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Enumeration of constrained subtrees of trees∗

Hua Wang and Shuai Yuan

Starting from the work of Székely and Wang, where the extremal
trees and binary trees that maximize or minimize the number of
subtrees are characterized, the examination of the numbers of sub-
trees has been an interesting topic providing applications and ques-
tions in Phylogeny reconstruction, Graph Theory, Number Theory,
and Computer Science. We present linear-time algorithms for enu-
merations of subtrees under various constraints. Such specific cate-
gories of subtrees including but not limited to those of given orders
and those containing vertices of a given set, are of interests due to
their applications.
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1. Introduction

For a tree (connected acyclic graph) T , a subtree is simply a connected
subgraph of T . When every vertex is considered different, the number of
subtrees (where isomorphic subtrees consisting of different vertices are con-
sidered different) has been an interesting topic since the appearance of [8],
where the extremal trees and binary trees that maximize or minimize the
number of subtrees are studied. While formulating an explicit formula for
the maximum number of subtrees of binary trees, a novel binary representa-
tion of integers was proposed and further studied in [2]. A concept similar in
nature is the number of leaf-containing subtrees, whose extremal structures
were studied for binary trees [9]. The leaf-containing subtrees of a binary tree
turned out to be exactly the acceptable residue configurations, the number
of which bounds the complexity of Knudsen’s multiple parsimony alignment
algorithm with affine gap cost in phylogenetic tree reconstruction [6].

At the same time, the extremal structures that maximize or minimize the
number of subtrees coincide with the extremal trees for many other graph
invariants. In particular, the correlations between several graph-theoretical
indices were analyzed in [13] where the number of subtrees and the well-
known Wiener index (sum of distances between all pairs of vertices) [15]
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were found to have the strongest “negative” correlation. Because of these
connections with other important parameters of trees, the number of sub-
trees of various categories of trees have been further studied. In [5], the
maximum number of subtrees of a tree with given order and maximum de-
gree is identified, matching the analogous work on the Wiener index [1]. This
study was further generalized to trees with a given degree sequence [17, 18]
due to the special roles played by such trees in applications. The number
of subtrees also provides a novel definition of the “middle part” of a tree
[8], which was further investigated and compared with the well-established
distance-based middle parts of graphs [10, 11].

The first paper focusing on the enumeration of subtrees seems to be [16],
where a polynomial time algorithm is presented for counting subtrees of a
general tree. Independently, [14] conducted similar studies with the order of
subtrees taken into consideration. Note that the “total order” or “average
order” of subtrees have been of interest in the examination of “densities” of
trees [3, 4, 7, 12].

We first introduce some general terminologies and notations in Section 2
including the previous work in [14, 16]. Given the importance of subtrees
containing some vertices from a given set (for instance, the leaf-containing
subtrees), we consider the enumeration of such subtrees in Section 3 and
present the corresponding algorithm. This result, besides providing the enu-
meration of leaf-containing subtrees as a special case, is also useful in re-
lated studies of weighted trees with a special set of vertices. In Section 4,
we consider the more general question of enumerating subtrees with specific
number of “special vertices”. The enumeration of general subtrees of given
order then follows as an immediate consequence. Lastly, we summarize our
work as well as mentioning questions that can be resolved in similar ways
but rather tedious to present.

2. Some terminologies and previous work

Throughout this paper, we let T = (V (T ), E(T ); f, g) be a weighted tree with
vertex set V (T ) = {v1, v2, ..., vn}, edge set E(T ) = {e1, e2, ..., en−1}, vertex-
weight function f : V (T ) → R and edge-weight function g : E(T ) → R

unless defined otherwise. If f = g = 1 in such a tree, we call T a simple tree
denoted by T = (V (T ), E(T )).

For a tree T , let τ(T ) be the set of subtrees and τk(T ) the set of subtrees
of order k. For any vertex v ∈ V (T ) and any set A ⊂ V (T ), denote by τ(T ; v)
(resp. τ(T ;A)) the set of subtrees of a tree T , each of which contains v (resp.
vertices in A). Let τk(T ; v) (resp. τk(T ;A)) be the set of subtrees with order
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k of a tree T , each of which contains v (resp. vertices in A). For technical
reasons, we also define τk(T ; v;u) to be the set of subtrees of T consisting
of v but not u and of order k.

Following the terminologies in [16], we call FT (k) the generating function
of subtrees of given order k of a weighted tree T = (V (T ), E(T ); f, g) (i.e.,
subtrees in τk(T )), defined as

FT (k) =
∑

Tk∈τk(T )

ω(Tk)

where

ω(Tk) =
∏

v∈V (Tk)

f(v)
∏

e∈E(Tk)

g(e)

is the product of the weights of the vertices and edges of Tk, called the weight
of Tk.

Along the same line, let

FT (k; v) =
∑

Tk∈τk(T ;v)

ω(Tk)

be the generating function of subtrees in τk(T ; v). Similarly, FT (k; v;u) de-
notes the generating function of subtrees of τk(T ; v;u).

Given a weighted tree T = (V (T ), E(T ); f, g) of order n > 1 and pendant
edge e = (u, v0) with leaf u, we will use T ′ = (V (T ′), E(T ′); f ′, g′) to denote
the tree T − {u} of order n − 1 (Figure 1) where f ′ and g′ are f and g
restricted to V (T ′) and E(T ′).

Figure 1: Generating T ′ from T .

With the above set up, [14, 16] provided recursive formulation of FT (k)
and consequently the corresponding algorithm to enumerate subtrees of
given order. The fundamental idea of the approaches to be presented, as
that in [14, 16], is to repetitively contracting pendant edges and record the
changes of corresponding parameters through updating the label of v0. The
specific labeling system and updating procedure depends on different ques-
tions.
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3. Subtrees containing vertices of a given set

Motivated by the concept of leaf-containing subtrees (i.e., subtrees that con-
tain at least one of the original leaf vertices) [6, 9], we consider the enumer-
ation of the more general objects in this section. For a given set of vertices
S ⊂ V (T ), we use ΩS(T ) to denote the set of subtrees of T containing at
least one vertex from S. Given a vertex v, ΩS(T ; v) is the set of subtrees of
T containing v and at least one vertex from S.

To enumerate the number of subtrees of a tree T0 := T that con-
tain at least one vertex from S ⊂ V (T ), we label each v ∈ V (T ) by
(bT (1; v), bT (2; v)) with

bT (1; v) =

{
0 v /∈ S;

1 v ∈ S;

and

bT (2; v) = 1− bT (1; v)

for all v ∈ V (T ) at the begining (when T = T0).
Let

φ(T ) = ω(T ) ·m(T )

where

m(T ) =
∏

v∈V (T )

(bT (1; v) + bT (2; v)),

the generating function FT (S) of subtrees containing at least one vertex in
S is defined as

FT (S) =
∑

Ts∈ΩS(T )

φ(Ts).

When a tree T is reduced to T ′ (Figure 1, starting from T = T0), we
define

bT ′(i; v0)

=

⎧⎪⎨
⎪⎩
f(u)g(e) [(bT (1; v0) + bT (2; v0))bT (1;u) + bT (1; v0)bT (2;u)]

+bT (1; v0) i = 1;

f(u)g(e)bT (2; v0)bT (2;u) + bT (2; v0) i = 2.

and

bT ′(i; v) = bT (i; v)

for any v �= v0, u.
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We show the following “recursion” of the function FT (S).

Theorem 3.1. From T to T ′ in the process of contracting pendant edges
(Figure 1), we have

FT (S) = FT ′(S) + f(u)bT (1;u).

Proof. First we partition the sets τ(T ) and τ(T ′) of subtrees of T and T ′ as

τ(T ) = τ1 ∪ τ1′ ∪ τ2 ∪ τ3

and

τ(T ′) = τ ′1 ∪ τ ′2
where

• τ1 is the set of subtrees of T containing v0 but not u;
• τ1′ is the set of subtrees of T containing the edge e = (u, v0);
• τ2 is the set of subtrees of T containing neither u nor v0;
• τ3 is the set of subtrees of T containing u but not v0;
• τ ′1 is the set of subtrees of T ′ containing v0;
• τ ′2 is the set of subtrees of T ′ not containing v0.

It is easy to observe

1. bijections

θ1 : T1 �→ T ′
1

between τ1 and τ ′1, and

θ2 : T2 �→ T ′
2

between τ2 and τ ′2;
2. the bijection between τ1′ and τ1 defined through

τ1′ = {T1 + u|T1 ∈ τ1},

where T1+u is the tree obtained from T1 by attaching a pendant edge
(v0, u) at vertex v0 of T1;

3. that τ3 is the single element set that contains the single vertex subtree
{u}.

Let

φ1(T ; v0) =
φ(T )

bT (1; v0) + bT (2; v0)
bT (1; v0)

and

φ2(T ; v0) =
φ(T )

bT (1; v0) + bT (2; v0)
bT (2; v0),
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we have

φ(T ) = φ1(T ; v0) + φ2(T ; v0)

and

(1)
φ1(T ; v0)

bT (1; v0)
=

φ2(T ; v0)

bT (2; v0)
.

Note that in both expressions in (1) one may have the undetermined
form 0

0 . In this case we are simply using them as symbolic expressions to

denote the true value φ(T )
bT (1;v0)+bT (2;v0)

.

From the bijections

T1 ↔ T1′ ↔ T ′
1

between subtrees T1 ∈ τ1, T1′ ∈ τ1′ , T ′
1 ∈ τ ′1, we have

V (T1) = V (T ′
1) = V (T1′)− {u}

and

E(T1) = E(T ′
1) = E(T1′)− {uv0}.

For any T1 ∈ τ1, we have

φ1(T1; v0)

bT1
(1; v0)

=
φ(T1)

bT1
(1; v0) + bT1

(2; v0)

=

∏
v∈V (T1)

f(v)
∏

e∈E(T1)
g(e)

∏
v∈V (T1)

(bT1
(1; v) + bT1

(2; v))

bT1
(1; v0) + bT1

(2; v0)

=
∏

v∈V (T1)

f(v)
∏

e∈E(T1)

g(e)
∏

v∈V (T1)\{v0}
(bT1

(1; v) + bT1
(2; v)).

(2)

Similarly,

φ1(T1′ ; v0)

f(u)g(uv0)bT1′ (1; v0) (bT1′ (1;u) + bT1′ (2;u))

=
φ(T1′)

f(u)g(uv0) (bT1′ (1; v0) + bT1′ (2; v0)) (bT1′ (1;u) + bT1′ (2;u))

=

∏
v∈V (T1′ )

f(v)
∏

e∈E(T1′ )
g(e)

∏
v∈V (T1′ )

(bT1′ (1; v) + bT ′
1
(2; v))

f(u)g(uv0) (bT1′ (1; v0) + bT1′ (2; v0)) (bT1′ (1;u) + bT1′ (2;u))
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=
∏

v∈V (T1′ )\{u}
f(v)

∏
e∈E(T1′)\{uv0}

g(e)
∏

v∈V (T1′ )\{u,v0}
(bT1′ (1; v) + bT1′ (2; v))

=
∏

v∈V (T1)

f(v)
∏

e∈E(T1)

g(e)
∏

v∈V (T1)\{v0}
(bT1

(1; v) + bT1
(2; v))

(3)

for any T1′ ∈ τ1′ (that is mapped to T1 through the bijection) and

φ1(T
′
1; v0)

bT ′
1
(1; v0)

=
φ(T ′

1)

bT ′
1
(1; v0) + bT ′

1
(2; v0)

=

∏
v∈V (T ′

1)
f(v)

∏
e∈E(T ′

1)
g(e)

∏
v∈V (T ′

1)
(bT ′

1
(1; v) + bT ′

1
(2; v))

bT ′
1
(1; v0) + bT ′

1
(2; v0)

=
∏

v∈V (T ′
1)

f(v)
∏

e∈E(T ′
1)

g(e)
∏

v∈V (T ′
1)\{v0}

(bT ′
1
(1; v) + bT ′

1
(2; v))

=
∏

v∈V (T1)

f(v)
∏

e∈E(T1)

g(e)
∏

v∈V (T1)\{v0}
(bT1

(1; v) + bT1
(2; v))

(4)

for any T ′
1 ∈ τ ′1 (that is mapped to T1 through the bijection).

Let e be the edge uv0, now we have

(5)
φ1(T1 ∈ τ1; v0)

bT1
(1; v0)

=
φ1(T1′ ∈ τ1′ ; v0)

f(u)g(e)bT1′ (1; v0) (bT1′ (1;u)+ bT1′ (2;u))
=

φ1(T
′
1 ∈ τ ′1; v0)

bT ′
1
(1; v0)

,

and similarly

(6)
φ2(T1 ∈ τ1; v0)

bT1
(2; v0)

=
φ2(T1′ ∈ τ1′ ; v0)

f(u)g(e)bT1′ (2; v0) (bT1′ (1;u)+ bT1′ (2;u))
=

φ2(T
′
1 ∈ τ ′1; v0)

bT ′
1
(2; v0)

.

Again, the expressions φ1(T1∈τ1;v0)
bT1 (1;v0)

, φ1(T ′
1∈τ ′

1;v0)
bT ′

1
(1;v0)

, φ2(T1∈τ1;v0)
bT1 (2;v0)

and φ2(T ′
1∈τ ′

1;v0)
bT ′

1
(2;v0)

are merely denoting the true value provided in (5) and (6) when 0
0 occurs.

Consequently

∑
T∈τ1

φ(T )
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=
∑
T∈τ1

(φ1(T ; v0) + φ2(T ; v0))

=
∑
T∈τ1

φ1(T ∈ τ1; v0)

bT (1; v0)
bT (1; v0) +

∑
T∈τ1

φ2(T ∈ τ1; v0)

bT (2; v0)
bT (2; v0)

=
∑
T∈τ ′

1

φ1(T ∈ τ ′1; v0)

bT (1; v0)
bT∈τ1(1; v0) +

∑
T∈τ ′

1

φ2(T ∈ τ ′1; v0)

bT (2; v0)
bT∈τ1(2; v0)(7)

and∑
T∈τ1′

φ(T )

=
∑
T∈τ1′

(φ1(T ; v0) + φ2(T ; v0))

=
∑
T∈τ1′

φ1(T ∈ τ1′ ; v0)

f(u)g(e)bT (1; v0) (bT (1;u) + bT (2;u))

· f(u)g(e)bT (1; v0) (bT (1;u) + bT (2;u))

+
∑
T∈τ1′

(
φ2(T ∈ τ1′ ; v0)

f(u)g(e)bT (2; v0) (bT (1;u) + bT (2;u))
· f(u)g(e)bT (2; v0)bT (1;u)

)

+
∑
T∈τ1′

(
φ2(T ∈ τ1′ ; v0)

f(u)g(e)bT (2; v0) (bT (1;u)+ bT (2;u))
· f(u)g(e)bT (2; v0)bT (2;u)

)
.

Using bT∈τ1′ (.; .) to denote the labeling in the corresponding trees in the
above expression, we have∑

T∈τ1′
φ(T )

=
∑
T∈τ ′

1

φ1(T ∈ τ ′1; v0)

bT (1; v0)
· f(u)g(e)bT∈τ1′ (1; v0) (bT∈τ1′ (1;u) + bT∈τ1′ (2;u))

+
∑
T∈τ ′

1

(
φ2(T ∈ τ ′1; v0)

bT (2; v0)
· f(u)g(e)bT∈τ1′ (2; v0)bT∈τ1′ (1;u)

)

+
∑
T∈τ ′

1

(
φ2(T ∈ τ ′1; v0)

bT (2; v0)
· f(u)g(e)bT∈τ1′ (2; v0)bT∈τ1′ (2;u)

)

(8)

Note that, by our definition of bT (1; v0) and bT (2; v0) for a subtree of T ′,
the first term in (7) and the first two terms in (8) sum up to
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∑
T∈τ ′

1

(
φ1(T ∈ τ ′1; v0)

bT (1; v0)
bT (1; v0)

)

and the last terms in (7) and (8) sum up to

∑
T∈τ ′

1

(
φ2(T ∈ τ ′1; v0)

bT (2; v0)
bT (2; v0)

)
.

Thus we have∑
T∈τ1

φ(T ) +
∑
T∈τ1′

φ(T )

=
∑
T∈τ ′

1

(
φ1(T ∈ τ ′1; v0)

bT (1; v0)
bT (1; v0)

)
+

∑
T∈τ ′

1

(
φ2(T ∈ τ ′1; v0)

bT (2; v0)
bT (2; v0)

)

=
∑
T∈τ ′

1

φ1(T ∈ τ ′1; v0) +
∑
T∈τ ′

1

φ2(T ∈ τ ′1; v0)

=
∑
T∈τ ′

1

φ(T ).

Through the earlier established bijections, it is easy to see that∑
T∈τ2

φ(T ) =
∑
T∈τ ′

2

φ(T )

and ∑
T∈τ3

φ(T ) = f(u)bT (1;u).

Then

FT (S) =
∑
T∈τ1

φ(T ) +
∑
T∈τ1′

φ(T ) +
∑
T∈τ2

φ(T ) +
∑
T∈τ3

φ(T )

=
∑
T∈τ ′

1

φ(T ) +
∑
T∈τ ′

2

φ(T ) + f(u)bT (1;u)

= FT ′(S) + f(u)bT (1;u)(9)

as desired.

As a direct application of this theorem, we have the following algorithm
that provide FT (S) as the output.
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ALGORITHM

Step 1.
Initialization:

bT (1; v) =

{
0 v /∈ S;

1 v ∈ S;

and

bT (2; v) = 1− bT (1; v)

for all v ∈ V (T ).
N = 0.
Step 2.
Contraction:

• Choose a pendant edge e = (u, v0) with leaf u;
• Update bT (i; v) with bT ′(i; v) for all v ∈ V (T ′);
• Update N := N + f(u)bT (1;u);
• Update T := T ′.

Step 3.

• If |T | = 1, go to Step 4;
• Otherwise, go to Step 2.

Step 4.
Update N := N + f(v)bT (1; v) where v is the only vertex in V (T ).
Output FT (S) = N .

Remark 1. When f = g = 1, this algorithm computes the number of sub-
trees of T when S = V (T ) and the number of leaf-containing subtrees when
S is the set of leaves of T .

In Figure 2, an example is provided for a tree with n = 7, f = g = 1
and vertices of S denoted by larger nodes.

4. Subtrees containing given number of vertices of a given
set

In this section we discuss the enumeration of subtrees of T that contain a
given number k of the vertices from S ⊂ V (T ). The essential idea is the same
as that of the previous section, but notations are more technical and we skip
some details. We denote by cT (i; v) the number of subtrees of T (the original
tree) containing v and exactly i vertices from S. Each vertex v ∈ V (T )
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Figure 2: Example.

will be labeled with the (k + 1)-tuple (cT (k; v), cT (k − 1; v) · · · , cT (0; v)) in
this examination. Note that these labels are later only used to record the
information needed.

Following the same procedure as in Figure 1, we use F and F ′ denote set
of subtrees of T and that of T ′. We need to introduce a few more notations
before getting to the main result of this section.

Let

λk(T ) =
∑

∑
v∈V (T ) iv=k

⎛
⎝ ∏

v∈V (T )

cT (iv; v)

⎞
⎠ ,

where the summation picks an k ≥ iv ≥ 0 for each vertex v ∈ V (T ) under
the condition that the sum of these values is k. For a vertex v ∈ V (T ), we
define

λk(T ; v; j) =
∑

∑
u∈V (T )\{v} iu=k−j

cT (j; v)

⎛
⎝ ∏

u∈V (T )\{v}
cT (iu;u)

⎞
⎠ .

It is obvious that

λk(T ) =

k∑
j=0

λk(T ; v; j)

when v ∈ V (T ).

For technical reasons, we also define cT (i; e) and λk(T ; e; j) accordingly
for an edge e ∈ E(T ). The generating function of subtrees of a labeled
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weighted tree T , each containing k vertices from S, is then denoted by

FT (k;S) =
∑
Ts∈F

w(Ts)λk(Ts).

Remark 2. Note that in the above summation, the subtree Ts has non-
negative contribution only if

∑
vi∈V (Ts)

ivi
≥ k, where ivi

is the largest
subscript 0 ≤ i ≤ k such that cT (i; v) > 0 in the label (cT (k; v), cT (k −
1; v) · · · , cT (0; v)).

To deal with the operation from T to T ′, we provide the following re-
cursive definition of the label of v0:

cT ′(i; v0) = cT (i; v0) + f(u)g(e)
∑

m+n=i; m,n≥0

cT (m; v0)cT (n;u), 0 ≤ i ≤ k.

Note that except for the labels of the original tree T = T0, cT (i; v) will be
simply used for recording information and not necessarily reflect its original
definition on the current tree.

Let e be the edge uv0 in Figure 1 and the sets τ1, τ2, τ1′ , τ3, τ
′
1 and τ ′2

defined as before. Noting the bijections

T1 ↔ T1′ ↔ T ′
1

as in the previous section and let

λk(T ; e; j)

=
∑

∑
v∈V (T )\{u,v0} iv=k−j

⎛
⎝ ∑

m+n=j

cT (m; v0)cT (n;u)

⎞
⎠

⎛
⎝ ∏

v∈V (T )\{u,v0}
cT (iv; v)

⎞
⎠ ,

We have, for any T1 ∈ τ1, T1′ ∈ τ1′ , T ′
1 ∈ τ ′1, 1 ≤ k ≤ n and 0 ≤ j ≤ k,

w(T1)λk(T1; v0; j)

cT1
(j; v0)

= w(T1)
∑

∑
v∈V (T1)\{v0} iv=k−j

⎛
⎝ ∏

v∈V (T1)\{v0}
cT1

(iv; v)

⎞
⎠ ,

w(T1′)λk(T1′ ; e; j)

f(u)g(e)
∑

m+n=j cT1′ (m; v0)cT1′ (n;u)

=
w(T1′)

f(u)g(e)
· λk(T1′ ; e; j)∑

m+n=j cT1′ (m; v0)cT1′ (n;u)
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= w(T1)
∑

∑
v∈V (T

1′ )\{u,v0} iv=k−j

⎛
⎝ ∏

v∈V (T1′ )\{u,v0}
cT1′ (iv; v)

⎞
⎠

= w(T1)
∑

∑
v∈V (T1)\{v0} iv=k−j

⎛
⎝ ∏

v∈V (T1)\{v0}
cT1

(iv; v)

⎞
⎠ ,

and

w(T ′
1)λk(T

′
1; v0; j)

cT ′
1
(j; v0)

= w(T1) ·
λk(T

′
1; v0; j)

cT ′
1
(j; v0)

= w(T1)
∑

∑
v∈V (T ′

1
)\{v0} iv=k−j

⎛
⎝ ∏

v∈V (T ′
1)\{v0}

cT ′
1
(iv; v)

⎞
⎠

= w(T1)
∑

∑
v∈V (T1)\{v0} iv=k−j

⎛
⎝ ∏

v∈V (T1)\{v0}
cT1

(iv; v)

⎞
⎠ .

Hence

w(T1)λk(T1; v0; j)

cT1
(j; v0)

=
w(T1′)λk(T1′ ; e; j)

f(u)g(e)
∑

m+n=j cT1′ (m; v0)cT1′ (n;u)
=

w(T ′
1)λk(T

′
1; v0; j)

cT ′
1
(j; v0)

We now have the necessary tools to show the following.

Theorem 4.1. From T to T ′ in the process of contracting pendant edges
(Figure 1), we have

FT (k;S) = FT ′(k;S) + f(u)cT (k;u).

Proof. First note that∑
Ts∈F∩τ1

w(Ts)λk(Ts) +
∑

Ts∈F∩τ1′
w(Ts)λk(Ts)

=

k∑
j=0

⎛
⎝ ∑

T1∈F∩τ1
w(T1)λk(T1; v0; j) +

∑
T1′∈F∩τ1′

w(T1′)λk(T1′ ; e; j)

⎞
⎠
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=

k∑
j=0

(∑
T1∈F∩τ1 w(T1)λk(T1; v0; j)

cT1
(j; v0)

cT1
(j; v0)

)

+

k∑
j=0

( ∑
T1′∈F∩τ1′ w(T1′)λk(T1′ ; e; j)

f(u)g(e)
∑

m+n=j cT1′ (m; v0)cT1′ (n;u)
f(u)g(e)

·
∑

m+n=j

cT1′ (m; v0)cT1′ (n;u)

)

=

k∑
j=0

(∑
T ′
1∈F ′∩τ ′

1
w(T ′

1)λk(T
′
1; v0; j)

cT ′
1
(j; v0)

· cT (j; v0)
)

+

k∑
j=0

[∑
T ′
1∈F ′∩τ ′

1
w(T ′

1)λk(T
′
1; v0; j)

cT ′
1
(j; v0)

·
(
f(u)g(e)

∑
m+n=j

cT (m; v0)cT (n;u)

)]

=
∑

Ts∈F ′∩τ ′
1

w(Ts)λk(Ts).

From the definitions and bijections established in the previous section, we
also have ∑

Ts∈F∩τ2
w(Ts)λk(Ts) =

∑
Ts∈F ′∩τ ′

2

w(Ts)λk(Ts)

and ∑
Ts∈F∩τ3

w(Ts)λk(Ts) = f(u)cT (k;u).

Hence

FT (k;S) =
∑
Ts∈F

w(Ts)λk(Ts)

=
∑

Ts∈F∩τ1
w(Ts)λk(Ts) +

∑
Ts∈F∩τ1′

w(Ts)λk(Ts)

+
∑

Ts∈F∩τ2
w(Ts)λk(Ts) +

∑
Ts∈F∩τ3

w(Ts)λk(Ts)

=
∑

Ts∈F ′∩τ ′
1

w(Ts)λk(Ts) +
∑

Ts∈F ′∩τ ′
2

w(Ts)λk(Ts) + f(u)cT (k;u).

= FT ′(k;S) + f(u)cT (k;u).
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Similar to before, the algorithm for enumerating such subtrees immedi-
ately follows from the above theorem.

ALGORITHM
Step 1.
Initialization:

cT (0; v) =

{
1 v /∈ S;

0 v ∈ S;

cT (1; v) =

{
0 v /∈ S;

1 v ∈ S;

cT (i; v) = 0, 2 ≤ i ≤ k,

for all v ∈ V (T ) and

N = 0.

Step 2.
Contraction:

• Choose a pendant edge e = (u, v0) with leaf u;
• Update cT (i; v) with cT ′(i; v) for 0 ≤ i ≤ k for all v ∈ V (T ′);
• Update N := N + f(u)cT (k;u);
• Update T := T ′.

Step 3.

• If |T | = 1, go to Step 4;
• Otherwise, go to Step 2.

Step 4.
Update N := N + f(v)cT (k; v) where v is the only vertex in V (T ).
Output FT (k;S) = N .

Remark 3. It is easy to see that, when S = V (T ), the above algorithm can
be used to enumerate subtrees of order k.

5. Concluding remarks

In this note we followed the simple idea of contracting pendant edges and
recording information recursively, showing that various types of subtrees
(with application in many different fields) can be efficiently enumerated. A
more comprehensive question, namely the enumeration of subtrees of given
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order that contain given number of vertices from a given set (most likely the

set of leaves in applications), can be solved following the same procedure.

The detailed presentation, however, seems to be rather tedious and technical.
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