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A note on p-ascent sequences

Sergey Kitaev and Jeffrey B. Remmel
∗

Ascent sequences were introduced by Bousquet-Mélou, Claesson,
Dukes, and Kitaev in [1], who showed that ascent sequences of
length n are in 1-to-1 correspondence with (2+ 2)-free posets of
size n. In this paper, we introduce a generalization of ascent se-
quences, which we call p-ascent sequences, where p ≥ 1. A se-
quence (a1, . . . , an) of non-negative integers is a p-ascent sequence
if a0 = 0 and for all i ≥ 2, ai is at most p plus the number of as-
cents in (a1, . . . , ai−1). Thus, in our terminology, ascent sequences
are 1-ascent sequences. We generalize a result of the authors in
[9] by enumerating p-ascent sequences with respect to the num-
ber of 0s. We also generalize a result of Dukes, Kitaev, Remmel,
and Steingŕımsson in [4] by finding the generating function for the
number of p-ascent sequences which have no consecutive repeated
elements. Finally, we initiate the study of pattern-avoiding p-ascent
sequences.

1. Introduction

1.1. Ascent sequences

Ascent sequences were introduced by Bousquet-Mélou, Claesson, Dukes, and
Kitaev in [1], who showed that ascent sequences of length n are in 1-to-1
correspondence with (2+ 2)-free posets of size n. Let N = {0, 1, . . .} denote
the natural numbers and N

∗ denote the set of all words over N. A sequence
(a1, . . . , an) ∈ N

n is an ascent sequence of length n if and only if it satisfies
a1 = 0 and ai ∈ [0, 1 + asc(a1, . . . , ai−1)] for all 2 ≤ i ≤ n, where

asc(a1, . . . , ai) = |{j : aj < aj+1; 1 ≤ j < i}|

is the number of ascents in (a1, . . . , an). For instance, (0, 1, 0, 2, 3, 1, 0,
0, 2) is an ascent sequence which has four ascents. We let Asc denote the
set of all ascent sequences, where we assume that the empty word is also
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an ascent sequence. For any n ≥ 1, we let Ascn denote the set of all ascent

sequences of length n. If a = (a1, . . . , an) ∈ Ascn, we let |a| = n be the

length of a,
∑

a = a1+ · · ·+an equal the sum of the values of a, |a|0 denote

the number of occurrences of 0 in a, and last(a) = an denote the last letter

of a. We say that a = (a1, . . . , an) ∈ Ascn is an up-down ascent sequence if

a1 < a2 > a3 < a4 > · · · . That is, a = (a1, . . . , an) ∈ Ascn is an up-down

ascent sequence if ai < ai+1 whenever i is odd, and ai > ai+1 whenever i is

even. Throughout this paper, we will often identify a sequence (a1, . . . , an)

in N
n with the word a1 . . . an. Thus, instead of writing, say, (0, 0, 0), we will

simply write 000, or 03.

There has been considerable work on ascent sequences in recent years,

see, for example, [1, 4, 6, 9]. Ascent sequences are important because they

are in bijection with several other interesting combinatorial objects. To be

more precise, it follows from the work of [1, 3, 5] that there are natural bijec-

tions between Ascn and the following four classes of combinatorial objects:

(1) The set of (2+ 2)-free posets of size n. Here we consider two posets

to be equal if they are isomorphic, and an unlabeled poset is said to be

(2+ 2)-free if it does not contain an induced subposet that is isomorphic to

(2+ 2), the union of two disjoint 2-element chains. (2+ 2)-free posets are

known to be in 1-to-1 correspondence with celebrated interval orders.

(2) The set Mn of upper triangular matrices of non-negative integers such

that no row or column contains all zero entries, and the sum of the entries

is n.

(3) The set Rn of permutations of [n] = {1, . . . , n}, where in each occur-

rence of the pattern 231, either the letters corresponding to the 2 and the

3 are nonadjacent, or else the letters corresponding to the 2 and the 1 are

nonadjacent in value. Here, a word contains an occurrence of the pattern

231 if it contains a subsequence of length 3 that is order-isomorphic to 231.

(4) The set Mchn of Stoimenow matchings on [2n]. A matching of the set

[2n] = {1, 2, . . . , 2n} is a partition of [2n] into subsets of size 2, each of which

is called an arc. The smaller number in an arc is its opener, and the larger

one is its closer. A matching is said to be Stoimenow if it has no pair of arcs

{a < b} and {c < d} that satisfy one (or both) of the following conditions:

(a) a = c + 1 and b < d and (b) a < c and b = d + 1. In other words, a

Stoimenow matching has no pair of arcs such that one is nested within the

other and either the openers or the closers of the two arcs differ by 1.

Remmel [11] showed that there is an interesting connection between

the Genocchi numbers G2n and the median Genocchi numbers H2n−1 and

up-down ascent sequences. In particular, Remmel showed that G2n is the
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number of up-down ascent sequences of length 2n− 1, H2n−1 is the number
of up-down ascent sequences of length 2n− 2.

Let pn be the number of ascent sequences of length n. Bousquet-Mélou
et al. [1] proved that

P (t) =
∑
n≥0

pnt
n =

∑
n≥0

n∏
i=1

(
1− (1− t)i

)
.

In fact, Bousquet-Mélou et al. [1] studied a more general generating function

F (t, u, v) =
∑

w∈Asc

t|w|uasc(w)vlast(w)

and found an explicit form for such a generating function. Kitaev and Rem-
mel [9] studied a refined version of this generating function. That is, they
found an explicit formula for the generating function

G(t, u, v, z, x) :=
∑

w∈Asc

t|w|uasc(w)vlast(w)z|w|0xrun(w),

where for any ascent sequence w, run(w) = 0 if w = 0n for some n, and
run(w) = r if w = 0rxv, where x is a positive integer and v is a word. Thus
run(w) keeps track of the initial sequences of 0s that start out w if w does
not consist of all zeros. Kitaev and Remmel [9] were able to use their formula
for G(t, u, v, z, x) to prove that

(1) A(t, z) :=
∑

w∈Asc

t|w|z|w|0 = 1 +
∑
n≥0

zt

(1− zt)n+1

n∏
i=1

(1− (1− t)i).

1.2. p-ascent sequences

In this paper, we introduce a generalization of ascent sequences, which we
call p-ascent sequences, where p ≥ 1. A sequence (a1, . . . , an) of non-negative
integers is a p-ascent sequence if a0 = 0 and for all i ≥ 2, ai is at most p plus
the number of ascents in (a1, . . . , ai−1). Thus, in our terminology, ascent
sequences are 1-ascent sequences.

We note that p-ascent sequences of length n can be encoded in terms of
ascent sequences of length n+2p−2. Indeed, one can see that (a1, a2, . . . , an)
is a p-ascent sequence if and only if (0, 1, 0, 1, . . . , 0, 1, a1, a2, . . . , an) is an
ascent sequence, where there are p− 1 0s and p− 1 1s preceding the a1 = 0.
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Thus, p-ascent sequences can be thought of as a subset of ascent sequences

of special type, namely, those ascents sequences that start out with (01)p−10.

The last observation allows to obtain a characterization of elements

counted by p-ascent sequences in (2+ 2)-free posets, the set of restricted

permutations Rn, the set of upper triangular matrices Mn, and the set of

Stoimenow matchings Mchn whenever we can characterize the images of

ascent sequences whose corresponding words start with (01)p−10. We do not

get into much detail here, but we provide two examples. We leave the other

two cases to the interested reader to explore using [1, 3, 5]. The (2+ 2)-

free posets corresponding to p-ascent sequences are (2+ 2)-free posets on

n+2p− 2 elements with the following property. Right before the last 2p− 1

steps in decomposition of such posets (the decomposition is described in [1];

we do not provide its details here due to space concerns), one obtains the

poset with p minimum elements and the other p − 1 elements forming the

pattern of the poset in Figure 1 corresponding to the case p = 5. Of course,

it would be interesting to give a direct characterization of such posets (e.g.,

in terms of forbidden sub-posets) but we were not able to succeed with that.

On the other hand, permutations in Rn corresponding to p-ascent sequences

are easily seen via the bijection given in [1] (not to be provided here due

to space concerns) to be the permutations that have consecutive blocks of

elements (2p+ 1)(2p− 1) . . . 1 and (2p)(2p− 2) . . . 2 (the former block is to

the left of the later block in all such permutations).

Figure 1: Type of poset obtained right before the last 2p−1 steps in decom-
position of the (2+ 2)-free poset corresponding to a p-ascent sequence.

The main goal of this paper is to generalize the results of [9] to p-ascent

sequences. That is, let Asc(p) denote the set of p-ascent sequences, where,

again, we consider the empty word to be a p-ascent sequence for any p ≥ 1.

Thus, the set of ascent sequences Asc is Asc(1) in our terminology. First,
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we shall study the generating functions

(2) G(p)(t, u, v, z, x) :=
∑

w∈Asc(p)

t|w|uasc(w)vlast(w)z|w|0xrun(w).

We shall find an explicit formula for G(p)(t, u, v, z, x) for any p ≥ 1 (see
Section 2) and then we shall use that formula to prove that

A(p)(t, z) :=
∑

w∈Asc(p)

t|w|z|w|0(3)

= 1 +
∑
n≥0

(
p+ n− 1

n

)
zt

(1− zt)n+1

n∏
i=1

(1− (1− t)i).

Duncan and Steingŕımsson [6] introduced the study of pattern avoidance
in ascent sequences. We initiate a similar study for p-ascent sequences. Given
a word w = w1 . . . wn ∈ N

∗, we let red(w) denote the word that is obtained
from w by replacing each copy of the i-th smallest element in w by i −
1. For example, red(238543623) = 015321401. Then we say that a word
u = u1 . . . uj occurs in w if there exist 1 ≤ i1 < · · · < ij ≤ n such that
red(wi1wi2 . . . wij ) = u. We say that w avoids u if u does not occur in w.

For any word u ∈ N
∗ such that red(u) = u, we let an,p,u denote the

number of p-ascent sequences a of length n avoiding u and rn,p,u denote the
number of sequences counted by an,p,u with no equal consecutive letters. We
prove a number of results about an,p,u and rn,p,u. For example, we will show
that for all p ≥ 1,

rn,p,10 =

(
p+ n− 2

n− 1

)
and an,p,10 =

n−1∑
s=0

(
n− 1

s

)(
p+ s− 1

s

)
.

This paper is organized as follows. In Section 2, we shall find an explicit
formula for G(p)(t, u, v, z, x). Unfortunately, we can not directly set u = 1 in
that formula so that in Section 3, we shall find a formula for G(p)(t, 1, 1, 1, x)
via an alternative proof. This formula will also allow us to find an explicit
formula for the generating function for the number of primitive p-ascent
sequences. Finally, in Section 4, we shall study an,p,u and rn,p,u for certain
patterns u of lengths 2 and 3.

2. Main results

For r ≥ 1, let G
(p)
r (t, u, v, z) denote the coefficient of xr in G(p)(t, u, v, z, x).

Thus G
(p)
r (t, u, v, z) is the generating function of those p-ascent sequences
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that begin with r ≥ 1 0s followed by some element between 1 and p. We let

G
(p,r)
a,�,m,n denote the number of p-ascent sequences of length n, which begin

with r 0s followed by some element between 1 and p, have a ascents, last

letter �, and a total of m zeros. We then let

(4) G(p)
r (t, u, v, z) =

∑
a,�,m≥0, n≥r+1

G
(p,r)
a,�,m,nt

nuav�zm.

The sequences of the form 0n contribute a term 1+tz+(tz)2+· · · = 1
1−tz

to G
(p)
r (t, u, v, z) since they have no ascents and no initial run of 0s (by

definition). Hence

(5) G(p)(t, u, v, x, z) =
1

1− tz
+
∑
r≥1

xrG(p)
r (t, u, v, z).

Lemma 2.1. For r ≥ 1, the generating function G
(p)
r (t, u, v, z) satisfies

(6) (v − 1− tv(1− u))G(p)
r (t, u, v, z) =

tr+1zruv(vp − 1) + t((v − 1)z − v)G(p)
r (t, u, 1, z) + tuvp+1G(p)

r (t, uv, 1, z).

Proof. Our proof follows the same steps as the proof of the p = 1 case of

the result that was provided in [9]. Fix r ≥ 1. Let x′ = (x1, . . . , xn−1) be an

ascent sequence beginning with r 0s followed by a nonzero element, with a

ascents and m zeros, where xn−1 = �. Then x = (x1, . . . , xn−1, i) is an ascent

sequence if and only if i ∈ [0, a+p]. Clearly, x also begins with r 0s followed

by a nonzero element. Now, if i = 0, the sequence x has a ascents and m+1

zeros. If 1 ≤ i ≤ �, x has a ascents and m zeros. Finally if i ∈ [�+ 1, a+ p],

then x has a+ 1 ascents and m zeros. Counting the sequences 0 . . . 0q with

r 0s and 1 ≤ q ≤ p separately, we have

G(p)
r (t, u, v, z)

= tr+1uvzr
vp − 1

v − 1
+

∑
a,�,m≥0

n≥r+1

G
(p,r)
a,�,m,nt

n+1

×
(
uav0zm+1 +

�∑
i=1

uavizm +

a+p∑
i=�+1

ua+1vizm

)

= tr+1uvzr
vp − 1

v − 1
+ t

∑
a,�,m≥0

n≥r+1

G
(p,r)
a,�,m,nt

nuazm
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×
(
z +

v�+1 − v

v − 1
+ u

va+p+1 − v�+1

v − 1

)

= tr+1uvzr
vp − 1

v − 1
+ tzG(p)

r (t, u, 1, z) + tv
G

(p)
r (t, u, v, z)−G

(p)
r (t, u, 1, z)

v − 1

+ tuv
vpG

(p)
r (t, uv, 1, z)−G

(p)
r (t, u, v, z)

v − 1
.

The result follows.

Next, just like in the proof of the p = 1 case in [9], we use the kernel
method to proceed. Setting (v − 1 − tv(1 − u)) = 0 and solving for v, we
obtain that the substitution v = 1/(1+ t(u−1)) will eliminate the left-hand

side of (6). We can then solve for G
(p)
r (t, u, 1, z) to obtain that

(7) G(p)
r (t, u, 1, z) =

trzru

γ1δ
p
1

(1− δp1) +
u

γ1δ
p
1

G(p)
r

(
t,

u

δ1
, 1, z

)
where δ1 = 1 + t(u− 1) and γ1 = 1 + zt(u− 1).

Next we let δk = u− (1− t)k(u−1) and γk = u− (1−zt)(1− t)k−1(u−1)
for k ≥ 1. We also set δ0 = γ0 = 1. Observe that δ1 = u − (1− t)(u− 1) =
1 + t(u− 1) and γ1 = u− (1− zt)(u− 1) = 1 + zt(u− 1).

For any function of f(u), we shall write f(u)|u= u

δk

for f(u/δk). It is then

easy to check that

δs|u= u

δk

=
δs+k

δk
, γs|u= u

δk

=
γs+k

δk
,

u

δs
|u= u

δk

=
u

δs+k
, and

(u− 1)|u= u

δk

=
(1− t)k(u− 1)

δk
.

Using these relations, one can iterate the recursion (7) to obtain

(8) G(p)
r (t, u, 1, z) =

trzru(1− δp1)

γ1δ
p
1

+

∞∑
k=2

trzruk
(
1− δpk

δpk−1

)
γ1 · · · γkδpk

.

Note that since δ0 = 1, we can rewrite tr+1zru(1−δp1 )
γ1δ

p
1

as trzru(δp0−δp1 )
γ1δ

p
0δ

p
1

and we can

rewrite
trzruk

(
1− δ

p
k

δ
p
k−1

)
γ1···γkδ

p
k

as
trzru(δpk−1−δpk)

γ1···γkδ
p
k−1δ

p
k
. Thus we have proved the following

theorem.

Theorem 2.1.

(9) G(p)
r (t, u, 1, z) =

∞∑
k=1

trzruk(δpk−1 − δpk)

γ1 · · · γkδpk−1δ
p
k

.
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Note that we can rewrite (6) as

G(p)
r (t, u, v, z)(10)

=
tr+1zruv(vp − 1)

vδ1 − 1
+

t(z(v − 1)− v)

vδ1 − 1
G(p)

r (t, u, 1, z)

+
uvp+1t

vδ1 − 1
G(p)

r (t, uv, 1, z).

For s ≥ 1, we let δ̄s = δs|u=uv = uv − (1− t)s(uv − 1) and

γ̄s = γs|u=uv = uv − (1− zt)(1− t)s−1(uv − 1)

and set δ̄0 = γ̄0 = 1. Then using (10) and (9), we have the following theorem.

Theorem 2.2. For all r ≥ 1,

G(p)
r (t, u, v, z) = trzr

(
tuv(vp − 1)

vδ1 − 1
+

t(z(v − 1)− v)

vδ1 − 1

∑
k≥1

(δpk−1 − δpk)

γ1 · · · γkδpk−1δ
p
k

(11)

+
tuvp+1

vδ1 − 1

∑
k≥1

(δ̄pk−1 − δ̄pk)

γ̄1 · · · γ̄kδ̄pk−1δ̄
p
k

)
.

It is easy to see from Theorem 2.2 thatG
(p)
r (t, u, v, z) = tr−1zr−1G

(p)
1 (t, u,

v, z). This is also easy to see combinatorially since every ascent sequence

counted by G
(p)
r (t, u, v, z) is of the form 0r−1a, where a is a p-ascent se-

quence counted by G
(p)
1 (t, u, v, z). Hence

G(p)(t, u, v, z, x) =
1

1− tz
+
∑
r≥1

G(p)
r (t, u, v, z)xr

=
1

1− tz
+
∑
r≥1

tr−1zr−1G
(p)
1 (t, u, v, z)xr

=
1

1− tz
+

x

1− tzx
G

(p)
1 (t, u, v, z).

Thus we have the following theorem.

Theorem 2.3. G(p)(t, u, v, z, x) = 1
1−tz + x

1−tzxG
(p)
1 (t, u, v, z).
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3. Specializations of our general results

In this section, we shall compute the generating function for p-ascent se-

quences by length and the number of zeros.

For n ≥ 1, let H
(p)
a,b,�,n denote the number of p-ascent sequences of length

n with a ascents and b zeros which have last letter �. Then we first wish to

compute

(12) H(p)(t, u, v, z) =
∑

n≥1, a,b,�≥0

H
(p)
a,b,�,nu

azbv�tn.

Using the same reasoning as in the previous section, we see that

H(p)(t, u, v, z)

= tz +
∑

a,b,�≥0

n≥1

H
(p)
a,b,�,nt

n+1

(
uav0zb+1 +

�∑
i=1

uavizb +

a+p∑
i=�+1

ua+1vizb

)

= tz + t
∑

a,b,�≥0

n≥r+1

H
(p)
a,b,�,nt

nuazb
(
z +

v�+1 − v

v − 1
+ u

va+p+1 − v�+1

v − 1

)

= tz + tzH(p)(t, u, 1, z) +
tv

v − 1

(
H(p)(t, u, v, z)−H(p)(t, u, 1, z)

)
+

tuv

v − 1

(
H(p)(t, uv, 1, z)−H(p)(t, u, v, z)

)
.

Solving for H(p)(t, u, v, z), we see that we have the following lemma.

Lemma 3.1.

(13) (vδ1 − 1)H(p)(t, u, v, z) =

(v − 1)tz + t(z(v − 1)− v)H(p)(t, u, 1, z) + tuvp+1H(p)(t, uv, 1, z).

Again, the substitution v = 1
δ1

eliminates the left-hand side of (13). We

can then solve for H(p)(u, 1, z, t) to obtain the recursion

(14) H(p)(t, u, 1, z) =
(1− δ1)z

γ1
+

u

γ1δ
p
1

H(p)

(
t,

u

δ1
, 1, z

)
.

We can iterate the recursion (14) in the same manner as we iterated the
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recursion (7) in the previous section to prove that

(15) H(p)(t, u, 1, z) =
∑
n≥0

(δn − δn+1)zu
n

γ1 · · · γn+1δ
p
n

.

We can easily check that for all n ≥ 0, δn − δn+1 = (1 − u)t(1− t)n. Thus,
as a power series in u, we can conclude the following.

Theorem 3.1. H(p)(t, u, 1, z) =
∑∞

n=0
zt(1−u)un(1−t)n

δpn
∏n+1

i=1 γi
.

We would like to set u = 1 in the power series
∑∞

s=0
zt(1−u)us(1−t)s

δs
∏s+1

i=1 γi
, but

the factor (1 − u) in the series does not allow us to do that in this form.
Thus our next step is to rewrite the series in a form where it is obvious
that we can set u = 1 in the series. To that end, observe that for k ≥ 1,
δk = u−(1−t)k(u−1) = 1+u−1−(1−t)k(u−1) = 1−((1−t)k−1)(u−1),
so that by Newton’s binomial theorem,

(16)
1

δpk
=

∞∑
n=0

(
p− 1 + n

n

)
(u− 1)n

(
n∑

m=0

(−1)n−m

(
n

m

)
(1− t)km

)
.

Substituting (16) into Theorem 3.1, we see that

H(p)(t, u, 1, z) =
zt(1− u)

γ1
+
∑
k≥1

zt(1− u)uk(1− t)k∏k+1
i=1 γi

×
∑
n≥0

(
p− 1 + n

n

)
(u− 1)n

n∑
m=0

(−1)n−m

(
n

m

)
(1− t)km

=
zt(1− u)

γ1
+

∑
n≥0

n∑
m=0

(−1)n−m−1

(
n

m

)
(u− 1)n−mzt

×
∑
k≥1

(u− 1)m+1uk(1− t)k(m+1)∏k+1
i=1 γi

=
zt(1− u)

γ1
+

∑
n≥0

(
p− 1 + n

n

)

×
n∑

m=0

(−1)n−m−1

(
n

m

)
(u− 1)n−m zt

(1− zt)m+1

×
∑
k≥1

(u− 1)m+1(1− zt)m+1uk(1− t)k(m+1)∏k+1
i=1 γi

.
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In [9], we have proved the following lemma.

Lemma 3.2.

∑
k≥0

(u− 1)m+1(1− zt)m+1uk(1− t)k(m+1)∏k+1
i=1 γi

= −
m∑
j=0

(u− 1)j(1− zt)jum−j
m∏

i=j+1

(1− ((1− t)i).

It thus follows that H(p)(t, u, 1, z) is

zt(1− u)

γ1
+

∑
n≥0

(
p− 1 + n

n

) n∑
m=0

(−1)n−m−1

(
n

m

)
(u− 1)n−m zt

(1− zt)m+1

×
(

− (u− 1)m+1(1− zt)m+1

γ1

−
m∑
j=0

(u− 1)j(1− zt)jum−j
m∏

i=j+1

(1− (1− t)i)

)
.

There is no problem in setting u = 1 in this expression to obtain that

(17) H(p)(t, 1, 1, z) =
∑
n≥0

(
p− 1 + n

n

)
zt

(1− zt)n+1

n∏
i=1

(1− (1− t)i).

Clearly, our definitions ensure that 1+H(t, 1, 1, z) = A(p)(t, z) as defined

in the introduction so that we have the following theorem.

Theorem 3.2. For all p ≥ 1,

A(p)(t, z) =
∑

w∈Asc(p)

t|w|z|w|0(18)

= 1 +
∑
n≥0

(
p− 1 + n

n

)
zt

(1− zt)n+1

n∏
i=1

(1− (1− t)i).

The case p = 1 in Theorem 3.2 gives exactly the same formula for

A(1)(t, z) as that derived in [9], which should be the case. We also note
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that the authors conjectured in [9] that

(19) 1+

∞∑
k=0

zt

(1− zt)k+1

k∏
i=1

(1−((1−t)i) = 1+

∞∑
m=1

m∏
i=1

(1−(1−t)i−1(1−zt)).

This was proved independently by Jeĺınek [7], Levande [10], and Yan [13].
It would be interesting to find an analogue of this relation for p > 1.

Next we can use the same techniques as in [4] to find the generating func-
tion for the number of primitive p-ascent sequences. That is, let rn,p denote
the number of p-ascent sequences a of length n such that a has no consecu-
tive repeated letters and an,p denote the number of p-ascent sequences a of
length n.

If R(p)(t) = 1 +
∑

n≥1 rn,pt
n and A(p)(t) = 1 +

∑
n≥1 an,pt

n, then it is
easy to see that

(20) A(p)(t) = A(p)(t, 1) = R(p)

(
t

1− t

)
= R(p)(t+ t2 + · · · ),

since each element in a primitive p-ascent sequence can be repeated any
specified number of times. Setting x = t

1−t so that t = x
1+x , we see that (20)

implies that

(21) R(p)(x) = A(p)

(
x

1 + x

)
.

Using our formula (18) for A(p)(t) and simplifying will yeild the following
theorem.

Theorem 3.3. For all p ≥ 1,

R(p)(t) = 1 + t

∞∑
n=0

(
p− 1 + n

n

)
(1 + t)n

n∏
i=1

(
1−

(
1

1 + t

)i
)
.

Finally if we replace t by t+ t2+ · · ·+ tk = t (t
k−1)
t−1 in Theorem 3.3, then

we can obtain the generating function for the number of p-ascent sequences a
such that the maximum length of a consecutive sequence of repeated letters
is less than or equal to k:

(22) 1 + t
tk − 1

t− 1

∞∑
n=0

(
p− 1 + n

n

)(
tk+1 − 1

t− 1

)n n∏
i=1

(
1−

(
t− 1

tk+1 − 1

)i
)
.
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4. Pattern avoidance in p-ascent sequences

In this section, we shall prove some simple results about pattern avoidance
in p-ascent sequences thus extending the studies initiated in [6] for ascent
sequences.

We begin by considering patterns of length 2. There are three such pat-
terns, 00, 01, and 10. Recall that an,p,u (resp., rn,p,u) is the number of (resp.,
primitive) p-ascent sequences of length n that avoid a pattern u. The only
p-ascent sequences that avoid 01 are the sequences that consist of all zeros so
that an,p,01 = 1 for all n, p ≥ 1 and rn,p,01 equals 1 if n = 1 and 0 otherwise.

10-avoiding p-ascent sequences
Let us consider rn,p,10. In this case, we are looking for p-ascent sequences
which avoid 10 and have no repeated letters. It is clear that any such a
sequence a must be of the form a = a1 . . . an, where 0 = a1 < a2 < · · · < an.
For each 1 ≤ i ≤ n, the word a1 . . . ai has i−1 ascents so that ai+1 ≤ i−1+p.
It follows that rn,p,10 counts all words a1a2 . . . an, where 0 = a1 < a2 <
· · · < an ≤ p+n− 2 so that rn,p,10 =

(
p+n−2
n−1

)
. Hence by Newton’s Binomial

Theorem,

R
(p)
10 (t) = 1 +

∑
n≥1

(
p− 1 + n− 1

n− 1

)
tn = 1 +

t

(1− t)p
.(23)

It is easy to see that the p-ascent sequences counted by an,p,10 arise by
taking a sequence d1 . . . ds counted by rs,p,10 for some s ≤ n and replacing
each letter di by one or more copies so that the resulting word is of length n.
The number of ways to do this for a given d1 . . . ds is the number of solutions
to b1 + · · ·+ bs = n, where bi ≥ 1, which is

(
n−1
s−1

)
. Thus

(24) an,p,10 =

n∑
s=1

(
n− 1

s

)
rs,p,10 =

n−1∑
s=0

(
n− 1

s

)(
p+ s− 1

s

)
.

It also follows that A
(p)
10 (t) = R

(p)
10

(
t

1−t

)
= 1 + t(1−t)p−1

(1−2t)p .

We note that the sequence (an,2,10)n≥1 starts out 1, 3, 8, 20, 48, 112,
256, . . . and this is the sequence A001792 in the OEIS [12] which has many
combinatorial interpretations.

00-avoiding p-ascent sequences
If a p-ascent sequence a = a1 . . . an avoids 00, then all its elements must
be distinct. Note that for each 2 ≤ i ≤ n, a1 . . . ai−1 can have at most
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i − 2 ascents so that ai ≤ p + i − 2. Let max(a) denote the maximum of
{a1, . . . , an}. If a avoids 00, then by the pigeon hole principle, it must be
the case that max(a) ≥ n− 1. Thus, if a avoids 00, then n− 1 ≤ max(a) ≤
n+ p− 2.

Now consider 2-ascent sequences that avoid 00. Suppose that a = a1 . . . an
is a 2-ascent sequence which avoids 00. Then we know that max(a) ∈
{n − 1, n}. If max(a) = n, a must be strictly increasing and there must
be some smallest k ≥ 1 such that ak = k, In such a situation, it is easy to
see that a must be of the form 0, 1, . . . , k − 2, k, k + 1, . . . n. Thus there are
n−1 2-ascent sequences a of length n such that a avoids 00 and max(a) = n.

Next, suppose that a = a1 . . . an is a 2-ascent sequence that avoids 00
and max(a) = n − 1. Then there are two cases. Namely, it could be that
there is no k ≤ n such that ak = k. In that case, a is the increasing sequence
a = 012 . . . (n−1). Otherwise, let j equal the smallest i such that ai = i. Then
a must be strictly increasing up to aj so that a starts out 012 . . . (j − 2)j.
Since max(a) = n−1, it follows that {a1, . . . , an} = {0, 1, . . . , n−1} so that
there must be some j < k ≤ n such that ak = j − 1. In that case, ak−1 > ak
so that a has at least one descent. However, if max(a) = n−1, a can have at
most one descent. Thus, once we have placed j − 1, the remaining elements
must be placed in increasing order. It is then easy to check that no matter
where we place j−1 after position j, the resulting sequence will be a 2-ascent
sequence. It follows that the number of 2-ascent sequences which avoid 00
and have one descent is

∑n−1
j=1 (n− j) =

(
n−1
2

)
.

Thus, we have the following theorem.

Theorem 4.1. For all n ≥ 1, an,2,00 = n− 1 + 1 +
(
n−1
2

)
= 1 +

(
n
2

)
.

The sequence (an,3,00)n≥1 starts out 1, 3, 9, 24, 57, 122, 239, 435, 745,
1213, 1893, 2850, . . . , which is the sequence A089830 in the OEIS [12], whose
generating function is 1−3x+6x2−5x3+3x4−x5

(1−x)6 .

In this case, if a = a1 . . . an is a 3-ascent sequence which avoids 00, then
we know that n− 1 ≤ max(a) ≤ n+ 1. We shall prove that

∑
n≥1

an,3,00x
n =

x(1− 3x+ 6x2 − 5x3 + 3x4 − x5)

(1− x)6

by classifying the 3-ascent sequences a which avoid 00 by the max(a) and
des(a), where des(a) is the number of descents in a, that is, the number of
elements followed by smaller elements.

Case 1. des(a) = 0.
Suppose that a = a1 . . . an is an increasing 3-ascent sequence that avoids
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00. Now, if max(a) = n − 1, then a = 012 . . . (n − 1). If max(a) = n, then
exactly one element from [n] = {1, . . . , n − 1} does not appear in a. If i
does not appear in a, then a = 01 . . . (i − 1)(i + 1)(i + 2) . . . n, which is a
3-ascent sequence. Thus, there are n−1 increasing 3-ascent sequences whose
maximum is n. Finally, if max(a) = n+1, then two elements from [n] do not
appear in a. Again, it is easy to check that no matter which two elements
from [n] we leave out, the resulting increasing sequence will be a 3-ascent
sequence. Thus, there are

(
n
2

)
increasing 3-ascent sequences whose maximum

is n + 1. Therefore, the total number of increasing 3-ascents sequences of
length n is 1 + (n− 1) +

(
n
2

)
=

(
n+1
2

)
.

Case 2. des(a) = 1.
In this case, if a = a1 . . . an is a 3-ascent sequence such that des(a) = 1 and
a avoids 00, then max(a) ∈ {n − 1, n}. Suppose that aj > aj−1. Then we
have two subcases depending on whether aj = j or aj = j + 1.

If aj = j + 1, then there must be two elements 1 ≤ u < v ≤ j, which do
not appear in a1 . . . aj . Clearly, we have

(
j
2

)
ways to pick u and v. We then

have three subcases depending on whether u and v appear in a. If both u
and v appear in a, then a must start out a1 . . . ajuv so that aj+3 . . . an must
be an increasing sequence from [n]− [j+1] of length n− j−2. Clearly, there
are n−j−1 such subsequences and it is easy to check that we can attach any
such subsequence at the end of the sequence a1 . . . ajuv to obtain a 3-ascent
sequence avoiding 00. If u appears in a, but v does not appear in a, then a
must be of the form a1 . . . ajuγ, where γ is the increasing sequence (j+2)(j+
3) . . . n. Similarly if v appears in a, but u does not appear in a. then amust be
of the form a1 . . . ajvγ, where γ is the increasing sequence (j+2)(j+3) . . . n.
It follows that the number of 3-ascent sequences is

∑n−1
j=2

(
j
2

)
(n− j+1). One

can verify by Mathematica that
∑n−1

j=2

(
j
2

)
(n− j + 1) =

(
n
3

)
+
(
n+1
4

)
.

If aj = j, there is one element u in [j] which does not appear in a1 . . . aj ,
so that the sequence must start out a1 . . . aju. The rest of the sequence
must be the increasing rearrangement of {j + 1, . . . , n} − {v} for some v ∈
{j + 1, . . . , n}. Thus, we have j − 1 choices for u and n − j choices for v.
Hence the number of 3-ascent sequences a where des(a) = 1 and for some j,
aj > aj+1 and aj = j is

∑n−1
j=2 (j−1)(n− j). One can check by Mathematica

that
∑n−1

j=2 (j − 1)(n− j) =
(
n
3

)
.

Thus, the number of 3-ascent sequences with one descent, which avoid
00 is 2

(
n
3

)
+
(
n+1
4

)
.

Case 3. des(a) = 2.
In this case, it must be that max(a) = n− 1, so that a must contain all the
elements in the sequence 0, 1, . . . , n− 1. Now, suppose that the first descent
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of a occurs at position j. Then we have two cases depending on whether

aj = j or aj = j + 1.

If aj = j, there must be some u, where 1 ≤ u ≤ j − 1, which does not

appear in a1 . . . aj and aj+1 = u. We have j − 1 choices for u. The sequence

aj+2 . . . an must be a rearrangement of (j+1)(j+2) . . . (n−1), which has one

descent. The bottom element of the descent pair that occurs in aj+2 . . . an
must equal s for some j + 1 ≤ s ≤ n− 2 and the top element of the descent

must equal t, where s + 1 ≤ t ≤ n − 1. It is easy to check that any choice

of s and t will yield a 3-ascent sequence, so that the number of choices for

the sequence aj+2 . . . an is
∑n−2

s=(j+1) n− 1− s =
(
n−1−j

2

)
. It follows that the

number of 3-ascent sequences in this case is
∑n−2

j=2 (j− 1)
(
n−1−j

2

)
, which can

be shown by Mathematica to be equal to
(
n−1
4

)
.

If aj = j + 1, then there must be two elements 1 ≤ u ≤ v ≤ j that do

not appear in a1 . . . aj . We have
(
j
2

)
ways to choose u and v. We then have

two further subcases depending on whether aj+1 = v or aj+1 = v.

If aj+1 = v, then our sequences start out a1 . . . aj = (j + 1)v and where

every u occurs in the sequence aj+2 . . . an, it will cause a second descent so

that there are n− j − 1 choices in this case. If aj+1 = u, then the sequence

aj+2 . . . an must be a rearrangemetn of the sequence v(j+2)(j+3) . . . (n−1)

with one descent and we can argue as we did in the case where aj = j that

there are
(
n−j−1

2

)
choices for the sequence aj+2 . . . an. Thus the total number

of choices in the case where aj = j + 1 is
∑n−2

j=1

(
j
2

)(
n−j
2

)
=

(
n+1
5

)
where the

last equality can be checked by Mathematica.

Putting all the cases together, we see that the number of 3-ascent se-

quences of length n, which avoid 00 is equal to(
n+ 1

2

)
+ 2

(
n

3

)
+

(
n− 1

4

)
+

(
n+ 2

5

)
.

Thus we have the following theorem.

Theorem 4.2. For all n ≥ 1,

an,3,00 =

(
n+ 1

2

)
+ 2

(
n

3

)
+

(
n− 1

4

)
+

(
n+ 2

5

)
.

Note that it follows from Newton’s binomial theorem that

∑
n≥1

(
n+ 1

2

)
xn =

x

(1− x)3
,

∑
n≥1

2

(
n

3

)
xn =

2x3

(1− x)4
,
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∑
n≥1

(
n− 1

4

)
xn =

x5

(1− x)5
, and

∑
n≥1

(
n+ 2

5

)
xn =

x3

(1− x)6
.

Adding these series together and simplifying, we have the following theorem.

Theorem 4.3.
∑

n≥1 an,3,00x
n = x(1−3x+6x2−5x3+3x4−x5)

(1−x)6 .

We note that Burstein and Mansour [2] gave a combinatorial interpre-
tation to the n-th element in sequence A089830 as the number of words
w = w1 . . . wn−1 ∈ {1, 2, 3}∗, which avoid the vincular pattern 21-2 (also
denoted in the literature 212; see [8]). That is, there are no subsequences of
the form wiwi+1wj in w such that i+1 < j and wi = wj > wi+1. We ask the
question whether one can construct a simple bijection between such words
and the set of 3-ascent sequences of length n, which avoid 00.

We note that the sequence (an,4,00)n≥1 starts out 1, 4, 16, 58, 190, 564,
1526, 3794 . . . . This is the sequence A263851 in the OEIS [12].

012-avoiding p-ascent sequences. Now suppose that a = a1 . . . an is a
p-ascent sequence such that a avoids 012. The first thing to observe is that
if ai = 1 for some i, then since a1 = 0, it must be the case that aj ∈ {0, 1}
for all j ≥ i. The second thing to observe is that ai ≤ p for all i. That is,
the only way that a can have an element ak > p is if a1 . . . ak−1 has at least
ak − p ascents. Since the first ascent in a p-ascent sequence must be of one
of the forms 01, 02, . . . , 0p, such an ascent sequence would not avoid 012.

2-ascent sequences. Now, suppose that a = a1 . . . an is a 2-ascent sequence
such that a avoids 012. If a has no 1s, then ai ∈ {0, 2} for all i ≥ 2, so that
there are 2n−1 such 2-ascent sequences. If a contains a 1, then let k be the
smallest j such that aj equals 1. It then follows that ai ∈ {0, 2} for 2 ≤ i < k
and aj ∈ {0, 1} for k < j ≤ n. Thus, there are 2n−2 such 2-ascent sequences,
so that the number of 2-ascent sequences that avoid 012 and contain a 1 is
(n− 1)2n−2. Hence, for n ≥ 1,

(25) an,2,012 = 2n−1 + (n− 1)2n−2 = (n+ 1)2n−2.

We note that the sequence (an,2,012)n≥1 starts out 1, 3, 8, 20, 48, 112,
256, . . ., and this is, again, as in the case of (an,2,10)n≥1, the sequence A001792
in the OEIS [12]. Next, we will explain this fact combinatorially.

It is easy to see that each sequence counted by (an,2,012)n≥1 can be
obtained by taking a number of 2s (maybe none) followed by a number of
1s, and placing any number of 0s (maybe none) between these 1s and 2s
making sure that the total length of the sequence is n, and this sequence
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begins with a 0. On the other hand, it is also easy to see that sequences
counted by (an,2,10)n≥1 are of two types: they are either of the form

(26) 0 . . . 0︸ ︷︷ ︸
i0≥1

1 . . . 1︸ ︷︷ ︸
i1≥1

2 . . . 2︸ ︷︷ ︸
i2≥1

. . . a . . . a︸ ︷︷ ︸
ia≥1

,

where 0, 1, . . . , a all appear or of the form

(27) 0 . . . 0︸ ︷︷ ︸
i0≥1

1 . . . 1︸ ︷︷ ︸
i1≥1

. . . a . . . a︸ ︷︷ ︸
ia≥1

(a+ 2) . . . (a+ 2)︸ ︷︷ ︸
ia+2≥1

(a+ 3) . . . (a+ 3)︸ ︷︷ ︸
ia+3≥1

,

where a ≥ 0 exists. A bijection between the classes of sequences is given by
turning sequences of the form (26) into

0 . . . 0︸ ︷︷ ︸
i0

2 0 . . . 0︸ ︷︷ ︸
i1−1

2 0 . . . 0︸ ︷︷ ︸
i2−1

. . . 2 0 . . . 0︸ ︷︷ ︸
ia−1

,

and the sequences of the form (27) into

0 . . . 0︸ ︷︷ ︸
i0

2 0 . . . 0︸ ︷︷ ︸
i1−1

2 0 . . . 0︸ ︷︷ ︸
i2−1

. . . 2 0 . . . 0︸ ︷︷ ︸
ia−1

1 0 . . . 0︸ ︷︷ ︸
ia+2−1

1 0 . . . 0︸ ︷︷ ︸
ia+3−1

1 0 . . . 0︸ ︷︷ ︸
ia+4−1

. . . .

3-ascent sequences. Now, suppose that a = a1 . . . an is a 3-ascent sequence
such that a avoids 012. If a has no 1s, then ai ∈ {0, 2, 3} for all i ≥ 2. It
is then easy to see that if b1 . . . bn is the sequence that arises from a1 . . . an
by replacing each 2 by a 1 and each 3 by a 2, then b is a 2-ascent sequence
that avoids 012. Thus, there are (n+ 1)2n−2 such sequences. Now, suppose
that a contains a 1. Then let k be the smallest j such that aj equals 1. It
then follows that ai ∈ {0, 2, 3} for 2 ≤ i < k and aj ∈ {0, 1} for k < j ≤ n.
It is then easy to see that if b1 . . . bk−1 is the sequence that arises from
a1 . . . ak−1 by replacing each 2 by a 1 and each 3 by a 2, then b1 . . . bk−1 is a
2-ascent sequence that avoids 012. Thus, from our argument above, it follows
that there are k2k−3 choices for a1 . . . ak−1 and 2n−k choices for ak+1 . . . an.
Therefore, given k, we have k2n−3 choices for a. Thus,

an,3,012 = (n+ 1)2n−2 +

n∑
k=2

k2n−3 = 2n−4(n2 + 5n+ 2)(28)

where the last equality can be checked by Mathematica. We note that the
sequence (an,3,012)n≥1 begins 1, 4, 13, 38, 104, 272, 688, . . . and this is the se-
quence A049611 in the OEIS [12] with several combinatorial interpretations.
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p-ascent sequences for an arbitrary p. In general, we can obtain a simple
recursion for an,p,012. That is, suppose that a = (a1, . . . , an) is a p-ascent
sequence such that a avoids 012. Now, if a has no 1s, then ai ∈ {0, 2, 3, . . . , p}
for all i ≥ 2. It is then easy to see that if b = (b1, . . . , bn) is the sequence that
arises from a by replacing each i ≥ 2, by an i− 1, then b is a (p− 1)-ascent
sequences that avoids 012. Thus, there are an,p−1,012 such sequences. Now
suppose that a contains a 1. Then let k be the smallest j such that aj equals
1. It then follows that ai ∈ {0, 2, 3, . . . , p} for 2 ≤ i < k and aj ∈ {0, 1}
for k < j ≤ n. It is then easy to see that if b1 . . . bk−1 is the sequence that
arises from a1 . . . ak−1 by replacing each i ≥ 2 by an i− 1, then b1 . . . bk−1 is
a 2-ascent sequences that avoids 012. It follows that there are ak−1,p−1,012

choices for a1 . . . ak−1 and 2n−k choices for ak+1 . . . an. Thus, given k, we
have 2n−kak−1,p−1,012 choices for a. It follows that

(29) an,p,012 = an,p−1,012 +

n∑
k=2

ak−1,p−1,0122
n−k.

For example, using our formula for an,3,012, one can compute that an,4,012 =
2n−5

3 (n3+12n2+29n+6). The sequence (an,4,012)n≥1 begins 1, 5, 19, 63, 192,
552, 1520, 4048, 10496, . . . and this is the sequence A049612 in the OEIS [12].
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