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Schubert duality for SL(n,R)-flag domains∗

Ana-Maria Brecan

This paper is concerned with the study of spaces of naturally de-
fined cycles associated to SL(n,R)-flag domains. These are com-
pact complex submanifolds in open orbits of real semisimple Lie
groups in flag domains of their complexification. It is known that
there are optimal Schubert varieties which intersect the cycles
transversally in finitely many points and in particular determine
them in homology. Here we give a precise description of these Schu-
bert varieties in terms of certain subsets of the Weyl group and
compute their total number. Furthermore, we give an explicit de-
scription of the points of intersection in terms of flags and their
number.
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1. Introduction

Here we deal with complex flag manifolds Z = G/P , with G a complex
semisimple Lie group and P a complex parabolic subgroup, and consider
the action of a real form G0 of G on Z. The real form G0 is the connected
real Lie group associated to the fixed point Lie algebra g0 of an antilinear
involution τ : g → g. It is known that G0 has only finitely many orbits
in Z and therefore it has at least one open orbit. These and many other
results relevant at the foundational level are proved in [7]. They are also
summarised in the research monograph [4]. Our work here is motivated by
recent developments in the theory of cycle spaces of such a flag domain D.
These arise as follows. Consider a choice K0 of a maximal compact subgroup
of G0, i.e. K0 is given by the fixed point set of a Cartan involution θ : G0 →
G0. Then K0 has a unique orbit in D ⊂ Z, denoted by C0, which is a
complex submanifold of D. Equivalently, if K denotes the complexification
of K0, one could look at C0 as the unique minimal dimensional closed K-
orbit in D. If dimC0 = q, then C0 can be regarded as a point in the Barlet
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space associated to D, namely Cq(D), [1]. By definition, the objects of this
space are formal linear combinations C = n1C1 + · · ·+ nkCk, with positive
integral coefficients, where each Cj is an irreducible q-dimensional compact
subvariety of D. In this context C0 is called the base cycle associated to K0.
It is known that Cq(D) is smooth at C0 and thus one can talk about the
irreducible component of Cq(D) that contains C0.

It is a basic method of Barlet and Koziarz, [2], to transform functions on
transversal slices to the cycles to functions on the cycle space. In the case at
hand these transversal slices can be given using a special type of Schubert
varieties which are defined with the help of the Iwasawa decomposition of
G0 (see part II of [4] and the references therein). Recall that this is a global
decomposition that exhibits G0 as a product K0A0N0, where each of the
members of the decomposition are closed subgroups of G0, K0 is a maximal
compact subgroup and A0N0 is a solvable subgroup. The Iwasawa decom-
position is used to describe a type of Borel subgroups of G which in a sense
are as close to being real as possible. We define an Iwasawa-Borel subgroup
BI of G to be a Borel subgroup that contains an Iwasawa-component A0N0

and we call the closure of an orbit of such a BI in Z an Iwasawa-Schubert
variety. The Iwasawa-Borel subgroup can be equivalently obtained at the
level of complex groups as follows. If (G,K) is a symmetric pair, i.e. K is
defined by a complex linear involution, and P = MAN where as usual M
is the centraliser of A in K, then any such BI is given by choosing a Borel
subgroup in M and adjoining it to AN .

The following result, [4, p.101-104], has provided the motivation for our
work.

Theorem 1.1. If S is an Iwasawa-Schubert variety such that dimS +
dimC0 = dimD and S ∩ C0 �= ∅ then the following hold:

1. S intersects C0 in only finitely many points z1, . . . , zds
,

2. For each point of intersection the orbits A0N0.zj are open in S and
closed in D,

3. The intersection S ∩ C0 is transversal at each intersection point zj.

For the next steps in this general area, for example computing in con-
crete terms the trace transform indicated above, we feel that it is important
to understand precisely the combinatorial geometry of this situation. This
means in particular to describe precisely which Schubert varieties intersect
the base cycle C0, their points of intersection and the number of these points.
In particular such results will describe the base cycle C0 (or any cycle in the
corresponding cycle space) in the homology ring of the flag manifold Z. We
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have done this for the classical semisimple Lie group SL(n,C) and its real
forms SL(n,R), SU(p, q) and SL(n,H) using methods which would seem
sufficiently general to handle all classical semisimple Lie groups.

The present paper deals with the real form SL(n,R), while the results
for the other two real forms can be found in the author’s thesis, [3]. The
description of the Schubert varieties is formulated combinatorially in terms
of elements of the Weyl group of G. Interesting combinatorial conditions
arise and the tight correspondence between combinatorics and geometry is
made explicit. Here, up to orientation we have only one open orbit. In the
case of the full flag manifold, the Weyl group elements that parametrize
the Schubert varieties of interest can be obtained from a simple game that
chooses pairs of consecutive numbers from the ordered set {1, . . . , n}. More-
over, their total number is also a well-known number, the double-factorial.
Surprisingly, the number of intersection points with the base cycle does not
depend on the Schubert variety but only on the dimension sequence and in
each case it is 2�n/2�. The main results are presented in Theorem 2.7 and
Theorem 2.9. In the case of the partial flag manifold the results depend
on whether the open orbit is measurable or not. In the measurable case
the main results are found in Theorem 2.13 and Theorem 2.14, and in the
non-measurable case in Proposition 2.17.

2. The case of the real form SL(n,R)

2.1. Preliminaries

Let G = SL(n,C) and P be a parabolic subgroup of G corresponding to
a dimension sequence d = (d1, . . . , ds) with d1 + · · · + ds = n, i.e. P is
given by block upper triangular matrices of sizes d1 up to ds, respectively.
Recall that in this case the flag manifold Z = G/P can be identified with
the set of all partial flags of type d, namely {V : 0 ⊂ V1 ⊂ · · · ⊂ Vs =
Cn}, where dim(Vi/Vi−1) = di, ∀1 ≤ i ≤ s, dimV0 = 0. Equivalently, Z
can be defined with the help of the sequence δ = (δ1, . . . , δs), with δi :=∑i

k=1 dk = dimVi, for all 1 ≤ i ≤ s. If (e1, . . . , en) is the standard basis
in Cn, the flags consisting of subspaces spanned by elements of this basis
are called coordinate flags. In the particular case when each di = 1 we have
a complete flag and the corresponding full flag variety is identified with
the homogeneous space Ẑ = G/B, with B the Borel subgroup of upper
triangular matrices in G. In terms of the dimension sequence d we have that
dimZ =

∑
1≤i<j≤s didj . For each d a fibration π : Ẑ → Z is defined by

sending a complete flag to its corresponding partial flag of type d.
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Let us look at Cn equipped with the standard real structure τ : Cn →
Cn, τ(v) = v and the standard non-degenerate complex bilinear form b :
Cn × Cn → C, b(v, w) = vt · w and view G as the group of complex linear
transformations on Cn of determinant 1. Moreover, let h : Cn × Cn → C

be the standard Hermitian form defined by h(v, w) = b(τ(v), w) = vt · w.
It follows that G0 := {A ∈ G : τ ◦ A = A ◦ τ} = SL(n,R). If θ denotes
both the Cartan involution on G0 and on G defined by θ(A) = (A−1)t,
then K0 := SO(n,R) and its complexification K := SO(n,C) are both
obtained as fixed points of the respective θ’s. Fix the Iwasawa decomposition
G0 = SL(n,R) = K0A0N0, where A0N0 are the upper triangular matrices
with positive diagonal entries in SL(n,R). Thus, in this special case, the
Iwasawa Borel subgroup BI is just the standard Borel subgroup of upper
triangular matrices in SL(n,C).

The following definitions give a geometric description in terms of flags of
the open G0-orbits in Z and the base cycles associated to this open orbits.
These results can be found in [5] and [6].

Definition 2.1. A flag z = (0 ⊂ V1 ⊂ · · · ⊂ Vs ⊂ Cn) in Z = Zd is said to
be τ -generic if dim(Vi∩τ(Vj)) = max{0, δi+δj−n}, ∀1 ≤ i, j ≤ s. In other
words, the dimensions of the intersections Vi ∩ τ(Vj) should be minimal.

Note that in the case of Z = G/B a flag z is τ -generic if and only if

τ(Vj)⊕ Vn−j = C
n, ∀1 ≤ j ≤ 
n/2�.

Definition 2.2. A flag z = (0 ⊂ V1 ⊂ · · · ⊂ Vs ⊂ Cn) in Z = Zd is said to
be isotropic if either Vi ⊆ V ⊥

j or V ⊥
i ⊆ Vj , ∀1 ≤ i, j ≤ s. In other words,

dim(Vi ∩ V ⊥
j ) = min{δi, n− δj}.

Note that in the case of Z = G/B and m = 
n/2� a flag z is isotropic if
and only if Vi ⊂ V ⊥

i for all 1 ≤ i ≤ m, Vm = V ⊥
m , if n is even and the flags

Vn−i are determined by Vn−i = V ⊥
i , for all 1 ≤ i ≤ m.

If n = 2m + 1 the unique open G0-orbit is described by the set of τ -
generic flags. If n = 2m, denote by Cn

R
the decomplexification of Cn, namely

the vector space Cn viewed as a real vector space. For two basis of Cn
R

there exist a unique linear transformation, call it A, which takes one bases
into the other. If the determinant of A is positive we say that the two
basis have the same orientation and opposite orientation otherwise. Since
G0 preserves orientation in this case we have two open orbits defined by
the set of positively oriented τ -generic flags and by the set of negatively
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oriented τ−generic flags. One can define a map that reverses orientation
and interchanges the two open orbits. It is therefore enough to only consider
the open orbit defined by the positively-oriented flags. In each of the open
orbits the base cycle C0 is characterised by the set of isotropic flags.

Finally, recall the definition of Schubert varieties in a general flag mani-
fold Z = G/P and a few interesting properties in order to establish notation.
In general, for a fixed Borel subgroup B of G, a B-orbit O in Z is called
a Schubert cell and the closure of such an orbit is called a Schubert vari-
ety. A Schubert cell O in Z is parametrized by an element w of the Weyl
group of G and Z is the disjoint union of finitely many such Schubert cells.
Furthermore, the integral homology ring of Z, H∗(Z,Z) is a free Z-module
generated by the set of Schubert varieties.

If G = SL(n,C) and T is the maximal torus of diagonal matrices in G,
then the Weyl group of G with respect to T can be identified with Σn, the
permutation group on n letters. Moreover, the complete coordinate flags in
G/B are in 1 − 1 correspondence with elements of Σn. Given a complete
coordinate flag

< ei1 >⊂ · · · ⊂< ei1 , ei2 , . . . , eik >⊂ · · · ⊂ C
n,

one can define a permutation w by w(k) = ik for all k and viceversa. The
complete coordinate flags are also in 1 − 1 correspondence with permuta-
tion matrices in GL(n,C). Given an element w ∈ Σn one obtains a per-
mutation matrix with column ith equal to ew(i) for each i. For this reason
we use the symbol w for both an element of Σn in one line notation, i.e.
w(1)w(2). . . w(n), or for the corresponding permutation matrix. It will be
clear from the context to which kind of representation we are referring to.

The fixed points of the maximal torus T in G/B are the coordinate
flags Vw for w ∈ W and G/B is the disjoint union of the Schubert cells
Ow := B.Vw, where w ∈ W . The dimension of the Schubert cell Ow is given
by the number of inversions in the permutation w, that is the length of w.
Furthermore, B is the isotropy subgroup of G at the base flag:

< e1 >⊂< e1, e2 >⊂ · · · ⊂< e1, e2, . . . , en >

and the zero-dimensional cell corresponds to the identity permutation w =
123 . . . n. Let 0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn−1 ⊂ Cn be an arbitrary point in Ow.
Then there exists (v1, . . . , vn) an ordered basis of Cn adapted to this flag,
i.e. Vj =< v1, . . . , vj > is the span of the first j vectors in the basis, such
that
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vj :=

w(j)−1∑
i=1

vijej + ew(j), with vij ∈ C, vij = 0, ∀i ∈ {w(1), . . . , w(j − 1)}.

This gives another useful way of visualizing Schubert cells via their matrix
canonical form, which is a matrix [v1 . . . vn] with the jth column vj having
the properties that:

• the last nonzero coordinate of vj is vw(j)j and it is normalized to be 1,

• the w(j)th coordinate of vk is set to be zero for all k > j, i.e.

vw(j)k = 0, ∀k > j,

• vj is well-defined only modulo span{v1, . . . , vj−1}.

2.2. Dimension-related computations

It is important for our discussion to compute the dimension of the base cycle
and of the respective dual Schubert varieties in both the case of G/B and
of G/P . In the case when B is the standard Borel subgroup in SL(n,C)
and K = SO(n,C), the cycle C0 is a compact complex submanifold of D
represented in the form C0 = K.z0 ∼= K/(K ∩Bz0) for a base point z0 ∈ D,
where K ∩Bz0 is a Borel subgroup of K. Since C0 is a complex manifold

dimC0 = dimTz0C0 = dim k/k ∩ bz0 ,

where k is the Lie algebra associated to K and bz0 is the Borel subalgebra
associated to Bz0 . Thus in the case when n = 2m, dimC0 = m2 − m and
the Schubert varieties of interest must be of dimension m2. If n = 2m + 1,
then dimC0 = m2 and the Schubert varieties of interest are among those of
dimension m2 +m.

2.3. Introduction to the combinatorics

The next two sections give a full description of the Schubert varieties of
interest that intersect the base cycle C0, the points of intersection and their
number, in the case of an open SL(n,R)-orbit D in Z. The first case to be
considered is the case of Z = G/B, where

SC0
:= {Sw Schubert variety : dimSw + dimC0 = dimZ and Sw ∩ C0 �= ∅}.

In what follows we describe the conditions that the element w of the Weyl
group that parametrizes the Schubert variety Sw must satisfy in order for Sw
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to be in SC0
. One of the main ingredients for this is the fact that Sw∩D ⊂ Ow

and the fact that if Sw ∩D �= ∅, then Sw ∩ C0 �= ∅. Moreover, no Schubert
variety of dimension less than the codimension of the base cycle intersects
the base cycle. These are general results that can be found in [4, p.101–104].

Definition 2.3. A permutation w = k1 . . . kml∗lm . . . l1 is said to satisfy the
spacing condition if li < ki, ∀1 ≤ i ≤ m, where l∗ is removed from the
representation in the case n = 2m.

For example, 265431 satisfies the spacing condition, while 261534 does
not satisfy the spacing condition.

Definition 2.4. A permutation w = k1 . . . kml∗lm . . . l1 is said to satisfy the
double box contraction condition if w is constructed by the immediate
predecessor algorithm:

• Start by choosing k1 and l1 := k1 − 1 from the ordered set {1, . . . , n}.
If we have chosen all the numbers up to ki and li, then to go to the step
i + 1 we make a choice of ki+1 and li+1 from the ordered set {1, . . . , n} −
{k1, l1, . . . , ki, li} in such a way that li+1 sits inside the ordered set at the
left of ki+1.

Remark that a permutation that satisfies the double box contraction
automatically satisfies the spacing condition as well, but not conversely. For
example, 256341 satisfies both the double box contraction and consequently
the spacing condition while 265431 does not satisfy the double box contrac-
tion even though it satisfies the spacing condition.

The next results are meant to establish a tight correspondence between
the combinatorics of the Weyl group elements that parametrize the Schubert
varieties in SC0

and the geometry of flags that describe the intersection
points. Namely, we prove that the spacing condition on Weyl group elements
corresponds to the τ−generic condition on flags. Similarly, the double box
contraction condition on Weyl group elements corresponds to the isotropic
condition on flags.

2.4. Main results

The first result of this section describes the Schubert varieties that intersect
the base cycle independent of their dimension.

Proposition 2.5. A Schubert variety Sw corresponding to a permutation

w = k1 . . . kml∗lm . . . l1,

where l∗ is removed from the representation in the case n = 2m, has non-
empty intersection with C0 if and only if w satisfies the spacing condition.
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Proof. We use the fact that if a Schubert variety intersects the open orbit
D, then it also intersects the cycle C0 and prove that Sw contains a τ -generic
point if and only if w satisfies the spacing condition.

First assume that li < ki for i ≤ m, n = 2m. Under this assumption we
need to prove that

τ(Vi)⊕ V2m−i = C
n ∀i ≤ m,

where V is an arbitrary flag in Sw. This is equivalent to showing that the
matrix formed from the vectors generating τ(Vi) and V2m−i has maximal
rank. Form the following pairs of vectors (vi, v̄i) and the matrices

[v1v̄1 . . . viv̄ivi+1 . . . v2m−i], ∀i ≤ m.

These are the matrices corresponding to

τ(Vi) =< v̄1, . . . , v̄i >

and

V2m−i =< v1, . . . , vi, vi+1, . . . , v2m−i > .

We carry out the following set of operations keeping in mind that the rank
of a matrix is not changed by row or column operations. The initial matrix
is the canonical matrix representation of the Schubert cell Ow. For the step
j = 1, it follows that l1 < k1 and the last column corresponding to l1 is
eliminated from the initial matrix. Furthermore, at this step a new column
corresponding to v1 is introduced between the first and second column of
the canonical matrix which now becomes

[v1v1v2 . . . v2m−1].

Next denote by ch the hth column of this matrices and obtain the fol-
lowing:

On the second column c2 zeros are created on all rows starting with k1
and going down to row l1+1. This is done by subtracting suitable multiplies
of c2 from the columns in the matrix having a 1 on these rows and putting
the result on c2. For example to create a zero on the spot corresponding to k1
the second column is subtracted from the first column and the result is left
on the second column. On row l1 a 1 is created by normalising. This 1 is the
only 1 on row l1, because the last column that contained a 1 on row l1 was
removed from the matrix. We now want to create zeros on cj for j > 2 on
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row l1. It is enough to consider those columns which have 1’s on rows greater

than l1, because the columns with 1’s on rows smaller than l1 already have

zeros below them. Finally, subtract from these columns suitable multiplies

of c2. We thus create a matrix that represents points in the Schubert variety

k1l1k2 . . . kmlm . . . l2, which obviously has maximal rank.

Assume by induction that we have created the maximal rank matrix cor-

responding to points in the Schubert variety k1l1k2l2 . . . kjljkj+1 . . . kmlm . . .

lj+1. To go to the step j + 1 remove from the matrix the last column corre-

sponding to lj+1 and add in between c2j+1 and c2j+2 the conjugate of c2j+1

and reindex the columns.

On column c2(j+1) zeros are created on all rows starting with kj+1 and

going down to lj+1 + 1 by subtracting suitable multiplies of c2(j+1) from

the columns in the matrix having a 1 on this rows and putting the result

on c2(j+1). Next a 1 is created on row l2(j+1) by normalisation. Again this

is the only spot on row l2(j+1) with value 1, because the column which

had a 1 on this spot was removed from the matrix. By subtracting suitable

multiplies of c2(j+1) from columns having a 1 on spots greater than l(j+1),

we create zeros on row lj+1 at the right of the 1 on column c2(i+1). We thus

obtain points in the maximal rank matrix of the Schubert variety indexed

by k1l1k2l2 . . . kjljkj+1lj+1 . . . kmlm . . . lj+2.

At step j = m we obtain points in the maximal rank matrix of the

Schubert variety indexed by k1l1k2l2 . . . kmlm. For the odd dimensional case

we insert in the middle a column corresponding to l∗ and observe that this

of course does not change the rank of the matrix.

Conversely, if the spacing condition is not satisfied let i be the smallest

such that ki < li and look at the matrix

[v1v1 . . . vivivi+1 . . . v2m−i].

Then use the same reasoning as above to create a 1 on the spot in the matrix

corresponding to row lj and column 2j for all j < i using our chose of i.

Now there is a 1 on each row in the matrix except on row li. Column c2i
and c2i−1 both have a 1 on position ki and zeros bellow. Since li > ki this

implies that for each j < i there exist a column in the matrix that has 1 on

row j. Using these 1’s we begin subtracting c2i from suitable multiplies of

each such column, starting with c2i−1 then going to the one that has 1 on

the spot ki − 1, then to the one the has 1 on the spot ki − 2 and so on and

at each step the result is left on c2i. This creates zeros on all the column c2i
and proves that the matrix does not have maximal rank.
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Remark. For dimension computations, recall how to compute the length
|w|, of an element w of Σn. Start with the number 1 and move it from its
position toward the left until it arrives at the beginning and associate to this
its distance p1 which is the number of other numbers it passes. Then move
2 to the left until it is adjacent from the right to 1 and compute p2 in the
analogous way. Continuing on compute pi for each i and then the length of
w is just

∑
pi.

Lemma 2.6. If w = k1 . . . kml∗lm . . . l1 satisfies the spacing condition and
|w| = m2 for the even dimensional case, or |w| = m2 + m for the odd
dimensional case, then l1 = k1 − 1.

Proof. Suppose that l1 < k1−1. Then there exist j > 1 such that pj = k1−1
sits on position j inside w. If pj sits among the l’s, then construct w̃ by
making the transposition (j, n) that interchanges pj and l1. If pj sits among
the k’s then construct w̃ by interchanging k1 with pj . Observe that w̃ still
satisfies the spacing condition and |w̃| ≤ m2 − 1 since in the first case all
elements smaller then k1 − 1 (at least one element, namely l1) do not need
to cross over k1 − 1 anymore. In the second case pj does not need to cross
over k1 anymore and since pj = k1 − 1, the elements that need to cross k1
on position j remain the same as the elements that needed to cross pj in the
initial permutation. But this contradicts the fact that no Schubert variety
of dimension less than m2 intersects the cycle.

For the odd dimensional case just add l∗ to the representation and con-
sider |w| = m2+m. The only case remaining to be considered is that where
l∗ = k1 − 1. In this case we interchange l∗ with l1 and observe that this still
satisfies the spacing condition and it is of dimension strictly smaller then
m2 +m. As above this implies a contradiction.

Theorem 2.7. A Schubert variety Sw belongs to SC0
if and only if w satisfies

the double box contraction condition. In particular, in this case w satisfies
the spacing condition and |w| = m2, for n = 2m, and |w| = m2 +m.

Proof. We prove the theorem using induction on dimension, the case n = 2
being clear. Denote by Z̃ the flag variety of complete flags in Cn−2, by D̃
the unique (up to orientation) open G̃0 := SL(n − 2,R)-orbit in Z̃ and by
C̃0 the set of isotropic flags in D̃. Furthermore, denote by SC̃0

the set of

Iwasawa-Schubert varieties S̃ corresponding to the Borel subgroup of upper
triangular matrices in SL(n− 2,C), having non-empty intersection with C̃0

and such that dim S̃ + C̃0 = dim Z̃.
The notation w = (k, l∗, l), respectively w̃ = (k̃, l̃∗, l̃) is used to represent

the full sequence w = k1 . . . kml∗lm . . . l1, respectively
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w̃ = k̃1 . . . k̃m−1l̃∗ l̃m−1 . . . l̃1,

for an element of Σn, respectively Σn−2.

By induction we assume that S̃w̃ ∈ SC̃0
if and only if w̃ satisfies the

double box contraction condition, that is if and only if w̃ satisfies the spacing
condition and the length of w̃ is equal to (m− 1)2 + (m− 1) for n = 2m+1
and (m − 1)2 for n = 2m, respectively. We want to prove that this implies
Sw ∈ SC0

if and only if w satisfies the double box contraction condition.

From Proposition 2.5 it follows that a Schubert variety Sw has non-
empty intersection with C0 if and only if w satisfies the spacing condition.
Then Lemma 2.6 tells us that a necessary condition for Sw ∈ SC0

is that
l1 = k1 − 1. By definition this is also a necessary condition for an arbitrary
element of Σn to satisfy the double box contraction condition.

Let CC0
, respectively CC̃0

, be the set of Schubert varieties Sw, respectively

S̃w̃, such that Sw ∩ C0 �= ∅, respectively S̃w̃ ∩ C̃0 �= ∅ and w(n) = w(1)− 1.
We define a map

CC0
→ CC̃0

, Sw �→ S̃w̃,

as follows. Let z0 ∈ C0 ∩ Sw. Then there exists an ordered basis (v1, . . . , vn)
of Cn such that

vj :=

w(j)−1∑
i=1

vijej + ew(j), with vij ∈ C, vij = 0, ∀i ∈ {w(1), . . . , w(j − 1)},

and z0 is the complete flag

0 ⊂< v1 >⊂< v1, v2 >⊂ · · · ⊂< v1, v2, . . . , vn > .

Remove w(1) and w(n) from the set {1, 2, . . . , n} to obtain a set Σw with
n − 2 elements. Define a bijective map φw : Σw → {1, 2, . . . , n − 2} by
φw(x) = x for x < w(n) and φ(x) = x− 2, for x > w(1). Furthermore let

w̃ := φ(w(2)) . . . φ(w(n− 1)),

ṽj :=

w̃(j)−1∑
i=1

vijew̃(i) + ew̃(j), ∀j = 2, n− 1,

and z̃0 the flag in Cn−2 given by

0 ⊂< ṽ2 >⊂ · · · ⊂< ṽ2, ṽ3, . . . , ṽn−2 > .
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By construction it is clear that z̃0 is an isotropic flag in Cn−2 and z̃0 ∈ S̃w̃.
Therefore z̃0 ∈ C̃0 ∩ S̃w̃ and thus S̃w̃ ∈ CC̃0

. Since φw is a bijection, one can

go back and forth between w and w̃, i.e. w(i+ 1) = φ−1
w (w̃(i)).

Next we express the length of w, i.e. the dimension of the Schubert
variety Sw, as a function of the length of w̃, i.e. of the dimension of S̃w̃. Let p̃j
be the distances for the permutation |(k̃, l̃∗, l̃)|. First consider those elements
ε of the full sequence (k, l∗, l) which are smaller than l1, in particular which
are smaller than k1. In order to move them to their appropriate position
one needs the number of steps p̃ε to do the same for their associated point
in (k̃, l̃∗, l̃) plus 1 for having to pass k1. Thus in order to compute |(k, l∗, l)|
from |(k̃, l̃∗, l̃)| we must first add k1 − 2 to the former. Having done the
above, we now move l1 to its place directly to the left of k1. This requires
crossing 2m+ 1− (k1 − 1) larger numbers in the odd dimensional case and
2m−(k1−1) numbers in the even dimensional case. So together we have now
added 2m in the odd dimensional case and 2m− 1 in the even dimensional
case to |(k̃, l̃∗, l̃)| and |(k̃, l̃)|, respectively. All other necessary moves are not
affected by the transfer to |(k̃, l̃∗, l̃)| and back. So for those elements we have
p̃ε = pε and it follows that

|(k, l∗, l)| = |(k̃, l̃∗, l̃)|+ 2m,

in the odd dimensional case and

|(k, l)| = |(k̃, l̃)|+ 2m− 1,

in the even dimensional case.
Above it was shown that, in the odd dimensional case, Sw ∈ SC0

if and
only if |w| = m2 +m and thus if and only if

|w̃| = m2 +m− 2m = m2 − 2m+ 1 +m− 1

= (m− 1)2 + (m− 1).

In turn this is equivalent to S̃w̃ ∈ SC̃0
, which by the induction assumption

is equivalent to w̃ satisfying the double box contraction condition. Finally,
this is equivalent to w satisfying the double box contraction condition.

In the even dimensional case Sw ∈ SC0
if and only if |w| = m2, which is

equivalent to |w̃| = m2−2m+1 = (m−1)2. In turn this is equivalent to S̃w̃ ∈
SC̃0

, which by the induction assumption is equivalent to w̃ satisfying the
double box contraction condition. Finally, this is equivalent to w satisfying
the double box contraction condition.
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Corollary 2.8. The number of Iwasawa-Schubert varieties which intersect
the base cycle is the double factorial

(n− 1)!! =

{
(n− 1) · (n− 3) · · · · · 5 · 3 · 1, n odd,

(n− 1) · (n− 3) · · · · · 6 · 4 · 2, n even.

Proof. From Theorem 2.7 it follows that w ∈ Σn parametrizes an element
of SC0

if and only if w satisfies the double box contraction condition. We
prove using induction on dimension that there are (n− 1)!! permutations in
Σn which satisfy the double box contraction condition. For n = 2 the result
is clear.

By induction assume that there are (n − 3)!! elements of Σn−2 satis-
fying the double box contraction condition. Observe that to construct an
element w ∈ Σn which satisfies the double box contraction condition k1 can
be arbitrarily chosen from {2, . . . , n} and once k1 is chosen l1 is fixed. This
amounts to (n− 1) possibilities for the placement of k1 and l1. For each k1
and l1 define the bijective map φ : Σ → {1, 2, . . . , n − 2} by φ(x) = x
for x < l1 and φ(x) = x − 2 for x > k1. One can then construct us-
ing the immediate predecessor algorithm and the induction hypothesis the
(n − 3)!! elements w̃ of Σn−2 satisfying the double box contraction con-
dition. By definition of the immediate predecessor algorithm, for fixed k1
and l1, each w in Σn satisfying the double box contraction condition is ob-
tained as w = k1φ

−1(w̃(1)) . . . φ−1(w̃(n−2))l1, for some w̃ in Σn−2 satisfying
the double box contraction condition. Thus in total we obtain (n − 1)!! =
(n − 1)(n − 3)!! elements of Σn which satisfy the double box contraction
condition.

The next theorem gives a geometric description in terms of flags of the
intersection points. The complete flags describing the intersection points are
obtained in the following way from theWeyl group element that parametrizes
Sw. In the case when n = 2m + 1 and w = k1 . . . kml∗lm . . . l1 the points of
intersection are given by the following flags

(1)

< (±
√
−1)el1 + ek1

>⊂ · · · ⊂< (±
√
−1)el1 + ek1

, . . . ,

(±
√
−1)elm + ekm

, el∗ >⊂< (±
√
−1)el1 + ek1

, . . . ,

(±
√
−1)elm + ekm

, el∗ , elm >⊂ · · · ⊂ C
n.

In the case when n = 2m, the complete flags are given by the same expression
with the exception that the span of el∗ is removed from the representation.
Of course, one must not forget that the positively oriented flags correspond
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to one open orbit and the negatively oriented flags to the other, but since
this are symmetric with respect to the map that reverses orientation we have
the same number of intersection points with the base cycle independently of
the chosen open orbit.

Theorem 2.9. A Schubert variety Sw in SC0
intersects the base cycle C0

in 2m points in the case when n = 2m+1 and 2m−1 points in the case when
n = 2m. The points are given by (1).

Proof. Let w = k1 . . . kml∗lm . . . l1 and z0 be an arbitrary flag in Sw ∩ C0.
Then there exists and ordered basis (v1, . . . , vn) of C

n such that

vj :=

w(j)−1∑
i=1

vijej + ew(j), with vij ∈ C, vij = 0, ∀i ∈ {w(1), . . . , w(j − 1)},

and z0 is the complete flag

0 ⊂< v1 >⊂< v1, v2 >⊂ · · · ⊂< v1, v2, . . . , vn > .

Let Vi :=< v1, . . . , vi > and [v1 . . . vi] the n× i matrix corresponding to the
column vectors spanning Vi, for all 1 ≤ i ≤ n. Then for i = n, [v1 . . . vn] is
just the matrix canonical form and each matrix [v1 . . . vi] can be obtained
from it by removing the last n− i columns.

Since z0 ∈ Sw ∩ C0 it follows that z0 must be an isotropic flag, i.e.
V ⊥
n−i = Vi for all 1 ≤ i ≤ m. In terms of the basis vectors these m conditions

translate to the fact that each matrix [v1 . . . vn−i] must have the column
vector vi perpendicular to itself and all other vectors in the matrix for each
1 ≤ i ≤ m. We now analyze these conditions step by step to give an explicit
description of all the intersection points.

For i = 1 we look at the matrix [v1 . . . vn−1] and thus discard the last
column vn = v1ne1+ · · ·+v1,l1−1el1−1+el1 , where l1 = k1−1. If l1 = 1, then
k1 = 2 and thus v1 = v11e1 + e2. From the isotropic condition v1 · v1 = 0 it
follows that v11 ∈ {±

√
−1}.

If l1 > 1, observe first that [v1 . . . vn−1] contains column vectors which
have a 1 on entry p for all 1 ≤ p < l1. Denote such column vectors with fp.
Using the isotropic relations v1 · f1 = 0, . . . , v1 · (fl1 −1) = 0, and computing
step by step it follows that v11 = 0, . . . , v1,l1−1 = 0. Now the only remaining
freedom on v1 is on v1,l1 and using the isotropic relation v1 ·v1 = 0 it follows
that (v1,l1)

2 + 1 = 0. Therefore

v1 = (±
√
−1)el1 + ek1

.
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The condition v1 · vp = 0, for all 2 ≤ p ≤ n− 1, is equivalent to

vl1,p · (±
√
−1) = 0, for all 2 ≤ p ≤ n− 1,

which is further equivalent to vl1,p = 0, for all 2 ≤ p ≤ n−1. The entries vp,n,
for 1 ≤ p ≤ l1 − 1 are all zero by definition of the canonical form [v1, . . . vn].

For i = 2 we look at the matrix [v1 . . . vn−2] and thus discard vn−1 and
vn from [v1 . . . vn]. From the immediate predecessor algorithm it follows that
either l2 = k2 − 1 or l2 = l1 − 1 and vk1,2 = 0. Furthermore, even though
at this step vn, the column vector corresponding to l1, is discarded we have
from the step i = 1 that vl1,2 = 0. Following the same algorithm as before
we show that the isotropic condition forces vp,2 = 0, for all 1 ≤ p ≤ l2 − 1,
i.e. compute coefficients step by step starting with the equation v2 · f1 = 0
and going further to v2 · fp = 0, where fp is the column with entry 1 on
row p, for all 1 ≤ p ≤ l2 − 1, except of rows l1 and k1 which entries were
already forced to be zero. The only freedom that remains on v2 is on the
spot corresponding to l2. Here, using v2 · v2 = 0, it follows that

v2 = (±
√
−1)el2 + ek2

.

Assume that we have shown that vs = (±
√
−1)els + eks

, for all 1 ≤
s ≤ j − 1, with j ≤ m, that vls,p = 0, for all s + 1 ≤ p ≤ n − s, and that
vp,n−s+1 = 0, for all 1 ≤ p ≤ ls − 1. To go to step j one usees the fact that
lj belongs to the set

{kj − 1, l1 − 1, . . . , lj−1 − 1}

and repeats the procedure. In this case the columns vs for n− j+1 ≤ s ≤ n
are removed from the matrix canonical form. As before zeros are created
step by step starting with vj · f1 = 0 and going up to vj · fp = 0, where fp is
the column where a 1 sits on row p for all 1 ≤ p ≤ lj − 1, except of course
when p ∈ {k1, . . . , kj−1, l1, . . . lj−1} in which case even though the columns
corresponding to this elements are not in the matrix their spots in column
j were already made zero in the previous step.

It thus follows that the points of intersection < v1 >⊂ · · · ⊂ Cn are
given by the following flags < (±

√
−1)el1 + ek1

>⊂ · · · ⊂< (±
√
−1)el1 +

ek1
, . . . , (±

√
−1)elm+ekm

, el∗ > ⊂< (±
√
−1)el1+ek1

, . . . , (±
√
−1)elm+ekm

,
el∗ , elm >⊂ · · · ⊂ Cn.

Therefore the homology class [C0] of the base cycle inside the homology
ring of Z is given in terms of the Schubert classes of elements in SC0

by:

[C0] = 2m
∑

S∈SC0

[S], if n = 2m+ 1, and [C0] = 2m−1
∑

S∈SC0

[S], if n = 2m.
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2.5. Main results for measurable open orbits in Z = G/P

This section treats the case when D is an open orbit in Z = G/P and C0 is
the base cycle in D.

Schubert cells and varieties can also be defined in G/P . Those will be
indexed by elements of the coset space Σn/Σd1

× Σd2
× · · · × Σds

and each
right coset contains a unique minimal representative, i.e. a permutation w
such that w(1) < · · · < w(d1), w(d1 + 1) < · · · < w(d1 + d2), . . . , w(d1 +
. . . ds−1+1) < · · · < w(d1+ · · ·+ds) = w(n). The dimension of the Schubert
cell CwP := BwP/P is the length of the minimal representative w and there
is a unique lift to a Schubert cell in G/B of the same dimension, namely
Ow := BwB/B. When working with OwP we can thus use the same matrix
representation as for Ow and many times we will refer to OwP just by Ow.

Recall the notation

SC0
:= {Sw Schubert variety : dimSw + dimC0 = dimZ and Sw ∩ C0 �= ∅}.

The main idea is to lift Schubert varieties Sw ∈ SC0
to minimal dimensional

Schubert varieties Sŵ in Ẑ := G/B that intersect the open orbit D̂ and
consequently the base cycle Ĉ0.

The first step is to consider the situation when D is a measurable open
orbit. There are many equivalent ways of defining measurability in general.
In our context however, this depends only on the dimension sequence d that
defines the parabolic subgroup P . Namely, an open SL(n,R) orbit D in
Z = G/P is called measurable if P is defined by a symmetric dimension
sequence as follows:

• d = (d1, . . . , ds, ds, . . . , d1) or e = (d1, . . . , ds, e
′, ds, . . . , d1), for n =

2m,
• e = (d1, . . . , ds, e

′, ds, . . . , d1), for n = 2m+ 1.

A general definition of measurability can be found in [4].
As discussed in the preliminaries, a Schubert variety Sw in Z is indexed

by the minimal representative w of the parametrization coset associated to
the dimension sequence defining P . Corresponding to the symmetric dimen-
sion sequence d, each such w can be divided into blocks Bj and B̃j , both
having the same number of elements dj for 1 ≤ i ≤ s. Set d0 := 0 and
ds+1 := 0. The block Bj is defined to be the sequence of numbers

{w(k) :
j−1∑
i=0

di + 1 ≤ k ≤
j∑

i=0

di}
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of the minimal representative w, and the block B̃j is defined to be the
sequence of numbers

{w(k) :
s+1∑

i=j+1

di +

s∑
i=1

di + 1 ≤ k ≤
s∑

i=1

di +

s+1∑
i=j

di}.

In the case of the symmetric symbol e the block Be′ is defined as the sequence
of numbers

{w(k) :
s∑

i=1

di + 1 ≤ k ≤
s∑

i=1

di + e′}.

For example, B1 = (w(1) < w(2) < · · · < w(d1)) and B̃1 = (w(d1+ · · ·+ds+
ds + · · ·+ d2 + 1) < · · · < w(n)). The pairs (Bj , B̃j) are called symmetric
block pairs. In the case of the symmetric dimension symbol e, one single
block Be′ of length e′ is introduced in the middle of w. In what follows w
will always correspond to a symmetric dimension sequence and it will satisfy
the conditions of a minimal representative.

Definition 2.10. A permutation w is said to satisfy the generalized spac-
ing condition, if for each symmetric block pair (Bj , B̃j) the elements of
B̃j can be arranged in such a way that if the elements of Bj are denoted by

kj1 . . . k
j
dj

and the rearranged elements of B̃j by lj1 . . . l
j
dj
, then lji < kji for all

1 ≤ i ≤ dj .

Observe that in the case of the symmetric dimension sequence e we can
always rearrange the elements in the single block Be′ so that they satisfy
the spacing condition inside the block.

Definition 2.11. A permutation B1 . . . BsBe′B̃s . . . B̃1 is said to satisfy the
generalized double box contraction condition if w is constructed by the
generalized immediate predecessor algorithm:

• The first symmetric block pair (B1 = (k1i ), B̃1 = (l1i )) is constructed
by choosing d1 pairs (l1i , k

1
i ) of consecutive numbers from the ordered set

{1, . . . , n}
• If all symmetric block pairs up to (Bj = (kji ), B̃j = (lji )) have been

chosen, then to go to the step j + 1 choose dj+1 pairs (lj+1
i , kj+1

i ) in such a

way that lj+1
i sits at the immediate left of kj+1

i in the ordered set {1, . . . , n}−
{∪j

i=1Bi} − {∪j
i=1B̃i}, for all 1 ≤ i ≤ dj+1.

Observe that in the case of the symmetric symbol e the elements in the
single block Be′ can always be rearranged so that they satisfy the double
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box contraction condition inside the block. The symbol Be′ will always be
written in a representation of w and disregarded in the case of the symbol d.

If w satisfies the generalized spacing condition, w̃ denotes the permuta-
tion obtained from w by replacing each block B̃j = lj1 . . . l

j
dj

with a choice

of rearrangement of its elements l̃j1 . . . l̃
j
dj

required so that w satisfies the

generalized spacing condition. Further inside each rearranged block B̃j in

w̃, l̃j1 . . . l̃
j
dj

is rewritten as l̃jdj
l̃jdj−1 . . . l̃

j
1. In the case of Be′ being part of the

representation of w the following rearrangement is chosen: if e′ is even then
Be′ is rearranged as l′e′/2+1 l′e′/2+2 . . . l

′
e′ l

′
1 . . . l

′
e′/2−1l

′
e′/2 and if e′ is odd then

Be′ is rearranged as l′(e′+1)/2+1 l′(e′+1)/2+2 . . . l
′
e′ l

′
1 . . . l

′
(e′+1)/2−1l

′
(e′+1)/2. Ob-

serve that now w̃ is a permutation that satisfies the spacing condition for
the G/B case and it is of course also just another representative of the coset
that parametrizes Sw.

Proposition 2.12. A Schubert variety Sw parametrized by the permutation

w = B1B2 . . . BsBe′B̃s . . . B̃2B̃1

has non-empty intersection with C0 if and only if w satisfies the generalized
spacing condition, i.e. if and only if there exists a lift of Sw to a Schubert
variety Sw̃ that intersects the base cycle in Ẑ = G/B.

Proof. If w satisfies the generalized spacing condition, then by the above
observation one can find another representative w̃ of the parametrizing coset
of Sw, that satisfies the spacing condition and thus a Schubert variety Sw̃

that intersects Ĉ0. Because the projection map π is equivariant it follows
that π(Sw̃) = Sw intersects C0.

Conversely, suppose Sw ∩ C0 �= ∅ and assume without loss of generality
that w is the minimal representative of the right coset class indexing Sw.
Then for every point p ∈ Sw ∩ C0 there exists p̂ ∈ Sw̃ ∩ Ĉ0 with π(p̂) =
p and π(Sw̃) = Sw for some Schubert variety in G/B indexed by w̃. It
follows that w̃ and w determine the same coset in G/P , because π is B-
equivariant and from Proposition 2.5. w̃ satisfies the spacing condition. By
definition of the minimal representative w is obtained from w̃ by dividing
w̃ into blocks B1 . . . BsBe′B̃s . . . B̃1 and arranging the elements in each such
block in increasing order. This shows that w satisfies the generalized spacing
condition

If w = Bd1
. . . Bds

B̃ds
. . . B̃1, with B̃dj

= lj1 . . . l
j
dj

for each 1 ≤ j ≤ s,

then let ŵ := Bd1
. . . Bds

C̃ds
. . . C̃d1

, where C̃dj
= ljdj

ljdj−1 . . . l
j
2l

j
1 for each

1 ≤ j ≤ s. If Be′ = l′1 . . . l′e′ is part of the representation of w, then
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let B̃e′ be the single middle block in the representation of ŵ defined by:
l′e′/2+1l

′
e′/2+2 . . . l

′
e′ l

′
1 . . . l

′
e′/2−1l

′
e′/2 if e′ is even and l′(e′+1)/2+1l

′
(e′+1)/2+2 . . .

l′e′ l
′
1 . . . l

′
(e′+1)/2−1l

′
(e′+1)/2 if e′ is odd. Call such a choice of rearrangement

for w a canonical rearrangement.
Note that if Sw ∈ SC0

lifts to Sŵ, such that ŵ satisfies the double box
contraction condition, then dimSŵ−dimSw = (dim Ẑ−dim Ĉ0)− (dimZ−
dimC0) = (dim Ẑ − dimZ)− (dim Ĉ0 − dimC0). Since π is a G0 and K0

equivariant map, if F denotes the fiber of π over a base point z0 ∈ C0, then
the fiber of π|Ĉ0

: Ĉ0 → C0 over z0 is just F ∩ Ĉ0 and dimSŵ −dimSw must

equal dimF − dim(F ∩ Ĉ0).
As stated in the preliminaries in the case of Ẑ = G/B and m = 
n/2�,

the isotropic condition on flags is equivalent to Vi ⊂ V ⊥
i for all 1 ≤ i ≤

m, Vm = V ⊥
m , if n is even and the flags Vn−i are determined by Vn−i =

V ⊥
i , for all 1 ≤ i ≤ m. Thus in the case of the dimension sequence d =

(d1, . . . , ds, ds, . . . , d1), dimF −dim(F ∩C0) is equal to 2
∑s

i=1 di(di−1)/2−∑s
i=1 di(di − 1)/2 which is equal to

∑s
i=1 di(di − 1)/2. In the case when the

dimension sequence is given by e = (d1, . . . , ds, e
′, ds, . . . , d1) and the base

point z0 contains a middle flag of length e, it remains to add to the above
number the difference in between the dimension of the total fiber over this
flag and the dimension of the isotropic flags in this fiber. This is just a
special case of the G/B case for a full flag of length e′ and the number is
e′(e′ − 1)/2 − (e′/2)2 + (e′/2) which equals to (e′/2)2 when e′ is even and
e′(e′ − 1)/2− [(e′ − 1)/2]2 which equals to (e′ − 1)(e′ +1)/2, when e′ is odd.

Thus if Sw ∈ SC0
lifts to Sŵ such that ŵ satisfies the double box con-

traction condition, then we have that dimSŵ − dimSw is equal to:

s∑
i=1

di(di − 1)/2, if d = (d1, . . . , ds, ds, . . . , d1) and(2)

s∑
i=1

di(di − 1)/2 + de, if e = (d1, . . . , ds, e
′, ds . . . , d1),(3)

with

de =

{
(e′/2)2, e′ even,

(e′ − 1)(e′ + 1)/4, e′ odd.

Now if w satisfies the generalized double box contraction condition, then
ŵ satisfies the double box contraction condition. Furthermore, by construc-
tion, it is immediate that if w satisfies the generalized double box contraction
condition, then |w| = |ŵ|−

∑s
i=1 di(di−1)/2. That is because the block B̃dj
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is formed by arranging the block C̃dj
in increasing order and thus cross-

ing lj1 over dj − 1 numbers, and more generally lji over dj − i numbers for
all 1 ≤ i ≤ dj . Similarly, if e′ is part of the representation of w and e′

is even then |w| = |ŵ| −
∑s

i=1 di(di − 1)/2 −(e′/2)2 and if e′ is odd then
|w| = |ŵ| −

∑s
i=1 di(di − 1)/2 − (e′ − 1)(e′ + 1)/4. Thus if w satisfies the

generalized double box contraction condition, then ŵ satisfies the double
box contraction condition and |ŵ| − |w| is equal to:

s∑
i=1

di(di − 1)/2, if d = (d1, . . . , ds, ds, . . . , d1) and(4)

s∑
i=1

di(di − 1)/2 + de, if e = (d1, . . . , ds, e
′, ds . . . , d1),(5)

with

de =

{
(e′/2)2, e′ even,

(e′ − 1)(e′ + 1)/4, e′ odd.

Theorem 2.13. A permutation w = B1B2 . . . BsBe′B̃s . . . B̃2B̃1 satisfies the
generalized double box contraction condition if and only if w parametrizes an
Iwasawa-Schubert variety Sw ∈ SC0

. The lifting map f : SC0
→ SĈ0

defined
by Sw �→ Sŵ, with ŵ the canonical rearrangement of w, is injective.

Proof. If w satisfies the generalized double box contraction condition, then
by the above observation the canonical rearrangement ŵ of w is just another
representative of the parametrization coset of Sw. Moreover, ŵ satisfies the
double box contraction condition and thus parametrizes a Schubert variety
Sŵ that intersects Ĉ0. Because the projection map π is equivariant it follows
that π(Sŵ) = Sw intersects C0. From the remarks before the statement of the
theorem it follows that if w satisfies the generalized double box contraction
condition, then |ŵ| − |w| is given by 4 and 5. This is equivalent to the
fact that the difference in dimensions between Sŵ and Sw is achieved, i.e.
dimSŵ − dimSw is given by 2 and 3, and this happens when one needs to
write the elements of each block B̃i in strictly decreasing order to form the
block C̃j .

Conversely, suppose that Sw ∈ SC0
but w does not satisfy the generalized

double box contraction condition. It then follows that there exists a first
block pair (Bj , B̃j) and a first pair (kji , l

j
i ), for some i in between 1 and dj

such that lji−1 sits at the immediate left of lji and kji sits at the immediate

right of kji−1 in the ordered set {1, . . . , n} − {∪j−1
s=1Bs} − {∪j−1

s=1B̃s}. This
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means that when w is lifted to ŵ, the place of lji−1 and lji remain the same
because otherwise w will not satisfy the double box contraction condition.
But this implies that the difference between the length of ŵ and the length
of w is strictly smaller than the difference dimSŵ − dimSw computed in 2
and 3.

Theorem 2.14. A Schubert variety Sw in SC0
intersects the base cycle C0

in 2d1+···+ds points in the case where w is given by a symmetric symbol e =
(d1, . . . , ds, e

′, ds, . . . , d1) and n = 2m+1, while in the even dimensional case
we have 2m−1 points in the case d = (d1, . . . , ds, ds, . . . , d1) and 2d1+···+ds−1

in the case e = (d1, . . . , ds, e
′, ds, . . . , d1).

Proof. The result follows from the lifting principle, because the intersection
points of Sw can be identified in a one-to-one manner with a subset of the
intersection points of Sŵ. Thus the cardinality of this subset can be directly
computed.

It thus follows that the homology class [C0] of the base cycle inside the
homology ring of Z is given in terms of the Schubert classes of elements in
SC0

by:

[C0] = 2m−1
∑

S∈SC0

[S], if n = 2m, and Z = Zd,

[C0] = 2d1+···+ds−1
∑

S∈SC0

[S], if n = 2m, and Z = Ze,

[C0] = 2d1+···+ds

∑
S∈SC0

[S], if n = 2m+ 1, and Z = Ze.

2.6. Main results for non-measurable open orbits in Z = G/P

The last case to be considered is the case of Z = G/P and D ⊂ Z a
non-measurable open orbit, i.e. the dimension sequence f = (f1, . . . , fu)
that defines P is not symmetric. Associated with the flag domain D there
exists its measurable model, a canonically defined measurable flag domain
D̂ in Ẑ = G/P̂ together with the projection map π : Ẑ → Z. If ẑ0 is a
base point in Ĉ0, z0 = π(ẑ0) and we denote by F̂ the fiber over z0, by
H0 and Ĥ0 the isotropy of G0 at z0 and ẑ0 respectively, then F̂ ∩ D̂ =
H0/Ĥ0, is holomorphically isomorphic with Ck, where k is root theoretically
computable.

Moreover, if one considers the extension of the complex conjugation τ
from Cn to SL(n,C), defined by τ(s)(v) = τ(s(τ(v))), for all s ∈ SL(n,C),
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v ∈ Cn, then one obtains an explicit construction of P̂ as follows. Consider
the Levi decomposition of P as the semidirect product P = L�U , where L
denotes its Levi part and U the unipotent radical. If P− = L�U− denotes
the opposite parabolic subgroup to P, namely the block lower triangular
matrix with blocks of size f1, . . . , fu, then P̂ = P ∩ τ(P−). Furthermore,
the parabolic subgroup τ(P−) has dimension sequence (fu, . . . , f1). These
results are proved in complete generality in [8].

Because π is a K0 equivariant map, the restriction of π to Ĉ0 maps Ĉ0

onto C0 with fiber Ĉ0∩ (F̂ ∩ D̂). In this case this fiber is a compact analytic
subset of Ck and consequently it is finite, i.e. the projection π|Ĉ0

: Ĉ0 → C0

is a finite covering map. Because C0 is simply-connected it follows that:

Proposition 2.15. The restriction map

π|Ĉ0
: Ĉ0 → C0

is biholomorphic. In particular, if q and q̂ denote the respective codimensions
of the cycles, it follows that q̂ = dim(F̂ ) + q

If we denote with SC0
the set of Schubert varieties Sw in Z that intersect

the base cycle C0 and dimSw + dimC0 = dimZ, where w is a minimal
representative of the parametrization coset of Sw and by SĈ0

the analogous

set in Ẑ, then the above discussion implies the following:

Proposition 2.16. The map Φ : SC0
→ π−1(SC0

) ⊂ SĈ0
is bijective.

If d = (d1, . . . , ds, ds, . . . , d1) or e = (d1, . . . , ds, e
′, ds, . . . , d1) is a sym-

metric dimension sequence, then one can construct another dimension se-
quence out of it, not necessarily symmetric, by the following method. Con-
sider an arbitrary sequence t = (t1, . . . , tp) such that each ti ≥ 1 for all
1 ≤ i ≤ p, at least one ti is strictly bigger than 1 and t1 + · · · + tp = 2s or
2s+1 depending on wether one considers d or e, respectively. Associated to
t the sequence δ = (δ1, . . . , δp) is defined by δj :=

∑j
i=1 ti. With the use of δ

the new dimension sequence fδ = (fδ1 , . . . , fδp) is defined by fδ1 :=
∑δ1

i=1 di,

fδj :=

δj∑
i=δj−1+1

di, for all 2 ≤ j ≤ p.

Because P̂ is obtained as the intersection of two parabolic subgroups P
and τ(P−), it follows that the dimension sequence f of P is obtained as
above, from the dimension sequence of P̂ , as fδ for a unique choice of t. For
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ease of computation we do not break up anymore the dimension sequence
of P̂ into its symmetric parts and we simply write it as d = (d1, . . . , ds),
where s can be both even or odd. Using the usual method of computing the
dimension of Z it then follows that

dimZ = dim Ẑ −
∑
tj>1

∑
δj−1+1≤h<g≤δj

dhdg.

For example if P corresponds to the dimension sequence (2, 4, 3), then an
easy computation with matrices shows that P̂ corresponds to the dimension
sequence (2, 1, 3, 1, 2), t = (1, 2, 2) and δ = (1, 3, 5). Moreover, dimZ =
dim Ẑ − 1 · 3− 1 · 2.

Given the sequence f = fδ, we are now interested in describing the set
SC0

. Let Sŵ in SĈ0
be the unique Schubert variety associated to a given Sw ∈

SC0
such that π(Sŵ) = Sw. If ŵ is given in block form by B1 . . . Bs, where

here again the notation used does not take into consideration the symmetric
structure of ŵ, then w is given in block form by C1 . . . Cp corresponding to

the dimension sequence fδ. The blocks Cj are given by C1 =
⋃δ1

i=1 Bdi
and

Cj =

δj⋃
i=δj−1+1

Bdi
, for all 2 ≤ j ≤ p,

arranged in increasing order. Moreover,

dimSw = dimZ − dimC0 = dimZ − dim Ĉ0

= dim Ẑ −
∑
tj>1

∑
δj−1+1≤h<g≤δj

dhdg − dim Ĉ0

= dimSŵ −
∑
tj>1

∑
δj−1+1≤h<g≤δj

dhdg.

Finally, understanding what conditions ŵ satisfies in order for the above
equality to hold amounts to understanding the difference in length that the
permutation ŵ looses when it is transformed into w. If Cj contains only one
B-block from ŵ, i.e. tj = 1, then this is already ordered in increasing order
and it does not contribute to the decrease in dimension. If Cj contains more
B-blocks, say

Cj =

δj⋃
i=δj−1+1

Bdi
,
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we start with the first block Bδj−1+1 which is already in increasing order and
bring the elements from Bδj−1+2 to their right spots inside the first block.
As usual to each number we can associate a distance, i.e. the number of
elements it needs to cross in order to be brought on the right spot, and
we denote by αδj−1+2 the sum of this distances. The maximum value that
αδj−1+2 can attain is when all the elements in the second block are smaller
than each element in the first block, i.e. the last element in the second block
is smaller than the first element in the first block. In this case αδj−1+2 =
dδj−1+1dδj−1+2, the product of the number of elements in the first block with
the number of elements in the second block. Next we bring the elements
in the 3rd block among the already ordered elements from the first and
second block. Observe that the maximal value that αδj−1+3 can attain is
dδj−1+1dδj−1+3 + dδj−1+2dδj−1+3 when the last element in the 3rd block is
smaller than all elements in the first two blocks. In general we say that
the group of blocks used to form Cj is in strictly decreasing order if it
satisfies the following: the last element of block Bi+1 is smaller than the first
element of block Bi for all δj−1 +1 ≤ i ≤ δj − 1. Consequently, if one wants
to order this sequence of blocks into increasing order one needs to cross over∑

δj−1+1≤h<g≤δj

dhdg.

Thus if all the blocks Cj with tj > 1 among w come from groups of blocks
arranged in strictly decreasing order in ŵ, then

|w| = |ŵ| −
∑
tj>1

∑
δj−1+1≤h<g≤δj

dhdg.

What was just proved is the following:

Proposition 2.17. A Schubert variety Sŵ ∈ SĈ0
is mapped under the pro-

jection map to a Schubert variety Sw ∈ SC0
if and only if all the blocks

Cj with tj > 1 among w come from groups of blocks arranged in strictly
decreasing order in ŵ.

As an example consider the complex projective space Z = P5. The di-
mension sequence of the measurable model in this case is given by d =
(1, 4, 1) and the Schubert varieties in SĈ0

are parametrized by the fol-
lowing permutations: (2)(3456)(1), (3)(1456)(2), (4)(1256)(3), (5)(1236)(4),
(6)(1234)(5). The only permutation that satisfies the strictly decreasing or-
der among the last two blocks is the permutation (2)(3456)(1) and this gives
the only Schubert variety in SC0

parametrized by (2)(13456). More generally,
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for Z = Pn we have only one element in SC0
parametrized by (2)(13 . . . n+1).

For a more complicated example see [3].

Concluding remark

The cases of the other real forms, SL(m,H) and SU(p, q), of SL(n,C) are
handled in detail in the author’s thesis [3]. Let us close our discussion here
by briefly commenting on these results.

For n = 2m, SL(m,H) is defined to be the group of operators in SL(n,C)
which commute with the antilinear map j : Cn → Cn, v �→ Jv̄, where J is
the usual symplectic matrix with J2 = −Id. For simplicity we only comment
here on the case where Z = G/B is the full flag manifold (the other cases are
handled by the expected lifting procedures.). In that case a certain parity
condition on a permutation w = (k, l) plays the role of the spacing condition
used for G0 = SL(n,R). This condition tightens up to the strict parity
condition where it is required that the ki are odd and li = ki +1. The main
result for Z = G/B can be stated as follows: There is only one open orbit D,
a Schubert variety (with B an Iwasawa-Borel) has non-empty intersection
with C0 if and only if w satisfies the parity condition and intersects it in
isolated points if and only if it satisfies the strict parity condition. In the
later case the intersection consists of exactly one point.

The case of the Hermitian groups SU(p, q), p+ q = n, seems to be vastly
more complicated than the others. This is in particular due to the large
number of open orbits. For example, if z0 is a full flag V1 ⊂ V2 ⊂ . . . ⊂ Vn

in Z = G/B, then D = G0.z0 is open if and only if the restriction of the
mixed signature form 〈 , 〉p,q to each Vi is non-degenerate. Thus the open
orbits are parameterised by pairs (a, b) of integer vectors with (ai, bi) being
the signature of the restriction of the form to Vi.

While our combinatorial conditions are in a certain sense analogous to
those for the other real forms, here we only give algorithms for determin-
ing exactly which Iwasawa-Schubert varieties have non-empty intersection
with a given flag domain D and which intersect C0 in only isolated points.
Analogous to the SL(m,H)-case, in the later case there is exactly one point
of intersection. As we show in typical examples and by giving detailed de-
scriptions of SC0

for the Hermitian symmetric spaces, i.e., Z = G/P with P
maximal, the algorithms are quite efficient (see [3]).
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