements on the outer boundary of
the hole. Let C1 and C2 be two maximal weakly separated collections in MI
containing B. Then K and L lie in a common face of Σ(Cr) (for r = 1, 2.)
Triangulate Σ(Cr) using the edge (K,L). Let Jr be the third vertex of the
triangle of Σ(Cr) containing (K,L) and lying on the hole side. Let Tr be the
triangle (Jr,K, L). We now divide into 2 cases depending on the colors of
the triangles Tr.

Case 1: T1 and T2 are both white or both black. We present the case
that the triangles are white; the other case is very similar. Set H = K ∩ L.
Then the Jr are of the forms Her for some e1 and e2. From this we can
compute that J1 and J2 are weakly separated from each other. Also, by
hypothesis, B ∪ {J1} and B ∪ {J2} are weakly separated. So B ∪ {J1, J2}
is weakly separated; complete B ∪ {J1, J2} to a maximal weakly separated
collection C′ in MI .

Set Br = B ∪ {Jr}. Then Σ(Br) is Σ(B) with an extra triangle added
on, so A(Br) ≤ A(B) − δ. Now, C′ and Cr contain Br. So, by induction, Cr
is Br-equivalent to C′ within MI . Connecting the chains C1 → · · · → C′ →
· · · → C2, we see that C1 and C2 are B-equivalent within MI .

Case 2: T1 is white and T2 is black: Then we can write (J1, J2,K, L)
as (Hac,Hbd,Hab,Had). Since (J1,K, L) and (J2,K, L) are oriented the
same way, the triples (c, b, d) and (a, d, b) are cyclically oriented the same
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way, which shows that (a, b, c, d) are cyclicly oriented. By Lemma 5.1, Hab,
Hac, Had, Hbc, Hbd and Hcd are weakly separated from B. Set B1 =
B ∪ {Hac,Hab,Had,Hbc,Hcd} and B2 = B ∪ {Hbd,Hab,Had,Hbc,Hcd},
so the Br are weakly separated. Moreover, in Σ(Br), the new vertices that
we have added lie immediately adjacent to the edge (Hab,Had) of Σ(B),
inside the hole of Σ(B), and hence lie inside π(I). So, by Lemma 4.1, these
new vertices lie in MI , so B1 and B2 are weakly separated collections in
MI .

Complete B1 to a maximal weakly separated collection C′
1 within MI ;

define C′
2 to be the mutation of C′

1 where we replace Hac by Hbd. Then
C1∩C′

1 ⊇ B∪{Hac} and C2∩C′
2 ⊇ B∪{Hbd}. The complexes Σ(B∪{Hac})

and Σ(B∪{Hbd}) are Σ(B) with one added triangle. So, by induction, C1 and
C′
1 are (B ∪ {Hac})-equivalent within MI , and C2 and C′

2 are (B ∪ {Hbd})-
equivalent within MI . Chaining together the mutations C1 → · · · → C′

1 →
C′
2 → · · · → C2, we see that C1 and C2 are B-equivalent.

7. Implications of the main result

In this section, we go over the direct implications of Theorem 6.1. Each
maximal weakly separated collection corresponds to a reduced plabic graph
and the mutation of maximal weakly separated collections corresponds to
square moves of plabic graphs [6].

We can define a plabic complex of a positroid M. Consider a simplicial
complex where the vertices are labeled with Plücker coordinates and the
facets are given by plabic graphs (maximal weakly separated collections) of

M. A special case of this complex, when M is the uniform matroid
([n]
k

)
,

was studied in [3]. Hess and Hirsch also conjectured that the complex is a
pseudomanifold with boundary.

A simplicial complex is a pseudomanifold with boundary if it satisfies
the following properties [8]:

• (pure) The facets have the same dimension.
• (non-branching) Each codimension 1 face is a face of one or two facets.
• (strongly connected) Any two facets can be joined by a chain of facets
in which each pair of neighboring facets have a common codimension
1 face.

Therefore, another way to interpret Theorem 6.1 is:

Corollary 7.1. Let M be a positroid. The plabic complex of M is a pseu-
domanifold with a boundary.
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A similar phenomenon for wiring diagrams and maximal strongly sepa-
rated collections will be shown in [5].

One question we could ask related to the main result is the following:
We have shown that one can mutate a (reduced) plabic graph into another
plabic graph while preserving the set of facet labels they have in common. Is
this the optimal (in terms of number of mutations needed) way to transform
a plabic graph into another?

Question 7.2. Let C and C′ be two different maximal weakly separated col-
lections of a same positroid MI . Consider all possible chains of mutation
from C to C′. Among all the chains that have shortest length(least number
of mutations used), is there one that preserves C ∩ C′?
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