A note on p-ascent sequences Sergey Kitaev and Jeffrey B. Remmel[∗](#page-0-0)

Ascent sequences were introduced by Bousquet-Mélou, Claesson, Dukes, and Kitaev in [\[1\]](#page-18-0), who showed that ascent sequences of length *n* are in 1-to-1 correspondence with $(2 + 2)$ -free posets of size n . In this paper, we introduce a generalization of ascent sequences, which we call *p-ascent sequences*, where $p \geq 1$. A sequence (a_1, \ldots, a_n) of non-negative integers is a *p*-ascent sequence if $a_0 = 0$ and for all $i \geq 2$, a_i is at most p plus the number of ascents in (a_1, \ldots, a_{i-1}) . Thus, in our terminology, ascent sequences are 1-ascent sequences. We generalize a result of the authors in [\[9](#page-19-0)] by enumerating p-ascent sequences with respect to the number of 0s. We also generalize a result of Dukes, Kitaev, Remmel, and Steingrímsson in $[4]$ $[4]$ by finding the generating function for the number of p-ascent sequences which have no consecutive repeated elements. Finally, we initiate the study of pattern-avoiding p -ascent sequences.

1. Introduction

1.1. Ascent sequences

Ascent sequences were introduced by Bousquet-Mélou, Claesson, Dukes, and Kitaev in [\[1](#page-18-0)], who showed that ascent sequences of length n are in 1-to-1 correspondence with $(2 + 2)$ -free posets of size n. Let $\mathbb{N} = \{0, 1, \ldots\}$ denote the natural numbers and \mathbb{N}^* denote the set of all words over \mathbb{N} . A sequence $(a_1,\ldots,a_n) \in \mathbb{N}^n$ is an ascent sequence of length n if and only if it satisfies $a_1 = 0$ and $a_i \in [0, 1 + \mathrm{asc}(a_1, \ldots, a_{i-1})]$ for all $2 \le i \le n$, where

$$
\mathrm{asc}(a_1,\ldots,a_i)=|\{j:a_j
$$

is the number of ascents in $(a_1,...,a_n)$. For instance, $(0, 1, 0, 2, 3, 1, 0,$ $(0, 2)$ is an ascent sequence which has four ascents. We let Asc denote the set of all ascent sequences, where we assume that the empty word is also

arXiv: [1503.00914](http://arxiv.org/abs/1503.00914)

[∗]Partially supported by NSF grant DMS 0654060.

an ascent sequence. For any $n \geq 1$, we let Asc_n denote the set of all ascent sequences of length n. If $a = (a_1, \ldots, a_n) \in Asc_n$, we let $|a| = n$ be the length of $a, \sum a = a_1 + \cdots + a_n$ equal the sum of the values of $a, |a|_0$ denote the number of occurrences of 0 in a, and last $(a) = a_n$ denote the last letter of a. We say that $a = (a_1, \ldots, a_n) \in Asc_n$ is an up-down ascent sequence if $a_1 < a_2 > a_3 < a_4 > \cdots$. That is, $a = (a_1, \ldots, a_n) \in As_{c_n}$ is an up-down ascent sequence if $a_i < a_{i+1}$ whenever i is odd, and $a_i > a_{i+1}$ whenever i is even. Throughout this paper, we will often identify a sequence (a_1, \ldots, a_n) in \mathbb{N}^n with the word $a_1 \ldots a_n$. Thus, instead of writing, say, $(0, 0, 0)$, we will simply write 000, or 0^3 .

There has been considerable work on ascent sequences in recent years, see, for example, [\[1](#page-18-0), [4,](#page-18-1) [6](#page-19-1), [9\]](#page-19-0). Ascent sequences are important because they are in bijection with several other interesting combinatorial objects. To be more precise, it follows from the work of $[1, 3, 5]$ $[1, 3, 5]$ $[1, 3, 5]$ $[1, 3, 5]$ $[1, 3, 5]$ that there are natural bijections between Asc_n and the following four classes of combinatorial objects: **(1)** The set of $(2 + 2)$ -free posets of size n. Here we consider two posets to be equal if they are isomorphic, and an unlabeled poset is said to be (**2** + **2**)-free if it does not contain an induced subposet that is isomorphic to $(2 + 2)$, the union of two disjoint 2-element chains. $(2 + 2)$ -free posets are known to be in 1-to-1 correspondence with celebrated interval orders.

(2) The set M_n of upper triangular matrices of non-negative integers such that no row or column contains all zero entries, and the sum of the entries is n.

(3) The set R_n of permutations of $[n] = \{1, \ldots, n\}$, where in each occurrence of the pattern 231, either the letters corresponding to the 2 and the 3 are nonadjacent, or else the letters corresponding to the 2 and the 1 are nonadjacent in value. Here, a word contains an occurrence of the pattern 231 if it contains a subsequence of length 3 that is order-isomorphic to 231. (4) The set Mch_n of Stoimenow matchings on [2n]. A matching of the set $[2n] = \{1, 2, \ldots, 2n\}$ is a partition of $[2n]$ into subsets of size 2, each of which is called an arc. The smaller number in an arc is its opener, and the larger one is its closer. A matching is said to be Stoimenow if it has no pair of arcs ${a < b}$ and ${c < d}$ that satisfy one (or both) of the following conditions: (a) $a = c + 1$ and $b < d$ and (b) $a < c$ and $b = d + 1$. In other words, a Stoimenow matching has no pair of arcs such that one is nested within the other and either the openers or the closers of the two arcs differ by 1.

Remmel [\[11\]](#page-19-2) showed that there is an interesting connection between the Genocchi numbers G_{2n} and the median Genocchi numbers H_{2n-1} and up-down ascent sequences. In particular, Remmel showed that G_{2n} is the number of up-down ascent sequences of length $2n-1$, H_{2n-1} is the number of up-down ascent sequences of length $2n - 2$.

Let p_n be the number of ascent sequences of length n. Bousquet-Mélou et al. [\[1](#page-18-0)] proved that

$$
P(t) = \sum_{n\geq 0} p_n t^n = \sum_{n\geq 0} \prod_{i=1}^n (1 - (1 - t)^i).
$$

In fact, Bousquet-Mélou et al. $[1]$ studied a more general generating function

$$
F(t, u, v) = \sum_{w \in Asc} t^{|w|} u^{\mathrm{asc}(w)} v^{\mathrm{last}(w)}
$$

and found an explicit form for such a generating function. Kitaev and Remmel [\[9\]](#page-19-0) studied a refined version of this generating function. That is, they found an explicit formula for the generating function

$$
G(t,u,v,z,x):=\sum_{w\in Asc}t^{|w|}u^{{\rm asc}(w)}v^{{\rm last}(w)}z^{|w|_0}x^{{\rm run}(w)},
$$

where for any ascent sequence w, $\text{run}(w) = 0$ if $w = 0^n$ for some n, and run(w) = r if $w = 0^r xv$, where x is a positive integer and v is a word. Thus run(w) keeps track of the initial sequences of 0s that start out w if w does not consist of all zeros. Kitaev and Remmel [\[9](#page-19-0)] were able to use their formula for $G(t, u, v, z, x)$ to prove that

(1)
$$
A(t,z) := \sum_{w \in Asc} t^{|w|} z^{|w|} = 1 + \sum_{n \ge 0} \frac{zt}{(1 - zt)^{n+1}} \prod_{i=1}^{n} (1 - (1 - t)^i).
$$

1.2. *p***-ascent sequences**

In this paper, we introduce a generalization of ascent sequences, which we call p-ascent sequences, where $p \geq 1$. A sequence (a_1, \ldots, a_n) of non-negative integers is a *p*-ascent sequence if $a_0 = 0$ and for all $i \geq 2$, a_i is at most p plus the number of ascents in (a_1, \ldots, a_{i-1}) . Thus, in our terminology, ascent sequences are 1-ascent sequences.

We note that p -ascent sequences of length n can be encoded in terms of ascent sequences of length $n+2p-2$. Indeed, one can see that (a_1, a_2, \ldots, a_n) is a p-ascent sequence if and only if $(0, 1, 0, 1, \ldots, 0, 1, a_1, a_2, \ldots, a_n)$ is an ascent sequence, where there are $p-1$ 0s and $p-1$ 1s preceding the $a_1 = 0$.

Thus, p-ascent sequences can be thought of as a subset of ascent sequences of special type, namely, those ascents sequences that start out with $(01)^{p-1}0$.

The last observation allows to obtain a characterization of elements counted by p-ascent sequences in $(2 + 2)$ -free posets, the set of restricted permutations R_n , the set of upper triangular matrices M_n , and the set of Stoimenow matchings Mch_n whenever we can characterize the images of ascent sequences whose corresponding words start with $(01)^{p-1}0$. We do not get into much detail here, but we provide two examples. We leave the other two cases to the interested reader to explore using $[1, 3, 5]$ $[1, 3, 5]$ $[1, 3, 5]$ $[1, 3, 5]$ $[1, 3, 5]$ $[1, 3, 5]$. The $(2 + 2)$ free posets corresponding to p-ascent sequences are $(2 + 2)$ -free posets on $n + 2p - 2$ elements with the following property. Right before the last $2p - 1$ steps in decomposition of such posets (the decomposition is described in $|1|$; we do not provide its details here due to space concerns), one obtains the poset with p minimum elements and the other $p-1$ elements forming the pattern of the poset in Figure [1](#page-3-0) corresponding to the case $p = 5$. Of course, it would be interesting to give a direct characterization of such posets (e.g., in terms of forbidden sub-posets) but we were not able to succeed with that. On the other hand, permutations in R_n corresponding to p-ascent sequences are easily seen via the bijection given in $\vert 1 \vert$ (not to be provided here due to space concerns) to be the permutations that have consecutive blocks of elements $(2p+1)(2p-1)...1$ and $(2p)(2p-2)...2$ (the former block is to the left of the later block in all such permutations).

Figure 1: Type of poset obtained right before the last $2p-1$ steps in decomposition of the $(2 + 2)$ -free poset corresponding to a *p*-ascent sequence.

The main goal of this paper is to generalize the results of $[9]$ $[9]$ to p-ascent sequences. That is, let $Asc(p)$ denote the set of p-ascent sequences, where, again, we consider the empty word to be a p-ascent sequence for any $p \geq 1$. Thus, the set of ascent sequences Asc is $Asc(1)$ in our terminology. First,

we shall study the generating functions

(2)
$$
G^{(p)}(t, u, v, z, x) := \sum_{w \in Asc(p)} t^{|w|} u^{\mathrm{asc}(w)} v^{\mathrm{last}(w)} z^{|w|} \alpha^{r \mathrm{un}(w)}.
$$

We shall find an explicit formula for $G^{(p)}(t, u, v, z, x)$ for any $p \geq 1$ (see Section [2\)](#page-4-0) and then we shall use that formula to prove that

(3)
$$
A^{(p)}(t, z) := \sum_{w \in Asc(p)} t^{|w|} z^{|w|} \newline = 1 + \sum_{n \geq 0} {p + n - 1 \choose n} \frac{zt}{(1 - zt)^{n+1}} \prod_{i=1}^{n} (1 - (1 - t)^{i}).
$$

Duncan and Steingrímsson $[6]$ $[6]$ introduced the study of pattern avoidance in ascent sequences. We initiate a similar study for p -ascent sequences. Given a word $w = w_1 \dots w_n \in \mathbb{N}^*$, we let red(w) denote the word that is obtained from w by replacing each copy of the i-th smallest element in w by $i -$ 1. For example, $red(238543623) = 015321401$. Then we say that a word $u = u_1 \dots u_j$ occurs in w if there exist $1 \leq i_1 < \cdots < i_j \leq n$ such that red $(w_{i_1}w_{i_2}\ldots w_{i_j}) = u$. We say that w avoids u if u does not occur in w.

For any word $u \in \mathbb{N}^*$ such that $\text{red}(u) = u$, we let $a_{n,p,u}$ denote the number of p-ascent sequences a of length n avoiding u and $r_{n,p,u}$ denote the number of sequences counted by $a_{n,p,u}$ with no equal consecutive letters. We prove a number of results about $a_{n,p,u}$ and $r_{n,p,u}$. For example, we will show that for all $p \geq 1$,

$$
r_{n,p,10} = \binom{p+n-2}{n-1} \text{ and } a_{n,p,10} = \sum_{s=0}^{n-1} \binom{n-1}{s} \binom{p+s-1}{s}.
$$

This paper is organized as follows. In Section [2,](#page-4-0) we shall find an explicit formula for $G^{(p)}(t, u, v, z, x)$. Unfortunately, we can not directly set $u = 1$ in that formula so that in Section [3,](#page-8-0) we shall find a formula for $G^{(p)}(t,1,1,1,x)$ via an alternative proof. This formula will also allow us to find an explicit formula for the generating function for the number of primitive p -ascent sequences. Finally, in Section [4,](#page-12-0) we shall study $a_{n,p,u}$ and $r_{n,p,u}$ for certain patterns u of lengths 2 and 3.

2. Main results

For $r \geq 1$, let $G_r^{(p)}(t, u, v, z)$ denote the coefficient of x^r in $G^{(p)}(t, u, v, z, x)$. Thus $G_r^{(p)}(t, u, v, z)$ is the generating function of those p-ascent sequences that begin with $r \geq 1$ 0s followed by some element between 1 and p. We let $G_{a,\ell,m,n}^{(p,r)}$ denote the number of p-ascent sequences of length n, which begin with r 0s followed by some element between 1 and p , have a ascents, last letter ℓ , and a total of m zeros. We then let

(4)
$$
G_r^{(p)}(t, u, v, z) = \sum_{a, \ell, m \ge 0, \ n \ge r+1} G_{a, \ell, m, n}^{(p,r)} t^n u^a v^{\ell} z^m.
$$

The sequences of the form 0^n contribute a term $1+tz+(tz)^2+\cdots=\frac{1}{1-tz}$ to $G_r^{(p)}(t, u, v, z)$ since they have no ascents and no initial run of 0s (by definition). Hence

(5)
$$
G^{(p)}(t, u, v, x, z) = \frac{1}{1 - tz} + \sum_{r \ge 1} x^r G_r^{(p)}(t, u, v, z).
$$

Lemma 2.1. For $r \geq 1$, the generating function $G_r^{(p)}(t, u, v, z)$ satisfies

(6)
$$
(v-1-tv(1-u))G_r^{(p)}(t, u, v, z) =
$$

\n $t^{r+1}z^r uv(v^p-1) + t((v-1)z-v)G_r^{(p)}(t, u, 1, z) + tuv^{p+1}G_r^{(p)}(t, uv, 1, z).$

Proof. Our proof follows the same steps as the proof of the $p = 1$ case of the result that was provided in [\[9\]](#page-19-0). Fix $r \geq 1$. Let $x' = (x_1, \ldots, x_{n-1})$ be an ascent sequence beginning with r 0s followed by a nonzero element, with a ascents and m zeros, where $x_{n-1} = \ell$. Then $x = (x_1, \ldots, x_{n-1}, i)$ is an ascent sequence if and only if $i \in [0, a+p]$. Clearly, x also begins with r 0s followed by a nonzero element. Now, if $i = 0$, the sequence x has a ascents and $m+1$ zeros. If $1 \leq i \leq \ell$, x has a ascents and m zeros. Finally if $i \in [\ell+1, a+p]$, then x has $a + 1$ ascents and m zeros. Counting the sequences $0 \dots 0q$ with r 0s and $1 \leq q \leq p$ separately, we have

$$
G_r^{(p)}(t, u, v, z)
$$

= $t^{r+1}uvz^r \frac{v^p - 1}{v - 1} + \sum_{\substack{a,\ell,m \ge 0 \\ n \ge r+1}} G_{a,\ell,m,n}^{(p,r)} t^{n+1}$

$$
\times \left(u^a v^0 z^{m+1} + \sum_{i=1}^\ell u^a v^i z^m + \sum_{i=\ell+1}^{a+p} u^{a+1} v^i z^m \right)
$$

= $t^{r+1}uvz^r \frac{v^p - 1}{v - 1} + t \sum_{\substack{a,\ell,m \ge 0 \\ n \ge r+1}} G_{a,\ell,m,n}^{(p,r)} t^n u^a z^m$

$$
\times \left(z + \frac{v^{\ell+1} - v}{v - 1} + u \frac{v^{a+p+1} - v^{\ell+1}}{v - 1} \right)
$$

= $t^{r+1} u v z^r \frac{v^p - 1}{v - 1} + t z G_r^{(p)}(t, u, 1, z) + t v \frac{G_r^{(p)}(t, u, v, z) - G_r^{(p)}(t, u, 1, z)}{v - 1} + t u v \frac{v^p G_r^{(p)}(t, uv, 1, z) - G_r^{(p)}(t, u, v, z)}{v - 1}.$

The result follows.

Next, just like in the proof of the $p = 1$ case in [\[9\]](#page-19-0), we use the kernel method to proceed. Setting $(v - 1 - tv(1 - u)) = 0$ and solving for v, we obtain that the substitution $v = 1/(1 + t(u-1))$ will eliminate the left-hand side of [\(6\)](#page-5-0). We can then solve for $G_r^{(p)}(t, u, 1, z)$ to obtain that

(7)
$$
G_r^{(p)}(t, u, 1, z) = \frac{t^r z^r u}{\gamma_1 \delta_1^p} (1 - \delta_1^p) + \frac{u}{\gamma_1 \delta_1^p} G_r^{(p)}\left(t, \frac{u}{\delta_1}, 1, z\right)
$$

where $\delta_1 = 1 + t(u - 1)$ and $\gamma_1 = 1 + zt(u - 1)$.

Next we let $\delta_k = u - (1-t)^k(u-1)$ and $\gamma_k = u - (1-zt)(1-t)^{k-1}(u-1)$ for $k \geq 1$. We also set $\delta_0 = \gamma_0 = 1$. Observe that $\delta_1 = u - (1 - t)(u - 1) =$ $1 + t(u - 1)$ and $\gamma_1 = u - (1 - zt)(u - 1) = 1 + zt(u - 1)$.

For any function of $f(u)$, we shall write $f(u)|_{u=\frac{u}{\delta_k}}$ for $f(u/\delta_k)$. It is then easy to check that

$$
\delta_s|_{u=\frac{u}{\delta_k}} = \frac{\delta_{s+k}}{\delta_k}, \quad \gamma_s|_{u=\frac{u}{\delta_k}} = \frac{\gamma_{s+k}}{\delta_k}, \quad \frac{u}{\delta_s}|_{u=\frac{u}{\delta_k}} = \frac{u}{\delta_{s+k}}, \text{ and}
$$

$$
(u-1)|_{u=\frac{u}{\delta_k}} = \frac{(1-t)^k(u-1)}{\delta_k}.
$$

Using these relations, one can iterate the recursion [\(7\)](#page-6-0) to obtain

(8)
$$
G_r^{(p)}(t, u, 1, z) = \frac{t^r z^r u (1 - \delta_1^p)}{\gamma_1 \delta_1^p} + \sum_{k=2}^{\infty} \frac{t^r z^r u^k \left(1 - \frac{\delta_k^p}{\delta_{k-1}^p}\right)}{\gamma_1 \cdots \gamma_k \delta_k^p}.
$$

Note that since $\delta_0 = 1$, we can rewrite $\frac{t^{r+1}z^r u(1-\delta_1^p)}{\gamma_1 \delta_1^p}$ as $\frac{t^r z^r u(\delta_0^p - \delta_1^p)}{\gamma_1 \delta_0^p \delta_1^p}$ and we can rewrite $t^r z^r u^k \left(1 - \frac{\delta_k^p}{\delta_{k-1}^p} \right)$ \setminus $\frac{u^{n}\left(1-\frac{1}{\delta_{k-1}^{p}}\right)}{\gamma_{1}\cdots\gamma_{k}\delta_{k}^{p}}$ as $\frac{t^{r}z^{r}u(\delta_{k-1}^{p}-\delta_{k}^{p})}{\gamma_{1}\cdots\gamma_{k}\delta_{k-1}\delta_{k}^{p}}$ $\frac{z}{\gamma_1 \cdots \gamma_k \delta_{k-1}^n \delta_k^p}$. Thus we have proved the following theorem.

Theorem 2.1.

(9)
$$
G_r^{(p)}(t, u, 1, z) = \sum_{k=1}^{\infty} \frac{t^r z^r u^k (\delta_{k-1}^p - \delta_k^p)}{\gamma_1 \cdots \gamma_k \delta_{k-1}^p \delta_k^p}.
$$

□

Note that we can rewrite (6) as

(10)
$$
G_r^{(p)}(t, u, v, z) = \frac{t^{r+1}z^r uv(v^p - 1)}{v\delta_1 - 1} + \frac{t(z(v - 1) - v)}{v\delta_1 - 1}G_r^{(p)}(t, u, 1, z) + \frac{uv^{p+1}t}{v\delta_1 - 1}G_r^{(p)}(t, uv, 1, z).
$$

For $s \geq 1$, we let $\bar{\delta}_s = \delta_s|_{u=uv} = uv - (1-t)^s(uv-1)$ and

$$
\bar{\gamma}_s = \gamma_s|_{u=uv} = uv - (1 - zt)(1 - t)^{s-1}(uv - 1)
$$

and set $\bar{\delta}_0 = \bar{\gamma}_0 = 1$. Then using [\(10\)](#page-7-0) and [\(9\)](#page-6-1), we have the following theorem. **Theorem 2.2.** For all $r \geq 1$,

$$
(11)
$$

$$
G_r^{(p)}(t, u, v, z) = t^r z^r \left(\frac{tuv(v^p - 1)}{v\delta_1 - 1} + \frac{t(z(v - 1) - v)}{v\delta_1 - 1} \sum_{k \ge 1} \frac{(\delta_{k-1}^p - \delta_k^p)}{\gamma_1 \cdots \gamma_k \delta_{k-1}^p \delta_k^p} + \frac{tuv^{p+1}}{v\delta_1 - 1} \sum_{k \ge 1} \frac{(\bar{\delta}_{k-1}^p - \bar{\delta}_k^p)}{\bar{\gamma}_1 \cdots \bar{\gamma}_k \bar{\delta}_{k-1}^p \bar{\delta}_k^p} \right).
$$

It is easy to see from Theorem [2.2](#page-7-1) that $G_r^{(p)}(t, u, v, z) = t^{r-1} z^{r-1} G_1^{(p)}(t, u, z)$ v, z). This is also easy to see combinatorially since every ascent sequence counted by $G_r^{(p)}(t, u, v, z)$ is of the form $0^{r-1}a$, where a is a p-ascent sequence counted by $G_1^{(p)}(t, u, v, z)$. Hence

$$
G^{(p)}(t, u, v, z, x) = \frac{1}{1 - tz} + \sum_{r \ge 1} G_r^{(p)}(t, u, v, z) x^r
$$

=
$$
\frac{1}{1 - tz} + \sum_{r \ge 1} t^{r-1} z^{r-1} G_1^{(p)}(t, u, v, z) x^r
$$

=
$$
\frac{1}{1 - tz} + \frac{x}{1 - tzx} G_1^{(p)}(t, u, v, z).
$$

Thus we have the following theorem.

Theorem 2.3. $G^{(p)}(t, u, v, z, x) = \frac{1}{1-tz} + \frac{x}{1-tzx}G_1^{(p)}(t, u, v, z)$.

3. Specializations of our general results

In this section, we shall compute the generating function for p -ascent sequences by length and the number of zeros.

For $n \geq 1$, let $H_{a,b,\ell,n}^{(p)}$ denote the number of *p*-ascent sequences of length n with a ascents and b zeros which have last letter ℓ . Then we first wish to compute

(12)
$$
H^{(p)}(t, u, v, z) = \sum_{n \ge 1, a, b, \ell \ge 0} H^{(p)}_{a, b, \ell, n} u^a z^b v^{\ell} t^n.
$$

Using the same reasoning as in the previous section, we see that

$$
H^{(p)}(t, u, v, z)
$$
\n
$$
= tz + \sum_{\substack{a,b,\ell \geq 0 \\ n \geq 1}} H^{(p)}_{a,b,\ell,n} t^{n+1} \left(u^a v^0 z^{b+1} + \sum_{i=1}^{\ell} u^a v^i z^b + \sum_{i=\ell+1}^{a+p} u^{a+1} v^i z^b \right)
$$
\n
$$
= tz + t \sum_{\substack{a,b,\ell \geq 0 \\ n \geq r+1}} H^{(p)}_{a,b,\ell,n} t^n u^a z^b \left(z + \frac{v^{\ell+1} - v}{v - 1} + u \frac{v^{a+p+1} - v^{\ell+1}}{v - 1} \right)
$$
\n
$$
= tz + tz H^{(p)}(t, u, 1, z) + \frac{tv}{v - 1} \left(H^{(p)}(t, u, v, z) - H^{(p)}(t, u, 1, z) \right) + \frac{tw}{v - 1} \left(H^{(p)}(t, u, v, z) \right).
$$

Solving for $H^{(p)}(t, u, v, z)$, we see that we have the following lemma.

Lemma 3.1.

(13)
$$
(v\delta_1 - 1)H^{(p)}(t, u, v, z) =
$$

$$
(v - 1)tz + t(z(v - 1) - v)H^{(p)}(t, u, 1, z) + tw^{p+1}H^{(p)}(t, uv, 1, z).
$$

Again, the substitution $v = \frac{1}{\delta_1}$ eliminates the left-hand side of [\(13\)](#page-8-1). We can then solve for $H^{(p)}(u,1,z,t)$ to obtain the recursion

(14)
$$
H^{(p)}(t, u, 1, z) = \frac{(1 - \delta_1)z}{\gamma_1} + \frac{u}{\gamma_1 \delta_1^p} H^{(p)}\left(t, \frac{u}{\delta_1}, 1, z\right).
$$

We can iterate the recursion (14) in the same manner as we iterated the

recursion [\(7\)](#page-6-0) in the previous section to prove that

(15)
$$
H^{(p)}(t, u, 1, z) = \sum_{n \geq 0} \frac{(\delta_n - \delta_{n+1}) z u^n}{\gamma_1 \cdots \gamma_{n+1} \delta_n^p}.
$$

We can easily check that for all $n \geq 0$, $\delta_n - \delta_{n+1} = (1 - u)t(1 - t)^n$. Thus, as a power series in u , we can conclude the following.

Theorem 3.1. $H^{(p)}(t, u, 1, z) = \sum_{n=0}^{\infty} \frac{zt(1-u)u^n(1-t)^n}{\delta_n^p \prod_{i=1}^{n+1} \gamma_i}.$

We would like to set $u = 1$ in the power series $\sum_{s=0}^{\infty} \frac{zt(1-u)u^s(1-t)^s}{\delta_s \prod_{i=1}^{s+1} \gamma_i}$, but the factor $(1 - u)$ in the series does not allow us to do that in this form. Thus our next step is to rewrite the series in a form where it is obvious that we can set $u = 1$ in the series. To that end, observe that for $k \geq 1$, $\delta_k = u - (1-t)^k(u-1) = 1 + u - 1 - (1-t)^k(u-1) = 1 - ((1-t)^k - 1)(u-1),$ so that by Newton's binomial theorem,

(16)
$$
\frac{1}{\delta_k^p} = \sum_{n=0}^{\infty} {p-1+n \choose n} (u-1)^n \left(\sum_{m=0}^n (-1)^{n-m} {n \choose m} (1-t)^{km} \right).
$$

Substituting [\(16\)](#page-9-0) into Theorem [3.1,](#page-9-1) we see that

$$
H^{(p)}(t, u, 1, z) = \frac{zt(1-u)}{\gamma_1} + \sum_{k \ge 1} \frac{zt(1-u)u^k(1-t)^k}{\prod_{i=1}^{k+1} \gamma_i}
$$

\n
$$
\times \sum_{n \ge 0} {p-1+n \choose n} (u-1)^n \sum_{m=0}^n (-1)^{n-m} {n \choose m} (1-t)^{km}
$$

\n
$$
= \frac{zt(1-u)}{\gamma_1} + \sum_{n \ge 0} \sum_{m=0}^n (-1)^{n-m-1} {n \choose m} (u-1)^{n-m} zt
$$

\n
$$
\times \sum_{k \ge 1} \frac{(u-1)^{m+1} u^k (1-t)^{k(m+1)}}{\prod_{i=1}^{k+1} \gamma_i}
$$

\n
$$
= \frac{zt(1-u)}{\gamma_1} + \sum_{n \ge 0} {p-1+n \choose n}
$$

\n
$$
\times \sum_{m=0}^n (-1)^{n-m-1} {n \choose m} (u-1)^{n-m} \frac{zt}{(1-zt)^{m+1}}
$$

\n
$$
\times \sum_{k \ge 1} \frac{(u-1)^{m+1} (1-zt)^{m+1} u^k (1-t)^{k(m+1)}}{\prod_{i=1}^{k+1} \gamma_i}.
$$

In [\[9\]](#page-19-0), we have proved the following lemma.

Lemma 3.2.

$$
\sum_{k\geq 0} \frac{(u-1)^{m+1} (1-zt)^{m+1} u^k (1-t)^{k(m+1)}}{\prod_{i=1}^{k+1} \gamma_i}
$$

=
$$
-\sum_{j=0}^m (u-1)^j (1-zt)^j u^{m-j} \prod_{i=j+1}^m (1-((1-t)^i)).
$$

It thus follows that $H^{(p)}(t, u, 1, z)$ is

$$
\frac{zt(1-u)}{\gamma_1} + \sum_{n\geq 0} {p-1+n \choose n} \sum_{m=0}^n (-1)^{n-m-1} {n \choose m} (u-1)^{n-m} \frac{zt}{(1-zt)^{m+1}} \\ \times \left(-\frac{(u-1)^{m+1}(1-zt)^{m+1}}{\gamma_1} - \sum_{j=0}^m (u-1)^j (1-zt)^j u^{m-j} \prod_{i=j+1}^m (1-(1-t)^i) \right).
$$

There is no problem in setting $u = 1$ in this expression to obtain that

(17)
$$
H^{(p)}(t,1,1,z) = \sum_{n\geq 0} {p-1+n \choose n} \frac{zt}{(1-zt)^{n+1}} \prod_{i=1}^{n} (1-(1-t)^{i}).
$$

Clearly, our definitions ensure that $1+H(t, 1, 1, z) = A^{(p)}(t, z)$ as defined in the introduction so that we have the following theorem.

Theorem 3.2. For all $p \geq 1$,

(18)
$$
A^{(p)}(t, z) = \sum_{w \in Asc(p)} t^{|w|} z^{|w|_0}
$$

$$
= 1 + \sum_{n \ge 0} {p-1+n \choose n} \frac{zt}{(1-zt)^{n+1}} \prod_{i=1}^n (1-(1-t)^i).
$$

The case $p = 1$ in Theorem [3.2](#page-10-0) gives exactly the same formula for $A^{(1)}(t, z)$ as that derived in [\[9\]](#page-19-0), which should be the case. We also note that the authors conjectured in [\[9](#page-19-0)] that

$$
(19) \ \ 1 + \sum_{k=0}^{\infty} \frac{zt}{(1-zt)^{k+1}} \prod_{i=1}^{k} (1 - ((1-t)^i) = 1 + \sum_{m=1}^{\infty} \prod_{i=1}^{m} (1 - (1-t)^{i-1}(1-zt)).
$$

This was proved independently by Jelínek $[7]$, Levande $[10]$ $[10]$, and Yan $[13]$ $[13]$. It would be interesting to find an analogue of this relation for $p > 1$.

Next we can use the same techniques as in $[4]$ to find the generating function for the number of *primitive p-ascent sequences*. That is, let $r_{n,p}$ denote the number of p -ascent sequences a of length n such that a has no consecutive repeated letters and $a_{n,p}$ denote the number of p-ascent sequences a of length n .

If $R^{(p)}(t) = 1 + \sum_{n\geq 1} r_{n,p} t^n$ and $A^{(p)}(t) = 1 + \sum_{n\geq 1} a_{n,p} t^n$, then it is easy to see that

(20)
$$
A^{(p)}(t) = A^{(p)}(t,1) = R^{(p)}\left(\frac{t}{1-t}\right) = R^{(p)}(t+t^2+\cdots),
$$

since each element in a primitive p-ascent sequence can be repeated any specified number of times. Setting $x = \frac{t}{1-t}$ so that $t = \frac{x}{1+x}$, we see that [\(20\)](#page-11-0) implies that

(21)
$$
R^{(p)}(x) = A^{(p)}\left(\frac{x}{1+x}\right).
$$

Using our formula [\(18\)](#page-10-1) for $A^{(p)}(t)$ and simplifying will yeild the following theorem.

Theorem 3.3. For all $p \geq 1$,

$$
R^{(p)}(t) = 1 + t \sum_{n=0}^{\infty} {p-1+n \choose n} (1+t)^n \prod_{i=1}^n \left(1 - \left(\frac{1}{1+t}\right)^i\right).
$$

Finally if we replace t by $t + t^2 + \cdots + t^k = t \frac{(t^k-1)}{t-1}$ in Theorem [3.3,](#page-11-1) then we can obtain the generating function for the number of p -ascent sequences a such that the maximum length of a consecutive sequence of repeated letters is less than or equal to k :

$$
(22) \quad 1 + t \frac{t^k - 1}{t - 1} \sum_{n=0}^{\infty} {p - 1 + n \choose n} \left(\frac{t^{k+1} - 1}{t - 1} \right)^n \prod_{i=1}^n \left(1 - \left(\frac{t - 1}{t^{k+1} - 1} \right)^i \right).
$$

4. Pattern avoidance in *p***-ascent sequences**

In this section, we shall prove some simple results about pattern avoidance in p-ascent sequences thus extending the studies initiated in $[6]$ $[6]$ for ascent sequences.

We begin by considering patterns of length 2. There are three such patterns, 00, 01, and 10. Recall that $a_{n,p,u}$ (resp., $r_{n,p,u}$) is the number of (resp., primitive) p-ascent sequences of length n that avoid a pattern u . The only p-ascent sequences that avoid 01 are the sequences that consist of all zeros so that $a_{n,p,01} = 1$ for all $n, p \ge 1$ and $r_{n,p,01}$ equals 1 if $n = 1$ and 0 otherwise.

10-avoiding p**-ascent sequences**

Let us consider $r_{n,p,10}$. In this case, we are looking for p-ascent sequences which avoid 10 and have no repeated letters. It is clear that any such a sequence a must be of the form $a = a_1 \ldots a_n$, where $0 = a_1 < a_2 < \cdots < a_n$. For each $1 \leq i \leq n$, the word $a_1 \ldots a_i$ has $i-1$ ascents so that $a_{i+1} \leq i-1+p$. It follows that $r_{n,p,10}$ counts all words $a_1 a_2 \ldots a_n$, where $0 = a_1 < a_2 <$ $\cdots < a_n \leq p + n - 2$ so that $r_{n,p,10} = \binom{p+n-2}{n-1}$. Hence by Newton's Binomial Theorem,

(23)
$$
R_{10}^{(p)}(t) = 1 + \sum_{n \ge 1} {p-1+n-1 \choose n-1} t^n = 1 + \frac{t}{(1-t)^p}.
$$

It is easy to see that the *p*-ascent sequences counted by $a_{n,p,10}$ arise by taking a sequence $d_1 \ldots d_s$ counted by $r_{s,p,10}$ for some $s \leq n$ and replacing each letter d_i by one or more copies so that the resulting word is of length n. The number of ways to do this for a given $d_1 \ldots d_s$ is the number of solutions to $b_1 + \cdots + b_s = n$, where $b_i \geq 1$, which is $\binom{n-1}{s-1}$. Thus

(24)
$$
a_{n,p,10} = \sum_{s=1}^{n} {n-1 \choose s} r_{s,p,10} = \sum_{s=0}^{n-1} {n-1 \choose s} {p+s-1 \choose s}.
$$

It also follows that $A_{10}^{(p)}(t) = R_{10}^{(p)}\left(\frac{t}{1-t}\right)$ $=1+\frac{t(1-t)^{p-1}}{(1-2t)^p}.$

We note that the sequence $(a_{n,2,10})_{n>1}$ starts out $1,3,8,20,48,112,$ $256,\ldots$ and this is the sequence A001792 in the OEIS [\[12\]](#page-19-6) which has many combinatorial interpretations.

00-avoiding p**-ascent sequences**

If a *p*-ascent sequence $a = a_1 \dots a_n$ avoids 00, then all its elements must be distinct. Note that for each $2 \leq i \leq n, a_1 \ldots a_{i-1}$ can have at most $i-2$ ascents so that $a_i \leq p + i - 2$. Let max (a) denote the maximum of $\{a_1,\ldots,a_n\}$. If a avoids 00, then by the pigeon hole principle, it must be the case that $\max(a) \geq n-1$. Thus, if a avoids 00, then $n-1 \leq \max(a) \leq$ $n + p - 2$.

Now consider 2-ascent sequences that avoid 00. Suppose that $a = a_1 \dots a_n$ is a 2-ascent sequence which avoids 00. Then we know that $\max(a) \in$ ${n-1,n}$. If max $(a) = n$, a must be strictly increasing and there must be some smallest $k \geq 1$ such that $a_k = k$, In such a situation, it is easy to see that a must be of the form $0, 1, \ldots, k-2, k, k+1, \ldots n$. Thus there are $n-1$ 2-ascent sequences a of length n such that a avoids 00 and max $(a) = n$.

Next, suppose that $a = a_1 \dots a_n$ is a 2-ascent sequence that avoids 00 and $\max(a) = n - 1$. Then there are two cases. Namely, it could be that there is no $k \leq n$ such that $a_k = k$. In that case, a is the increasing sequence $a = 012 \dots (n-1)$. Otherwise, let j equal the smallest i such that $a_i = i$. Then a must be strictly increasing up to a_j so that a starts out $012 \dots (j-2)j$. Since max $(a) = n-1$, it follows that $\{a_1, \ldots, a_n\} = \{0, 1, \ldots, n-1\}$ so that there must be some $j < k \leq n$ such that $a_k = j - 1$. In that case, $a_{k-1} > a_k$ so that a has at least one descent. However, if $\max(a) = n-1$, a can have at most one descent. Thus, once we have placed $j-1$, the remaining elements must be placed in increasing order. It is then easy to check that no matter where we place $j-1$ after position j, the resulting sequence will be a 2-ascent sequence. It follows that the number of 2-ascent sequences which avoid 00 and have one descent is $\sum_{j=1}^{n-1} (n-j) = \binom{n-1}{2}$.

Thus, we have the following theorem.

Theorem 4.1. For all $n \ge 1$, $a_{n,2,00} = n - 1 + 1 + {n-1 \choose 2} = 1 + {n \choose 2}$.

The sequence $(a_{n,3,00})_{n\geq 1}$ starts out $1, 3, 9, 24, 57, 122, 239, 435, 745,$ 1213, 1893, 2850,..., which is the sequence A089830 in the OEIS [\[12\]](#page-19-6), whose generating function is $\frac{1-3x+6x^2-5x^3+3x^4-x^5}{(1-x)^6}$.

In this case, if $a = a_1 \ldots a_n$ is a 3-ascent sequence which avoids 00, then we know that $n-1 \leq \max(a) \leq n+1$. We shall prove that

$$
\sum_{n\geq 1} a_{n,3,00} x^n = \frac{x(1-3x+6x^2-5x^3+3x^4-x^5)}{(1-x)^6}
$$

by classifying the 3-ascent sequences a which avoid 00 by the $max(a)$ and $\text{des}(a)$, where $\text{des}(a)$ is the number of *descents* in a, that is, the number of elements followed by smaller elements.

Case 1. $\deg(a) = 0$. Suppose that $a = a_1 \ldots a_n$ is an increasing 3-ascent sequence that avoids 00. Now, if $\max(a) = n - 1$, then $a = 012... (n - 1)$. If $\max(a) = n$, then exactly one element from $[n] = \{1, \ldots, n-1\}$ does not appear in a. If i does not appear in a, then $a = 01 \dots (i-1)(i+1)(i+2) \dots n$, which is a 3-ascent sequence. Thus, there are $n-1$ increasing 3-ascent sequences whose maximum is n. Finally, if $max(a) = n+1$, then two elements from [n] do not appear in a. Again, it is easy to check that no matter which two elements from $[n]$ we leave out, the resulting increasing sequence will be a 3-ascent sequence. Thus, there are $\binom{n}{2}$ increasing 3-ascent sequences whose maximum is $n + 1$. Therefore, the total number of increasing 3-ascents sequences of length *n* is $1 + (n - 1) + {n \choose 2} = {n+1 \choose 2}$.

Case 2. $des(a) = 1$.

In this case, if $a = a_1 \ldots a_n$ is a 3-ascent sequence such that $des(a) = 1$ and a avoids 00, then max(a) ∈ {n − 1, n}. Suppose that $a_i > a_{i-1}$. Then we have two subcases depending on whether $a_j = j$ or $a_j = j + 1$.

If $a_i = j + 1$, then there must be two elements $1 \leq u < v \leq j$, which do not appear in $a_1 \ldots a_j$. Clearly, we have $\binom{j}{2}$ ways to pick u and v. We then have three subcases depending on whether u and v appear in a . If both u and v appear in a, then a must start out $a_1 \ldots a_i uv$ so that $a_{i+3} \ldots a_n$ must be an increasing sequence from $[n]-[j+1]$ of length $n-j-2$. Clearly, there are $n-j-1$ such subsequences and it is easy to check that we can attach any such subsequence at the end of the sequence $a_1 \ldots a_j uv$ to obtain a 3-ascent sequence avoiding 00. If u appears in a, but v does not appear in a, then a must be of the form $a_1 \ldots a_j u \gamma$, where γ is the increasing sequence $(j+2)(j+1)$ $3) \ldots n$. Similarly if v appears in a, but u does not appear in a. then a must be of the form $a_1 \ldots a_j v \gamma$, where γ is the increasing sequence $(j+2)(j+3)\ldots n$. It follows that the number of 3-ascent sequences is $\sum_{j=2}^{n-1} {j \choose 2}(n-j+1)$. One can verify by Mathematica that $\sum_{j=2}^{n-1} {j \choose 2} (n-j+1) = {n \choose 3} + {n+1 \choose 4}$.

If $a_j = j$, there is one element u in [j] which does not appear in $a_1 \ldots a_j$, so that the sequence must start out $a_1 \ldots a_j u$. The rest of the sequence must be the increasing rearrangement of $\{j+1,\ldots,n\}-\{v\}$ for some $v \in$ $\{j+1,\ldots,n\}$. Thus, we have $j-1$ choices for u and $n-j$ choices for v. Hence the number of 3-ascent sequences a where $des(a) = 1$ and for some j, $a_j > a_{j+1}$ and $a_j = j$ is $\sum_{j=2}^{n-1} (j-1)(n-j)$. One can check by Mathematica that $\sum_{j=2}^{n-1} (j-1)(n-j) = \binom{n}{3}$.

Thus, the number of 3-ascent sequences with one descent, which avoid 00 is $2{n \choose 3} + {n+1 \choose 4}$.

Case 3. $des(a) = 2$.

In this case, it must be that $\max(a) = n - 1$, so that a must contain all the elements in the sequence $0, 1, \ldots, n-1$. Now, suppose that the first descent of a occurs at position j. Then we have two cases depending on whether $a_j = j$ or $a_j = j + 1$.

If $a_j = j$, there must be some u, where $1 \le u \le j-1$, which does not appear in $a_1 \ldots a_j$ and $a_{j+1} = u$. We have $j-1$ choices for u. The sequence $a_{j+2} \ldots a_n$ must be a rearrangement of $(j+1)(j+2) \ldots (n-1)$, which has one descent. The bottom element of the descent pair that occurs in $a_{i+2} \ldots a_n$ must equal s for some $j + 1 \leq s \leq n - 2$ and the top element of the descent must equal t, where $s + 1 \le t \le n - 1$. It is easy to check that any choice of s and t will yield a 3-ascent sequence, so that the number of choices for the sequence $a_{j+2} \ldots a_n$ is $\sum_{s=(j+1)}^{n-2} n - 1 - s = \binom{n-1-j}{2}$. It follows that the number of 3-ascent sequences in this case is $\sum_{j=2}^{n-2} (j-1) \binom{n-1-j}{2}$, which can be shown by Mathematica to be equal to $\binom{n-1}{4}$.

If $a_j = j + 1$, then there must be two elements $1 \le u \le v \le j$ that do not appear in $a_1 \ldots a_j$. We have $\binom{j}{2}$ ways to choose u and v. We then have two further subcases depending on whether $a_{i+1} = v$ or $a_{i+1} = v$.

If $a_{j+1} = v$, then our sequences start out $a_1 \ldots a_j = (j+1)v$ and where every u occurs in the sequence $a_{j+2} \ldots a_n$, it will cause a second descent so that there are $n - j - 1$ choices in this case. If $a_{i+1} = u$, then the sequence $a_{j+2} \ldots a_n$ must be a rearrangemetn of the sequence $v(j+2)(j+3)\ldots (n-1)$ with one descent and we can argue as we did in the case where $a_j = j$ that there are $\binom{n-j-1}{2}$ choices for the sequence $a_{j+2} \ldots a_n$. Thus the total number of choices in the case where $a_j = j + 1$ is $\sum_{j=1}^{n-2} {j \choose 2} {n-j \choose 2} = {n+1 \choose 5}$ where the last equality can be checked by Mathematica.

Putting all the cases together, we see that the number of 3-ascent sequences of length n , which avoid 00 is equal to

$$
\binom{n+1}{2} + 2\binom{n}{3} + \binom{n-1}{4} + \binom{n+2}{5}.
$$

Thus we have the following theorem.

Theorem 4.2. For all $n \geq 1$,

$$
a_{n,3,00} = \binom{n+1}{2} + 2\binom{n}{3} + \binom{n-1}{4} + \binom{n+2}{5}.
$$

Note that it follows from Newton's binomial theorem that

$$
\sum_{n\geq 1} \binom{n+1}{2} x^n = \frac{x}{(1-x)^3}, \quad \sum_{n\geq 1} 2\binom{n}{3} x^n = \frac{2x^3}{(1-x)^4},
$$

$$
\sum_{n\geq 1} \binom{n-1}{4} x^n = \frac{x^5}{(1-x)^5}, \text{ and } \sum_{n\geq 1} \binom{n+2}{5} x^n = \frac{x^3}{(1-x)^6}.
$$

Adding these series together and simplifying, we have the following theorem.

Theorem 4.3.
$$
\sum_{n\geq 1} a_{n,3,00} x^n = \frac{x(1-3x+6x^2-5x^3+3x^4-x^5)}{(1-x)^6}.
$$

We note that Burstein and Mansour [\[2](#page-18-4)] gave a combinatorial interpretation to the *n*-th element in sequence $A089830$ as the number of words $w = w_1 \dots w_{n-1} \in \{1, 2, 3\}^*$, which avoid the vincular pattern 21-2 (also denoted in the literature 212 ; see [\[8\]](#page-19-7)). That is, there are no subsequences of the form $w_iw_{i+1}w_j$ in w such that $i+1 < j$ and $w_i = w_j > w_{i+1}$. We ask the question whether one can construct a simple bijection between such words and the set of 3-ascent sequences of length n , which avoid 00.

We note that the sequence $(a_{n,4,00})_{n>1}$ starts out 1, 4, 16, 58, 190, 564, 1526, 3794 This is the sequence A263851 in the OEIS [\[12\]](#page-19-6).

012-avoiding *p*-ascent sequences. Now suppose that $a = a_1 \dots a_n$ is a p -ascent sequence such that a avoids 012. The first thing to observe is that if $a_i = 1$ for some i, then since $a_1 = 0$, it must be the case that $a_j \in \{0, 1\}$ for all $j \geq i$. The second thing to observe is that $a_i \leq p$ for all i. That is, the only way that a can have an element $a_k > p$ is if $a_1 \ldots a_{k-1}$ has at least $a_k - p$ ascents. Since the first ascent in a p-ascent sequence must be of one of the forms $01, 02, \ldots, 0p$, such an ascent sequence would not avoid 012.

2-ascent sequences. Now, suppose that $a = a_1 \dots a_n$ is a 2-ascent sequence such that a avoids 012. If a has no 1s, then $a_i \in \{0,2\}$ for all $i \geq 2$, so that there are 2^{n-1} such 2-ascent sequences. If a contains a 1, then let k be the smallest j such that a_i equals 1. It then follows that $a_i \in \{0, 2\}$ for $2 \leq i \leq k$ and $a_j \in \{0,1\}$ for $k < j \leq n$. Thus, there are 2^{n-2} such 2-ascent sequences, so that the number of 2-ascent sequences that avoid 012 and contain a 1 is $(n-1)2^{n-2}$. Hence, for $n \geq 1$,

(25)
$$
a_{n,2,012} = 2^{n-1} + (n-1)2^{n-2} = (n+1)2^{n-2}.
$$

We note that the sequence $(a_{n,2,012})_{n\geq 1}$ starts out 1, 3, 8, 20, 48, 112, 256,..., and this is, again, as in the case of $(a_{n,2,10})_{n>1}$, the sequence A001792 in the OEIS [\[12\]](#page-19-6). Next, we will explain this fact combinatorially.

It is easy to see that each sequence counted by $(a_{n,2,012})_{n\geq 1}$ can be obtained by taking a number of 2s (maybe none) followed by a number of 1s, and placing any number of 0s (maybe none) between these 1s and 2s making sure that the total length of the sequence is n , and this sequence

begins with a 0. On the other hand, it is also easy to see that sequences counted by $(a_{n,2,10})_{n>1}$ are of two types: they are either of the form

(26)
$$
\underbrace{0\ldots 0}_{i_0\geq 1}\underbrace{1\ldots 1}_{i_1\geq 1}\underbrace{2\ldots 2}_{i_2\geq 1}\ldots \underbrace{a\ldots a}_{i_a\geq 1},
$$

where $0, 1, \ldots, a$ all appear or of the form

$$
(27) \qquad \underbrace{0\ldots 0}_{i_0\geq 1}\underbrace{1\ldots 1}_{i_1\geq 1}\ldots \underbrace{a\ldots a}_{i_a\geq 1}\underbrace{(a+2)\ldots (a+2)}_{i_{a+2}\geq 1}\underbrace{(a+3)\ldots (a+3)}_{i_{a+3}\geq 1},
$$

where $a \geq 0$ exists. A bijection between the classes of sequences is given by turning sequences of the form [\(26\)](#page-17-0) into

$$
\underbrace{0\ldots 0}_{i_0} 2\underbrace{0\ldots 0}_{i_1-1} 2\underbrace{0\ldots 0}_{i_2-1} \ldots 2\underbrace{0\ldots 0}_{i_a-1},
$$

and the sequences of the form [\(27\)](#page-17-1) into

$$
\underbrace{0\ldots0}_{i_0}2\underbrace{0\ldots0}_{i_1-1}2\underbrace{0\ldots0}_{i_2-1}\ldots2\underbrace{0\ldots0}_{i_a-1}1\underbrace{0\ldots0}_{i_{a+2}-1}1\underbrace{0\ldots0}_{i_{a+3}-1}1\underbrace{0\ldots0}_{i_{a+4}-1}\ldots
$$

3-ascent sequences. Now, suppose that $a = a_1 \ldots a_n$ is a 3-ascent sequence such that a avoids 012. If a has no 1s, then $a_i \in \{0, 2, 3\}$ for all $i \geq 2$. It is then easy to see that if $b_1 \ldots b_n$ is the sequence that arises from $a_1 \ldots a_n$ by replacing each 2 by a 1 and each 3 by a 2 , then b is a 2 -ascent sequence that avoids 012. Thus, there are $(n + 1)2^{n-2}$ such sequences. Now, suppose that a contains a 1. Then let k be the smallest j such that a_i equals 1. It then follows that $a_i \in \{0, 2, 3\}$ for $2 \leq i < k$ and $a_j \in \{0, 1\}$ for $k < j \leq n$. It is then easy to see that if $b_1 \ldots b_{k-1}$ is the sequence that arises from $a_1 \dots a_{k-1}$ by replacing each 2 by a 1 and each 3 by a 2, then $b_1 \dots b_{k-1}$ is a 2-ascent sequence that avoids 012. Thus, from our argument above, it follows that there are $k2^{k-3}$ choices for $a_1 \ldots a_{k-1}$ and 2^{n-k} choices for $a_{k+1} \ldots a_n$. Therefore, given k, we have $k2^{n-3}$ choices for a. Thus,

(28)
$$
a_{n,3,012} = (n+1)2^{n-2} + \sum_{k=2}^{n} k2^{n-3} = 2^{n-4}(n^2 + 5n + 2)
$$

where the last equality can be checked by Mathematica. We note that the sequence $(a_{n,3,012})_{n>1}$ begins 1, 4, 13, 38, 104, 272, 688,... and this is the sequence A049611 in the OEIS [\[12\]](#page-19-6) with several combinatorial interpretations.

p**-ascent sequences for an arbitrary** p**.** In general, we can obtain a simple recursion for $a_{n,p,012}$. That is, suppose that $a = (a_1, \ldots, a_n)$ is a p-ascent sequence such that a avoids 012. Now, if a has no 1s, then $a_i \in \{0, 2, 3, \ldots, p\}$ for all $i \geq 2$. It is then easy to see that if $b = (b_1, \ldots, b_n)$ is the sequence that arises from a by replacing each $i \geq 2$, by an $i - 1$, then b is a $(p - 1)$ -ascent sequences that avoids 012. Thus, there are $a_{n,p-1,012}$ such sequences. Now suppose that a contains a 1. Then let k be the smallest j such that a_i equals 1. It then follows that $a_i \in \{0, 2, 3, \ldots, p\}$ for $2 \leq i \leq k$ and $a_j \in \{0, 1\}$ for $k < j \leq n$. It is then easy to see that if $b_1 \dots b_{k-1}$ is the sequence that arises from $a_1 \ldots a_{k-1}$ by replacing each $i \geq 2$ by an $i-1$, then $b_1 \ldots b_{k-1}$ is a 2-ascent sequences that avoids 012. It follows that there are $a_{k-1,p-1,012}$ choices for $a_1 \ldots a_{k-1}$ and 2^{n-k} choices for $a_{k+1} \ldots a_n$. Thus, given k, we have $2^{n-k}a_{k-1,p-1,012}$ choices for $a.$ It follows that

(29)
$$
a_{n,p,012} = a_{n,p-1,012} + \sum_{k=2}^{n} a_{k-1,p-1,012} 2^{n-k}.
$$

For example, using our formula for $a_{n,3,012}$, one can compute that $a_{n,4,012} =$ $\frac{2^{n-5}}{3}(n^3+12n^2+29n+6)$. The sequence $(a_{n,4,012})_{n\geq 1}$ begins 1, 5, 19, 63, 192, 552, 1520, 4048, 10496,... and this is the sequence A049612 in the OEIS [\[12](#page-19-6)].

References

- [1] M. Bousquet-M´elou, A. Claesson, M. Dukes, and S. Kitaev, Unlabeled $(2+2)$ -free posets, ascent sequences and pattern avoiding permutations, J. Combin. Theory Ser. A, **117**(7) (2010), 884–909. [MR2652101](http://www.ams.org/mathscinet-getitem?mr=2652101)
- [2] A. Burstein and T. Mansour, Words restricted by 3-letter generalized multipermutation patterns, Annals of Combinatorics, **7**(1) (2003), 1– 14. [MR1984641](http://www.ams.org/mathscinet-getitem?mr=1984641)
- [3] A. Claesson, M. Dukes, and S. Kitaev, A direct encoding of Stoimenow's matchings as ascent sequences, Australasian J. Combin., **49** (2011) 47– 59. [MR2790960](http://www.ams.org/mathscinet-getitem?mr=2790960)
- [4] M. Dukes, S. Kitaev, J. Remmel, and E. Steingrimsson, Enumerating 2+2-free posets by indistinguishable elements, J. Combin., **2**(1) (2011), 139–163. [MR2847912](http://www.ams.org/mathscinet-getitem?mr=2847912)
- [5] M. Dukes and R. Parviainen, Ascent sequences and upper triangular matrices containing non-negative integers, Electronic J. Combin., **17**(1) (2010), #R53. [MR2607339](http://www.ams.org/mathscinet-getitem?mr=2607339)
- [6] P. Duncan and E. Steingrímsson, Pattern avoidance in ascent sequences, Electronic J. Combin., **18**(1) (2011), #P226. [MR2861405](http://www.ams.org/mathscinet-getitem?mr=2861405)
- [7] V. Jelínek, Counting general and sefl-dual interval orders, *J. Combina*torial Theory (A), **119** (2012), 599–614. [MR2871752](http://www.ams.org/mathscinet-getitem?mr=2871752)
- [8] S. Kitaev, Patterns in permutations and words, Springer-Verlag, 2011. [MR3012380](http://www.ams.org/mathscinet-getitem?mr=3012380)
- [9] S. Kitaev and J. Remmel, Enumerating (2+2)-free posets by the number of minimal elements and other statistics, Discrete Appl. Math., **159**(17) (2011), 2098–2108. [MR2832334](http://www.ams.org/mathscinet-getitem?mr=2832334)
- [10] P. Levande, Fishburn diagrams, Fishburn numbers, and their refined generating functions, J. of Combinatorial Theory (A), **120** (2013), 194– 217. [MR2971707](http://www.ams.org/mathscinet-getitem?mr=2971707)
- [11] J. Remmel, Up-down ascent sequences and the q-Genocchi numbers, Pure Mathematics and Applications, to appear. [MR3266911](http://www.ams.org/mathscinet-getitem?mr=3266911)
- [12] N. J. A. Sloane, The on-line encyclopedia of integer sequences, published electronically at [http://oeis.org.](http://oeis.org)
- [13] S. H. F. Yan, On a conjecture about enumerating (2+2)-free posets, Europ. J. Combinatorics, **32** (2011), 282–287. [MR2737592](http://www.ams.org/mathscinet-getitem?mr=2737592)

Sergey Kitaev University of Strathclyde Livingstone Tower, 26 Richmond Street Glasgow G1 1XH United Kingdom E-mail address: sergey.kitaev@cis.strath.ac.uk

JEFFREY B. REMMEL University of California **SAN DIEGO** USA E-mail address: remmel@math.ucsd.edu

Received 24 July 2015