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Sum-free graphs

S. C. Locke

Dedicated to Professor J. A. Bondy

An n-vertex graph is sum-free if the vertices can be labelled with
{1, 2, . . . , n} such that no vertex gets a label which is the sum of
the labels of two of its neighbours. We prove that non-complete
graphs with average degree two or less are sum-free. We also prove
that graphs with maximum degree three and at least seven vertices
are sum-free.
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In [4] the authors discuss combination graphs, in which vertices of G are
labelled using a bijection f : V (G) → {1, . . . , |V (G)|} and an injective

edge-labelling is induced by assigning the label

(
a

b

)
to the edge e = uv

if {f (u) , f (v)} = {a, b}, with a > b. This labelling problem is somewhat

complicated by the fact that it is possible to have

(
a

b

)
=

(
c

d

)
, for a �= c.

Here we consider the presumably easier problem of characterizing which
graphs have sum-free labellings. For an n-vertex simple graph G, with ver-
tex set V (G), a sum-free labelling of G is a bijection f : V (G) → In =
{1, . . . , n}, such that for every path P = uvw, f (v) �= f (u)+f (w). If G is a
simple graph and G has a sum-free labelling, we call G sum-free. Obviously,
a combination graph is a sum-free graph, but a graph could be sum-free
without being a combination graph. In the special case that V (G) = In and
the sum-free function f is the identity function on In, we say that G is a
labelled sum-free graph.

All graphs in this note will be finite and simple. Throughout, unless
otherwise stated, we shall assume that G is a finite simple graph with n
vertices and m edges. Our notation will generally follow that of [2]. For a
graph G, V (G) is the vertex set of G, and E (G) the edge set. For v ∈ V (G),
the degree of v is denoted d (v), the set of neighbours of v is N (v), the closed
neighbourhood is N [v] = N (v) ∪ {v}. If G is assumed to be sum-free, we
will use f for some sum-free labelling of G.
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Observation 1. Following [4], we note that if G is sum-free, then |E (G)| �
1

4
|V (G)|2.

Proof. Let v = f −1 (n) ∈ V (G). Then, since G is sum-free, no two neigh-

bours of G can have labels in {j, n− j}, for 1 � j � n

2
. Hence, dG (v) �

⌊n
2

⌋
.

Note that f when restricted to V (G) − {v} yields a sum-free labelling of

G − v. Hence, for w = f −1 (n− 1) ∈ V (G− v), dG−v (w) �
⌊
n− 1

2

⌋
, and

dG (v) + dG−v (w) �
⌊n
2

⌋
+

⌊
n− 1

2

⌋
= n − 1. Now, if |E (G− {v, w})| �

1

4
|V (G− {v, w})|2 = 1

4
(n− 2)2, then |E (G)| � 1

4
(n− 2)2+(n− 1) =

1

4
n2.

To complete a proof by induction, it is only necessary to note that the desired

inequality holds for simple graphs on one or two vertices.

Observation 2. Any n-vertex sum-free graph G can be embedded as a

subgraph in an n-vertex sum-free graph H with |E (H)| =
⌊
1

4
n2

⌋
. Hence, a

list of all of the n-vertex m-edge sum-free graphs, with m =

⌊
1

4
n2

⌋
, contains

all of the n-vertex sum-free graphs as subgraphs.

Proof. Let v = f −1 (n) ∈ V (G), and again note that G−v is sum-free with

labelling g = f −{(v, n)}. By the obvious induction, we may embed G−v in

a sum-free graph H1 with the same labelling g, and with

⌊
1

4
(n− 1)2

⌋
edges.

Now, select X ⊆ V (H1) such that N(v) ⊆ X and for each i, 1 � i �
⌊n
2

⌋
,

|f(X) ∩ {i, n− i}| = 1. Let H = H1 ∪ {vw : w ∈ X}. Then, H is sum-free

with labelling f , and |E (H)| =
⌊
1

4
n2

⌋
.

Observation 3. The processes in Observation 1 and Observation 2 specify

an algorithm for generating all edge-maximal labelled sum-free graphs on

n vertices. For a labelled sum-free graph G on n − 1 vertices, let Y (G) ={
X ⊆ V (G) = In−1 : |X| =

⌊n
2

⌋
and |X ∩ {i, n− i}| = 1, 1 � i �

⌊n
2

⌋}
.

For X ∈ Y (G), let s (G,X) = G ∪ {n} ∪ {{n, x} : x ∈ X}.
Suppose that Ln−1 = {Gk}qk=1 is the set of all labelled n-vertex sum-free

graphs. Then, Ln =

q⋃
k=1

{s (Gk, X) : X ∈ Y (Gk)}.
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The definition of L0 = K0 gets the ball rolling. Every graph in Ln has⌊
n2

4

⌋
edges.

We note that |Ln| = 2q |Ln−1|, where q =

⌊
n− 1

2

⌋
, and |Ln| = 2t, where

t =

⌊
(n− 1)2

4

⌋
. For example, L4 has four labelled graphs. One of these is

a 4-cycle, the other three are isomorphic. In general, one would expect the
number of non-isomorphic graphs in Ln to be far smaller than |Ln|. Of

course, the number of non-isomorphic graphs in Ln is at least
1

n!
|Ln| =

2
�(n−1)2/4�

n!
, which grows rather quickly.

A simple graph on n vertices and

⌊
1

4
n2

⌋
edges is not necessarily sum-

free. We will show later that K3,3 is not sum-free, yet K3,3 has 6 vertices

and

⌊
1

4
· 62

⌋
= 9 edges.

For a graph G, let R (G, k) = {v ∈ V (G) : d (v) � k}. For a positive
integer n, let r (n, k) = max {|R (G, k)| : G ∈ Ln}.
Lemma 4. If f is a sum-free labelling of G, and if v ∈ V (G) with d (v) =
n − j, then f (v) � 2j and R (n, n− j) ⊆

{
f −1 (k) : 1 � k � 2j

}
. Hence,

r (n, n− j) � 2j.

Proof. Suppose that f (v) � 2j + 1. Then, for 1 � i � j,∣∣{f −1 (i) , f −1 (n− i)
}
∩N (v)

∣∣ � 1,

and d (v) � (n− 1)− j. since this is impossible, f (v) � 2j.

We noted that K2,2 is sum-free. (It is in L4.) Assign {2, 3} to one colour
class, and {1, 4} to the other.

Lemma 5. K2,3 is not sum-free and Kk,k is not sum-free, for k � 3.

Proof. We consider the case of G ∼= Kk,k, k � 3, first. Let (X,Y ) be a
bipartition of G, and let f be a sum-free labelling of G. Without loss of
generality, f −1 (1) ∈ X. Now, if f −1 (i) ∈ X, for 2 � i � 2k − 1, then
f −1 (i+ 1) /∈ Y , and we must have f −1 (i+ 1) ∈ X. But then X ={
f −1 (1) , f −1 (k + 2) , f −1 (k + 3) , . . . , f −1 (2k)

}
, and

Y =
{
f −1 (2) , f −1 (3) , f −1 (4) , . . . , f −1 (k + 1)

}
.
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Since k � 3, f −1 (k + 1) , f −1 (k − 1) ∈ Y = N
(
f −1 (2k)

)
, contradicting

the choice of f as a sum-free labelling. Hence, Kk,k is not sum-free, for k � 3.
Now, let G ∼= K2,3, with bipartition (X,Y ), where |X| = 2. By Lemma 4,

f (X) ⊆ {1, 2, 3, 4}. Thus, f −1 (5) ∈ Y , and f (X) /∈ {{1, 4} , {2, 3}}. Now,
if f (X) = {1, j}, with j ∈ {2, 3}, then j+1 ∈ F (Y ), which is impossible. If
f (X) = {2, 4}, then {1, 3} ∈ f (Y ), which is impossible. Finally, if f (X) =
{3, 4}, then {1, 2} ∈ f (Y ), which is impossible. Thus, K2,3 is not sum-
free.

Corollary 6. Let n � 5. If Kk,n−k ⊆ G, for 2 � k � n − 2, then G is not
sum-free. SinceK2,n−2 cannot be a subgraph of G if n � 5, |R (G,n− 1)| � 1
and any two vertices of degree n− 2 are adjacent.

Proof. Suppose that Kk,n−k
∼= H ⊆ G, where n � 5 and 2 � k � n − 2,

and that f is a sum-free labelling of G. Then, f is a sum-free labelling of H.
Let H have bipartition (X,Y ), with |X| � |Y |. By Lemma 4, f −1 (X) ⊆
{1, 2, . . . , 2 |X|}. Let M = G

[
f −1 ({1, 2, . . . , 2 |X|})

]
, if |X| � 3, and let

M = G
[
f −1 ({1, 2, . . . , 5})

]
, if |X| = 2. Then, f restricted to M is a sum-

free labelling of M . But, by Lemma 5, M has no sum-free labelling. Hence,
G has no sum-free labelling.

By Corollary 6, there are examples of graphs on n vertices, n � 5, which

are not sum-free but have only 2n− 4 edges, far below the
1

4
n2 bound.

It may be possible to limit the total number of vertices of high degree,
as in the next two Lemmas.

Lemma 7. If G is sum-free, n � 5, and G has a vertex of degree n−1, then
G has at most one vertex of degree n− 2.

Proof. Suppose that d (u) = n − 1, d (v) = n − 2, and d (w) = n − 2, with
v �= w. By Corollary 6, vw ∈ E (G). By Lemma 4, f ({u, v, w}) ⊆ {1, 2, 3, 4}.
Since G [{u, v, w}] ∼= K3 and G is sum-free,

f ({u, v, w}) ∈ {{1, 2, 4} , {2, 3, 4}} .

Suppose that f ({u, v, w}) = {2, 3, 4}. Then, f (u) = 2. Without loss of
generality, f (v) = 3 and f (w) = 4. Let z = f −1 (1) and y = f −1 (5).
Then, zv /∈ E (G). Hence, yv ∈ E (G), yu ∈ E (G), and f (y) = f (u)+f (v),
contradicting the choice of f as sum-free. Thus, f ({u, v, w}) �= {2, 3, 4}.

Now, suppose that f ({u, v, w}) = {1, 2, 4} and f (u) = 1. Then,∣∣N (
f −1 (4)

)
∩
{
f −1 (3) , f −1 (5)

}∣∣ � 1,

and both of these are impossible.
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Finally, suppose that f ({u, v, w}) = {1, 2, 4} and f (u) = 2. Without loss
of generality, f (v) = 1 and f (w) = 4. Let z = f −1 (3) and y = f −1 (5).
Since wz, vz /∈ E (G), we must have wy, vy ∈ E (G). But then, f (y) =
f (w) + f (v), contradicting the choice of f as sum-free. This exhausts all
cases. Hence, G has at most one vertex of degree n− 2.

Lemma 8. If G is sum-free, n � 5, and G has no vertex of degree n − 1,
then G has at most three vertices of degree n− 2.

Proof. By Corollary 6, if G has four vertices of degree n− 2, these four ver-
tices are pairwise adjacent, and by Lemma 4, they have labels in {1, 2, 3, 4}.
Hence,

{
f −1 (1) , f −1 (2)

}
∈ N

(
f −1 (3)

)
, which is impossible.

Lemma 9. If G is sum-free, n � 6, and G has no vertex of degree n − 1,
then G has at most two vertices of degree n− 2. Hence, r (n, n− 2) � 2 for
n � 6.

Proof. Suppose that u, v, w are distinct vertices in G, each with degree n−2.
By Corollary 6, if G [{u, v, w}] ∼= K3, and, by Lemma 4, f ({u, v, w}) ⊆
{1, 2, 3, 4}. Since G is sum-free, f ({u, v, w}) ∈ {{1, 2, 4} , {2, 3, 4}}.

Suppose that f ({u, v, w}) = {1, 2, 4}. Without loss of generality, f (u) =
1, f (v) = 2, f (w) = 4. Let z = f −1 (3) and y = f −1 (5). Then, z /∈
N (u) ∩N (v), z /∈ N (w). But then, y ∈ N (w), and thus y /∈ N (u). Then,
z ∈ N (u) and z /∈ N (v). Now, f −1 (6) ∈ N (v)∩N (w), which is impossible.

Suppose that f ({u, v, w}) = {2, 3, 4}. Without loss of generality, f (u) =
2, f (v) = 3, f (w) = 4. Let z = f −1 (1) and y = f −1 (5). Here, z /∈ N (v)∪
N (w). If n � 7, then f −1 (7) ∈ N (v) ∩ N (w), which is impossible. For
n = 6, f −1 (5) , f −1 (6) ∈ N (v)∩N (w). Hence, f −1 (5) , f −1 (6) /∈ N (u),
and d (u) � n− 3, contradicting our assumptions.

Lemma 10.

(a) If n � 2j, then r (n+ 1, n+ 1− j) � r (n, n− j). Hence, r (n, n− j) �
r (2j, j), for n � 2j.

(b) Suppose that G ∈ LN has R (G0, N − j) = Ik, where j, k �
⌊
N

2

⌋
.

Then, r (n, n− j) � k, for n � N .

Proof. We only need prove part (a) for graphs on Ln+1. Let G ∈ Ln+1

and let H = G − {vn+1}, where we use vn+1 for the vertex of G with
label n + 1 merely to remind the reader that this is a vertex of G. Note

that R (G,n+ 1− j) ⊆ R (H,n− j) ∪ {vn+1}, but dG (vn+1) =

⌊
n+ 1

2

⌋
<
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n + 1 − j. Thus, R (G,n+ 1− j) ⊆ R (H,n− j). Since this is true for
any G ∈ Ln+1, r (n+ 1, n+ 1− j) � r (n, n− j). Now, a straightforward
induction gives r (2j + k, j + k) � r (2j, j), for k � 0, proving part (a).

Now, suppose that G ∈ LN has R (G0, N − j) = Ik, where j, k �
⌊
N

2

⌋
.

Then, there is some X ⊆ Y (G) such that Ik ⊆ X. Thus, H = s (G,X) ∈
LN+1 has R (H,N + 1− j) = Ik. Induction then establishes r (n, n− j) �
|R (G,N − j)| = k, for n � N , proving part (b).

We now have simple proofs of Lemma 4, of one of the statements in
Corollary 6, and of Lemma 9 using the lists Ln. We state this as Corol-
lary 11.

Corollary 11.

(a) r (n, n− 1) = 1 for n � 4.
(b) r (n, n− 2) = 2 for n � 6.
(c) r (n, n− 3) = 4 for n � 8.
(d) r (n, n− j) � 2j, for all n � 0.

Proof. Since |R (G, 3)| � 1 for any of the four graphsG ∈ L4, r (n, n− 1) � 1
for n � 4. There is a graph G4 ∈ L4 with adjacency matrix M4 shown below.
R (G4, 3) = {1}. Thus, by Lemma 10, (a) holds.

Since |R (G, 4)| � 2 for any of the 64 graphs G ∈ L6, r (n, n− 2) � 2 for
n � 6. There is a graph G6 ∈ L4 with adjacency matrix M6 shown below.
R (G6, 4) = {1, 2}. Thus, by Lemma 10, (b) holds.

Let G11 denote the labelled sum-free graph with adjacency matrix M11,
displayed below. Note that R (G11, 8) = {1, 2, 3, 4}. From the possible de-
gree sequences in L8, we know that r (8, 5) = 4 and, hence, by Lemma
10(a), r (n, n− 3) � 4, for n � 8. But, by Lemma 10(b), r (n, n− 3) �
|R (G11, 8)| = 4, for n � 11. Hence, r (n, n− 3) = 4, for n � 8. This estab-
lished part (c).

Since r (n, j) � 2j trivially for n � 2j, we deduce that r (n, n− j) � 2j,
for all n � 0. This proves part (d).

M4 =

⎡
⎢⎢⎣

0 1 1 1
1 0 0 1
1 0 0 0
1 1 0 0

⎤
⎥⎥⎦ , M6 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1
1 0 0 1 1 1
1 0 0 0 0 1
1 1 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,
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M11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 1 1 1 1 1 1
1 0 0 1 0 1 1 1 1 1 1
1 0 0 1 1 1 0 1 1 1 1
0 1 1 0 1 0 1 1 1 1 1
0 0 1 1 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1
1 1 0 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now for a few positive examples.

Lemma 12. If n � 4, and if G has maximum degree two, then G is sum-free.

Proof. Suppose that G is a minimum counterexample. That is, for any graph
H with Δ (H) � 2 and 4 � |V (H)| < n, H is sum-free.

Suppose that G has a component C with k vertices, k � 3, and let
H = G−V (C). If |V (H)| � 4, label C with {j}nj=n−k+1. Note that if C has
a path uvw, then f (u) � n < 2n − 3 � f (v) + f (w). Let g be a sum-free
labelling of H, and set f (x) = g (x) for x ∈ V (H) ⊆ V (G). Then, f is a
sum-free labelling of G.

If |V (H)| = 3, label H with {1, 2, 4} and C with {3, 5, 6} ∩ {j}nj=1. If
|V (H)| = 2, label H with {1, 2} and C with {3, 4, 5}∩{j}nj=1. If |V (H)| = 1,
label H with {1} and C with {2, 3, 4}.

We may now assume that all components of G have at least four vertices.
Let C be a component of G, and let P = v1v2 · · · vk be a longest path in C.
(This is C = P or C = P ∪{vkv1}.) Consider the function g (vi) = n+1− i,
1 � i � k. Note that for 1 < i < k, g (vi) = n+1− i and g (vi−1)+g (vi+1) =
2 (n+ 1− i). If C = P , then using a sum-free labelling h of H = G−V (C),
the labelling f give by f (x) = g (x) for x ∈ C and f (x) = h (x) for x ∈ H
is a sum-free labelling of G. Hence, we may assume that C = P ∪ {vkv1}.

We note that g (vk) = n−k+1 and g (vk−1)+g (v1) = (n− k + 2)+n >
g (vk). Also, g (vk) + g (v2)− g (v1) = (n− k + 1) + (n− 1)− n = n− k �= 0
if k < n. Hence, for k < n, G is sum-free.

We have one remaining case and in this case, G is a cycle v1v2 · · · vnv1,
with n � 4. Let f (vi) = i, for 1 � i � n − 2, and let f (vn−1) = n and
f (vn) = n−1. Now, as above, for 1 < i < n−2, 2f (vi) = f (vi−1)+f (vi+1),
and we need only check the sums at vn−2, vn−1, vn, and v1.

f (vn−3) + f (vn−1)− f (vn−2) = (n− 3) + n− (n− 2) = n− 1 �= 0.
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f (vn−2) + f (vn)− f (vn−1) = (n− 2) + (n− 1)− n = n− 3 �= 0.
f (vn−1) + f (v1)− f (vn) = n+ 1− (n− 1) = 2 �= 0.
f (vn) + f (v2)− f (v1) = (n− 1) + 2− 1 = n �= 0.

Hence, f is a sum-free labelling of G in this case.

The next result is fairly trivial, but perhaps useful.

Lemma 13. If G is acyclic, then G is sum-free.

Proof. We proceed by induction on n = |V (G)|. By reviewing Ln, n � 3,
or by Lemma 12, the result is true for any acyclic graph on at most three
vertices, establishing our base cases. Since G is acyclic, there is a vertex
v ∈ V (G) such that dG (v) � 1. Let H = G− v and note that H is acyclic.
Let g be a sum-free labelling of H and let f (x) = g (x) for x ∈ V (H) and
f (v) = n. Then, f is a sum-free labelling of G.

In the following Lemma, K1 ∨ 2K3 is the graph with one vertex v of
degree six and with G− v the disjoint union of two triangles.

Lemma 14. If n = |V (G)| � 7, v ∈ V (G), Δ (G− v) � 2, and G is not
K1 ∨ 2K3, then G is sum-free.

Proof. Let H = G− v. Let the connected components of H − v be A1, A2,
. . . , As, with A1 not a triangle, if possible. We will first consider the case in
which A1 is a triangle, since it gives an introduction to the method for the
remaining cases.

Suppose that A1
∼= K3. Then, A1

∼= A2
∼= · · · ∼= As

∼= K3. Note that,
s � 2. If s = 2, then since G is not K1 ∨ 2K3, without loss of generality,
there is a vertex w ∈ V (A1) such that vw /∈ E (G). Let f (v) = 1, f (w) = 6,
f (N (w)− {v}) = {3, 5} and f (V (A2)) = {2, 4, 7}. Then, f is a sum-free
labelling of G.

Suppose that A1
∼= K3 and s = 3. Here, n = 10. Select any bijection

f : V (G) → I10 such that f (v) = 1, f (V (A1)) = {2, 4, 8}, f (V (A2)) =
{3, 6, 10}, and f (V (A3)) = {5, 7, 9}. Then, f is a sum-free labelling of G.

Next, we suppose that A1
∼= K3 and s = 2k, k � 2. Here, n is odd.

By Lemma 12, A = A1 ∪ A2 ∪ · · · ∪ Ak has a sum-free labelling g. Let
B = Ak+1∪Ak+2∪· · ·∪As. Let h be any bijection from V (B) to {3, 5, . . . , n}
and define f : V (G) → In by f (v) = 1, f (x) = 2g (x) for x ∈ V (A), and
f (x) = h (x) for x ∈ V (B). Then, f is a sum-free labelling of G.

The remaining case with A1
∼= K3 has s = 2k+1, k � 2, and n = 6k+4 �

16. Let A = A1∪A2∪· · ·∪Ak and let B = Ak+2∪Ak+3∪· · ·∪As. Let g be a
sum-free labelling of A, let h be any bijection from V (B) to {5, 7, . . . , n− 1},
and let r be a bijection from V (Ak+1) to {3, n− 2, n}. Define f : V (G) → In
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by f (v) = 1, f (x) = 2g (x) for x ∈ V (A), f (x) = r (x) for x ∈ V (Ak+1),
and f (x) = h (x) for x ∈ V (B). Then, f is a sum-free labelling of G.

We may now assume that A1 is not a triangle. As in the constructions
above, we shall use f (v) = 1, unless otherwise specified.

Let t be the integer such that |V (A1 ∪A2 ∪ · · · ∪At)| �
⌊n
2

⌋
and

|V (A1 ∪A2 ∪ · · · ∪At+1)| >
⌊n
2

⌋
.

Let A = A1∪A2∪ · · ·∪At. If |V (A)| =
⌊n
2

⌋
, B = H−V (A). Since A is not

a triangle, there is a sum-free labelling g of A. Let h be any bijection from

V (B) to

{
3, 5, ..., 2

⌊
n− 1

2

⌋}
. Let f (v) = 1, f (x) = 2g (x) for x ∈ V (A),

and f (x) = h (x) for x ∈ V (B). Then, f is a sum-free labelling of G.

We may now assume that |V (A1 ∪A2 ∪ · · · ∪At)| <
⌊n
2

⌋
and

|V (A1 ∪A2 ∪ · · · ∪At+1)| >
⌊n
2

⌋
.

Let A = A1 ∪A2 ∪ · · · ∪At, M = At+1, and let B = At+2 ∪At+3 ∪ · · · ∪As.
We note that M is either a path or a cycle. We intend to use a mixture

of even and odd labels on M . There are k =
⌊n
2

⌋
− |V (A)| even labels and

� =

⌊
n− 1

2

⌋
− |V (B)| odd labels available for M . We note that k > 1 and

� > 1, since |V (A)| <
⌊n
2

⌋
< |V (A ∪At+1)|. Let V (M) = {mj}qj=1 and

either E (M) = {mjmj+1}q−1
j=1 or E (M) = {mjmj+1}q−1

j=1 ∪ {mqm1}. For
convenience, let n1 = 2

⌊n
2

⌋
� 6 denote the largest possible even label and

n2 = 2

⌊
n− 1

2

⌋
+ 1 denote the largest possible odd label.

Let f (m�) = 3 and, if � � 2, let f (mj) = 2j + 3 for 1 � j < �.
Let f (mk+�) = n1 and, if k � 2, let f (m�+j) = n1 − 2j for 1 � j <
k. Since A is not a triangle, we pick a sum-free labelling g of A and let
f (x) = 2g (x) for x ∈ V (A). We pick an arbitrarily bijection h from V (B)
to {2�+ 3, 2�+ 5, . . . , n2} and let f (x) = h (x) for x ∈ V (B). Also, we have
f (v) = 1. The function f defined this way is a sum-free labelling of G if
|(n1 − 2)− 3| �= 1 and n1 �= 6. Thus, if n � 8, the function f is a sum-free
labelling of G. The only remaining case is n = 7.

If H is contained in a 6-cycle C assign the labels (2, 4, 6, 3, 7, 5) cyclically
along C. We may therefore assume that H has a cycle of length at most 5.
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If H has a 5-cycle C, assign the labels (2, 4, 6, 3, 7) cyclically along C,
and assign the label 5 to the vertex in V (H)− V (C).

If H has a 4-cycle C, assign the labels (2, 4, 7, 5) cyclically along C, and
assign {3, 6} to V (H)− V (C).

Finally, if H has a 3-cycle C, then we may assume that D = H − V (C)
is not a 3-cycle, since we have already considered this case. Assign the labels
(2, 4, 7) cyclically along C, and assign {5, 3, 6} to V (H)−V (C) so that the
vertex of degree two in D, if any, receives the label 3.

We next investigate some of the properties of a smallest 3-regular non-
sum-free graph G.

Lemma 15. If |E (G)| � |V (G)| and |V (G)| � 4, then G is sum-free.

Proof. We consider a smallest counterexample. Let G be a simple graph
which is not sum-free but which has |E (G)| � |V (G)| and |V (G)| � 4, and,
subject to this, suppose that n = |V (G)| is as small as possible.

By Lemma 12, we may assume that G has a vertex of degree at least
three. Suppose that G has a vertex v of degree one, and let H = G−v. Note
that |E (H)| = |E (G)| − 1 � |V (G)| − 1 = |V (H)|.

If |V (H)| � 4, then H has a sum-free labelling g, and we extend this
labelling to a sum-free labelling f of G which agrees with g on H and has
f (v) = n. On the other hand, if |V (H)| = 3, then let w be the neighbour of
v in G, let f (V (H)− w) = {2, 4} and set f (w) = 1 and f (v) = 3, yielding
a sum-free labelling of G. Hence, we may assume that G has no vertex of
degree one.

Suppose that M is a connected component of G, with 2 � |V (M)| � 1+⌊n
2

⌋
, and letH = G−V (M). Note that every vertex ofM has degree at least

two and, thus, |E (M)| � |V (M)| and |E (H)| � |V (H)|. If |V (H)| � 3,
then either H is sum-free or H is a 3-cycle. In the case that H is a 3-cycle,
|E (M)| = |E (G)| − 3 � |V (G)| − 3 = |V (M)|, but M has no vertex of
degree one, and thus G is regular of degree two and is sum-free. Hence, we
may assume that H is sum-free for |V (H)| � 3. By our choice of G, H
is sum-free if |V (H)| � 4. Thus, for any value of |V (H)|, we may assume
that H is sum-free. Let g be a sum-free labelling of H, and extend g to any
bijection f : V (G) → In, that agrees with g on H. Since f restricted to M

has no values less than n + 1− |V (M)| = n −
⌊n
2

⌋
=

⌈n
2

⌉
, f is a sum-free

labelling of G.
Note that G cannot have two connected components H1 and H2 with

|V (H2)| � |V (H1)| � 2, since then H1 is a connected component with

|V (H1)| �
⌊n
2

⌋
. Hence, we may now assume that G has one non-trivial
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connected component M . Since every vertex of M has degree at least two,
and since M has at least one vertex of degree at least three, |E (M)| >
|V (M)|. All of the other components of G are isolated vertices. Furthermore,
there must be at least |E (M)| − |V (M)| > 0 isolated vertices in G, and

|V (M)| � 2 +
⌊n
2

⌋
=

⌊
n+ 4

2

⌋
.

Suppose that G has a vertex v with d (v) = 2. Let w be a vertex of G with
d (w) = 0, let N (v) = {x, y}, and let H = G− {v, w}. Then, H ∼= K3 or H
has a sum-free labelling f . If H ∼= K3, then we assign {2, 4} to {x, y}, {1, 5}
to the vertices of degree two in G and 3 to the vertex of degree zero. Hence,
we may assume that H is sum-free, with labelling f . If f (x) + f (y) = n,
extend f to V (G) by assigning f (v) = n − 1 and f (w) = n. Otherwise,
assign f (v) = n and f (w) = n− 1. In either case, f is a sum-free labelling
of G. Hence, we may assume that G has no vertices of degree two.

We can bound the number of vertices of degree three, if there are enough
vertices of degree zero. Suppose that u and v are non-adjacent vertices of
degree three in G, and that W is a set of four vertices of degree zero.
Let N (u) = {u1, u2, u2} and N (v) = {v1, v2, v3}. We allow the possi-
bility that |N (u) ∩N (v)| > 0. Let H = G − {u, v} − W . Again, H ∼=
K3 or H has a sum-free labelling f . If H ∼= K3, then |V (M)| = 5 =
n+ 1

2
, contradicting our previous bound that |V (M)| �

⌊
n+ 4

2

⌋
. Thus,

H has a sum-free labelling f . For a vertex z ∈ V (G) − V (H), let B (z) =
{f (x) + f (y) : x, y ∈ N (z) , x �= y} and let Q = In − In−6. We extend f
to V (G) by selecting f (u) ∈ Q − B (u), f (v) ∈ Q − B (v) − {f (u)}, and
assigning Q− {f (u) , f (v)} to W . This is a sum-free labelling of G. Hence,
we may assume that either G has at most four vertices of degree three (and
the vertices of degree three are pairwise adjacent) or G has at most three
vertices of degree zero. Note that if G has four vertices of degree three, then

M ∼= K4, 4 = |V (M)| �
⌊
n+ 4

2

⌋
, n � 5 < |E (M)|. Hence, we may assume

that G has at most three vertices of degree three.
Let k0 denote the number of vertices of degree zero in G, k3 denote

the number of vertices of degree three in G, and k4 denote the number
of vertices of degree four or more in G. Then, n = k0 + k3 + k4. Since

n � |E (G)| � 2k4+
3

2
k3, k0+k3+k4 � 2k4+

3

2
k3, and k0 � k4+

1

2
k3. From

k3+k4 = |V (M)| �
⌊
n+ 4

2

⌋
� n+ 3

2
, we have 2k3+2k4 � k0+k3+k4+3,

and k3 + k4 � k0 + 3. Combining k0 � k4 +
1

2
k3 and k3 + k4 � k0 + 3,
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we obtain k3 + k4 � k0 + 3 � k4 +
1

2
k3 + 3 and

1

2
k3 � 3. Hence k3 � 6,

contradicting our previous bound, k3 � 4. Therefore, there is no graph G
that remains, proving the Lemma.

Sometimes, we prefer a different set of labels. For a set of k integers
X, X ⊆ In, we say an n-vertex graph G is X-skew if there is a bijection
f : V (G) → In+k−X, such that for any path uvw in G, f (v) �= f (u)+f (w).
The function f will be called an X-skew labelling. If X = Ik, we refer to
G as k-skew and f as a k-skew labelling. We establish the following lemma
to demonstrates a few small constructions similar to those we will use in
the study of graphs with maximum degree three, and which prove useful for
Conjecture 29.

Lemma 16.

(a) For any n-vertex graph G, any bijection f : V (G) → I2n−1 − In−1 is
an (n− 1)-skew labelling and any bijection g : V (G) → I2n−2 − In−2

is an (n− 2)-skew labelling.
(b) If G is a 4-vertex graph, v ∈ V (G), and j ∈ I7 − {1, 2, 4}, then G has

a {1, 2, 4}-skew labelling f such that f (v) = j.
(c) If G is a 5-vertex graph with maximum degree at most three, v ∈

V (G), and j ∈ I7 − I2, then G has a 2-skew labelling f such that
f (v) = j.

Proof. Statement (a) is obvious, since there are no triples (a, b, c) in I2n−1−
In−1 with a,b,c distinct and a+ b = c.

Statement (b) is also obvious, since any bijection f : V (G) → I7 −
{1, 2, 4} is a {1, 2, 4}-skew labelling. Select one such that f (v) = j.

Now suppose that If G is a 5-vertex graph with maximum degree at most
three, v ∈ V (G), and j ∈ I7 − I2. If j /∈ {3, 7}, then let w ∈ N (v) and let
z ∈ V (G)−N [v]. Let f : V (G) → I7−I2 be a bijection such that f (v) = j,
f (w) = 3, and f (z) = 7. Then, f is a 2-skew labelling of G with the required
property. If j ∈ {3, 7}, then let w ∈ N (v) and let z ∈ V (G) − N [v]. Let
g : V (G) → I7 − I2 be a bijection such that g (v) = j, and f (z) = 10 − j.
Then, f is a 2-skew labelling of G with the required property, completing
the proof of (c).

We now consider 3-regular graphs, and more generally graphs with max-
imum degree three. Let F denote the set of finite graphs each of which has
maximum degree three, is not sum-free and has at least seven vertices. We
would like to show that |F| = 0. Suppose that |F| �= 0, and let G∗ denote
a graph in F with the least possible number of vertices. By Lemma 12, we
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know that G∗ has maximum degree three. As usual, n = |V (G∗)| in the
following lemmas.

Lemma 17. K3 is not a connected component of G∗.

Proof. Suppose that K3
∼= M ⊆ G∗ and let H = G∗ − V (M). Note that

H has a vertex of degree three. If |V (H)| � 7, then H has a sum-free
labelling f and for any bijection g : V (M) → {n, n− 1, n− 2}, f ∪ g is
a sum-free labelling of G∗. If |V (H)| = 4, let f : V (M) → {3, 5, 6} and
g : V (H) → {1, 2, 4, 7} be bijections. Then, f ∪ g is a sum-free labelling of
G∗. Hence, we know that |V (H)| ∈ {5, 6}.

Suppose that |V (H)| = 5. Let v ∈ V (H) such that d (v) = 3 and let
w ∈ V (H)−N [v]. Let f : V (M) → {1, 2, 8} and g : V (H) → {3, 4, 5, 6, 7}
be bijections, such that g (v) = 7 and g (w) = 3. Then, f ∪ g is a sum-free
labelling of G∗.

Finally, suppose that |V (H)| = 6. Let v ∈ V (H) such that d (v) = 3, let
N (v) = {x1, x2, x3} and let V (H)−N [v] = {w1, w2}. If xiwj /∈ E (H), then
let f : V (M) → {1, 2, 4} and g : V (H) → {3, 5, 6, 7, 8, 9} be bijections, such
that g (v) = 9, g (xi) = 8, and g (wj) = 3. Then, f ∪ g is a sum-free labelling
of G∗. Hence, we may assume that xiwj ∈ E (H), for i ∈ {1, 2, 3} and
j ∈ {1, 2}, and thusH ∼= K3,3 andG∗ ∼= K3∪K3,3. Let f : V (M) → {4, 5, 6},
g : {v, w1, w2} → {1, 2, 3}, and h : {x1, x2, x3} → {7, 8, 9} be bijections.
Then, f ∪ g ∪ h is a sum-free labelling of G. This eliminates all possibilities
and hence G∗ cannot have K3 as a connected component.

Lemma 18. K4 is not a connected component of G∗. Hence, K4 is not a
subgraph of G∗.

Proof. Suppose that K4
∼= M ⊆ G∗ and let H = G∗ − V (M). If |V (H)| �

7, then H has a sum-free labelling f and for any bijection g : V (M) →
{n, n− 1, n− 2, n− 3}, f ∪ g is a sum-free labelling of G∗. If |V (H)| = 3,
let f : V (H) → {3, 5, 6} and g : V (M) → {1, 2, 4, 7} be bijections. Then,
f ∪g is a sum-free labelling of G∗. If |V (H)| = 4, let f : V (M) → {3, 5, 6, 7}
and g : V (H) → {1, 2, 4, 8} be bijections. Then, f ∪ g is a sum-free labelling
of G∗. Hence, we know that |V (H)| ∈ {5, 6}.

If |V (H)| = 5, then H has a vertex v with d (v) � 2. Let {w, z} ⊆
V (H) − N [v], with w �= z. Let f : V (M) → {1, 2, 4, 7} and g : V (H) →
{3, 5, 6, 8, 9} be bijections, with g (w) = 9 and g (z) = 8. Then, f ∪ g is a
sum-free labelling of G∗.

Finally, suppose that |V (H)| = 6. Let v ∈ V (H) and let {w, z} ⊆
V (H) − N [v], with w �= z.. Let f : V (M) → {1, 2, 4, 7} and g : V (H) →
{3, 5, 6, 8, 9, 10} be bijections, with g (w) = 9 and g (z) = 8. Then, f ∪ g
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is a sum-free labelling of G∗. This eliminates all possibilities and hence G∗
cannot have K3 as a subgraph.

Lemma 19. Neither K3,3 nor K2,3 is a connected component of G∗.

Proof. Suppose that M ⊆ G∗, and that K2,3
∼= M or K3,3

∼= M . Let (X,Y )
be a bipartition of M with |X| = 3, and let H = G∗−V (M). If |V (M)| = 5,
let Q = {n, n− 1} and R = {n, n− 1, n− 2, n− 3, n− 4}. If |V (M)| = 6,
let Q = {n, n− 1, n− 2} and R = {n, n− 1, n− 2, n− 3, n− 4, n− 5}.

If |V (H)| � 7, then H has a sum-free labelling f and for any bijection
g : V (M) → R, f ∪ g is a sum-free labelling of G∗. If |V (H)| = 1, then
|V (M)| = 6. Let f : X → {2, 4, 6}, g : Y → {3, 5, 7} and h : V (H) → {1}
be bijections. Then, f ∪ g ∪ h is a sum-free labelling of G∗. Hence, we may
assume that 2 � |V (H)| � 6.

If |V (H)| = k, 2 � k � 5, let f : V (H) → I3+k − I3, g : X → {1, 2, 3},
and h : Y → Q be bijections. Then, f ∪ g ∪ h is a sum-free labelling of G∗.

In the remaining case, |V (H)| = 6. Let v ∈ V (H) and let w ∈ V (H)−
N [v]. Let f : V (H) → I9 − I3 be a bijection such that f (v) = 4 and
f (w) = 9. Let g : X → {1, 2, 3}, and h : Y → {n, n− 1} be bijections.
Then, f ∪ g ∪ h is a sum-free labelling of G∗. Hence G∗ cannot have K2,3 or
K3,3 as a connected component.

Lemma 20. G∗ is connected and 3-colourable.

Proof. We note that G∗ has no component isomorphic to any of K3, K4,
K2,3, K3,3, and that G∗ has at least one vertex of degree three. That G∗ is
3-colourable follows directly from Brooks’ theorem [3].

Now, suppose that G∗ = M ∪ K, where |V (M) ∩ V (K)| = 0, and
|V (M)| �= 0 but, subject to this, with m = |V (M)| as small as possi-
ble. Hence, |V (M)| � |V (K)|, and M is connected. If |V (K)| � 7, or if
K has no vertex of degree three, then K has a sum-free labelling f . Let
g : V (M) → In − In−m be a bijection. Then, f ∪ g is a sum-free labelling
of G∗. Thus, we may assume that K has a vertex of degree three and that
4 � |V (K)| � 6.

If |V (K)| = 4, then |V (M)| � 4. If |V (M)| � 2, use In − {3, 4, 5, 6}
on V (M) and {3, 4, 5, 6} on V (K). If |V (M)| = 1, use {1} on V (M) and
{2, 3, 4, 5} on V (K), assigning labels 2 and 5 to a pair of non-adjacent
vertices.

If |V (K)| = 5, then |V (M)| � 5. If |V (M)| = 5, let v be a vertex of
degree two or less in M and let w, z ∈ V (M) − N [v], with w �= z. Let
f : V (M) → {1, 2, 3, 9, 10} such that f (v) = 1, f (w) = 3 and f (z) = 10.
Let g : V (K) → {4, 5, 6, 7, 8} be a bijection. Then, f ∪ g is a sum-free
labelling of G∗.
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If |V (K)| = 5 and |V (M)| = 4, let v and w be non-adjacent vertices
of M . Let f : V (M) → {1, 2, 3, 9} such that f (v) = 1, and f (w) = 3. Let
g : V (K) → {4, 5, 6, 7, 8} be a bijection. Then, f ∪ g is a sum-free labelling
of G∗.

If |V (K)| = 5 and |V (M)| = 3, let v and w be non-adjacent vertices
of M . Let f : V (M) → {1, 2, 3} such that f (v) = 1, and f (w) = 3. Let
g : V (K) → {4, 5, 6, 7, 8} be a bijection. Then, f ∪ g is a sum-free labelling
of G∗.

If |V (K)| = 5 and |V (M)| = 2, let v and w be non-adjacent vertices of
K. Let f : V (M) → {1, 2} and let g : V (K) → {3, 4, 5, 6, 7} be a bijection
such that g (v) = 3 and g (w) = 7. Then, f ∪ g is a sum-free labelling of G∗.

If |V (K)| = 5 and |V (M)| = 1, let v ∈ V (K), with d (v) � 2, and let
w, z ∈ V (K)−N [v], with w �= z. Let f : V (M) → {1} and let g : V (K) →
{2, 3, 4, 5, 6} be a bijection such that g (v) = 2, g (w) = 5 and g (z) = 6.
Then, f ∪ g is a sum-free labelling of G∗.

In the remaining cases, |V (K)| = 6.
If |V (K)| = 6 and |V (M)| = 1, let V (M) = {q}, and let v ∈ V (K),

with d (v) as small as possible. If d (v) = 3, thenK is the prismK2×K3, with
two 3-cycles joined by a matching. Label one 3-cycle 1, 2, 5 and the other
3, 4, 6, so that the vertices labelled 1 and 3 are neighbours, and the vertices
5 and 6 are neighbours. Then, label V (M) with {7}. In the remaining cases,
d (v) � 2. Let {x, y, z} ⊆ V (H) − N [v], with |{x, y, z}| = 3. Suppose that
there is a vertex w such that w /∈ {v, x, y, z} and w is not adjacent to x. Let
g : V (K) → {2, 3, 4, 5, 6, 7} be a bijection such that g (v) = 2, g (w) = 3,
g (x) = 7, g (y) = 5, g (z) = 6. Let f : V (M) → {1}. Then, f∪g is a sum-free
labelling of G∗. Hence, we may assume that x is adjacent to every vertex of
Y = V (H)−{v, x, y, z} = {r, s} and, similarly, we may assume that each of
y and z is adjacent to every vertex of Y . At this point, d (r) = d (s) = 3 and,
thus, d (v) = 0. We also note that K [{x, y, z}] has at most one edge, since
each of these vertices has two edges to {r, s}. We may therefore assume that
xz, yz /∈ E (K). Then, f = {(q, 5) , (s, 2) , (r, 3) , (x, 1) , (y, 6) , (z, 4) , (v, 7)}
is a sum-free labelling of G∗.

If |V (K)| = 6 and |V (M)| = 2, let v ∈ V (K), and let w, z ∈ V (K) −
N [v], with w �= z. Let f : V (M) → {1, 2} and let g : V (K) → {3, 4, 5, 6, 7, 8}
be a bijection such that g (v) = 3, g (w) = 7 and g (z) = 8. Then, f ∪ g is a
sum-free labelling of G∗.

If |V (K)| = 6 and |V (M)| = 3, let v ∈ V (K), and let w ∈ V (K)−N [v].
Since M is not K3, there is a sum-free labelling f of M , and let g : V (K) →
{4, 5, 6, 8, 9, 10} be a bijection such that g (v) = 4, and g (w) = 9. Then,
f ∪ g is a sum-free labelling of G∗.
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If |V (K)| = 6 and |V (M)| = 4, let v ∈ V (K), and let w, z ∈ V (K) −
N [v], with w �= z. Let f : V (M) → {1, 2, 4, 7} and let g : V (K) →
{3, 5, 6, 8, 9, 10} be a bijection such that g (v) = 3, g (w) = 8 and g (z) = 9.
Then, f ∪ g is a sum-free labelling of G∗.

If |V (K)| = 6 and |V (M)| ∈ {5, 6}, let Q = {4, 5, 8, 9, 10, 11} and
R = In −Q ⊆ {1, 2, 3, 6, 7, 12}. In K, we select non-adjacent vertices v and
w, and let g : V (K) → Q be a bijection with g (v) = 4 and g (w) = 9. In M
select a vertex v′ of minimum degree. Then there are at least two distinct
vertices w′ and z′ which are not adjacent to v′. Let f : V (M) → R be a
bijection with f (v′) = 1, f (w′) = 3, and f (z′) = 7. Then, f ∪g is a sum-free
labelling of G∗. This concludes the proof of the lemma.

Lemma 21. Suppose that G is 3-regular, not K4 or K3,3, and suppose that
|V (G)| � 8. Then, G is sum-free.

Proof. There are two non-isomorphic connected 3-regular graphs on 6 ver-
tices and five non-isomorphic connected 3-regular graphs on eight vertices.
(See, for example, [1].)

The two non-isomorphic connected 3-regular graphs on 6 vertices are
K3,3 and the prism K2 ×K3. We need only show that the prism has a sum-
free labelling and this is easily shown by displaying the adjacency matrix
M6 of a labelled sum-free prism.

M6 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 0 0
1 0 0 1 0 1
1 0 0 0 1 1
1 1 0 0 1 0
0 0 1 1 0 1
0 1 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Similarly, adjacency matrices M8a, M8b, M8c, M8d, M8e, for the five non-
isomorphic connected 3-regular graphs on eight vertices are shown below,
completing the proof of this lemma. Each of these matrices corresponds to
a labelled sum-free version of a graph.

M8a =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 0 0 0 0
1 0 0 1 0 0 0 1
1 0 0 0 0 1 1 0
1 1 0 0 0 0 0 1
0 0 0 0 0 1 1 1
0 0 1 0 1 0 1 0
0 0 1 0 1 1 0 0
0 1 0 1 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, M8b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 1 1 0
1 0 0 0 1 1 0 0
0 0 0 1 0 1 1 0
0 0 1 0 1 0 0 1
0 1 0 1 0 0 0 1
1 1 1 0 0 0 0 0
1 0 1 0 0 0 0 1
0 0 0 1 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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M8c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 1 0 0 0
0 0 0 0 1 0 1 1
1 0 0 0 0 1 0 1
1 0 0 0 0 1 1 0
1 1 0 0 0 1 0 0
0 0 1 1 1 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, M8d =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 0 1 0
1 0 0 1 0 1 0 0
1 0 0 0 1 1 0 0
0 1 0 0 0 0 1 1
0 0 1 0 0 0 1 1
0 1 1 0 0 0 0 1
1 0 0 1 1 0 0 0
0 0 0 1 1 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

M8e =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 0 1 0
1 0 0 0 1 1 0 0
1 0 0 1 0 1 0 0
0 0 1 0 1 0 1 0
0 1 0 1 0 0 0 1
0 1 1 0 0 0 0 1
1 0 0 1 0 0 0 1
0 0 0 0 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Lemma 22. G∗ has no vertex of degree one.

Proof. Suppose that v is a vertex of degree one, let H = G∗ − v, and let
q be the neighbour of v in G∗. If |V (H)| � 7, then H has a sum-free
labelling f and, then, f ∪ {(v, n)} is a sum-free labelling of G∗. Hence, we
may assume that |V (H)| = 6. Note that H is connected and d (q) � 2.
Let x, y, z be distinct vertices which are not adjacent to q, and let r and s
be the remaining two vertices of H. Since H is connected, we may assume
that qr ∈ E (H). But then, without loss of generality, rx /∈ E (H). Now,
f = {(v, 1) , (q, 2) , (r, 3) , (s, 4) , (y, 5) , (z, 6) , (x, 7)} is a sum-free labelling
of G∗. Thus G∗ can have no vertex of degree one.

Lemma 23. G∗ cannot have two adjacent vertices of degree two.

Proof. Suppose that v, w ∈ V (G∗), vw ∈ E (G∗), d (v) = d (w) = 2, let
u, x ∈ V (G∗ − {v, w}) with uv,wx ∈ E (G∗), and let H = G∗−{v, w}. If H
is connected, let M = H and if H is not connected, we note that u �= x, and
we let M = H ∪ {ux}. In either case, M is a simple graph. If H has a sum-
free labelling f , without loss of generality, we may assume that f (u) �= 1.
Now, f ∪ {(v, n) , (w, n− 1)} is a sum-free labelling of G∗. If |V (H)| � 7,
then M has a sum-free labelling f , and this provides a sum-free labelling of
H. In the remaining cases, |V (H)| ∈ {5, 6}.

Suppose that |V (H)| = 5. Let z ∈ V (K) − N [u] − {x} and let f :
V (K) → {3, 4, 5, 6, 7} be a bijection such that f (u) = 3, f (x) = 4 and
f (z) = 7. Then, f ∪ {(v, 1) , (w, 2)} is a sum-free labelling of G∗.
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In the last case, |V (H)| = 6. Let w, z ∈ V (K) − N [u] − {x} and let
f : V (K) → {3, 4, 5, 6, 7, 8} be a bijection such that f (u) = 3, f (x) = 4,
f (w) = 8, and f (z) = 7. Then, f ∪ {(v, 1) , (w, 2)} is a sum-free labelling of
G∗. Thus, G∗ cannot have two adjacent vertices of degree two.

Lemma 24. G∗ cannot have two triangles which share an edge.

Proof. By Lemma 18, G∗ has no K4. Let M be a subgraph of G∗ with
V (M) = {w, x, y, z} and with E (M) = {wy,wz, xy, xz, yz}. Then, wx /∈
V (G∗). Let H = G∗ − V (M). If H has a sum-free labelling g, then g ∪
{(w, n− 3) , (x, n− 2) , (y, n− 1) , (z, n)} is a sum-free labelling of G∗. We
need only consider the cases in which H does not have a sum-free labelling.
Note that H is not 3-regular. We may assume that w has a neighbour w′

in H. If x also has a neighbour in H, we label this neighbour x′. (Possibly,
x′ = w′)

If |V (G∗)| � 11, then |V (H)| � 7, H has a sum-free labelling.
If |V (G∗)| = 10, then |V (H)| = 6. There is no harm in assuming x′

exists. (If it doesn’t, pick some arbitrary vertex of H and call it x′.) Suppose
that x′ �= w′. Let f : V (H) → {4, 5, 6, 7, 8, 9} be any bijection with f (w′) =
4 and f (x′) = 6, and let g : V (M) → {1, 2, 3, 10} with g (z) = 10, g (y) = 1,
g (w) = 2, g (x) = 3. Then, f ∪ g is a sum-free labelling of G∗. The same
argument holds if x′ = w′, with the exception that now f (w′) = f (x′) = 4.

If |V (G∗)| = 9, then |V (H)| = 5. As above, there is no harm in assuming
x′ exists. If x′ �= w′, let f : V (H) → {4, 5, 6, 7, 8} be any bijection with
f (w′) = 4 and f (x′) = 5, and let g : V (M) → {1, 2, 3, 9} by a bijection with
g (z) = 9 and g (y) = 1. Then, f ∪ g is a sum-free labelling of G∗. The same
argument holds if x′ = w′, with the exception that now f (w′) = f (x′) = 4.

If |V (G∗)| = 8, then |V (H)| = 4. By Lemma 15, we may assume that
|E (H)| � 5, and by Lemma 18, |E (H)| � 5. Thus G∗ consists of two copies
of K4 − e, linked by one or two independent edges. There is no harm in
assuming both edges appear. Let y′ and z′ denote the two vertices in G∗
which do not yet have names. Then,{

(w, 1) , (x, 5) , (y, 4) , (z, 8) ,
(
x′, 6

)
,
(
w′, 7

)
,
(
y′2

)
,
(
z′, 3

)}
is a sum-free labelling of G∗.

If |V (G∗)| = 7, then |V (H)| = 3. Since H has no sum-free labelling,
H ∼= K3. Let V (H) = {w′, u, v}. Then,{

(u, 1) , (v, 2) ,
(
w′, 4

)
, (w, 5) , (x, 3) , (y, 7) , (z, 6)

}
is a sum-free labelling of G∗.
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Lemma 25. G∗ has no triangles.

Proof. Let T be a triangle in G∗, V (T ) = {x, y, z} and E (T ) = {xy, xz, xy}.
Let M = G∗ − V (T ). By Lemma 24, no vertex of M is adjacent to more

than one vertex of T . If a vertex t of T has a neighbour in M , we call that

neighbour t′. In the arguments that follow, if some vertex t of T does not

have a neighbour in M , then t′ could be considered to be any vertex of M

that is not already used for one of the other vertices of T . (Thus, we can

avoid breaking into cases depending on the number of neighbours of T .)

Suppose that |V (G∗)| � 10. Let g be any sum-free labelling of G∗ −
{x, y, z}. Without loss of generality, g (x′) /∈ {1, 2}, and g (y′) �= 1. Then,

g ∪ {(x, n) , (y, n− 1) , (z, n− 2)} is a sum-free labelling of G∗.
In the remaining three cases, let f (x) = 1, f (y) = 2, f (z) = 3, f (x′) =

4, f (y′) = 5, f (z′) = 6.

If |V (G∗)| = 9, then |V (M)| = 6. There are three vertices in M which

have not yet been labelled. At most two of these are in N (x′) ∩N (y′). Let
q ∈ V (M)−{x′, y′, z′}−N (x′)∩N (y′). Let f (q) = 9, and assign the labels

7, 8 to the remaining two vertices of G∗, one to each vertex. Then, f is a

sum-free labelling of G∗.
If |V (G∗)| = 8, then |V (M)| = 5. Assign the labels 7, 8 to the remaining

two vertices of G∗, one to each vertex. Then, f is a sum-free labelling of G∗.
If |V (G∗)| = 7, then |V (M)| = 4. Assign the label 7 to the remaining

vertex of G∗. Then, f is a sum-free labelling of G∗.

Lemma 26. G∗ has no 4-cycles.

Proof. By Lemma 25, any 4-cycle of G∗ is induced subgraph. Let C =

x1x2x3x4x1 be a 4-cycle in G∗,, and let M − G∗ − V (C). As above, let

x′j denote the neighbour of xj in M , if such exists. Note that each x′j is ad-

jacent to at most vertex in C. If xj has no neighbour in M , and |V (G∗)| � 7,

we select x′j as in the previous lemma.

Suppose that |V (M)| � 7. Then, M has a sum-free labelling f . At most

one vertex of N = {x′1, x′2, x′3, x′4} receives label 1 and at most one receives

label 2. If 1 appears as label on a vertex on N , then, by rotating the labels

on the cycle, we may assume that f (x′3) = 1. If f (x′2) = 2, replace C, by

x1x4x3x2x1 and relabel, so that now f (x′4) = 2, and if f
(
x′j

)
= 1, then

j = 3. Now, extend f by setting f (x1) = n, f (x2) = n− 1, f (x3) = n− 3,

and f (x4) = n− 2. Now, f is a sum-free labelling of G∗.
Now, suppose that 4 � |V (M)| � 6. Let f (x1) = 1, f (x2) = 3, f (x3) =

4, f (x4) = 2, f (x′1) = 5, f (x′2) = 6, f (x′3) = 7, f (x′4) = 8, and assign the
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remaining labels from In − I8 to the remaining vertices, one to each vertex.
Then, f is a sum-free labelling of G∗.

The remaining case has |V (M)| = 3. Relabel C so that x4 has no neigh-
bour in M , and choose N = {x′1, x′2, x′3} as these have been previously
chosen. The labelling for |V (M)| = 4, with the exception of labelling the
now nonexistent x′4 is a sum-free labelling of G∗.

Lemma 27. G∗ has no cycles.

Proof. Assume that G∗ has a cycle, and let C = x1x2 · · ·xkx1 be a shortest
cycle. We may therefore assume that C has no chords, and that k � 5. Let
M = G∗ − V (C). We use x′j as above: x′j ∈ V (M) ∩ N (xj), if possible;
otherwise, we do not define x′j . (There may not be enough room in M to
allow for distinct x′j for each xj . When an undefined x′j appears in a set,
treat it as not being part of the set.)

Suppose that |V (M)| � 7. Then, M has a sum-free labelling f . At most
one vertex of N = {x′1, x′2, · · · , x′k} receives label 1 and at most one receives
label k− 1. We relabel the vertices of C, if necessary, so that f (x′1) �= k− 1

and f
(
x′j

)
�= 1 for 1 � j � k − 1. Now, assign f (xj) = n + 1 − j, for

1 � j � k. Then, f is a sum-free labelling of G∗.
Now, suppose that |V (M)| � 6. Let f be a sum-free labelling of C. If x′j

exists, and if f (xj)+k � n, then set f
(
x′j

)
= f (xj)+k. Arbitrarily assign

the remaining labels to the remaining vertices of M , one to each vertex.

Note that if x′jw ∈ E (M), then f (xj) + f (w) �= f
(
x′j

)
, since f (w) �= k.

If w1, w2, w3 ∈ V (M), then f (w1) + f (w2) � 2k + 2 = k + (k + 2) >
k + |V (M)| = n � f (w3). Hence, f is a sum-free labelling of G∗.

Theorem 28. G∗ cannot exist. Thus, every graph with maximum degree
at most three and with at least seven vertices is sum-free.

Proof. By Lemma 27, G∗ has no cycles. By Lemma 20, G∗ is connected.
Hence, G∗ is a tree (on at least seven vertices). By Lemma 13, G∗ is sum-
free.

Further Directions. Proving 3-regular graphs are almost all sum-free
seemed a natural goal. But, there may be a stronger result. From Lemma
4, we know that there are some graphs with n vertices and 2n − 4 edges
but which are not sum-free. One might hope that these are the extremal
non-sum-free graphs.

Conjecture 29. If |E (G)| � 2 |V (G)| − 5, then G is sum-free.

Lemmas 15 and Theorem 28 are weaker forms of this.
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Computational Results. Degree sequences of Ln, 1 � n � 9. Here, for
example, 324561 means 2 vertices of degree 3, 5 vertices of degree 4 and 1
vertex of degree 6. Note that r (8, 5) = 4 and not 3 as we might have hoped.

L1 : 0
1

L2 : 1
2

L3 : 1
221

L4 : 1
12231, 24

L5 : 1
1223141, 112133, 2441, 2332

L6 : 1
13451, 113342, 23314151, 223351, 223242, 213441, 36

L7 : 12334261, 11334152, 11324351, 113145, 22335161, 22324261, 22324152,
22314351, 21344161, 213452, 21334251, 213244, 3661, 354151, 3443,

L8 : 1
131445171, 11314462, 1131435261, 11314254, 114671, 11455161, 114453,

22445171, 224462, 22435261, 224254, 2133426171, 2133415271, 2133415162,
2132435171, 21324362, 2132425261, 21324154, 21314571, 2131445161, 21314353,
214661, 214552, 35416171, 34425171, 344262, 34415261, 334471, 33435161,
334253, 324561, 324452, 314651, 48

L9 : 113143526181, 1131435272, 113143516271, 1131425481, 113142536171,
1131425263, 1131415571, 1131415462, 1145516181, 11455172, 11445381,
1144526171, 11445163, 11435471, 11435362, 11425561, 114157, 2243526181,
22435272, 2243516271, 22425481, 2242536171, 22425263, 22415571, 22415462,
213243517181, 2132436281, 2132436172, 213242526181, 2132425272,
213242516271, 21324264, 2132415481, 213241536171, 2132415263, 2131457181,
213144516181, 2131445172, 2131446271, 2131435381, 213143526171, 2131435163,
2131425471, 2131425362, 2131415561, 21466181, 214672, 21455281, 2145516171,
214563, 21445371, 21445262, 21435461, 214256, 3442517181, 34426281, 34426172,
3441526181, 34415272, 3441516271, 33447181, 3343516181, 33435172, 33436271,
33425381, 3342526171, 33425163, 33415471, 33415362, 32456181, 324572,
32445281, 3244516171, 324463, 32435371, 32435262, 32425461, 324166, 31465181,
31466171, 31455271, 31455162, 31445361, 314355, 4881, 475171, 4762, 465261,
4554
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