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Cycle double covers and long circuits of graphs

Xiaofeng Wang, Rui Xu, and Dong Ye

The 5-Cycle Double Cover Conjecture claims that every bridgeless
graph has a cycle double cover which consists of at most 5 cycles.
In this paper, we prove that if a cubic graph has a long circuit,
then it has a 5-cycle double cover. Our main theorem partially
strengthens some previously known results.
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1. Introduction

We follow [22] for notations and terminology not defined in this paper. A
connected 2-regular graph is called a circuit and a cycle is a graph with
even degree for each vertex. A bridgeless cubic graph is a snark if it is not
edge-3-colorable.

A family F of cycles of a graph G is called a cycle double cover of G
if each edge of G is contained in exactly two cycles of F . A k-cycle double
cover of G is a cycle double cover consisting of at most k cycles.

The following Cycle Double Cover Conjecture, due to Szekeres and Sey-
mour, is one of the most famous open problems in graph theory.

Conjecture 1.1 (Szekeres [16] and Seymour [15]). Every bridgeless graph
has a cycle double cover.

The Strong Cycle Double Cover Conjecture, due to Seymour, allows one
to include any specified circuit in the cover.

Conjecture 1.2 (Seymour, see [4] p. 237, and [5] and also [7]). For every
bridgeless G and every circuit C of G, there is a cycle double cover F of G
with C ∈ F .

The 5-Cycle Double Cover Conjecture was proposed by Celmins and
Preissmann:

Conjecture 1.3 (Celmins [3] and Preissmann [14]). Every bridgeless graph
has a 5-cycle double cover.
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Most recently, Hoffmann-Ostenhof proposed the Strong 5-Cycle Double
Conjecture for cubic graphs:

Conjecture 1.4 (Hoffmann-Ostenhof [11]). Let G be a bridgeless cubic
graph and C be a circuit of G. Then G has a 5-cycle double cover F with
C ⊆ C1 ∈ F .

Moreover, Hoffmann-Ostenhof got a necessary and sufficient condition
for cubic graphs to have 5-cycle double covers and also for cubic graphs to
have strong 5-cycle double covers. These results are further generalized to
bridgeless graphs by Xu [19].

Theorem 1.5 (Hoffmann-Ostenhof [11]). Let G be a cubic graph and C0

be a cycle of G. Then G has a 5-cycle double cover if and only if G has a
matching M such that G−M has a nowhere-zero 4-flow and G contains two
cycles C1 and C2 with E(C1) ∩ E(C2) = M .

The Cycle Double Cover Conjecture has been verified for many families
of graphs, such as, Petersen-minor free graphs [1], triangularly connected
graphs [18], graphs with hamiltonian paths [7] and graphs with certain span-
ning subgraphs [8, 9, 21]. For 5-Cycle Double Cover Conjecture, there are
only a few known results. Cubic graphs with a hamiltonian path and cubic
graphs with oddness two have been verified to have 5-cycle double covers
[12]. Readers are referred to [23] for a comprehensive discussion on circuit
covers of graphs. Recently, Cycle Double Cover Conjecture has been studied
for bridgeless cubic graphs with long circuits.

Theorem 1.6 (Fleischner and Häggvist [6]). Let G be a bridgeless cubic
graph with a circuit C. If the length of C is at least n − 4 and G − C is
connected, then G has a cycle double cover containing C.

Theorem 1.7 (Ye and Zhang [20]). Let G be a bridgeless cubic graph with
a circuit of length at least n− 7. Then G has a cycle double cover.

The above result is improved by Hägglund and Markström [10] to n−9,
and later by Brinkmann et al. [2] as the following. Both of their proofs relied
on computer search.

Theorem 1.8 (Brinkmann et al. [2]). Let G be a bridgeless cubic graph with
a circuit C of length at least n− 10, then G has a cycle double cover.

Theorem 1.9 (Brinkmann et al. [2]). Let G be a bridgeless cubic graph with
a circuit C of length at least n− 8, then G has a 6-cycle double cover.

In this paper, we study 5-cycle double covers of bridgeless cubic graphs
with a long circuit. The following is our main result which partially strength-
ens Theorem 1.7, Theorem 1.8 and Theorem 1.9.
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Theorem 1.10. Let G be a bridgeless cubic graph with n vertices. If G has
a circuit C of length at least n− 3, then G has a 5-cycle double cover.

2. Proof of the main result

Let G be a cubic graph. An edge cut S is cyclic if S separates G into
two components each of which contains a circuit. Brinkmann et al. got the
following result.

Proposition 2.1 (Brinkmann et al. [2]). Let G be a snark and P be the
Petersen graph. Then:
(1) |V (G)| ≥ 10 and P is the unique snark of 10 vertices;
(2) G has a cyclic edge-cut of size at most three if G �= P and |V (G)| < 18.

By Proposition 2.1, we know that Petersen graph is the only snark of
size at most 16 without a cyclic 3-edge-cut.

Proposition 2.2. Let P be the Petersen graph. Then P has no circuit of
length 7 and every circuit of length at least 8 has at least two chords.

Proof. Let P be the Petersen graph. Then the girth of P is five. Let C be a
circuit of P .

First, we show that |C| �= 7. Otherwise, if |C| = 7, then C has no
chord since any chord of C will create a circuit of length at most four, this is
impossible because the girth of P is 5. Let EP (C,P−C) be the edges joining
vertices of V (C) to vertices of V (P )−V (C). Then |EP (C,P −C)| = 7. Note
that 2|E(P − C)| + |EP (C,P − C)| = 3|V (P − C)| = 9. That implies that
E(P −C) has only one edge. Then P −C has an isolated vertex v. Assume
the neighbors of v on C are v0, v1 and v2 in clockwise order. Let Pi,j be the
path of C joining vi and vj but not containing vk where k ∈ Z3 \ {i, j}.
Then one of |Pi,j | ≤ 2 since |P0,1| + |P1,2| + |P2,0| = 7, say |P0,1|. Then
P01 + v1v + vv0 is a circuit of length at most four, a contradiction. This
implies that P does not contain a circuit of length 7.

Now assume |C| ≥ 8. Note that P does not have a hamiltonian circuit.
So 8 ≤ |C| ≤ 9. If |C| = 8, a similar argument as above will show that
P − C has an edge. And hence |EP (C,P − C)| = 4 when |C| = 8, and
|EP (C,P − C)| = 3 when |C| = 9. So the number of chords of C is

|C| − |EP (C,P − C)|
2

≥ 2.

This completes the proof.



344 Xiaofeng Wang et al.

There is a close relationship between nowhere-zero 4-flows and cycle
double covers of graphs.

Lemma 2.3 (See Theorem 3.5.6 in [22]). Let G be a graph and C0 be a cycle
of G. Then G admits a nowhere-zero 4-flow if and only if G has a 4-cycle
double cover F such that C0 ∈ F .

The following lemma is well-known.

Lemma 2.4. (a) (Tutte [17]) A bridgeless cubic graph admits a nowhere-
zero 4-flow if and only if it is edge-3-colorable.

(b) (Jaeger [13]) If a graph G is Hamiltonian, the G admits a nowhere-
zero 4-flow.

Now, we are ready to prove the main theorem.

Proof of Theorem 1.10. By Lemma 2.4 and Lemma 2.3, we may assume
that G is a snark. If |C| = n, then G is Hamiltonian. By Lemma 2.4, G is
edge-3-colorable, a contradiction. So we may assume that n−3 ≤ |C| ≤ n−1.
For convenience, for any graph H, we use H for the graph obtained from H
by suppressing all vertices of degree two.

Let M be the set of all chords of C. Then M is a matching since G is
cubic. Let G0 := C∪M . Then G0 is a cubic graph with a Hamiltonian circuit
C0 obtained from C. By Lemma 2.4, G0 has an edge-3-coloring c0 : E(G0) →
Z3 such that M := c0

−1(0). The coloring c0 of G0 can be extended to an
edge-coloring c0 of G0 such that every colored edge e of G0 is a monotone-
colored path of G0 which is the subdivision of e. Let Ci := c−1

0 (i) ∪M for
i = 1 and 2. Then C1, C2 are two cycles of G with E(C1) ∩ E(C2) = M .
Clearly, {C1, C2} covers each edge of C exactly once and each edge of M
exactly twice.

By Theorem 1.5 and Lemma 2.4-(a), it suffices to prove that G − M
has a nowhere-zero 4-flow, i.e. suppressed cubic graph G′ = G−M is edge-
3-colorable. Suppose, to the contrary, that G′ is not edge-3-colorable. Note
that |C| ≥ n− 3 and C is chordless. It follows that |G′| ≤ 3 + 3 ∗ 3 = 12.

Claim: G′ is not the Petersen graph.
Suppose that G′ is the Petersen graph. Since C is chordless, C has length

at most six by Proposition 2.2. So |V (G′)| ≤ |C| + 3 = 9. This contradicts
the fact that Petersen graph has ten vertices.

By the Claim and Proposition 2.1, G′ has a cyclic edge-cut S of size at
most three. Note that G′ is bridgeless, then 2 ≤ |S| ≤ 3. Let G1 and G2 be
two components of G′−S. If S∩E(C) = ∅, assume that C ⊆ G1. Since S is a
cyclic edge-cut, G2 contains a circuit. Note that |C| ≥ n−3, then |V (G2)| ≤
3. It follows that C is a spanning subgraph of G1, |V (G2)| = 3 and G2 is a
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triangle. This implies that G′ has exactly 6 vertices. By Propositon 2.1, G′

is not a snark, a contradiction.
Hence S ∩ E(C) �= ∅. Since G′ is not 3-edge-colorable, at least one of

G′/G1 and G′/G2 is not 3-edge-colorable, say G′/G2. Since S is a cyclic
edge-cut, and G2 has a circuit and hence has at least three vertices.

If |S| = 2, then |V (G′/G2)| = |V (G′)| − |V (G2)| ≤ 12 − 3 = 9. By
Proposition 2.1, G′/G2 is 3-edge-colorable, a contradiction.

So we may assume that |S| = 3. Then G′/G2 has no vertices of degree
two and hence G′/G2 = G′/G2. It follows that |V (G′/G2)| = |V (G′)| −
|V (G2)| + 1 ≤ 10. By Proposition 2.1, G2 has exactly 3 vertices (thus a
triangle) and G/G2 is a snark with 10 vertices. By Proposition 2.1, G/G2 is
the Petersen graph.

Let C ′ be the circuit of C by contracting the part of G2. Then C ′ has
at most one chord which is the edge in S \E(C), a contradiction to Propo-
sition 2.2. This completes the proof.
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