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Hedgehogs are not colour blind
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We exhibit a family of 3-uniform hypergraphs with the property
that their 2-colour Ramsey numbers grow polynomially in the num-
ber of vertices, while their 4-colour Ramsey numbers grow ex-
ponentially. This is the first example of a class of hypergraphs
whose Ramsey numbers show a strong dependence on the number
of colours.

Keywords and phrases: Ramsey numbers, hypergraphs.

1. Introduction

The Ramsey number rk(H) of a k-uniform hypergraph H is the smallest n
such that any 2-colouring of the edges of the complete k-uniform hypergraph

K
(k)
n contains a monochromatic copy of H. Similarly, for any q ≥ 2, we may

define a q-colour Ramsey number rk(H; q).
One of the main outstanding problems in Ramsey theory is to decide

whether the Ramsey number for complete 3-uniform hypergraphs is double
exponential. The best known bounds, due to Erdős, Hajnal and Rado [5, 6],
state that there are positive constants c and c′ such that

2ct
2 ≤ r3(K

(3)
t ) ≤ 22

c′t
.

Paul Erdős has offered $500 for a proof that the upper bound is correct,

that is, that there exists a positive constant c such that r3(K
(3)
t ) ≥ 22

ct

.
Some evidence that this may be true was given by Erdős and Hajnal (see,
for example, [9]), who showed that the analogous bound holds for 4 colours,
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that is, that there exists a positive constant c such that r3(K
(3)
t ; 4) ≥ 22

ct

. In
this paper, we show that this evidence may not be so compelling by finding
a natural class of hypergraphs, which we call hedgehogs, whose Ramsey
numbers show a strong dependence on the number of colours.

The hedgehog Ht is the 3-uniform hypergraph with vertex set [t +
(
t
2

)
]

such that for every pair (i, j) with 1 ≤ i < j ≤ t there is a unique vertex
k > t such that ijk is an edge. We will sometimes refer to the set {1, 2, . . . , t}
as the body of the hedgehog. Our main result is that the 2-colour Ramsey
number r3(Ht) grows as a polynomial in t, while the 4-colour Ramsey num-
ber r3(Ht; 4) grows as an exponential in t.

Theorem 1.1. If Ht is the 3-uniform hedgehog with body of order t, then

(i) r3(Ht) ≤ 4t3,
(ii) there exists a positive constant c such that r3(Ht; 4) ≥ 2ct.

For the intermediate 3-colour case, we show that the answer is intimately
connected with a special case of the multicolour Erdős–Hajnal conjecture [4].
This conjecture states that for any complete graphK with a fixed q-colouring
of its edges, there exists a positive constant c(K) such that any q-colouring
(with the same q colours) of the edges of the complete graph on n vertices
with no copy of K contains a clique of order nc(K) which receives at most
q − 1 colours. Though this conjecture is known to hold in a number of
special cases (see, for example, Section 3.3 of [3]), the best known general
result, due to Erdős and Hajnal themselves, says that there exists a positive
constant c(K) such that any q-colouring of the edges of the complete graph
on n vertices with no copy of K contains a clique of order ec(K)

√
logn which

receives at most q − 1 colours.
We will be concerned with the particular case where q = 4 and the

banned configuration K is a rainbow triangle with one edge in each of the
first three colours.

Definition. Let F (t) be the smallest n such that every 4-colouring of
the edges of Kn, in red, blue, green and yellow, contains either a rainbow
triangle K, with one edge in each of red, blue and green, or a clique of order
t with at most 3 colours.

We will show that r3(Ht; 3) is bounded above and below by polynomials
in F (t) (strictly speaking, the upper bound is a polynomial in F (t3), but,
provided F (t) does not jump pathologically, this will be at most polynomial
in F (t)). Since the result of Erdős and Hajnal mentioned in the previous
paragraph implies that F (t) ≤ tc log t for some constant c, this in turn shows
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that r3(Ht; 3) ≤ tc log t for some constant c. Moreover, the Erdős–Hajnal
conjecture holds in this case if and only if there is a polynomial upper bound
for r3(Ht; 3).

Theorem 1.2. If Ht is the 3-uniform hedgehog with body of order t, then

(i) r3(Ht; 3) = O(t4F (t3)2),
(ii) r3(Ht; 3) ≥ F (t).

In particular, there exists a constant c such that r3(Ht; 3) ≤ tc log t.

We will prove Theorem 1.1 in the next section and Theorem 1.2 in
Section 3. We conclude by discussing a number of interesting questions that
arose from our work.

2. The basic dichotomy

In this section, we prove Theorem 1.1. We begin by proving that the 2-colour
Ramsey number of Ht is at most 4t3.

Proof of Theorem 1.1(i): Let n = 4t3. We will show that every
red/blue-colouring of the complete 3-uniform hypergraph on n vertices con-
tains a monochromatic copy of Ht. To begin, we define a partial colouring
of the edges of the complete graph on the same vertex set. We will colour
an edge uv red if there are fewer than

(
t
2

)
+ t red triples containing u and

v. Similarly, we colour uv blue if there are fewer than
(
t
2

)
+ t blue triples

containing u and v. To find a monochromatic Ht, it will clearly suffice to
find a subset of order t containing no red edge or no blue edge, since we can
consider this set as the body of the hedgehog and embed the spines greedily.

We claim that no vertex is contained in 2t2 red edges and 2t2 blue edges.
Suppose, on the contrary, that u is such a vertex and let VR and VB be the
vertices which are connected to u in red and blue, respectively. Since it is
easy to see that no edge can be coloured both red and blue, VR and VB are
disjoint. Moreover, for each vertex v in VR, since uv is contained in fewer
than

(
t
2

)
+ t red triples, there are at least

|VB| −
(
t

2

)
− t >

|VB|
2

vertices w in VB such that uvw is blue. This implies that more than half
of the triples uvw with v ∈ VR and w ∈ VB are blue. However, by first
considering vertices w in VB, the same argument also shows that more than
half of these triples are red, a contradiction.
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We now assign a colour to each vertex in the graph, colouring it red if
it is contained in fewer than 2t2 red edges and blue otherwise. In the latter
case, the claim of the last paragraph shows that it will be contained in fewer
than 2t2 blue edges. By the pigeonhole principle, at least half the vertices in
the graph have the same colour, say red. That is, we have a subset of order
at least n/2 such that every vertex is contained in fewer than 2t2 red edges.
By Brooks’ theorem, we conclude that this set contains a subset of order
n/4t2 containing no red edge. Since n/4t2 ≥ t, this is the required set.

We will now show that the 4-colour Ramsey number of Ht is at least 2
ct

for some positive constant c. This is clearly sharp up to the constant in the
exponent.

Proof of Theorem 1.1(ii): A standard application of the first moment
method gives a positive constant c such that, for every integer t ≥ 4, there
is a 4-colouring χ of the edges of the complete graph on 2ct vertices with the
property that every clique of order t contains all 4 colours.

We now 4-colour the edges of the complete 3-uniform hypergraph on
the same vertex set by colouring the triple uvw with any colour which is
not contained within the set {χ(u, v), χ(v, w), χ(w, u)}. Suppose now that
there is a monochromatic copy of Ht with colour 1, say, and let u1, u2, . . . , ut
be the body of this copy. Then, in the original graph colouring χ, none of
the edges uiuj with 1 ≤ i < j ≤ t received the colour 1. However, this
contradicts the property that every set of order t contains all 4 colours.

3. Three colours and the Erdős–Hajnal conjecture

To prove Theorem 1.2(i), we require two lemmas. The first is a result of
Spencer [13] which says that any 3-uniform hypergraph with few edges con-
tains a large independent set.

Lemma 3.1. If H is a 3-uniform hypergraph with n vertices and e edges,
then α(H) = Ω(n3/2/e1/2).

The second lemma we require is a result of Fox, Grinshpun and Pach [7]
saying that the multicolour Erdős–Hajnal conjecture holds for 3-colourings
of Kn with no rainbow triangle. The result we use is somewhat weaker than
the main result in [7], but will be more than sufficient for our purposes.

Lemma 3.2. Suppose that the edges of the complete graph Kn have been
3-coloured, in red, blue and green, so that there are no rainbow triangles with
one edge in each of red, blue and green. Then there is a clique of order n1/3

containing at most two of the three colours.
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We are now ready to prove Theorem 1.2(i), that r3(Ht; 3) = O(t4F (t3)2).

Proof of Theorem 1.2(i): Suppose that the edges of the complete 3-
uniform hypergraph on n = ct4F (t3)2 vertices have been 3-coloured, in red,
blue and green, where c is a sufficiently large constant to be chosen later.
We will 4-colour the edges of the graph on the same vertex set as follows:
if u and v are contained in fewer than

(
t
2

)
+ t triples of a given colour, then

we give the edge uv that colour, noting that an edge may receive more than
one colour (but at most two). On the other hand, if an edge is not coloured
with any of red, blue or green, we colour it yellow.

We claim that this colouring has at most t2n2 triangles containing all
three of the colours red, blue and green (where we include the possibility
that two of these colours may appear on the same edge). To see this, note
that there are at most (

(
t
2

)
+ t)

(
n
2

)
red triples containing a red edge. In

particular, since the triangles we wish to count always contain a red edge,
there are at most (

(
t
2

)
+ t)

(
n
2

)
of these triangles in the graph corresponding

to a red triple. Since we may similarly bound the number of these triangles
corresponding to blue or green triples, we see that, for t ≥ 3, there are at
most 3(

(
t
2

)
+ t)

(
n
2

)
≤ t2n2 triangles in the graph which contain all three of

the colours red, blue and green, as required.

If we let H be the 3-uniform hypergraph on n vertices whose edges
correspond to triangles containg all three of the colours red, blue and green,
Lemma 3.1 now yields a subset U of order Ω(n1/2/t) containing no such
triangle. By taking c to be sufficiently large, we may assume that U has
order at least tF (t3).

We now consider the graph G on vertex set U whose edge set consists of
all those edges which received two colours in the 4-colouring defined above.
If we fix a vertex u ∈ U , then each of the edges in G that contain u must
have received the same two colours in the original colouring. Otherwise, we
would have a triangle containing all three of the colours red, blue and green.
Suppose, therefore, that every edge in G that contains u received the colours
red and blue in the original colouring. Then, again using the property that
every triangle contains at most two of the colours red, blue and green, we see
that the neighbourhood of u in G contains no green edges. Therefore, if u
had t neighbours in G, we could use this neighbourhood to find a green copy
of Ht. Since a similar argument holds if the edges containing u correspond
to blue and green or to red and green, we may assume that every vertex
u ∈ U is contained in fewer than t edges in the graph G.

By Brooks’ theorem, it follows that U contains a subset V of order at
least |U |/t ≥ F (t3) containing no edges from G, that is, such that every



480 David Conlon et al.

edge received at most one colour in the original colouring. Since V is a 4-
coloured graph of order at least F (t3) containing no rainbow triangle in red,
blue and green, there is a subset of order at least t3 with at most three
colours. If the missing colour is red, we may easily find a red copy of Ht

and similar conclusions hold if the missing colour is either blue or green.
On the other hand, if the missing colour is yellow, we have a 3-colouring,
in red, blue and green, of a set of order at least t3 containing no rainbow
triangle, so Lemma 3.2 tells us that there is a subset of order at least t with
at most two colours. If we again consider the missing colour, it is easy to
find a monochromatic copy of Ht in that colour.

The lower bound r3(Ht; 3) ≥ F (t) follows from a simple adaptation of
the proof of Theorem 1.1(ii).

Proof of Theorem 1.2(ii): By the definition of F (t), there exists a 4-
colouring χ, in red, blue, green and yellow, say, of the edges of the complete
graph on F (t)− 1 vertices containing no rainbow triangle with one edge in
each of red, blue and green and such that every clique of order t contains all
4 colours.

We now 3-colour the complete 3-uniform hypergraph on the same vertex
set in red, blue and green, colouring the triple uvw with any colour which
is not contained within the set {χ(u, v), χ(v, w), χ(w, u)}. Since there are
no rainbow triangles in red, blue and green, this colouring is well-defined.
Suppose now that there is a monochromatic copy of Ht in red, say, and
let u1, u2, . . . , ut be the body of this copy. Then, in the original graph
colouring χ, none of the edges uiuj with 1 ≤ i < j ≤ t are red. How-
ever, this contradicts the property that every set of order t contains all 4
colours.

4. Concluding remarks

The results of this paper raise a number of interesting questions, some of
which we describe below.

4.1. Higher-uniformity hedgehogs

The k-uniform hedgehog H
(k)
t is the hypergraph with vertex set [t+

(
t

k−1

)
]

such that for every (k − 1)-tuple (i1, . . . , ik−1) with 1 ≤ i1 < · · · < ik−1 ≤ t
there is a unique vertex ik > t such that i1 . . . ik is an edge. A straightforward
generalisation of the proof of Theorem 1.1(i) gives the following result.
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Theorem 4.1. For every integer k ≥ 4, there exists a constant ck such that

if H
(k)
t is the k-uniform hedgehog with body of order t, then

rk(H
(k)
t ) ≤ tk−2(ckt),

where the tower function ti(x) is defined by t1(x) = x and ti+1(x) = 2ti(x).

A construction due to Kostochka and Rödl [10] shows that this result

is tight for k = 4, that is, that there exists a positive constant c such that

r4(H
(4)
t ) ≥ 2ct. Since the construction is simple, we describe it in full. To

begin, take a colouring of the edges of the complete graph on 2ct vertices such

that every set of order t contains both a red triangle and a blue triangle. We

then colour the edges of the 4-uniform hypergraph on the same vertex set by

colouring a 4-tuple red if it contains a red triangle, blue if it contains a blue

triangle and arbitrarily otherwise. It is easy to check that this 2-colouring

contains no monochromatic copy of H
(4)
t . Already for k = 5, we were unable

to prove a matching lower bound, since it seems that one would first need

to know how to prove a double-exponential lower bound for r3(Kt).

We were also unable to prove an analogue of Theorem 1.1(ii) for k = 4.

Again, this is because of a basic gap in our understanding of hypergraph

Ramsey problems. While we know that there are 4-colourings of the 3-

uniform hypergraph on 22
ct

vertices such that every subset of order t receives

at least two colours, we do not know if the following variant holds.

Problem 1. Is there an integer q, a positive constant c and a q-colouring

of the 3-uniform hypergraph on 22
ct

vertices such that every subset of order

t receives at least three colours?

A positive answer to the analogous question where we ask that every

subset of order t receives at least five colours would allow us to prove

that there exists an integer q such that r4(H
(4)
t ; q) ≥ 22

ct

. The proof of

this statement is a variant of the proof of Theorem 1.1(ii). Indeed, sup-

pose that we have a q-colouring χ of the edges of the 3-uniform hypergraph

K
(3)
n such that every subset of order t receives at least five colours. Then

we define a colouring of the complete 4-uniform hypergraph K
(4)
n with at

most q +
(
q
2

)
+

(
q
3

)
+

(
q
4

)
colours by colouring the edge uvwx with the set

{χ(uvw), χ(vwx), χ(wxu), χ(xuv)}. It is now easy to check that if there is a

monochromatic H
(4)
t in this colouring, then, in the original colouring χ, the

body of the hedgehog is a subset of order t which receives at most 4 colours,

contradicting our choice of χ.
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Our motivation for investigating higher-uniformity hedgehogs was the
hope that they might allow us to show that there are families of hypergraphs
for which there is an even wider separation between the 2-colour and q-colour
Ramsey numbers. However, it seems likely that for hedgehogs the separation
between the tower heights is at most one for any uniformity. This leaves the
following problem open.

Problem 2. For any integer h ≥ 3, do there exist integers k and q and
a family of k-uniform hypergraphs for which the 2-colour Ramsey number
grows as a polynomial in the number of vertices, while the q-colour Ramsey
number grows as a tower of height h?

4.2. Burr–Erdős in hypergraphs

The degeneracy of a graph H is the minimum d such that every induced
subset contains a vertex of degree at most d. Building on work of Kostochka
and Sudakov [11] and Fox and Sudakov [8], Lee [12] recently proved the
famous Burr–Erdős conjecture [1], that graphs of bounded degeneracy have
linear Ramsey numbers. That is, he showed that for every positive integer d
there exists a constant c(d) such that the Ramsey number of any graph H
with n vertices and degeneracy d satisfies r(H) ≤ c(d)n.

If we define the degeneracy of a hypergraph H in a similar way, that
is, as the minimum d such that every induced subset contains a vertex of
degree at most d, we may ask whether the analogous statement holds in
hypergraphs. Unfortunately, as first observed by Kostochka and Rödl [10],

the 4-uniform analogue of the Burr–Erdős conjecture is false, since H
(4)
t is

1-degenerate and r4(H
(4)
t ) ≥ 2ct.

SinceHt is a 1-degenerate hypergraph, the results of this paper show that
the Burr–Erdős conjecture also fails for 3-uniform hypergraphs and 3 or more
colours. For 4 colours, this follows immediately from Theorem 1.1(ii). For 3
colours, it follows from Theorem 1.2(ii) and the observation that F (t) =
Ω(t3/ log6 t). To show this, we amend a construction of Fox, Grinshpun
and Pach [7], taking the lexicographic product of three 3-colourings of the
complete graph on t/16 log2 t vertices, one for each triple of colours from the
set {red, blue, green, yellow} that contains yellow, each having the property
that the union of any two colours contains no clique of order 4 log t. This
colouring will contain no rainbow triangle with one edge in each of red, blue
and green and no clique of order t with at most 3 colours. For further details,
we refer the reader to Theorem 3.1 of [7].

While it is also unlikely that an analogue of the Burr–Erdős conjecture
holds in the 2-colour case, it may still be the case that r3(Ht) is linear in
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the number of vertices, that is, that r3(Ht) = O(t2). It would already be
interesting to prove an approximate version of this statement.

Problem 3. Show that r3(Ht) = t2+o(1).

4.3. Multicolour Erdős–Hajnal

It is somewhat curious that our upper bound for r3(Ht; 3) mirrors the best
known lower bound for r3(Kt; 3), due to Conlon, Fox and Sudakov [2], which
says that there exists a positive constant c such that

r3(Kt; 3) ≥ 2t
c log t

.

However, it seems likely that this is mere coincidence and that the function
F (t) defined in the introduction is polynomial in t. Phrasing the question in
a more traditional fashion, we would very much like to know the answer to
the following special case of the multicolour Erdős–Hajnal conjecture.

Problem 4. Show that there exists a positive constant c such that if the
edges of Kn are 4-coloured, in red, blue, green and yellow, so that there are
no rainbow triangles with one edge in each of red, blue and green, then there
is a clique of order nc containing at most three of the four colours.

That being said, if F (t) were superpolynomial, it would not only dis-
prove the multicolour Erdős–Hajnal conjecture, it would also strengthen the
curious correspondence between the bounds for r3(Ht; q) and r3(Kt; q). This
would certainly be the more interesting outcome.
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