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Sum-free sets in groups: a survey∗

Terence Tao and Van Vu

To Ron Graham for his 80th birthday

We discuss several questions concerning sum-free sets in groups,
raised by Erdős in his survey “Extremal problems in number the-
ory” (Proceedings of the Symp. Pure Math. VIII AMS) published
in 1965.

Among other things, we give a characterization for large sets A
in an abelian group G which do not contain a subset B of fixed
size k such that the sum of any two different elements of B do not
belong to A (in other words, B is sum-avoiding with respect to
A). In the above mentioned survey, Erdős conjectured that if |A|
is sufficiently large compared to k, then A contains two elements
that add up to zero. This is known to be true for k ≤ 3. We give
counterexamples for all k ≥ 4. On the other hand, using the new
characterization result, we are able to prove a positive result in the
case when |G| is not divisible by small primes.

1. Sum-free set problems

In this note, we discuss a few questions of Erdős, which appeared in his sur-
vey “Extremal problems in number theory” [9], published almost half a cen-
tury ago. The survey started with his study with Moser on Littlewood-Offord
type anti-concentration results. However, as he pointed out, this study led
to several questions concerning sum-free sets, which are interesting in their
own right.

In what follows, for a finite set A of an additive group G, we set

2A := A+A := {a1 + a2|ai ∈ A}

and

2∗A = A
∗
+A := {a1 + a2|a1, a2 ∈ A, a1 �= a2}.

We first consider the case when G = R, the set of real numbers.
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For a set A of real numbers, let f(A) be the size of the largest subset B
of A which is sum-free in the sense that (B + B) ∩ B = ∅. Define f(n) :=
minA,|A|=n f(A).

Using a simple, but beautiful, probabilistic argument, Erdős [9] proved
that f(n) ≥ n

3 . Let T be a large number and Ij be the collection of α ∈ [0, T ]
such that ajα (mod 1) ∈ (1/3, 2/3). It is easy to see that there is a number
C which may depend on the aj ’s, but is independent of T such that

∣
∣
∣
∣μ(Ij)−

T

3

∣
∣
∣
∣ ≤ C,

for all 1 ≤ j ≤ n. By the pigeon hole principle, there is a number α such
that there are at least n/3 indices j satisfying ajα (mod 1) ∈ (1/3, 2/3).
These form the desired set B.

It is surprisingly hard to improve upon this bound. Alon and Kleitman
[1] modified Erdős’ argument slightly to have f(n) ≥ n+1

3 . Bourgain [4],
using a much more sophisticated and entirely different argument, proved
f(n) ≥ n+2

3 . This is still the best lower bound to date.
From above, a recent breakthrough by Eberhard, Green, and Manners

[10] showed that the constant 1/3 cannot be improved, namely f(n) ≤ (13 +
o(1))n (see Eberhard’s paper [8] for a generalization). It is a fascinating open
problem to determine whether f(n)− n

3 tends to infinity with n.
The next sum-free problem Erdős discussed in his survey concerns a

stronger notion of sum-freeness. Given a set A, we denote by φ(A) the size

of the largest subset B such that (B
∗
+ B) ∩ A = ∅; following [22], we say

that B is sum-avoiding in A if this occurs. Similarly, we define φ(n) :=
minA,|A|=n φ(A). (Notice that the problem is easy if one considers B+B in-

stead of B
∗
+B, as one can take A = {1, 2, . . . , 2n−1}, which shows φ(n) = 1.)

The problem of determining the order of magnitude of φ(n) is still wide
open, despite efforts from many researchers through a long period. In [9],
Erdős mentioned a result of Selfridge that showed φ(n) ≤ n/4 and suggested
that it probably has order o(n). Choi [5], using sieve methods, proved that
φ(n) ≤ n2/5+o(1). He also noted that in this problem, it suffices to consider
the special case when A is a set of integers, which, in modern term, is a
corollary of Freiman’s isomorphism. Choi’s result was slightly improved by
Baltz, Schoen, and Srivastav [3], who showed that φ(n) = O(n2/5 log n).
In 2005, Ruzsa [22] obtained a more significant improvement, proving that
φ(n) ≤ exp(O(

√
log n)).

From below, Choi showed that φ(n) ≥ log2 n and Ruzsa improved it
slightly to 2 log3 n, which seems to be the limit of greedy constructions (see
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[22, 24] for more details). One can prove a less precise bound φ(n) ≥ lnn+
O(1) using Turán theorem from extremal graph theory. Without loss of
generality, one can assume that n/2 elements of A are positive, say 0 < a1 ≤
· · · ≤ an/2. Define a graph on this set by connecting ai with aj if ai+aj ∈ A.
It is clear that the degree of aj is at most dj := n/2− j. On the other hand,
Turán’s theorem asserts that the independence number of a graph is at least
the sum of the reciprocal of the positive degrees. This implies that we have

an independent set B of size at least
∑n/2

j=1
1
j = lnn + O(1). But, by the

definition of the graph, 2∗B ∩A = ∅.
For sometime, it was speculated that Θ(log n) is the right order of mag-

nitude of φ(n). However, about ten years ago, Sudakov, Szemerédi and Vu

[24] managed to push beyond log n by showing φ(n)
logn tends to infinity. Quan-

titatively, they proved that φ(n)
logn ≥ log(5) n, where log(5) n is the fifth iter-

ated logarithm of n. More recently, Dousse [7] improved the lower bound to
(log(3) n)1/32772−o(1), and Shao [23] improved it further to (log(2) n)1/2−o(1).
These works are elaborate and rely on some powerful tools in additive com-
binatorics. Nevertheless, the gap between the upper bound and the lower
bound remains significant.

2. Sum-free sets in groups

Now we discuss both problems in a more general setting when A is a subset
of an abelian group G. In what follows, we focus on the case when G is
abelian with finite rank. By the characterization of abelian groups, G has
the form

(1) Zr ⊕ Z/q1Z⊕ · · · ⊕ Z/qmZ

where Z/NZ is the cyclic group of order N and qi are powers of (not neces-
sarily distinct) prime numbers.

The existence of torsion changes the nature of both problems signifi-
cantly. For the first problem, Alon and Kleitman [1] showed that every sub-
set A of a group G contains a subset B such that 2B∩A = ∅ and |B| > 2

7 |A|.
This bound is sharp in the strong sense that 2

7 |A| cannot be replaced even
by 2

7 |A|+ 1. To see this, one can use a result of Rhemtulla and Street [20],
which asserts that if G = (Z/pZ)s, where p = 3k + 1 is a prime, then the
maximum sum free subset of G has size kps−1. Taking k = 2 and letting s
tend to infinity, we obtain the claim.

The obvious open question here is what happens if we focus on a specific
group. Using the notation of the previous section, we set
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fG(n) := min
A⊂G,|A|=n

f(A).

The value of fG(n) varies with G. For instance, if we take G = Zp, for
p much larger than n, then Erdős’s argument for the real case also works

here, giving fG(n) ≥ n
3 . Define h(G) := fG(|G|)

|G| ; the solution to the problem

is given by the following theorem:

Theorem 2.1. (i) If |G| is divisible by a prime p ≡ 2(mod 3) then h(G) =
1
3 + 1

3q , where q is the smallest such prime.

(ii) If |G| is not divisible by any prime p ≡ 2(mod 3) and 3||G|, then
h(G) = 1

3 .
(iii) If |G| is only divisible by primes p ≡ 1(mod 3), then h(G) = 1

3 − 1
3m ,

where m is the largest order of any element of G.

Parts (i) and (ii) of this theorem were established by Diananada and Yap
[6]; the remaining case (iii) was obtained by Green and Ruzsa [13], following
some partial results by Yap [28, 29] and Rhemtulla-Street [21].

The second problem is more delicate, as we first need to find the right
question to ask. One can follow the above discussion and define

φG(n) := min
A⊂G,|A|=n

φ(A).

The subtlety in this definition is that φ is not monotone in n. Further-
more, it can be exactly 1 often. If n happens to be the size of a subgroup H
of G, then just take A to be H and we have φ(A) = 1. It thus shows that
one cannot expect any universal bound like Alon-Kleitman’s. On the other
hand, it is not too hard to show that being a subgroup is essentially the only
reason φ(A) = 1.

Proposition 2.2 (Characterisation of φ(A) = 1). Let A be a finite subset
of an additive group G. Then φ(A) = 1 if and only if one of the following is
true:

• A = H, where H ≤ G is a subgroup of G.
• A = H\{0}, where H ≤ G is a 2-torsion subgroup of G (thus 2x = 0

for all x ∈ H).
• A = {b} for some b ∈ G.
• A = {b, 0} for some b ∈ G.
• A = {b, 0,−b} for some b ∈ G.

Proof. It is easy to verify that φ(A) = 1 in all of the above five cases. Now
suppose that φ(A) = 1; then we have
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(2) b1 + b2 ∈ A whenever b1, b2 ∈ A and b1 �= b2

Suppose first that there exists a non-zero a ∈ A such that 2a ∈ A. Then
from (2) we see that the injective map x �→ x + a maps A to A, and thus
must be a bijection on A. This implies that the map x �→ x − a is also a
bijection on A. Combining these facts with (2), we see that A is closed under
addition (since we can shift b1, b2, b1+b2 back and forth by a as necessary to
make b1, b2 distinct). Since A is finite, every element must have finite order,
and then A is closed under negation, and so A is a subgroup.

It remains to consider the case when

(3) 2a �∈ A for every non-zero a ∈ A.

Suppose now that there exists an element b ∈ A such that 2b �= 0. We claim
that A must then lie in the group generated by b. For if this were not the
case, then take an element a ∈ A which is not generated by b, in particular
a �= 0. By iterating (2) we see that a+ kb ∈ A for all positive k, thus b must
have finite order. In particular, a+ b, a− b ∈ A, and by (2) again (and the
hypothesis 2b �= 0) we see that 2a ∈ A, contradicting (3). Once A lies in
the group generated by b, it is not hard to see that A must be one of {b},
{b, 0}, or {b, 0,−b}, simply by using the observation from (2) that the map
x �→ x+ b maps A\{b} into A, together with (3).

The only remaining case is the 2-torsion case when 2b = 0 for all b ∈ A.
Then either A = {0}, or else by (3) A does not contain zero. In the latter
case we observe from (2) that A ∪ {0} is closed under addition and is thus
a 2-torsion group. The claim follows.

The problem we would like to pursue here is to obtain a similar classifi-
cation for sets A with φ(A) = k, for any given k. The main theorem is the
content of the next section.

3. Structure of a set A with φ(A) ≤ k

For a given k, we can guarantee φ(A) ≤ k by taking A to be the union of k
subgroups. More generally, we can take A be the union of k − l subgroups
and a set of l elements, for any 0 ≤ l ≤ k.

The main new result we would like to announce is a partial converse to
this observation. Roughly speaking, we prove that if φ(A) ≤ k, then A is
the union of k − l dense subsets of subgroups and a set of bounded size.

Theorem 3.1 (Small φ implies covering by groups). Let A be a finite subset
of an additive group G with φ(A) ≤ k for some k ≥ 1. Then there exist finite
subgroups H1, . . . , Hm of G with 0 ≤ m ≤ k such that
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(4) |A\(H1 ∪ . . . ∪Hm)| ≤ C(k)

and

(5) |A ∩Hi| ≥ |Hi|/C(k)

for all 1 ≤ i ≤ m. Here C(k) > 0 is a quantity depending only on k (in
particular, it does not depend on G or |A|). If furthermore m = k, we may
strengthen (4) to

A ⊆ H1 ∪ . . . ∪Hk.

Note that Proposition 2.2 gives the k = 1 case of this theorem with
C(1) = 3. The formulation of the theorem was motivated by Freiman type
inverse theorems in additive combinatorics. The full proof of this theorem
is long and fairly technical and will be presented in a coming paper [27],
but we will discuss some key ideas in Section 5. Due to the complexity of
the argument, we choose to present the proof using non-standard analysis.
One byproduct of this is that our arguments currently provide no bound
whatsoever on the quantity C(k) appearing in the above theorem; we expect
that if one were to translate the nonstandard analysis arguments back to
a standard finitary setting, that the bound obtained on C(k) would be of
Ackermann type in k or worse.

Theorem 3.1 does not describe the structure of A inside each of the
component groups Hi, other than to establish positive density in the sense
of (5). However, we should warn the readers that one does not expect as
simple a description of the sets A ∩Hi as in Proposition 2.2. For instance,
take A to be the union of a finite group H and an arbitrary subset of a coset
x+H with 2x ∈ H, then φ(A) ≤ 2, but A is not the union of two subgroups
or the union of one subgroup and a finite set. On the other hand, in some
special cases, we can obtain a stronger statement that pushes the density
|A∩Hi|
|Hi| close to 1; see Theorem 4.5 below.

4. Erdos’s zero-sum problem

While discussing φ(A), Erdős [9] raised the following question.

Question 4.1. Let k be a natural number, let G be a finite additive group,
and let A be a subset of G with φ(A) < k. Assume that |A| is sufficiently large
depending on k. Does there necessarily exist a1, a2 ∈ A such that a1+a2 = 0?

It is easy to see that the answer is affirmative when k = 2 (by Proposition
2.2, for instance). The same answer holds for the case k = 3, as verified by
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Luczak and Schoen [17] in 1996. On the other hand, for every k ≥ 4, we
found a simple counterexample

Proposition 4.2 (Counterexample for k ≥ 5). Let n ≥ 4 be a natural
number, and set G to be the cyclic group G := Z/2nZ. Let A ⊂ G be the set

A := {(4m+ 1)2j mod 2n : m ∈ Z, 0 ≤ j ≤ n− 2}.

Thus, for instance, if n = 4, then A = {1, 2, 4, 5, 9, 10, 13 mod 16}. Then
φ(A) = 4 and |A| = 2n−1 − 1, but there does not exist a1, a2 ∈ A with
a1 + a2 = 0.

Proof. It is easy to see that if a ∈ A, then −a �∈ A, and that

|A| = 2n−2 + 2n−3 + · · ·+ 1 = 2n−1 − 1

as claimed, and the set {1, 2, 5, 10 mod 2n} is always sum-avoiding in A, so
φ(A) ≥ 4. The only remaining thing to establish is the upper bound φ(A) ≤
4. Suppose for contradiction that there existed distinct a1, a2, a3, a4, a5 ∈ A
such that the

(
5
2

)
sums ai + ai′ with 1 ≤ i < i′ ≤ 5 were all outside A.

We can write ai = (4mi + 1)2ji mod 2n with j1 ≤ · · · ≤ j5. If j5 > j1 + 1
then a5 is a multiple of 4× 2j1 , and hence a1 + a5 = (4m1 + 1)2j1 + a5 lies
in A, a contradiction. Thus j1, . . . , j5 lie in {j1, j1 + 1}. By the pigeonhole
principle, we can then find 1 ≤ i < i′ ≤ 5 such that ji = ji′ and such that
mi,mi′ have the same parity. Note that ji = ji′ cannot equal n − 2 since
ai, ai′ would then both equal 2n−2 mod 2n. But then ai + ai′ is of the form
(4m + 1)2ji+1, where m is the average of mi and mi′ , and so ai + ai′ ∈ A,
again a contradiction.

Proposition 4.3 (Counterexample for k = 4). Let G := (Z/7Z) × H
for some arbitrary finite group H, and let A := A0 × H where A0 :=
{1 mod 7, 2 mod 7, 4 mod 7}. Then φ(A) = 3 and |A| = 3|H|, but there
does not exist a1, a2 ∈ A with a1 + a2 = 0.

Proof. The only non-trivial claim is that φ(A) = 3. From computing sums
from the set A0 × {0} we see that φ(A) ≥ 3. Suppose for contradiction that
there existed distinct a1, a2, a3, a4 ∈ A with all sums ai + aj outside A. By
the pigeonhole principle we can find 1 ≤ i < j ≤ 4 such that ai, aj ∈ {a}×H
for some a ∈ A0. Then ai + aj ∈ {2a}×H. Since 2a is also in A0, we obtain
a contradiction.

Remark 4.4. It is clear that one can use the construction in Proposition
4.3 for all values k where 2k − 1 is a prime (Mersenne primes).
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Thus Erdős’s question is now resolved for all values of k. However, with
Theorem 3.1 in hand, one still has the strong feeling that the answer must
be morally affirmative. After all, if A is a dense subset of a group H, then
typically 0 (or any element of H, for that matter) must be represented as
the sum of two elements of A a large number of times. The above counterex-
amples rely heavily on the order of the group G being divisible by a small
prime (2 and 7 respectively). Indeed, in the opposite case, where the order
of G is not divisible by any small primes, we are able to prove a positive
result. As a matter of fact, in this case we have the following strengthening
of Theorem 3.1.

Theorem 4.5. Let k be a natural number and ε be a positive constant.
Suppose C0 is sufficiently large depending on k, ε. Let A be a subset of a finite
group G with φ(A) < k, |A| ≥ C0, and |G| not divisible by any prime less
than C0. Then there exist finite subgroups H1, . . . , Hm of G with 0 ≤ m < k
such that |A ∩Hi| > (1 − ε)|Hi| for every i = 1, . . . ,m and |A\(H1 ∪ · · · ∪
Hm)| ≤ C0. If m = k − 1, we can take A\(H1 ∪ · · · ∪Hm) to be empty.

If ε = 1/2 and |A ∩ Hi| ≥ (1 − ε)|Hi|, then it is trivial that A ∩ Hi

contains two elements a, a′ which sum up to zero. Thus, we obtain

Corollary 4.6 (The case of no small prime divisors). For any fixed k there
is a constant C(k) such that the answer to Erdős’ question is affirmative for
all groups G where |G| does not have any prime factor less than C(k).

It is an interesting question to classify those groups where the answer
to Erdős’ question is positive. The number C(k) that comes from Theorem
4.5 is very large (see the remark after Theorem 3.1). On the other hand,
if there are infinitely many Mersenne primes, then Remark 4.4 shows that
C(k) should be at least exponential in k.

5. Some ideas behind the proof of Theorem 3.1

The intuition behind the proof is as follows. If φ(A) is equal to some small
natural number k and A is large, then we expect many pairs a, a′ in A to
sum to another element in A. Standard tools in additive combinatorics, such
as the Balog-Szemerédi theorem [2] and Freiman’s theorem in an arbitrary
abelian group [12], then should show that A contains a large component
that is approximately a coset progression H + P : the Minkowski sum of a
finite group H and a multidimensional arithmetic progression P . Because of
bounds in the real case such as those mentioned in the first section that show
that φ becomes large on large torsion-free sets, one expects to be able to
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eliminate the role of the “torsion-free” component P of the coset progression

H + P , to conclude that A has large intersection with a finite subgroup H.

In view of the subadditivity φ(A ∪ B) ≤ φ(A) + φ(B), one heuristically

expects φ(A) to drop from k to k − 1 after removing H (that is to say, one

expects φ(A\H) = k− 1), at which point one can conclude by induction on

k starting with Proposition 2.2 as a base case. More realistically, one expects

to have to replace the conclusion φ(A\H) = k− 1 with some more technical

conclusion that is not exactly of the same form as the hypothesis φ(A) = k,

which makes a direct induction on k difficult; instead, one should expect to

have to perform a k-fold iteration argument in which one removes up to k

subgroups H1, . . . , Hm from A in turn until one is left with a small residual

set A\(H1 ∪ · · · ∪Hm).

Unfortunately, when the group G contains a lot of torsion, removing a

large subgroup H from A can leave one with a residual set with no good

additive structure, and in particular with no bounds whatsoever on φ(A\H).

For instance, suppose that there is an element x of G\H with 2x ∈ H, and

take A to be the union of H and an arbitrary subset of x + H. Then it is

easy to see that φ(A) is at most 2, but upon removing the large finite group

H from A one is left with an arbitrary subset of x + H, and in particular

φ(A\H) can be arbitrarily large.

The problem in this example is that the groupH is the “incorrect” group

to try to remove from A; one should instead remove the larger group H ′ :=
H+{0, x}, which contains H as an index two subgroup. The main difficulty

in the argument is then to find an algorithm to enlarge an “incorrect” group

H to a “correct” group that absorbs all the relevant “torsion” that is present.

This is not too difficult at the start of the iterative argument mentioned

above, but becomes remarkably complicated in the middle of the iteration

when one has already removed some number of large subgroups H1, . . . , Hm′

from the initial set A. A particular technical difficulty comes from the fact

that the groups H1, . . . , Hm′ , as well as the residual set A\(H1 ∪ · · · ∪Hm′),

can have wildly different sizes; in particular, sets which are negligible when

compared against one of the Hi, could be extremely large when compared

against the residual set A\(H1 ∪ · · · ∪Hm′). To get around these issues, one

needs to ensure some “transversality” between these components of A, in the

sense that the intersection between any of these two sets (or their translates)

are much smaller than either of the two sets. This adds an extra layer of

complexity to the iterative argument; so much so, in fact, that it becomes

very unwieldy to run the argument in a purely finitary fashion. Instead,

we were forced to formulate the argument in the language of nonstandard
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analysis1 in order to avoid a large number of iterative arguments to manage
a large hierarchy of parameters (somewhat comparable in complexity to
those used to prove the hypergraph regularity lemma, see e.g. [11], [19],
[18], [25]). As mentioned before, a byproduct of this is that our arguments
currently provide no bound whatsoever on the quantity C(k) appearing
in the above theorem; indeed we expect that if one were to translate the
nonstandard analysis arguments back to a standard finitary setting, that
the bound obtained on C(k) would be of Ackermann type in k or worse.
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