Sum-free graphs

S. C. Locke

Dedicated to Professor J. A. Bondy

An n-vertex graph is sum-free if the vertices can be labelled with $\{1, 2, \ldots, n\}$ such that no vertex gets a label which is the sum of the labels of two of its neighbours. We prove that non-complete graphs with average degree two or less are sum-free. We also prove that graphs with maximum degree three and at least seven vertices are sum-free.

KEYWORDS AND PHRASES: Graph labelling.

In [4] the authors discuss combination graphs, in which vertices of G are labelled using a bijection $f: V(G) \to \{1,\ldots, |V(G)|\}$ and an injective edge-labelling is induced by assigning the label $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ b to the edge $e = uv$ if $\{f(u), f(v)\} = \{a, b\}$, with $a > b$. This labelling problem is somewhat complicated by the fact that it is possible to have $\begin{pmatrix} a \\ b \end{pmatrix}$ b $=\left(\begin{array}{c}c\\c\end{array}\right)$ d), for $a \neq c$.

Here we consider the presumably easier problem of characterizing which graphs have sum-free labellings. For an *n*-vertex simple graph G , with vertex set $V(G)$, a sum-free labelling of G is a bijection $f: V(G) \to I_n$ $\{1,\ldots,n\}$, such that for every path $P = uvw$, $f(v) \neq f(u)+f(w)$. If G is a simple graph and G has a sum-free labelling, we call G sum-free. Obviously, a combination graph is a sum-free graph, but a graph could be sum-free without being a combination graph. In the special case that $V(G) = I_n$ and the sum-free function f is the identity function on I_n , we say that G is a labelled sum-free graph.

All graphs in this note will be finite and simple. Throughout, unless otherwise stated, we shall assume that G is a finite simple graph with n vertices and m edges. Our notation will generally follow that of $[2]$. For a graph $G, V(G)$ is the vertex set of G, and $E(G)$ the edge set. For $v \in V(G)$, the degree of v is denoted $d(v)$, the set of neighbours of v is $N(v)$, the closed neighbourhood is $N[v] = N(v) \cup \{v\}$. If G is assumed to be sum-free, we will use f for some sum-free labelling of G .

Observation 1. Following [4], we note that if G is sum-free, then $|E(G)| \le$ $\frac{1}{4} |V(G)|^2.$

Proof. Let $v = f^{-1}(n) \in V(G)$. Then, since G is sum-free, no two neighbours of G can have labels in $\{j, n - j\}$, for $1 \leq j \leq \frac{n}{2}$ $\frac{n}{2}$. Hence, $d_G(v) \leqslant \left\lfloor \frac{n}{2} \right\rfloor$ \vert . 2 Note that f when restricted to $V(G) - \{v\}$ yields a sum-free labelling of $G - v$. Hence, for $w = f^{-1}(n-1) \in V(G - v)$, $d_{G-v}(w) \leq \left\lfloor \frac{n-1}{2} \right\rfloor$ $\Big|$, and 2 $d_G(v) + d_{G-v}(w) \leqslant \left\lfloor \frac{n}{2} \right\rfloor$ $\left| + \right| \frac{n-1}{2}$ $= n - 1$. Now, if $|E(G - \{v, w\})|$ 2 2 $\frac{1}{4}|V(G - \{v, w\})|^2 = \frac{1}{4}(n-2)^2$, then $|E(G)| \leq \frac{1}{4}(n-2)^2 + (n-1) = \frac{1}{4}n^2$. To complete a proof by induction, it is only necessary to note that the desired inequality holds for simple graphs on one or two vertices. П

Observation 2. Any *n*-vertex sum-free graph G can be embedded as a subgraph in an *n*-vertex sum-free graph H with $|E(H)| = \frac{1}{4}$ $\frac{1}{4}n^2$. Hence, a list of all of the *n*-vertex *m*-edge sum-free graphs, with $m = \frac{1}{4}$ $\frac{1}{4}n^2\bigg\vert$, contains all of the n-vertex sum-free graphs as subgraphs.

Proof. Let $v = f^{-1}(n) \in V(G)$, and again note that $G - v$ is sum-free with labelling $g = f - \{(v, n)\}\)$. By the obvious induction, we may embed $G - v$ in a sum-free graph H_1 with the same labelling g, and with $\left| \frac{1}{4} (n-1)^2 \right|$ edges. Now, select $X \subseteq V(H_1)$ such that $N(v) \subseteq X$ and for each $i, 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor$ \vert , $\frac{2}{5}$ $|f(X) \cap \{i, n - i\}| = 1$. Let $H = H_1 \cup \{vw : w \in X\}$. Then, H is sum-free with labelling f, and $|E(H)| = \frac{1}{4}$ $\frac{1}{4}n^2\bigg].$ \Box

Observation 3. The processes in Observation 1 and Observation 2 specify an algorithm for generating all edge-maximal labelled sum-free graphs on n Į vertices. For a labelled sum-free graph G on $n-1$ vertices, let $Y(G)$ = $X \subseteq V(G) = I_{n-1} : |X| = \left| \frac{n}{2} \right|$ 2 $\left| \begin{array}{c} a & b \\ \text{and} & |X \cap \{i, n-i\}| = 1, \ 1 \leq i \leq \left| \frac{\dot{n}}{2} \right| \end{array} \right|$ $\frac{n}{2}$] $\}$.

For $X \in Y(G)$, let $s(G, X) = G \cup \{n\} \cup \{\{n, x\} : x \in X\}.$

Suppose that $L_{n-1} = \{G_k\}_{k=1}^q$ is the set of all labelled *n*-vertex sum-free graphs. Then, $L_n = \begin{bmatrix} \end{bmatrix}$ $k=1$ $\{s(G_k, X) : X \in Y(G_k)\}.$

We note that $|L_n| = 2^q |L_{n-1}|$, where $q = \left\lfloor \frac{n-1}{2} \right\rfloor$ 2 $\Big\vert$, and $\Big\vert L_n \Big\vert = 2^t$, where $t =$ $(n - 1)^2$ 4 $\overline{1}$. For example, L_4 has four labelled graphs. One of these is a 4-cycle, the other three are isomorphic. In general, one would expect the number of non-isomorphic graphs in L_n to be far smaller than $|L_n|$. Of course, the number of non-isomorphic graphs in L_n is at least $\frac{1}{n!} |L_n|$ = $2^{\lfloor (n-1)^2/4 \rfloor}$ $\frac{1}{n!}$, which grows rather quickly.

A simple graph on *n* vertices and $\frac{1}{4}$ $\frac{1}{4}n^2$ edges is not necessarily sumfree. We will show later that $K_{3,3}$ is not sum-free, yet $K_{3,3}$ has 6 vertices and $\left[\frac{1}{4} \cdot 6^2\right] = 9$ edges.

For a graph G, let $R(G, k) = \{v \in V(G) : d(v) \geq k\}$. For a positive integer n, let $r(n, k) = \max\left\{ |R(G, k)| : G \in L_n\right\}$

Lemma 4. If f is a sum-free labelling of G, and if $v \in V(G)$ with $d(v) =$ $n-j$, then $f(v) \leq 2j$ and $R(n, n-j) \subseteq \{f^{-1}(k) : 1 \leq k \leq 2j\}$. Hence, $r(n, n - j) \leqslant 2j$.

Proof. Suppose that $f(v) \geq 2j + 1$. Then, for $1 \leq i \leq j$,

$$
\left| \left\{ f^{-1}(i), f^{-1}(n-i) \right\} \cap N(v) \right| \leq 1,
$$

and $d(v) \leqslant (n - 1) - j$, since this is impossible, $f(v) \leqslant 2j$.

□

We noted that $K_{2,2}$ is sum-free. (It is in L_4 .) Assign $\{2,3\}$ to one colour class, and $\{1,4\}$ to the other.

Lemma 5. $K_{2,3}$ is not sum-free and $K_{k,k}$ is not sum-free, for $k \geq 3$.

Proof. We consider the case of $G \cong K_{k,k}, k \geq 3$, first. Let (X, Y) be a bipartition of G , and let f be a sum-free labelling of G . Without loss of generality, $f^{-1}(1) \in X$. Now, if $f^{-1}(i) \in X$, for $2 \leq i \leq 2k - 1$, then $f^{-1}(i+1) \notin Y$, and we must have $f^{-1}(i+1) \in X$. But then $X =$ $\{f^{-1}(1), f^{-1}(k+2), f^{-1}(k+3), \ldots, f^{-1}(2k)\}\text{, and}$

$$
Y = \left\{f^{-1}(2), f^{-1}(3), f^{-1}(4), \ldots, f^{-1}(k+1)\right\}.
$$

Since $k \ge 3$, $f^{-1}(k+1)$, $f^{-1}(k-1) \in Y = N(f^{-1}(2k))$, contradicting the choice of f as a sum-free labelling. Hence, $K_{k,k}$ is not sum-free, for $k \geq 3$.

Now, let $G \cong K_{2,3}$, with bipartition (X, Y) , where $|X| = 2$. By Lemma 4, $f(X) \subseteq \{1, 2, 3, 4\}$. Thus, $f^{-1}(5) \in Y$, and $f(X) \notin \{\{1, 4\}, \{2, 3\}\}\$. Now, if $f(X) = \{1, j\}$, with $j \in \{2, 3\}$, then $j + 1 \in F(Y)$, which is impossible. If $f(X) = \{2, 4\}$, then $\{1, 3\} \in f(Y)$, which is impossible. Finally, if $f(X) =$ ${3, 4}$, then ${1, 2} \in f(Y)$, which is impossible. Thus, $K_{2,3}$ is not sumfree. \Box

Corollary 6. Let $n \geq 5$. If $K_{k,n-k} \subseteq G$, for $2 \leq k \leq n-2$, then G is not sum-free. Since $K_{2,n-2}$ cannot be a subgraph of G if $n \geq 5$, $|R(G, n-1)| \leq 1$ and any two vertices of degree $n-2$ are adjacent.

Proof. Suppose that $K_{k,n-k} \cong H \subseteq G$, where $n \geq 5$ and $2 \leq k \leq n-2$, and that f is a sum-free labelling of G. Then, f is a sum-free labelling of H . Let H have bipartition (X, Y) , with $|X| \leqslant |Y|$. By Lemma 4, $f^{-1}(X) \subseteq$ $\{1, 2, \ldots, 2 |X|\}.$ Let $M = G[f^{-1}(\{1, 2, \ldots, 2 |X|\})],$ if $|X| \geq 3$, and let $M = G[f^{-1}(\{1, 2, ..., 5\})],$ if $|X| = 2$. Then, f restricted to M is a sumfree labelling of M . But, by Lemma 5, M has no sum-free labelling. Hence, G has no sum-free labelling. \Box

By Corollary 6, there are examples of graphs on n vertices, $n \geq 5$, which are not sum-free but have only $2n - 4$ edges, far below the $\frac{1}{4}n^2$ bound.

It may be possible to limit the total number of vertices of high degree, as in the next two Lemmas.

Lemma 7. If G is sum-free, $n \geq 5$, and G has a vertex of degree $n-1$, then G has at most one vertex of degree $n-2$.

Proof. Suppose that $d(u) = n - 1$, $d(v) = n - 2$, and $d(w) = n - 2$, with $v \neq w$. By Corollary 6, $vw \in E(G)$. By Lemma 4, $f(\{u, v, w\}) \subseteq \{1, 2, 3, 4\}.$ Since $G[\{u, v, w\}] \cong K_3$ and G is sum-free,

$$
f(\{u, v, w\}) \in \{\{1, 2, 4\}, \{2, 3, 4\}\}.
$$

Suppose that $f(\lbrace u, v, w \rbrace) = \lbrace 2, 3, 4 \rbrace$. Then, $f(u) = 2$. Without loss of generality, $f(v) = 3$ and $f(w) = 4$. Let $z = f^{-1}(1)$ and $y = f^{-1}(5)$. Then, $zv \notin E(G)$. Hence, $yv \in E(G)$, $yu \in E(G)$, and $f(y) = f(u) + f(v)$, contradicting the choice of f as sum-free. Thus, $f(\{u, v, w\}) \neq \{2, 3, 4\}.$

Now, suppose that $f(\{u, v, w\}) = \{1, 2, 4\}$ and $f(u) = 1$. Then,

$$
\left|N\left(f^{-1}\left(4\right)\right)\cap\left\{f^{-1}\left(3\right),f^{-1}\left(5\right)\right\}\right|\geqslant1,
$$

and both of these are impossible.

Finally, suppose that $f(\{u, v, w\}) = \{1, 2, 4\}$ and $f(u) = 2$. Without loss of generality, $f(v) = 1$ and $f(w) = 4$. Let $z = f^{-1}(3)$ and $y = f^{-1}(5)$. Since $wz, vz \notin E(G)$, we must have $wy, vy \in E(G)$. But then, $f(y) =$ $f(w) + f(v)$, contradicting the choice of f as sum-free. This exhausts all cases. Hence, G has at most one vertex of degree $n-2$. \Box

Lemma 8. If G is sum-free, $n \geq 5$, and G has no vertex of degree $n-1$, then G has at most three vertices of degree $n-2$.

Proof. By Corollary 6, if G has four vertices of degree $n-2$, these four vertices are pairwise adjacent, and by Lemma 4, they have labels in $\{1, 2, 3, 4\}$. Hence, $\{f^{-1}(1), f^{-1}(2)\}\in N(f^{-1}(3)),$ which is impossible. □

Lemma 9. If G is sum-free, $n \ge 6$, and G has no vertex of degree $n-1$, then G has at most two vertices of degree $n-2$. Hence, $r(n, n-2) \leq 2$ for $n \geqslant 6.$

Proof. Suppose that u, v, w are distinct vertices in G, each with degree $n-2$. By Corollary 6, if $G[{u,v,w}] \cong K_3$, and, by Lemma 4, $f({u,v,w}) \subseteq$ $\{1, 2, 3, 4\}$. Since G is sum-free, $f(\{u, v, w\}) \in \{\{1, 2, 4\}, \{2, 3, 4\}\}.$

Suppose that $f(\{u, v, w\}) = \{1, 2, 4\}$. Without loss of generality, $f(u) =$ 1, $f(v) = 2$, $f(w) = 4$. Let $z = f^{-1}(3)$ and $y = f^{-1}(5)$. Then, $z \notin$ $N(u) \cap N(v)$, $z \notin N(w)$. But then, $y \in N(w)$, and thus $y \notin N(u)$. Then, $z \in N(u)$ and $z \notin N(v)$. Now, $f^{-1}(6) \in N(v) \cap N(w)$, which is impossible.

Suppose that $f(\{u, v, w\}) = \{2, 3, 4\}$. Without loss of generality, $f(u) =$ 2, $f(v) = 3$, $f(w) = 4$. Let $z = f^{-1}(1)$ and $y = f^{-1}(5)$. Here, $z \notin N(v) \cup$ N (w). If $n \ge 7$, then $f^{-1}(7) \in N(v) \cap N(w)$, which is impossible. For $n = 6, f^{-1}(5), f^{-1}(6) \in N(v) \cap N(w)$. Hence, $f^{-1}(5), f^{-1}(6) \notin N(u)$, and $d(u) \leq n - 3$, contradicting our assumptions. \Box

Lemma 10.

(a) If $n \geq 2j$, then $r(n+1, n+1-j) \leq r(n, n-j)$. Hence, $r(n, n-j) \leq$ $r(2j, j)$, for $n \geq 2j$.

(b) Suppose that $G \in L_N$ has $R(G_0, N - j) = I_k$, where $j, k \leq \left\lfloor \frac{N}{2} \right\rfloor$ 2 . Then, $r(n, n - j) \geq k$, for $n \geq N$.

Proof. We only need prove part (a) for graphs on L_{n+1} . Let $G \in L_{n+1}$ and let $H = G - \{v_{n+1}\}\$, where we use v_{n+1} for the vertex of G with label $n + 1$ merely to remind the reader that this is a vertex of G. Note that $R(G, n+1-j) \subseteq R(H, n-j) \cup \{v_{n+1}\}, \text{ but } d_G(v_{n+1}) = \left\lfloor \frac{n+1}{2} \right\rfloor$ 2 \vert < $n+1-j$. Thus, $R(G, n+1-j) \subseteq R(H, n-j)$. Since this is true for any $G \in L_{n+1}, r(n+1,n+1-j) \leqslant r(n,n-j)$. Now, a straightforward induction gives $r(2j + k, j + k) \leq r(2j, j)$, for $k \geq 0$, proving part (a) .

Now, suppose that $G \in L_N$ has $R(G_0, N - j) = I_k$, where $j, k \leqslant \left\lfloor \frac{N}{2} \right\rfloor$. 2 Then, there is some $X \subseteq Y(G)$ such that $I_k \subseteq X$. Thus, $H = s(G, X) \in$ L_{N+1} has $R(H, N+1-j) = I_k$. Induction then establishes $r(n, n-j) \geq$ $|R(G, N - j)| = k$, for $n \ge N$, proving part (b). \Box

We now have simple proofs of Lemma 4, of one of the statements in Corollary 6, and of Lemma 9 using the lists L_n . We state this as Corollary 11.

Corollary 11.

- (a) $r(n, n-1) = 1$ for $n \ge 4$.
- (b) $r(n, n-2) = 2$ for $n \ge 6$.
- (c) $r(n, n-3) = 4$ for $n \ge 8$.
- (d) $r(n, n j) \leq 2j$, for all $n \geq 0$.

Proof. Since $|R(G, 3)| \leq 1$ for any of the four graphs $G \in L_4$, $r(n, n-1) \leq 1$ for $n \geq 4$. There is a graph $G_4 \in L_4$ with adjacency matrix M_4 shown below. $R(G_4, 3) = \{1\}$. Thus, by Lemma 10, (*a*) holds.

Since $|R(G, 4)| \leq 2$ for any of the 64 graphs $G \in L_6$, $r(n, n-2) \leq 2$ for $n \geq 6$. There is a graph $G_6 \in L_4$ with adjacency matrix M_6 shown below. $R(G_6, 4) = \{1, 2\}$. Thus, by Lemma 10, (b) holds.

Let G_{11} denote the labelled sum-free graph with adjacency matrix M_{11} , displayed below. Note that $R(G_{11}, 8) = \{1, 2, 3, 4\}$. From the possible degree sequences in L_8 , we know that $r(8,5) = 4$ and, hence, by Lemma $10(a), r(n, n-3) \leq 4$, for $n \geq 8$. But, by Lemma $10(b), r(n, n-3) \geq 4$ $|R(G_{11}, 8)| = 4$, for $n \ge 11$. Hence, $r(n, n-3) = 4$, for $n \ge 8$. This established part (c) .

Since $r(n, j) \leq 2j$ trivially for $n \leq 2j$, we deduce that $r(n, n - j) \leq 2j$, for all $n \geqslant 0$. This proves part (d) . \Box

$$
M_4 = \left[\begin{array}{cccc} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{array}\right], \ M_6 = \left[\begin{array}{cccc} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{array}\right],
$$

Now for a few positive examples.

Lemma 12. If $n \geq 4$, and if G has maximum degree two, then G is sum-free.

Proof. Suppose that G is a minimum counterexample. That is, for any graph H with $\Delta(H) \leq 2$ and $4 \leq |V(H)| < n$, H is sum-free.

Suppose that G has a component C with k vertices, $k \leq 3$, and let $H = G - V(C)$. If $|V(H)| \geq 4$, label C with ${j}_{j=n-k+1}^n$. Note that if C has a path uvw, then $f(u) \leqslant n < 2n - 3 \leqslant f(v) + f(w)$. Let g be a sum-free labelling of H, and set $f(x) = g(x)$ for $x \in V(H) \subseteq V(G)$. Then, f is a sum-free labelling of G.

If $|V(H)| = 3$, label H with $\{1, 2, 4\}$ and C with $\{3, 5, 6\} \cap \{j\}_{j=1}^{n}$. If $|V(H)| = 2$, label H with $\{1, 2\}$ and C with $\{3, 4, 5\} \cap \{j\}_{j=1}^{n}$. If $|V(H)| = 1$, label H with $\{1\}$ and C with $\{2,3,4\}$.

We may now assume that all components of G have at least four vertices. Let C be a component of G, and let $P = v_1v_2\cdots v_k$ be a longest path in C. (This is $C = P$ or $C = P \cup \{v_k v_1\}$.) Consider the function $g(v_i) = n + 1 - i$, $1 \le i \le k$. Note that for $1 < i < k$, $g(v_i) = n+1-i$ and $g(v_{i-1})+g(v_{i+1}) =$ $2(n+1-i)$. If $C = P$, then using a sum-free labelling h of $H = G - V(C)$, the labelling f give by $f(x) = g(x)$ for $x \in C$ and $f(x) = h(x)$ for $x \in H$ is a sum-free labelling of G. Hence, we may assume that $C = P \cup \{v_k v_1\}.$

We note that $g(v_k) = n-k+1$ and $g(v_{k-1})+g(v_1)=(n-k+2)+n >$ $g(v_k)$. Also, $g(v_k) + g(v_2) - g(v_1) = (n - k + 1) + (n - 1) - n = n - k \neq 0$ if $k < n$. Hence, for $k < n$, G is sum-free.

We have one remaining case and in this case, G is a cycle $v_1v_2\cdots v_nv_1$, with $n \geq 4$. Let $f(v_i) = i$, for $1 \leq i \leq n-2$, and let $f(v_{n-1}) = n$ and $f(v_n) = n-1$. Now, as above, for $1 < i < n-2$, $2f(v_i) = f(v_{i-1}) + f(v_{i+1}),$ and we need only check the sums at v_{n-2} , v_{n-1} , v_n , and v_1 .

$$
f(v_{n-3}) + f(v_{n-1}) - f(v_{n-2}) = (n-3) + n - (n-2) = n - 1 \neq 0.
$$

$$
f(v_{n-2}) + f(v_n) - f(v_{n-1}) = (n-2) + (n-1) - n = n - 3 \neq 0.
$$

\n
$$
f(v_{n-1}) + f(v_1) - f(v_n) = n + 1 - (n-1) = 2 \neq 0.
$$

\n
$$
f(v_n) + f(v_2) - f(v_1) = (n-1) + 2 - 1 = n \neq 0.
$$

Hence, f is a sum-free labelling of G in this case.

The next result is fairly trivial, but perhaps useful.

Lemma 13. If G is acyclic, then G is sum-free.

Proof. We proceed by induction on $n = |V(G)|$. By reviewing $L_n, n \leq 3$, or by Lemma 12, the result is true for any acyclic graph on at most three vertices, establishing our base cases. Since G is acyclic, there is a vertex $v \in V(G)$ such that $d_G(v) \leq 1$. Let $H = G - v$ and note that H is acyclic. Let g be a sum-free labelling of H and let $f(x) = g(x)$ for $x \in V(H)$ and $f(v) = n$. Then, f is a sum-free labelling of G. \Box

In the following Lemma, $K_1 \vee 2K_3$ is the graph with one vertex v of degree six and with $G - v$ the disjoint union of two triangles.

Lemma 14. If $n = |V(G)| \ge 7$, $v \in V(G)$, $\Delta(G - v) \le 2$, and G is not $K_1 \vee 2K_3$, then G is sum-free.

Proof. Let $H = G - v$. Let the connected components of $H - v$ be A_1 , A_2 , $..., A_s$, with A_1 not a triangle, if possible. We will first consider the case in which A_1 is a triangle, since it gives an introduction to the method for the remaining cases.

Suppose that $A_1 \cong K_3$. Then, $A_1 \cong A_2 \cong \cdots \cong A_s \cong K_3$. Note that, $s \geq 2$. If $s = 2$, then since G is not $K_1 \vee 2K_3$, without loss of generality, there is a vertex $w \in V(A_1)$ such that $vw \notin E(G)$. Let $f(v) = 1, f(w) = 6$, $f(N(w) - \{v\}) = \{3, 5\}$ and $f(V(A_2)) = \{2, 4, 7\}$. Then, f is a sum-free labelling of G.

Suppose that $A_1 \cong K_3$ and $s = 3$. Here, $n = 10$. Select any bijection $f: V(G) \to I_{10}$ such that $f(v) = 1, f(V(A_1)) = \{2,4,8\}, f(V(A_2)) =$ $\{3, 6, 10\}$, and $f(V(A_3)) = \{5, 7, 9\}$. Then, f is a sum-free labelling of G.

Next, we suppose that $A_1 \cong K_3$ and $s = 2k, k \geq 2$. Here, n is odd. By Lemma 12, $A = A_1 \cup A_2 \cup \cdots \cup A_k$ has a sum-free labelling g. Let $B = A_{k+1} \cup A_{k+2} \cup \cdots \cup A_s$. Let h be any bijection from $V(B)$ to $\{3, 5, \ldots, n\}$ and define $f: V(G) \to I_n$ by $f(v) = 1$, $f(x) = 2g(x)$ for $x \in V(A)$, and $f(x) = h(x)$ for $x \in V(B)$. Then, f is a sum-free labelling of G.

The remaining case with $A_1 \cong K_3$ has $s = 2k+1, k \geq 2$, and $n = 6k+4 \geq 1$ 16. Let $A = A_1 \cup A_2 \cup \cdots \cup A_k$ and let $B = A_{k+2} \cup A_{k+3} \cup \cdots \cup A_s$. Let g be a sum-free labelling of A, let h be any bijection from $V(B)$ to $\{5, 7, \ldots, n-1\}$, and let r be a bijection from $V(A_{k+1})$ to $\{3, n-2, n\}$. Define $f: V(G) \to I_n$

 \Box

by $f(v) = 1$, $f(x) = 2g(x)$ for $x \in V(A)$, $f(x) = r(x)$ for $x \in V(A_{k+1})$, and $f(x) = h(x)$ for $x \in V(B)$. Then, f is a sum-free labelling of G.

We may now assume that A_1 is not a triangle. As in the constructions above, we shall use $f(v) = 1$, unless otherwise specified.

Let t be the integer such that $|V(A_1 \cup A_2 \cup \cdots \cup A_t)| \leq \left|\frac{n}{2}\right|$ 2 and

$$
|V(A_1 \cup A_2 \cup \cdots \cup A_{t+1})| > \left\lfloor \frac{n}{2} \right\rfloor.
$$

Let $A = A_1 \cup A_2 \cup \cdots \cup A_t$. If $|V(A)| = \left| \frac{n}{2} \right|$ 2 $\Big\vert$, $B = H - V(A)$. Since A is not a triangle, there is a sum-free labelling g of A . Let h be any bijection from $V(B)$ to $\left\{3,5,...,2\right\} \frac{n-1}{2}$ $\left\{\frac{-1}{2}\right\}$. Let $f(v) = 1, f(x) = 2g(x)$ for $x \in V(A)$, and $f(x) = h(x)$ for $x \in V(B)$. Then, f is a sum-free labelling of G.

We may now assume that $|V(A_1 \cup A_2 \cup \cdots \cup A_t)| < \left|\frac{n}{2}\right|$ 2 and

$$
|V(A_1 \cup A_2 \cup \cdots \cup A_{t+1})| > \left\lfloor \frac{n}{2} \right\rfloor.
$$

Let $A = A_1 \cup A_2 \cup \cdots \cup A_t$, $M = A_{t+1}$, and let $B = A_{t+2} \cup A_{t+3} \cup \cdots \cup A_s$.

We note that M is either a path or a cycle. We intend to use a mixture of even and odd labels on M. There are $k = \frac{n}{2}$ 2 $\vert - \vert V(A) \vert$ even labels and $\ell = \left\lfloor \frac{n-1}{2} \right\rfloor$ 2 $\vert - \vert V(B) \vert$ odd labels available for M. We note that $k > 1$ and $\ell > 1$, since $|V(A)| < \left|\frac{n}{2}\right|$ 2 $| \langle |V(A \cup A_{t+1})|$. Let $V(M) = \{m_j\}_{j=1}^q$ and either $E(M) = \{m_j m_{j+1}\}_{j=1}^{q-1}$ or $E(M) = \{m_j m_{j+1}\}_{j=1}^{q-1} \cup \{m_q m_1\}$. For convenience, let $n_1 = 2 \left\lfloor \frac{n}{2} \right\rfloor$ ≥ 6 denote the largest possible even label and $n_2=2\left\lfloor\frac{n-1}{2}\right\rfloor$ 2 $+1$ denote the largest possible odd label.

Let $f(m_{\ell}) = 3$ and, if $\ell \geqslant 2$, let $f(m_j) = 2j + 3$ for $1 \leqslant j < \ell$. Let $f(m_{k+\ell}) = n_1$ and, if $k \geqslant 2$, let $f(m_{\ell+j}) = n_1 - 2j$ for $1 \leqslant j \leqslant 1$ k. Since A is not a triangle, we pick a sum-free labelling g of A and let $f(x)=2g(x)$ for $x \in V(A)$. We pick an arbitrarily bijection h from $V(B)$ to $\{2\ell + 3, 2\ell + 5, ..., n_2\}$ and let $f(x) = h(x)$ for $x \in V(B)$. Also, we have $f(v) = 1$. The function f defined this way is a sum-free labelling of G if $|(n_1-2)-3|\neq 1$ and $n_1\neq 6$. Thus, if $n\geq 8$, the function f is a sum-free labelling of G. The only remaining case is $n = 7$.

If H is contained in a 6-cycle C assign the labels $(2, 4, 6, 3, 7, 5)$ cyclically along C. We may therefore assume that H has a cycle of length at most 5.

If H has a 5-cycle C, assign the labels $(2, 4, 6, 3, 7)$ cyclically along C, and assign the label 5 to the vertex in $V(H) - V(C)$.

If H has a 4-cycle C, assign the labels $(2, 4, 7, 5)$ cyclically along C, and assign $\{3,6\}$ to $V(H) - V(C)$.

Finally, if H has a 3-cycle C, then we may assume that $D = H - V(C)$ is not a 3-cycle, since we have already considered this case. Assign the labels $(2, 4, 7)$ cyclically along C, and assign $\{5, 3, 6\}$ to $V(H) - V(C)$ so that the vertex of degree two in D , if any, receives the label 3. \Box

We next investigate some of the properties of a smallest 3-regular nonsum-free graph G .

Lemma 15. If $|E(G)| \leq |V(G)|$ and $|V(G)| \geq 4$, then G is sum-free.

Proof. We consider a smallest counterexample. Let G be a simple graph which is not sum-free but which has $|E(G)| \leq |V(G)|$ and $|V(G)| \geq 4$, and, subject to this, suppose that $n = |V(G)|$ is as small as possible.

By Lemma 12, we may assume that G has a vertex of degree at least three. Suppose that G has a vertex v of degree one, and let $H = G - v$. Note that $|E(H)| = |E(G)| - 1 \leq |V(G)| - 1 = |V(H)|$.

If $|V(H)| \geq 4$, then H has a sum-free labelling q, and we extend this labelling to a sum-free labelling f of G which agrees with g on H and has $f(v) = n$. On the other hand, if $|V(H)| = 3$, then let w be the neighbour of v in G, let $f(V(H) - w) = \{2, 4\}$ and set $f(w) = 1$ and $f(v) = 3$, yielding a sum-free labelling of G. Hence, we may assume that G has no vertex of degree one.

 $\lfloor n \rfloor$ Suppose that M is a connected component of G, with $2 \leqslant |V(M)| \leqslant 1+$ 2 , and let $H = G - V(M)$. Note that every vertex of M has degree at least two and, thus, $|E(M)| \geqslant |V(M)|$ and $|E(H)| \leqslant |V(H)|$. If $|V(H)| \leqslant 3$, then either H is sum-free or H is a 3-cycle. In the case that H is a 3-cycle, $|E(M)| = |E(G)| - 3 \leq |V(G)| - 3 = |V(M)|$, but M has no vertex of degree one, and thus G is regular of degree two and is sum-free. Hence, we may assume that H is sum-free for $|V(H)| \le 3$. By our choice of G, H is sum-free if $|V(H)| \geq 4$. Thus, for any value of $|V(H)|$, we may assume that H is sum-free. Let g be a sum-free labelling of H, and extend g to any bijection $f: V(G) \to I_n$, that agrees with g on H. Since f restricted to M has no values less than $n + 1 - |V(M)| = n - \left|\frac{n}{2}\right|$ 2 $\Big| = \Big\lceil \frac{n}{2} \Big\rceil$ 2 , f is a sum-free labelling of G.

Note that G cannot have two connected components H_1 and H_2 with $|V(H_2)| \geq |V(H_1)| \geq 2$, since then H_1 is a connected component with $|V(H_1)| \leqslant \left| \frac{n}{2} \right|$ 2 . Hence, we may now assume that G has one non-trivial connected component M . Since every vertex of M has degree at least two, and since M has at least one vertex of degree at least three, $|E(M)| >$ $|V(M)|$. All of the other components of G are isolated vertices. Furthermore, there must be at least $|E(M)|-|V(M)|>0$ isolated vertices in G, and $|V(M)| \geqslant 2 + \left\lfloor \frac{n}{2} \right\rfloor$ $\Big| = \Big| \frac{n+4}{2}$ 2 .

Suppose that G has a vertex v with $d(v) = 2$. Let w be a vertex of G with $d(w) = 0$, let $N(v) = \{x, y\}$, and let $H = G - \{v, w\}$. Then, $H \cong K_3$ or H has a sum-free labelling f. If $H \cong K_3$, then we assign $\{2, 4\}$ to $\{x, y\}$, $\{1, 5\}$ to the vertices of degree two in G and 3 to the vertex of degree zero. Hence, we may assume that H is sum-free, with labelling f. If $f(x) + f(y) = n$, extend f to $V(G)$ by assigning $f(v) = n - 1$ and $f(w) = n$. Otherwise, assign $f(v) = n$ and $f(w) = n - 1$. In either case, f is a sum-free labelling of G. Hence, we may assume that G has no vertices of degree two.

We can bound the number of vertices of degree three, if there are enough vertices of degree zero. Suppose that u and v are non-adjacent vertices of degree three in G , and that W is a set of four vertices of degree zero. Let $N(u) = \{u_1, u_2, u_2\}$ and $N(v) = \{v_1, v_2, v_3\}$. We allow the possibility that $|N(u) \cap N(v)| > 0$. Let $H = G - \{u, v\} - W$. Again, $H \cong$ K₃ or H has a sum-free labelling f. If $H \cong K_3$, then $|V(M)| = 5$ $\frac{n+1}{2}$, contradicting our previous bound that $|V(M)| \geqslant \left\lfloor \frac{n+4}{2} \right\rfloor$ 2 \vert . Thus, H has a sum-free labelling f. For a vertex $z \in V(G) - V(H)$, let $B(z) =$ ${f(x) + f(y) : x, y \in N(z), x \neq y}$ and let $Q = I_n - I_{n-6}$. We extend f to $V(G)$ by selecting $f(u) \in Q - B(u)$, $f(v) \in Q - B(v) - \{f(u)\}\)$, and assigning $Q - \{f(u), f(v)\}\$ to W. This is a sum-free labelling of G. Hence, we may assume that either G has at most four vertices of degree three (and the vertices of degree three are pairwise adjacent) or G has at most three vertices of degree zero. Note that if G has four vertices of degree three, then $M \cong K_4, 4 = |V(M)| \geqslant \left| \frac{n+4}{2} \right|$ 2 $\Big\vert$, $n \leqslant 5 < |E(M)|$. Hence, we may assume that G has at most three vertices of degree three.

Let k_0 denote the number of vertices of degree zero in G , k_3 denote the number of vertices of degree three in G , and k_4 denote the number of vertices of degree four or more in G. Then, $n = k_0 + k_3 + k_4$. Since $n \geqslant |E(G)| \geqslant 2k_4 + \frac{3}{2}$ $\frac{3}{2}k_3, k_0+k_3+k_4 \geq 2k_4+\frac{3}{2}$ $\frac{3}{2}k_3$, and $k_0 \geq k_4 + \frac{1}{2}$ $\frac{1}{2}k_3$. From $k_3 + k_4 = |V(M)| \geqslant \frac{n+4}{2}$ 2 $\overline{}$ \geqslant $\frac{n+3}{2}$, we have $2k_3 + 2k_4 \ge k_0 + k_3 + k_4 + 3$, and $k_3 + k_4 \geq k_0 + 3$. Combining $k_0 \geq k_4 + \frac{1}{2}$ $\frac{1}{2}k_3$ and $k_3 + k_4 \geq k_0 + 3$,

we obtain $k_3 + k_4 \geq k_0 + 3 \geq k_4 + \frac{1}{2}$ $\frac{1}{2}k_3 + 3$ and $\frac{1}{2}k_3 \ge 3$. Hence $k_3 \ge 6$, contradicting our previous bound, $k_3 \leq 4$. Therefore, there is no graph G that remains, proving the Lemma. \Box

Sometimes, we prefer a different set of labels. For a set of k integers $X, X \subseteq I_n$, we say an *n*-vertex graph G is X-skew if there is a bijection $f: V(G) \to I_{n+k}-X$, such that for any path uvw in $G, f(v) \neq f(u)+f(w)$. The function f will be called an X-skew labelling. If $X = I_k$, we refer to G as k-skew and f as a k-skew labelling. We establish the following lemma to demonstrates a few small constructions similar to those we will use in the study of graphs with maximum degree three, and which prove useful for Conjecture 29.

Lemma 16.

- (a) For any n-vertex graph G, any bijection $f: V(G) \to I_{2n-1} I_{n-1}$ is an $(n-1)$ -skew labelling and any bijection $g: V(G) \to I_{2n-2} - I_{n-2}$ is an $(n-2)$ -skew labelling.
- (b) If G is a 4-vertex graph, $v \in V(G)$, and $j \in I_7 \{1, 2, 4\}$, then G has a $\{1, 2, 4\}$ -skew labelling f such that $f(v) = j$.
- (c) If G is a 5-vertex graph with maximum degree at most three, $v \in$ $V(G)$, and $j \in I_7 - I_2$, then G has a 2-skew labelling f such that $f(v) = i.$

Proof. Statement (a) is obvious, since there are no triples (a, b, c) in I_{2n-1} I_{n-1} with a,b,c distinct and $a + b = c$.

Statement (b) is also obvious, since any bijection $f: V(G) \to I_7$ – $\{1, 2, 4\}$ is a $\{1, 2, 4\}$ -skew labelling. Select one such that $f(v) = j$.

Now suppose that If G is a 5-vertex graph with maximum degree at most three, $v \in V(G)$, and $j \in I_7 - I_2$. If $j \notin \{3, 7\}$, then let $w \in N(v)$ and let $z \in V(G) - N[v]$. Let $f: V(G) \to I_7 - I_2$ be a bijection such that $f(v) = j$, $f(w) = 3$, and $f(z) = 7$. Then, f is a 2-skew labelling of G with the required property. If $j \in \{3, 7\}$, then let $w \in N(v)$ and let $z \in V(G) - N[v]$. Let $g: V(G) \to I_7 - I_2$ be a bijection such that $g(v) = j$, and $f(z) = 10 - j$. Then, f is a 2-skew labelling of G with the required property, completing the proof of (c) . \Box

We now consider 3-regular graphs, and more generally graphs with maximum degree three. Let $\mathcal F$ denote the set of finite graphs each of which has maximum degree three, is not sum-free and has at least seven vertices. We would like to show that $|\mathcal{F}| = 0$. Suppose that $|\mathcal{F}| \neq 0$, and let G_* denote a graph in $\mathcal F$ with the least possible number of vertices. By Lemma 12, we know that G_* has maximum degree three. As usual, $n = |V(G_*)|$ in the following lemmas.

Lemma 17. K_3 is not a connected component of G_* .

Proof. Suppose that $K_3 \cong M \subseteq G_*$ and let $H = G_* - V(M)$. Note that H has a vertex of degree three. If $|V(H)| \ge 7$, then H has a sum-free labelling f and for any bijection $g: V(M) \to \{n, n-1, n-2\}, f \cup g$ is a sum-free labelling of G_* . If $|V(H)| = 4$, let $f: V(M) \rightarrow \{3, 5, 6\}$ and $g: V(H) \to \{1, 2, 4, 7\}$ be bijections. Then, $f \cup g$ is a sum-free labelling of G_* . Hence, we know that $|V(H)| \in \{5, 6\}.$

Suppose that $|V(H)| = 5$. Let $v \in V(H)$ such that $d(v) = 3$ and let $w \in V(H) - N[v]$. Let $f: V(M) \to \{1, 2, 8\}$ and $g: V(H) \to \{3, 4, 5, 6, 7\}$ be bijections, such that $g(v) = 7$ and $g(w) = 3$. Then, $f \cup g$ is a sum-free labelling of G_* .

Finally, suppose that $|V(H)| = 6$. Let $v \in V(H)$ such that $d(v) = 3$, let $N(v) = \{x_1, x_2, x_3\}$ and let $V(H) - N[v] = \{w_1, w_2\}$. If $x_i w_j \notin E(H)$, then let $f: V(M) \to \{1, 2, 4\}$ and $g: V(H) \to \{3, 5, 6, 7, 8, 9\}$ be bijections, such that $g(v) = 9$, $g(x_i) = 8$, and $g(w_i) = 3$. Then, $f \cup g$ is a sum-free labelling of G_* . Hence, we may assume that $x_iw_j \in E(H)$, for $i \in \{1,2,3\}$ and $j \in \{1, 2\}$, and thus $H \cong K_{3,3}$ and $G_* \cong K_3 \cup K_{3,3}$. Let $f : V(M) \to \{4, 5, 6\}$, $g : \{v, w_1, w_2\} \rightarrow \{1, 2, 3\}$, and $h : \{x_1, x_2, x_3\} \rightarrow \{7, 8, 9\}$ be bijections. Then, $f \cup g \cup h$ is a sum-free labelling of G. This eliminates all possibilities and hence G_* cannot have K_3 as a connected component. \Box

Lemma 18. K_4 is not a connected component of G_* . Hence, K_4 is not a subgraph of G_* .

Proof. Suppose that $K_4 \cong M \subseteq G_*$ and let $H = G_* - V(M)$. If $|V(H)| \geq$ 7, then H has a sum-free labelling f and for any bijection $g: V(M) \rightarrow$ ${n, n-1, n-2, n-3}, f \cup g$ is a sum-free labelling of G_* . If $|V(H)| = 3$, let $f: V(H) \to \{3, 5, 6\}$ and $g: V(M) \to \{1, 2, 4, 7\}$ be bijections. Then, $f \cup g$ is a sum-free labelling of G_{*} . If $|V(H)| = 4$, let $f: V(M) \rightarrow \{3, 5, 6, 7\}$ and $g: V(H) \to \{1, 2, 4, 8\}$ be bijections. Then, $f \cup g$ is a sum-free labelling of G_* . Hence, we know that $|V(H)| \in \{5, 6\}.$

If $|V(H)| = 5$, then H has a vertex v with $d(v) \leq 2$. Let $\{w, z\} \subseteq$ $V(H) - N[v]$, with $w \neq z$. Let $f: V(M) \rightarrow \{1, 2, 4, 7\}$ and $g: V(H) \rightarrow$ $\{3,5,6,8,9\}$ be bijections, with $g(w) = 9$ and $g(z) = 8$. Then, $f \cup g$ is a sum-free labelling of G_* .

Finally, suppose that $|V(H)| = 6$. Let $v \in V(H)$ and let $\{w, z\} \subseteq$ $V(H) - N[v]$, with $w \neq z$.. Let $f: V(M) \rightarrow \{1, 2, 4, 7\}$ and $g: V(H) \rightarrow$ $\{3, 5, 6, 8, 9, 10\}$ be bijections, with $g(w) = 9$ and $g(z) = 8$. Then, $f \cup g$ is a sum-free labelling of G_* . This eliminates all possibilities and hence G_*
cannot have K_3 as a subgraph. cannot have K_3 as a subgraph.

Lemma 19. Neither $K_{3,3}$ nor $K_{2,3}$ is a connected component of G_* .

Proof. Suppose that $M \subseteq G_*$, and that $K_{2,3} \cong M$ or $K_{3,3} \cong M$. Let (X, Y) be a bipartition of M with $|X| = 3$, and let $H = G_* - V(M)$. If $|V(M)| = 5$, let $Q = \{n, n-1\}$ and $R = \{n, n-1, n-2, n-3, n-4\}$. If $|V(M)| = 6$, let $Q = \{n, n-1, n-2\}$ and $R = \{n, n-1, n-2, n-3, n-4, n-5\}.$

If $|V(H)| \ge 7$, then H has a sum-free labelling f and for any bijection $g: V(M) \to R$, $f \cup g$ is a sum-free labelling of G_* . If $|V(H)| = 1$, then $|V(M)| = 6$. Let $f: X \to \{2, 4, 6\}, g: Y \to \{3, 5, 7\}$ and $h: V(H) \to \{1\}$ be bijections. Then, $f \cup g \cup h$ is a sum-free labelling of G_* . Hence, we may assume that $2 \leq |V(H)| \leq 6$.

If $|V(H)| = k, 2 \leq k \leq 5$, let $f: V(H) \to I_{3+k} - I_3, g: X \to \{1, 2, 3\},\$ and $h: Y \to Q$ be bijections. Then, $f \cup g \cup h$ is a sum-free labelling of G_* .

In the remaining case, $|V(H)| = 6$. Let $v \in V(H)$ and let $w \in V(H)$ – $N[v]$. Let $f: V(H) \to I_9 - I_3$ be a bijection such that $f(v) = 4$ and $f(w) = 9$. Let $g: X \to \{1, 2, 3\}$, and $h: Y \to \{n, n-1\}$ be bijections. Then, $f \cup g \cup h$ is a sum-free labelling of G_* . Hence G_* cannot have $K_{2,3}$ or $K_{3,3}$ as a connected component. $K_{3,3}$ as a connected component.

Lemma 20. G_* is connected and 3-colourable.

Proof. We note that G_* has no component isomorphic to any of K_3 , K_4 , $K_{2,3}$, $K_{3,3}$, and that G_* has at least one vertex of degree three. That G_* is 3-colourable follows directly from Brooks' theorem [3].

Now, suppose that $G_* = M \cup K$, where $|V(M) \cap V(K)| = 0$, and $|V(M)| \neq 0$ but, subject to this, with $m = |V(M)|$ as small as possible. Hence, $|V(M)| \leq |V(K)|$, and M is connected. If $|V(K)| \geq 7$, or if K has no vertex of degree three, then K has a sum-free labelling f . Let $g: V(M) \to I_n - I_{n-m}$ be a bijection. Then, $f \cup g$ is a sum-free labelling of G_* . Thus, we may assume that K has a vertex of degree three and that $4 \leqslant |V(K)| \leqslant 6.$

If $|V(K)| = 4$, then $|V(M)| \le 4$. If $|V(M)| \ge 2$, use $I_n - \{3, 4, 5, 6\}$ on $V(M)$ and $\{3, 4, 5, 6\}$ on $V(K)$. If $|V(M)| = 1$, use $\{1\}$ on $V(M)$ and $\{2,3,4,5\}$ on $V(K)$, assigning labels 2 and 5 to a pair of non-adjacent vertices.

If $|V(K)| = 5$, then $|V(M)| \le 5$. If $|V(M)| = 5$, let v be a vertex of degree two or less in M and let $w, z \in V(M) - N[v]$, with $w \neq z$. Let $f: V(M) \to \{1, 2, 3, 9, 10\}$ such that $f(v) = 1$, $f(w) = 3$ and $f(z) = 10$. Let $g: V(K) \to \{4, 5, 6, 7, 8\}$ be a bijection. Then, $f \cup g$ is a sum-free labelling of G_* .

If $|V(K)| = 5$ and $|V(M)| = 4$, let v and w be non-adjacent vertices of M. Let $f: V(M) \to \{1, 2, 3, 9\}$ such that $f(v) = 1$, and $f(w) = 3$. Let $g: V(K) \to \{4, 5, 6, 7, 8\}$ be a bijection. Then, $f \cup g$ is a sum-free labelling of G_* .

If $|V(K)| = 5$ and $|V(M)| = 3$, let v and w be non-adjacent vertices of M. Let $f: V(M) \rightarrow \{1,2,3\}$ such that $f(v) = 1$, and $f(w) = 3$. Let $g: V(K) \to \{4, 5, 6, 7, 8\}$ be a bijection. Then, $f \cup g$ is a sum-free labelling of G_* .

If $|V(K)| = 5$ and $|V(M)| = 2$, let v and w be non-adjacent vertices of K. Let $f: V(M) \to \{1,2\}$ and let $g: V(K) \to \{3,4,5,6,7\}$ be a bijection such that $g(v) = 3$ and $g(w) = 7$. Then, $f \cup g$ is a sum-free labelling of $G_*.$

If $|V(K)| = 5$ and $|V(M)| = 1$, let $v \in V(K)$, with $d(v) \le 2$, and let $w, z \in V(K) - N[v]$, with $w \neq z$. Let $f: V(M) \rightarrow \{1\}$ and let $g: V(K) \rightarrow$ $\{2, 3, 4, 5, 6\}$ be a bijection such that $g(v) = 2$, $g(w) = 5$ and $g(z) = 6$. Then, $f \cup g$ is a sum-free labelling of G_{\ast} .

In the remaining cases, $|V(K)| = 6$.

If $|V(K)| = 6$ and $|V(M)| = 1$, let $V(M) = \{q\}$, and let $v \in V(K)$, with $d(v)$ as small as possible. If $d(v) = 3$, then K is the prism $K_2 \times K_3$, with two 3-cycles joined by a matching. Label one 3-cycle 1, 2, 5 and the other 3, 4, 6, so that the vertices labelled 1 and 3 are neighbours, and the vertices 5 and 6 are neighbours. Then, label $V(M)$ with $\{7\}$. In the remaining cases, $d(v) \leq 2$. Let $\{x, y, z\} \subseteq V(H) - N[v]$, with $|\{x, y, z\}| = 3$. Suppose that there is a vertex w such that $w \notin \{v, x, y, z\}$ and w is not adjacent to x. Let $g: V(K) \to \{2, 3, 4, 5, 6, 7\}$ be a bijection such that $g(v) = 2, g(w) = 3$, $g(x) = 7, g(y) = 5, g(z) = 6$. Let $f: V(M) \rightarrow \{1\}$. Then, $f \cup g$ is a sum-free labelling of G_* . Hence, we may assume that x is adjacent to every vertex of $Y = V(H) - \{v, x, y, z\} = \{r, s\}$ and, similarly, we may assume that each of y and z is adjacent to every vertex of Y. At this point, $d(r) = d(s) = 3$ and, thus, $d(v) = 0$. We also note that $K[\{x, y, z\}]$ has at most one edge, since each of these vertices has two edges to $\{r, s\}$. We may therefore assume that $xz, yz \notin E(K)$. Then, $f = \{(q, 5), (s, 2), (r, 3), (x, 1), (y, 6), (z, 4), (v, 7)\}\$ is a sum-free labelling of G_* .

If $|V(K)| = 6$ and $|V(M)| = 2$, let $v \in V(K)$, and let $w, z \in V(K)$ $N[v]$, with $w \neq z$. Let $f: V(M) \to \{1,2\}$ and let $g: V(K) \to \{3,4,5,6,7,8\}$ be a bijection such that $g(v) = 3$, $g(w) = 7$ and $g(z) = 8$. Then, $f \cup g$ is a sum-free labelling of G_* .

If $|V(K)| = 6$ and $|V(M)| = 3$, let $v \in V(K)$, and let $w \in V(K) - N[v]$. Since M is not K_3 , there is a sum-free labelling f of M, and let $g: V(K) \to$ $\{4, 5, 6, 8, 9, 10\}$ be a bijection such that $g(v) = 4$, and $g(w) = 9$. Then, $f \cup g$ is a sum-free labelling of G_* .

If $|V(K)| = 6$ and $|V(M)| = 4$, let $v \in V(K)$, and let $w, z \in V(K)$ $N[v]$, with $w \neq z$. Let $f: V(M) \rightarrow \{1, 2, 4, 7\}$ and let $g: V(K) \rightarrow$ $\{3, 5, 6, 8, 9, 10\}$ be a bijection such that $g(v) = 3$, $g(w) = 8$ and $g(z) = 9$. Then, $f \cup g$ is a sum-free labelling of G_* .

If $|V(K)| = 6$ and $|V(M)| \in \{5, 6\}$, let $Q = \{4, 5, 8, 9, 10, 11\}$ and $R = I_n - Q \subseteq \{1, 2, 3, 6, 7, 12\}$. In K, we select non-adjacent vertices v and w, and let $g: V(K) \to Q$ be a bijection with $g(v) = 4$ and $g(w) = 9$. In M select a vertex v' of minimum degree. Then there are at least two distinct vertices w' and z' which are not adjacent to v'. Let $f: V(M) \to R$ be a bijection with $f(v') = 1$, $f(w') = 3$, and $f(z') = 7$. Then, $f \cup g$ is a sum-free labelling of G_* . This concludes the proof of the lemma. \Box

Lemma 21. Suppose that G is 3-regular, not K_4 or $K_{3,3}$, and suppose that $|V(G)| \leq 8$. Then, G is sum-free.

Proof. There are two non-isomorphic connected 3-regular graphs on 6 vertices and five non-isomorphic connected 3-regular graphs on eight vertices. (See, for example, [1].)

The two non-isomorphic connected 3-regular graphs on 6 vertices are $K_{3,3}$ and the prism $K_2 \times K_3$. We need only show that the prism has a sumfree labelling and this is easily shown by displaying the adjacency matrix M_6 of a labelled sum-free prism.

$$
M_6=\left[\begin{array}{cccccc} 0&1&1&1&0&0\\ 1&0&0&1&0&1\\ 1&0&0&0&1&1\\ 1&1&0&0&1&0\\ 0&0&1&1&0&1\\ 0&1&1&0&1&0 \end{array}\right]
$$

Similarly, adjacency matrices M_{8a} , M_{8b} , M_{8c} , M_{8d} , M_{8e} , for the five nonisomorphic connected 3-regular graphs on eight vertices are shown below, completing the proof of this lemma. Each of these matrices corresponds to a labelled sum-free version of a graph.

$$
M_{8a} = \left[\begin{array}{ccccccc} 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \end{array}\right], \ M_{8b} = \left[\begin{array}{ccccccc} 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \end{array}\right],
$$

Sum-free graphs 365

Lemma 22. G_* has no vertex of degree one.

Proof. Suppose that v is a vertex of degree one, let $H = G_* - v$, and let q be the neighbour of v in G_{\ast} . If $|V(H)| \geq 7$, then H has a sum-free labelling f and, then, $f \cup \{(v,n)\}\$ is a sum-free labelling of G_* . Hence, we may assume that $|V(H)| = 6$. Note that H is connected and $d(q) \leq 2$. Let x, y, z be distinct vertices which are not adjacent to q , and let r and s be the remaining two vertices of H . Since H is connected, we may assume that $qr \in E(H)$. But then, without loss of generality, $rx \notin E(H)$. Now, $f = \{(v, 1), (q, 2), (r, 3), (s, 4), (y, 5), (z, 6), (x, 7)\}\$ is a sum-free labelling of G_* . Thus G_* can have no vertex of degree one. \Box

Lemma 23. G[∗] cannot have two adjacent vertices of degree two.

Proof. Suppose that $v, w \in V(G_*)$, $vw \in E(G_*)$, $d(v) = d(w) = 2$, let $u, x \in V(G_{*}-\{v, w\})$ with $uv, wx \in E(G_{*})$, and let $H = G_{*}-\{v, w\}$. If H is connected, let $M = H$ and if H is not connected, we note that $u \neq x$, and we let $M = H \cup \{ux\}$. In either case, M is a simple graph. If H has a sumfree labelling f, without loss of generality, we may assume that $f(u) \neq 1$. Now, $f \cup \{(v, n), (w, n-1)\}\$ is a sum-free labelling of G_{*} . If $|V(H)| \geq 7$, then M has a sum-free labelling f , and this provides a sum-free labelling of H. In the remaining cases, $|V(H)| \in \{5, 6\}.$

Suppose that $|V(H)| = 5$. Let $z \in V(K) - N[u] - \{x\}$ and let f: $V(K) \to \{3, 4, 5, 6, 7\}$ be a bijection such that $f(u) = 3$, $f(x) = 4$ and $f(z) = 7$. Then, $f \cup \{(v, 1), (w, 2)\}\$ is a sum-free labelling of G_* .

In the last case, $|V(H)| = 6$. Let $w, z \in V(K) - N[u] - \{x\}$ and let $f: V(K) \to \{3, 4, 5, 6, 7, 8\}$ be a bijection such that $f(u) = 3$, $f(x) = 4$, $f(w) = 8$, and $f(z) = 7$. Then, $f \cup \{(v, 1), (w, 2)\}\$ is a sum-free labelling of G_* . Thus, G_* cannot have two adjacent vertices of degree two. \Box

Lemma 24. G_* cannot have two triangles which share an edge.

Proof. By Lemma 18, G_* has no K_4 . Let M be a subgraph of G_* with $V(M) = \{w, x, y, z\}$ and with $E(M) = \{wy, wz, xy, xz, yz\}$. Then, $wx \notin$ $V(G_*)$. Let $H = G_* - V(M)$. If H has a sum-free labelling g, then g ∪ $\{(w, n-3), (x, n-2), (y, n-1), (z, n)\}\$ is a sum-free labelling of G_* . We need only consider the cases in which H does not have a sum-free labelling. Note that H is not 3-regular. We may assume that w has a neighbour w' in H. If x also has a neighbour in H, we label this neighbour x' . (Possibly, $x' = w'$

If $|V(G_*)| \geq 11$, then $|V(H)| \geq 7$, H has a sum-free labelling.

If $|V(G_*)|=10$, then $|V(H)|=6$. There is no harm in assuming x' exists. (If it doesn't, pick some arbitrary vertex of H and call it x' .) Suppose that $x' \neq w'$. Let $f: V(H) \rightarrow \{4, 5, 6, 7, 8, 9\}$ be any bijection with $f(w') =$ 4 and $f(x') = 6$, and let $g: V(M) \to \{1, 2, 3, 10\}$ with $g(z) = 10$, $g(y) = 1$, $g(w) = 2, g(x) = 3.$ Then, $f \cup g$ is a sum-free labelling of G_* . The same argument holds if $x' = w'$, with the exception that now $f(w') = f(x') = 4$.

If $|V(G_*)|=9$, then $|V(H)|=5$. As above, there is no harm in assuming x' exists. If $x' \neq w'$, let $f: V(H) \rightarrow \{4, 5, 6, 7, 8\}$ be any bijection with $f(w') = 4$ and $f(x') = 5$, and let $g: V(M) \rightarrow \{1, 2, 3, 9\}$ by a bijection with $g(z) = 9$ and $g(y) = 1$. Then, $f \cup g$ is a sum-free labelling of G_* . The same argument holds if $x' = w'$, with the exception that now $f(w') = f(x') = 4$.

If $|V(G_*)|=8$, then $|V(H)|=4$. By Lemma 15, we may assume that $|E(H)| \geq 5$, and by Lemma 18, $|E(H)| \leq 5$. Thus G_* consists of two copies of $K_4 - e$, linked by one or two independent edges. There is no harm in assuming both edges appear. Let y' and z' denote the two vertices in G_* which do not yet have names. Then,

$$
\left\{ \left(w,1\right),\left(x,5\right),\left(y,4\right),\left(z,8\right),\left(x',6\right),\left(w',7\right),\left(y'2\right),\left(z',3\right)\right\}
$$

is a sum-free labelling of G_* .

If $|V(G_*)|=7$, then $|V(H)|=3$. Since H has no sum-free labelling, $H \cong K_3$. Let $V(H) = \{w', u, v\}$. Then,

$$
\{(u,1),(v,2),(w',4),(w,5),(x,3),(y,7),(z,6)\}
$$

is a sum-free labelling of G_* .

 \Box

Lemma 25. G_* has no triangles.

Proof. Let T be a triangle in $G_*, V(T) = \{x, y, z\}$ and $E(T) = \{xy, xz, xy\}.$ Let $M = G_* - V(T)$. By Lemma 24, no vertex of M is adjacent to more than one vertex of T. If a vertex t of T has a neighbour in M , we call that neighbour t' . In the arguments that follow, if some vertex t of T does not have a neighbour in M , then t' could be considered to be any vertex of M that is not already used for one of the other vertices of T . (Thus, we can avoid breaking into cases depending on the number of neighbours of T.)

Suppose that $|V(G_*)| \geq 10$. Let g be any sum-free labelling of G_* – $\{x, y, z\}$. Without loss of generality, $g(x') \notin \{1, 2\}$, and $g(y') \neq 1$. Then, $g \cup \{(x,n),(y,n-1),(z,n-2)\}\$ is a sum-free labelling of G_* .

In the remaining three cases, let $f(x) = 1, f(y) = 2, f(z) = 3, f(x') = 1$ $4, f(y') = 5, f(z') = 6.$

If $|V(G_*)|=9$, then $|V(M)|=6$. There are three vertices in M which have not yet been labelled. At most two of these are in $N(x') \cap N(y')$. Let $q \in V(M) - \{x', y', z'\} - N(x') \cap N(y')$. Let $f(q) = 9$, and assign the labels 7, 8 to the remaining two vertices of G_* , one to each vertex. Then, f is a sum-free labelling of G_* .

If $|V(G_*)|=8$, then $|V(M)|=5$. Assign the labels 7, 8 to the remaining two vertices of G_* , one to each vertex. Then, f is a sum-free labelling of G_* .

If $|V(G_*)| = 7$, then $|V(M)| = 4$. Assign the label 7 to the remaining lex of G_* . vertex of G_* . Then, f is a sum-free labelling of G_* .

Lemma 26. G_* has no 4-cycles.

Proof. By Lemma 25, any 4-cycle of G_* is induced subgraph. Let $C =$ $x_1x_2x_3x_4x_1$ be a 4-cycle in $G_*,$, and let $M - G_* - V(C)$. As above, let x'_{j} denote the neighbour of x_{j} in M, if such exists. Note that each x'_{j} is adjacent to at most vertex in C. If x_j has no neighbour in M, and $|V(G_*)| \geq 7$, we select x'_{j} as in the previous lemma.

Suppose that $|V(M)| \ge 7$. Then, M has a sum-free labelling f. At most one vertex of $N = \{x'_1, x'_2, x'_3, x'_4\}$ receives label 1 and at most one receives label 2. If 1 appears as label on a vertex on N , then, by rotating the labels on the cycle, we may assume that $f(x_3') = 1$. If $f(x_2') = 2$, replace C, by $x_1x_4x_3x_2x_1$ and relabel, so that now $f(x_4') = 2$, and if $f(x_3') = 1$, then $j = 3$. Now, extend f by setting $f(x_1) = n$, $f(x_2) = n - 1$, $f(x_3) = n - 3$, and $f(x_4) = n - 2$. Now, f is a sum-free labelling of G_* .

Now, suppose that $4 \le |V(M)| \le 6$. Let $f(x_1) = 1, f(x_2) = 3, f(x_3) =$ $4, f(x_4) = 2, f(x_1') = 5, f(x_2') = 6, f(x_3') = 7, f(x_4') = 8, \text{ and assign the}$ remaining labels from $I_n - I_8$ to the remaining vertices, one to each vertex. Then, f is a sum-free labelling of G_* .

The remaining case has $|V(M)| = 3$. Relabel C so that x_4 has no neighbour in M, and choose $N = \{x'_1, x'_2, x'_3\}$ as these have been previously chosen. The labelling for $|V(M)| = 4$, with the exception of labelling the now nonexistent x'_4 is a sum-free labelling of G_* . \Box

Lemma 27. G_* has no cycles.

Proof. Assume that G_* has a cycle, and let $C = x_1x_2 \cdots x_kx_1$ be a shortest cycle. We may therefore assume that C has no chords, and that $k \geq 5$. Let $M = G_* - V(C)$. We use x'_j as above: $x'_j \in V(M) \cap N(x_j)$, if possible; otherwise, we do not define x'_j . (There may not be enough room in M to allow for distinct x'_j for each x_j . When an undefined x'_j appears in a set, treat it as not being part of the set.)

Suppose that $|V(M)| \ge 7$. Then, M has a sum-free labelling f. At most one vertex of $N = \{x'_1, x'_2, \cdots, x'_k\}$ receives label 1 and at most one receives label $k-1$. We relabel the vertices of C, if necessary, so that $f(x_1') \neq k-1$ and $f(x'_j) \neq 1$ for $1 \leqslant j \leqslant k - 1$. Now, assign $f(x_j) = n + 1 - j$, for $1 \leq j \leq k$. Then, f is a sum-free labelling of G_* .

Now, suppose that $|V(M)| \leqslant 6$. Let f be a sum-free labelling of C. If x'_{j} exists, and if $f(x_j) + k \leq n$, then set $f(x'_j) = f(x_j) + k$. Arbitrarily assign the remaining labels to the remaining vertices of M , one to each vertex. Note that if $x'_j w \in E(M)$, then $f(x_j) + f(w) \neq f(x'_j)$, since $f(w) \neq k$. If $w_1, w_2, w_3 \in V(M)$, then $f(w_1) + f(w_2) \geq 2k + 2 = k + (k + 2)$ $k + |V(M)| = n \geq f(w_3)$. Hence, f is a sum-free labelling of G_* . \Box

Theorem 28. G_* cannot exist. Thus, every graph with maximum degree at most three and with at least seven vertices is sum-free.

Proof. By Lemma 27, G_* has no cycles. By Lemma 20, G_* is connected. Hence, G_* is a tree (on at least seven vertices). By Lemma 13, G_* is sum-
free. free.

Further Directions. Proving 3-regular graphs are almost all sum-free seemed a natural goal. But, there may be a stronger result. From Lemma 4, we know that there are some graphs with n vertices and $2n-4$ edges but which are not sum-free. One might hope that these are the extremal non-sum-free graphs.

Conjecture 29. If $|E(G)| \leq 2|V(G)| - 5$, then G is sum-free.

Lemmas 15 and Theorem 28 are weaker forms of this.

Computational Results. Degree sequences of L_n , $1 \leq n \leq 9$. Here, for example, $3^24^56^1$ means 2 vertices of degree 3, 5 vertices of degree 4 and 1 vertex of degree 6. Note that $r(8, 5) = 4$ and not 3 as we might have hoped.

 $L_1 : 0^1$

 $L_2 : 1^2$

 $L_3: 1^22^1$

 $L_4: 1^12^23^1, 2^4$

 $L_5: 1^1 2^2 3^1 4^1, 1^1 2^1 3^3, 2^4 4^1, 2^3 3^2$

 L_6 : $1^13^45^1$, $1^13^34^2$, $2^33^14^15^1$, $2^23^35^1$, $2^23^24^2$, $2^13^44^1$, 3^6

 L_7 : $1^2 3^3 4^2 6^1$, $1^1 3^3 4^1 5^2$, $1^1 3^2 4^3 5^1$, $1^1 3^1 4^5$, $2^2 3^3 5^1 6^1$, $2^2 3^2 4^2 6^1$, $2^2 3^2 4^1 5^2$, $2^23^14^35^1$, $2^13^44^16^1$, $2^13^45^2$, $2^13^34^25^1$, $2^13^24^4$, 3^66^1 , $3^54^15^1$, 3^44^3 ,

 $L_8: 1^13^14^45^17^1, 1^13^14^46^2, 1^13^14^35^26^1, 1^13^14^25^4, 1^14^67^1, 1^14^55^16^1, 1^14^45^3.$ $2^24^45^17^1$, $2^24^46^2$, $2^24^35^26^1$, $2^24^25^4$, $2^13^34^26^17^1$, $2^13^34^15^27^1$, $2^13^34^15^16^2$, $2^13^24^35^17^1$, $2^13^24^36^2$, $2^13^24^25^26^1$, $2^13^24^15^4$, $2^13^14^57^1$, $2^13^14^45^16^1$, $2^13^14^35^3$, $2^14^66^1$, $2^14^55^2$, $3^54^16^17^1$, $3^44^25^17^1$, $3^44^26^2$, $3^44^15^26^1$, $3^34^47^1$, $3^34^35^16^1$, $3^34^25^3$, $3^24^56^1$, $3^24^45^2$, $3^14^65^1$, 4^8

 L_9 : $1^13^14^35^26^18^1$, $1^13^14^35^27^2$, $1^13^14^35^16^27^1$, $1^13^14^25^48^1$, $1^13^14^25^36^17^1$. $1^13^14^25^26^3$ $1^13^14^15^57^1$ $1^13^14^15^46^2$ $1^14^55^16^18^1$ $1^14^55^17^2$ $1^14^45^38^1$ $1^14^45^26^17^1$, $1^14^45^16^3$, $1^14^35^47^1$, $1^14^35^36^2$, $1^14^25^56^1$, $1^14^15^7$, $2^24^35^26^18^1$ $2^{2}4^{3}5^{2}7^{2}$, $2^{2}4^{3}5^{1}6^{2}7^{1}$, $2^{2}4^{2}5^{4}8^{1}$, $2^{2}4^{2}5^{3}6^{1}7^{1}$, $2^{2}4^{2}5^{2}6^{3}$, $2^{2}4^{1}5^{5}7^{1}$, $2^{2}4^{1}5^{4}6^{2}$, $2^13^24^35^17^18^1$, $2^13^24^36^28^1$, $2^13^24^36^17^2$, $2^13^24^25^26^18^1$, $2^13^24^25^27^2$ $2^13^24^25^16^27^1$, $2^13^24^26^4$, $2^13^24^15^48^1$, $2^13^24^15^36^17^1$, $2^13^24^15^26^3$, $2^13^14^57^18^1$ $2^13^14^45^16^18^1$, $2^13^14^45^17^2$, $2^13^14^46^27^1$, $2^13^14^35^38^1$, $2^13^14^35^26^17^1$, $2^13^14^35^16^3$, $2^{1}3^{1}4^{2}5^{4}7^{1}$, $2^{1}3^{1}4^{2}5^{3}6^{2}$, $2^{1}3^{1}4^{1}5^{5}6^{1}$, $2^{1}4^{6}6^{1}8^{1}$, $2^{1}4^{6}7^{2}$, $2^{1}4^{5}5^{2}8^{1}$, $2^{1}4^{5}5^{1}6^{1}7^{1}$. $2^14^56^3$, $2^14^45^37^1$, $2^14^45^26^2$, $2^14^35^46^1$, $2^14^25^6$, $3^44^25^17^18^1$, $3^44^26^28^1$, $3^44^26^17^2$, $3^44^15^26^18^1$, $3^44^15^27^2$, $3^44^15^16^27^1$, $3^34^47^18^1$, $3^34^35^16^18^1$, $3^34^35^17^2$, $3^34^36^27^1$ 33425381, 3342526171, 33425163, 33415471, 33415362, 32456181, 324572, 32445281, 3244516171, 324463, 32435371, 32435262, 32425461, 324166, 31465181, $3^14^66^17^1$, $3^14^55^27^1$, $3^14^55^16^2$, $3^14^45^36^1$, $3^14^35^5$, 4^88^1 , $4^75^17^1$, 4^76^2 , $4^65^26^1$, $4^{5}5^{4}$

References

[1] G. Berman and G. Haggard. Chromatic polynomials and zeroes for cubic graphs with $N \leq 14$ vertices. **CORR-77-8**, U. Waterloo, 1977.

- [2] J.A. Bondy and U.S.R. Murty. **Graph Theory with Applications**. Elsevier, North-Holland, 1976. [MR0411988](http://www.ams.org/mathscinet-getitem?mr=0411988)
- [3] L. Brooks. On colouring the nodes of a network. **Mathematical Proceedings of the Cambridge Philosophical Society 37** (1941), 194– 197. [MR0012236](http://www.ams.org/mathscinet-getitem?mr=0012236)
- [4] S.M. Hegde and S. Shetty. Combinatorial labelings of graphs. **Applied Mathematics E-Notes 6** (2006), 251–258. [MR2262712](http://www.ams.org/mathscinet-getitem?mr=2262712)

S. C. Locke Florida Atlantic University USA E-mail address: LockeS@fau.edu

Received 20 January 2015