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On the geodetic rank of a graph
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A graph convexity is a finite graph G, together with a family of
subsets C of its vertices, such that ∅, V (G) ∈ C, and C is closed
under intersections. The members of C are called convex sets. The
graph convexity is geodetic when its convex sets are closed under
shortest paths. For a subset S ⊆ V (G), the smallest convex set
containing S, denoted by H(S), is the hull of S. On the other hand,
S is convexly independent when v �∈ H(S\{v}), for any v ∈ S. The
rank of G is the cardinality of its largest convexly independent set.
In this paper, we consider complexity aspects of the determination
of the rank in the geodetic convexity. Among the results, we prove
that it is NP-hard to approximate the geodetic rank of bipartite
graphs by a factor of n1−ε, for every ε > 0. On the other hand,
we describe polynomial time algorithms for finding the rank of P4-
sparse graphs and split graphs. Also, by applying monadic second-
order logic we obtain further complexity results, including a linear
time algorithm for determining the rank of a distance-hereditary
graph. Some of the results obtained are extended to other graph
convexities.
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1. Introduction

Convexity spaces have been considered in different branches of mathemat-
ics [32]. The study of convexities applied to graphs has started more recently,
about 50 years ago [22, 29, 31]. Abstract convexity parameters, when con-
sidered on graph convexities [23], give rise to interesting graph parameters.
In particular, complexity aspects related to the computation of these pa-
rameters are the main goal of various recent papers.

The computation of convexity parameters for a graph depends on the
particular convexity being considered. The most common graph convexities
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so far considered are those whose convex sets are based on some family of

paths P of the graph, known as path convexities, where a set is convex if it

is closed for paths of P . In this context, the convexity which has been most

considered is the geodetic convexity, which is precisely the graph convexity

whose convex sets are closed under shortest paths, that is, P is the collection

of all shortest paths of the graph. See, for instance, [3, 7, 13, 24]. There are

some other types of path convexities, as the monophonic convexity [8, 19,

21], P3-convexity [9, 10], P ∗
3 -convexity [2], m3-convexity [20], triangle-path

convexity [12, 11]. They are defined by letting the convex sets be closed

under induced paths, paths of order 3, induced paths of order 3, induced

paths of length at least three, and paths whose only possible chords are

those at distance two in the path, respectively.

In the present paper, we are mainly concerned with the computation of

the rank of a graph. Complexity aspects of the rank of a graph convexity have

been considered in [30] on the P3-convexity and on the monophonic convexity

where the problem is shown to be NP-complete. As a corollary of a result of

[30], it is also NP-complete for bipartite graphs on the P ∗
3 -convexity. In the

rest of this paper we are mainly interested in the geodetic rank. We show that

finding such a parameter leads to an NP-hard problem. Moreover, it is NP-

hard even to find an approximation for the rank of a bipartite graph, within

a factor of n1−ε, for every ε > 0. In contrast, we describe polynomial time

algorithms for the geodetic rank of P4-sparse graphs, with consequences for

the rank on the P ∗
3 -convexity, and of split graphs. In addition, by employing

monadic second-order logic, we describe results concerning polynomial time

determination of the rank of graphs having fixed clique-width, in some graph

convexities. As a consequence, we show that both the geodetic rank and the

monophonic rank of a distance-hereditary graph can be computed in linear

time.

2. Preliminaries

For graph theoretical concepts and terminology, see the book by Bondy and

Murty [6].

Let G be a simple finite graph, with vertex set V (G) and C a family of

subsets of V (G). The pair (G, C) is a graph convexity, when ∅ ∈ C, V (G) ∈ C
and, if S1, S2 ∈ C, then S1 ∩ S2 ∈ C. The subsets C ∈ C are called convex

sets. The convex hull of a subset S ⊆ V (G) with respect of a graph G

and a convexity C, denoted by HC,G(S), is the smallest convex set which

contains S. When the convexity and graph being considered are clear from
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the context, we will omit the subscript. If H(S) = V (G), we say that S is a

hull set.

Let G be a graph and P be a family of paths in G. Given a subset

S ⊆ V (G), let I(S) be the set of vertices belonging to the paths of P
between two vertices of S. In this paper, we are mainly concerned with

P being all shortest paths (corresponding to the geodetic convexity or g-

convexity for short), and also induced paths of length 2 (corresponding to

the P ∗
3 -convexity), respectively.

There are many different graph parameters. In general, their computa-

tion strongly depends on the particular convexity under consideration. One

of the parameters, so far most studied, is the hull number. For a graph con-

vexity (G, C), the hull number of G is the least cardinality hull set of G.

The computation of this parameter has been considered in some different

papers, as [1, 17, 18, 23, 27].

Another important convexity parameter is the rank of a graph [32]. For

some graph convexity (G, C), we say that a subset S ⊆ V (G) is convexly

independent when v �∈ H(S \ {v}), for each v ∈ S. The rank of G, denoted

by rkC(G), is the cardinality of its largest convexly independent set. In the

following we denote respectively by rkg(G), rkP (G), rkP3
(G) and rkP ∗

3
(G)

the rank of G with respect to the following convexities: geodetic convexity,

monophonic convexity, paths of order 3 and induced paths of order 3.

3. Computational complexity of the geodetic rank

In this section, we prove that the geodetic rank is NP-Complete even in

bipartite graphs of diameter 3. In fact, we prove a stronger statement.

Theorem 1. For every ε > 0, approximating the geodetic rank of a bipartite

graph by a factor n1−ε is NP-hard.

In order to prove this theorem, we need to present some basic results

on approximation algorithms and reductions, following the terminology of

Ausiello et al. [4] and Crescenzi [16].

Given an optimization problem P , let optP (I) denote the optimal solu-

tion value for some instance I of P and, for a solution S of I, let valP (I, S)

denote the associated value. Given an instance I of P and a solution S of I,

the performance ratio RP (I, S) is defined by

RP (I, S) = max

{
optP (I)

valP (I, S)
,
valP (I, S)

optP (I)

}
.
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Given a constant r ≥ 1, an r-approximation algorithm for P is an al-
gorithm that, applied to any instance I of P , runs in time polynomial in
the size of I and produces a solution S such that R(I, S) ≤ r. If such an
algorithm exists for a constant r, then we say that P belongs to APX.

We say that a problem P is r-inapproximable in polynomial time if there
is no r-approximation polynomial time algorithm for P . Given a function
r(n), we say that a problem P is O(r(n))-inapproximable in polynomial
time if there is a function r′(n) = O(r(n)) such that the problem P is
r′(n)-inapproximable in polynomial time.

A reduction from P1 to P2 consists of a pair (f, g) of polynomial-time
computable functions such that, for any instance I of P1, (a) f(I) is an
instance of P2, and (b) g(I, S) is a feasible solution of I, for any feasible
solution S of f(I).

A continuous reduction from P1 to P2 is a 3-tuple (f, g, γ), where (f, g) is
a reduction from P1 to P2 and γ ≥ 1 is a constant, such that, ifRP2

(f(I), S) ≤
r (r ≥ 1), then RP1

(I, g(I, S)) ≤ γr for each instance I of P1 and for every
feasible solution S of f(I). From this definition, if there is a polynomial time
r-approximation algorithm for P2 for some r ≥ 1, then there is a polynomial
time γr-approximation algorithm for P1. Consequently, if P1 is O(r(n))-
inapproximable in polynomial time, then P2 is also O(r(n))-inapproximable
in polynomial time, where r(n) is a function such that limn→∞ r(n) = ∞.

Proof of Theorem 1. We obtain a continuous reduction from the Set Packing
Problem. Given a family S = {S1, . . . , Sm} of finite sets, the objective of the
Set Packing Problem is to determine the size of a maximum set packing
of S, which is a family of mutually disjoint sets of S. Given an instance
S = {S1, . . . , Sm} of the Set Packing Problem, it is easy (polynomial) to
check if opt(S) < 4 (just check all subfamilies with 4 sets Sk1

, Sk2
, Sk3

, Sk4
).

We will then consider instances S such that opt(S) ≥ 4.
Given an instance S = {S1, . . . , Sm} of Set Packing, we construct a

bipartite graph f(S) = G, which will be an instance of the geodetic rank
problem, as follows. Let {a1, . . . , an} = S1 ∪ . . .∪Sm. Create two vertices z1
and z2. For every i ∈ [n], create vertices a′i and a′′i , and create the edges a′iz1,
a′′i z1, a

′
iz2 and a′′i z2. For every k ∈ [m], create a vertex S′

k. Create a vertex
W , edges z1W, z1W and, for every k ∈ [m], create the edge S′

kW . If ai ∈ Sk,
create the edges a′iS

′
k and a′′i S

′
k. Let A′ = {a′1, . . . , a′n}, A′′ = {a′′1, . . . , a′′n}

and S ′ = {S′
1, . . . , S

′
m}. This constructed graph G is clearly bipartite, with

bipartitions A′ ∪A′′ ∪ {W} and S ′ ∪ {z1, z2}.
Given a set packing {Sk1

, Sk2
, . . .} of S, we can obtain the convexly

independent set {S′
k1
, S′

k2
, . . .} of G (notice that all minimum paths between

two vertices in this set passes through the vertex W ).
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On the other way, given a convexly independent set C of V (G), let
g(S, C) = {Sk : S′

k ∈ C}. We claim that g(S, C) is a set packing of S.
In fact, we prove a stronger statement. We claim that a subset C ⊆ V (G)

with |C| ≥ 4 is a convexly independent set if and only if C ⊆ S ′ and g(S, C)
is a set packing of S.

See Figure 1:

Figure 1.

In order to prove this claim, suppose that C is a convexly independent set
with at least 4 vertices. Clearly C does not contain 2 vertices u, v such that
hull({u, v}) = V (G). Then C does not contain both z1 and z2, and C does
not contain two vertices of A′∪A′′∪{W}. Also notice that C does not contain
two vertices S′

k and S′
� such that Sk ∩ S� �= ∅, since hull({S′

k, S
′
�}) = V (G).

If z1 ∈ C, then, since |C| ≥ 4 and C has at most one vertex of A′ ∪A′′ ∪
{W}, C contains a vertex S′

k ∈ S ′, a contradiction since hull(z1, S
′
k) = V (G).

Then z1, z2 �∈ C. Since |C| ≥ 4, then C contains at least two vertices S′
k, S

′
� ∈

S ′ (clearly Sk ∩ S� = ∅). Therefore, W �∈ C, since W ∈ hull({S′
k, S

′
�}).

Assume that C contains a vertex a′i ∈ A′. Then a′i cannot be adjacent to
both S′

k and S′
�. Consider that a′i is not adjacent to S′

k. Then there are
minimum paths from a′i to S′

k passing through z1 and z2 and, consequently,
hull({a′i, S′

k}) = V (G), a contradiction. Thus C ∩ A′ = ∅ and analogously
C ∩A′′ = ∅. Therefore C ⊆ S ′ and, if S′

k, S
′
� ∈ C, then Sk ∩ S� = ∅ (in other

words, g(S, C) is a set packing of S).
For the converse, assume that C ⊆ S ′ and g(S, C) is a set packing of S.

Therefore, since Sk ∩S� = ∅ for every S′
k, S

′
� ∈ C, there is no minimum path

between two vertices of C passing through a vertex of A′∪A′′. Consequently
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hull(C ′) ⊆ C ′ ∪ {W} for every C ′ ⊆ C. This implies that C is convexly
independent.

With this, we conclude directly that (f, g, 1) is a continuous reduction
from the set packing problem to the geodetic rank problem. It is known that,
unless P=NP, there can be no polynomial time algorithm that approximates
the maximum clique to within a factor better than n1−ε, for any ε > 0
[33]. Since Set-Packing is as hard to approximate as the Maximum Clique
Problem [5], we are done.

4. P4-sparse graphs

In 2011, Campos et al. [9] obtained linear time algorithms for many P3-
convexity parameters on (q, q − 4)-graphs, for every fixed q, which are the
graphs such that every set with at most q vertices induces at most q − 4
P4’s. Cographs and P4-sparse graphs are respectively the (4, 0)-graphs and
the (5, 1)-graphs. In this paper, we obtain linear time algorithms for the
geodetic rank on P4-sparse graphs.

Given graphs G1 and G2, the disjoint union G1∪G2 is the graph obtained
from the union of the vertex sets and the edge sets, and the join G1 +G2 is
the graph obtained from G1 ∪G2 including all edges between G1 and G2.

It is known that every cograph G is a vertex, or a disjoint union or a
join of two cographs. The next lemma is valid for the geodetic convexity and
the P ∗

3 -convexity.

Lemma 2 (Union). Let G1 and G2 be two graphs. Then rk(G1 ∪ G2) =
rk(G1) + rk(G2) for any path convexity.

Lemma 3. Let G1 and G2 be two graphs and let G = G1 + G2. If G1

and G2 are complete graphs, then rkg(G) = rkP ∗
3
(G) = n, where n is

the number of vertices of G. If G1 and G2 are not complete graphs, then
rkg(G) = rkP ∗

3
(G) = ω(G), where ω(G) is the size of the largest clique of

G. If G1 is not complete and G2 is complete, then rkg(G) = rkP ∗
3
(G) =

max{rkP ∗
3
(G1), ω(G)}.

Proof. If G is complete, it is clear that V (G) is convexly independent and
then the rank is n = |V (G)| for both convexities. Assume that G1 and G2

are not complete and let S be a convexly independent set of G with at
least 3 vertices. If S contains two non-adjacent vertices of G1, then these
two vertices form a hull set, a contradiction. The same for G2. Then every
convexly independent set with at least 3 vertices is a clique of G and then
rkg(G) = rkP ∗

3
(G) = ω(G).
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Now assume that G1 is not complete and G2 is complete. Let S be a
convexly independent set of G. If S contains a vertex of G2, then S cannot
contain two non-adjacent vertices of G1 and, consequently, S is a clique. If
S does not contain a vertex of G2, then S is also a convexly independent set

of G1. Therefore, rkg(G) = rkP ∗
3
(G) = max{rkP ∗

3
(G1), ω(G)}.

It is known [26] that every P4-sparse graph G is a vertex, or is the union
or the join of two P4-sparse graphs, or is a spider (R,K, S) such that either
R = ∅ or G[R] is P4-sparse. A spider (R,K, S) is a graph G = (R∪K∪S, E)
such that K = {k1, . . . , kp} and S = {s1, . . . , sp}, for p ≥ 2, induce a clique
and a stable set, respectively; either si is adjacent to kj if and only if i = j
(a thin spider), or si is adjacent to kj if and only if i �= j (a thick spider);
and every vertex of R is adjacent to each vertex of K and non-adjacent to
each vertex of S. Moreover, this decomposition of P4-sparse graphs can be

obtained in linear time [26].

Notice that, if G is a spider (R,K, S), then the only shortest paths that
are not edges and induced P3’s in G are between two vertices of S (and only
if G is a thin spider). Therefore the geodetic convexity and the P ∗

3 -convexity
coincide in G if G is not a thin spider and the computation of the parameters
in one convexity will imply the computation in the other convexity.

Lemma 4. If G is a spider (R,K, S) and R �= ∅, then rkg(G) = rkP ∗
3
(G) =

rkP ∗
3
(G[R]) + k, where k = |K| = |S|.

Proof. At first, notice that the set C ′ formed by S union a largest P ∗
3 -

convexly independent set of G[R] is a convexly independent set with |C ′| =
rkP ∗

3
(G[R]) + k ≥ k + 1 vertices in both convexities. Suppose, by contra-

diction, that there exists a set C which is a convexly independent set of G
in the geodetic convexity with more than |C ′| vertices. If C contains two
adjacent vertices ki ∈ K and sj ∈ S, then C cannot contain any vertex

of R ∪ K \ {ki} and, consequently |C| ≤ k + 1, a contradiction. Then C
does not contain two adjacent vertices ki ∈ K and sj ∈ S. This implies that
|C\R| ≤ k. Consequently |C∩R| > rkP ∗

3
(G[R]) and C∩R is not P ∗

3 -convexly
independent in G[R]. If C contains a vertex of K, then C cannot contain
two non-adjacent vertices of R and, consequently, C ∩R is a clique, which is
also a P ∗

3 -convexly independent set, a contradiction. If C does not contain
a vertex of K, then C ∩R is also a P ∗

3 -convexly independent set of G[R], a
contradiction. Then C ′ is a largest convexly independent set of G.

Lemma 5. If G is a spider (R,K, S) and R = ∅, then rkg(G) = k, where

k = |K| = |S|.
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Proof. Let C be a convexly independent set of G in the geodetic convexity.
It is clear that if C ⊆ K or K ⊆ S then |C| ≤ k, and hence we can assume
that C ∩K �= ∅ and C ∩ S �= ∅. If C contains two adjacent vertices ki ∈ K
and sj ∈ S, then C cannot contain any other vertex of K ∪S \{ki, sj} when
G is a thin spider and, consequently |C| = 2. And if G is a thick spider, then
ki /∈ C and therefore |C| ≤ k.

In the case G is a thick spider, if C contains two non adjacent vertices,
which are si and ki, then any other vertex from K \ki is forbidden, and since
ki is adjacent to all other vertices from S \ si we can conclude that |C| ≤ k.
Now in the case G is a thin spider and |C| > 2, since every vertex of C ∩K
excludes a vertex of S, and vice-versa, we can also conclude that |C| ≤ k.

Finally, becauseK and S are convexly independent sets, we can conclude
that rkg(G) = k.

Since the P ∗
3 -convexity coincide with the g-convexity in thick spiders,

we have the following corollary.

Corollary 6. If G is a thick spider (R,K, S) and R = ∅, then rkP ∗
3
(G) = k,

where k = |K| = |S|.

Finally, if G is a thin spider, we can compute the parameters of the
P ∗
3 -convexity with the following lemma.

Lemma 7. If G is a thin spider (R,K, S) and R = ∅, then rkP ∗
3
(G) = k+1,

where k = |K| = |S|.

Proof. At first, notice that the set C ′ formed by S and one vertex of K
is P ∗

3 -convexly independent with k + 1 vertices. Suppose, by contradiction,
that there exists a P ∗

3 -convexly independent set C of G with more than |C ′|
vertices. Then |C| ≥ k+2 and, by the pigeon-hole principle, C contains two
adjacent vertices ki ∈ K and si ∈ S. Moreover, C contains a vertex kj �= ki
of K, a contradiction, since there exists a shortest path from si to kj passing
through ki.

With this, we obtain a linear time algorithm for the geodetic rank on
P4-sparse graphs.

5. Split graphs

In this section, we describe a polynomial time algorithm for determining the
geodetic rank of a split graph. First, we present a necessary condition for a
set of vertices of a graph to be convexly independent, in general graphs.
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The following notation is employed. For a graph G and v ∈ V (G),
NG(v) and NG[v] denote the open and closed neighborhoods of v, respec-
tively. For S ⊆ V (G), let NG[S] = ∪v∈SNG[v], G[S] denote the subgraph
of G induced by the vertices of S, and HG(S) denote the hull of S. We let
N2

G[v] = NG[NG[v]]. For vertices vi, vj ∈ V (G), let dG(vi, vj) to denote the
distance between vi and vj in G, that is, the length of a shortest vi − vj
path. When the context is clear, we may also drop the subscripts in these
notations, and simply write N [v], d(vi, vj), and so on. Finally, denote by
ω(G) and α(G) the sizes of the maximum clique and independent set of G,
respectively.

Let {S1, . . . , Sk} be a family of subsets Si ⊆ V (G) of vertices of a graph
G. Then S1, . . . , Sk is distance-regular when each pair of subsets Si, Sj sat-
isfies

d(vi, vj) = d(v′i, v
′
j),

for all vi, v
′
i ∈ Si and vj , v

′
j ∈ Sj .

It follows from the definition that the subsets {S1, . . . , Sk} must be ver-
tex disjoint.

Theorem 8. Let S ⊆ V (G) be a convexly independent set of vertices of G.
Then G[S] is a family of (vertex disjoint) distance-regular cliques of G.

Proof. Let {S1, . . . , Sk} be the set of connected components ofG[S]. Suppose
some Si is not a clique. Then Si contains an induced P3. Let v1, v2, v3 be such
a path. It follows that v2 belongs to a shortest v1 − v3 path. Consequently,
v2 ∈ H(S \ {v2}), contradicting S to be convexly independent.

We now know that the connected components {S1, . . . , Sk} ofG[S] are all
cliques. Next, again by contrary, suppose G[S] is not distance-regular. Then,
for some pair of subsets Si, Sj there are vertices vi, v

′
i ∈ Si and vj , v

′
j ∈ Sj ,

such that d(vi, vj) �= d(v′i, v
′
j). Without loss of generality, let d(vi, vj) <

d(v′i, v
′
j). Examine the alternatives for the relative values of d(vi, v

′
j). Because

d(vj , v
′
j) = 1, it follows d(vi, v

′
j) ≤ d(vi, vj) + 1. If d(vi, v

′
j) = d(vi, vj) + 1

then vj belongs to a shortest vi − v′j path, implying H(S \ {vj}) = H(S),
contradicting S to be convexly independent. Then d(vi, v

′
j) = d(vi, vj). In

this situation, since d(v′i, v
′
j) > d(vi, vj) and d(vi, v

′
i) = 1, it follows that

vi belongs to a shortest v′i − v′j path, again contradicting S to be convexly
independent. Therefore G[S] is indeed a family of distance-regular cliques
of G.

Corollary 9. Let S be a convexly independent set of a bipartite graph G
with |S| ≥ 3. Then S is an independent set of G.
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Proof. Since G is bipartite and by the above theorem, it follows that G[S]
consists of an independent set of vertices and edges. However, suppose G[S]
contains an edge v1v2. Take any third vertex v3 of G[S], v3 �= v1, v2. Then
the parities of d(v1, v3) and d(v2, v3) are distinct, meaning that d(v1, v3) �=
d(v2, v3). Then G[S] is not distance-regular, contradicting S to be convexly
independent. Therefore S contains solely an independent set of vertices
of G.

Next, we turn to split graphs. The following notations are employed. Let
G be a connected split graph, V (G) = I ∪C, where I is an independent set
and C a maximal clique of G, and I, C �= ∅. Let B denote the bipartite
graph obtained from G, by removing all internal edges of C. For some v ∈ I,
we denote by Ev(B) the set of edges incident to v in B, Cv the set C \N(v)
and we let Iv be the set {v′ ∈ I | d(v, v′) = 2 and N(v′) ∩ Cv �= ∅}. Let
Bv := B[N2

B[v]] − Ev(B). Clearly, B and Bv are bipartite graphs, and v is
an isolated vertex of Bv.

For v ∈ I and w ∈ N(v), we let �w
v be the binary relation on Iv such

that for every v′, v′′ ∈ Iv we have v′ �w
v v′′ if N(v′) ∩N(v) = N(v′′) ∩N(v)

and v′, v′′ ∈ N2
G[v]∩N2

G[w]. Clearly, the binary relation �w
v is an equivalence

relation, and we denote by [v′]�w
v
the equivalence class of v′. We let S

[v′]�w
v

vw

be the set {v, w}∪ [v′]�w
v
∪{v′′ ∈ I \ (Iv ∪{v}) | N(v′′) ⊆ N(v′)}. It is worth

noticing that S
[v′]�w

v
vw is an independent set of Bv.

The next theorem describes exactly the convexly independent sets of a
split graph.

Theorem 10. Let G be a connected split graph, and let S ⊆ V (G), |S| ≥ 3.
The following affirmatives are equivalent:

1. S is convexly independent.
2. S is an independent set of B or an independent set of Bv containing v,

for some v ∈ I. Moreover, if S is of the latter type, then two vertices in
(S∩I)\{v} cannot have a common neighbor in Cv, and if |S∩C| > 1,
then S cannot contain a vertex in Iv, and if S ∩ C = {w}, then S ⊆
S
[v′]�w

v
vw for some v′ ∈ Iv.

Proof. ((1) =⇒ (2)). From Theorem 8 we know that G[S] is a family of
disjoint distance-regular cliques. If G[S] consists of exactly one clique then
S ⊆ C or S ⊆ N [v], for some v ∈ I. In the former alternative S is an
independent set of B, while in the latter an independent set of Bv containing
v. Examine the situations where G[S] contains more than one clique. If all
cliques of G[S] are singletons then S is an independent set of G, hence also
of B.
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If G[S] is not connected and all the connected components are singletons
then S ⊆ I and then is an independent set of B. Now, exactly one of the
connected components of G[S], say C1, is not a singleton and is included
in NG[v] for some v and all the other connected components are singleton
vertices in I. Let SI := S ∩ I and SC := S ∩ C. If SC is not included in the
neighbors of a vertex from SI , then S is an independent set of B, otherwise,
C1 = SC ∪ {v}. Now, since I is an independent set no vertex in SI \ {v}
can be adjacent to a vertex from SC because G[S] is distance-regular (by
Theorem 8). Hence, S is an independent set of Bv containing v. Now, if
two vertices in SI \ {v} have a common neighbor in Cv, then SC would be
included in Hg(SI) because if w ∈ Cv is a common neighbor of v1 and v2,
both in SI \{v}, it would be generated by {v1, v2}, and then every vertex in
N(v) is in a shortest path between v and w. If |SC | ≥ 2, then no vertex in
SI \ {v} can have a neighbor in Cv. Indeed, let w1 and w2 be two neighbors
of v in SC and let v′ ∈ SI \ {v} have a neighbor z in Cv. Then, z is in
a shortest path between w1 and v′, i.e., w2 ∈ Hg(S \ w2), contradicting S
being a convexly independent set. Suppose finally that SC = {w} and let
v′ ∈ SI \{v} with a neighbor z in Cv and let w′ ∈ NG(v)∩NG(SI \{v}) with
w′ �= w. Notice that w′ must exist because for each v′′ ∈ SI\{v}, d(w, v′′) = 2
and hence d(v, v′′) = 2. If w′ /∈ N(v′), then w ∈ Hg(SI) because w′ would
be generated by SI , then z would be generated by w′ and v′ and finally w
would be generated by v and z. Therefore, for all v′′ ∈ SI \ {v} we have
NG[v

′′] ∩ NG(v) ⊆ NG(v
′) ∩ NG(v) and if v′′ have a neighbor in Cv then

v′ �w
v v′′. Hence, S ⊆ S

[v′]�w
v

vw .

((2) =⇒ (1)). First, suppose that S is an independent set of B. If
S ⊆ I then S is an independent set of G, hence convexly independent. If
S ⊆ C then G[S] is a single clique, clearly also convexly independent. In the
remaining alternatives, the two sets SC := S∩C and SI := S∩I �= are both
non empty. Because S is an independent set, NG(SI) ⊆ C and C is a clique
we can conclude that Hg(C

′ ∪ SI) = C ′ ∪ SI ∪ NG(SI) for every C ′ ⊂ SC .
Consequently, S is convexly independent.

Examine the alternative where S is an independent set of Bv containing
v, for some v ∈ I and S is not an independent set of B. Then the two
sets SC := S ∩ C and SI := S ∩ I are non empty. If SI = {v} then S
is a clique of G, i.e., convexly independent. Otherwise SI \ {v} �= ∅. First
notice that because the vertices in SI are simplicial vertices, none can be
in a shortest path and hence no vertex v′ ∈ SI is in Hg(S \ {v′}). Assume
first that |SC | ≥ 2. Now, because |SC | ≥ 2, by hypothesis SI ∩ Iv = ∅.
Hence, Hg(C

′ ∪ (SI \ {v})) = C ′ ∪ SI ∪ NG(SI \ {v}) for each C ′ ⊂ SC .
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Therefore, S is convexly independent. Suppose finally that SC := {w}, i.e.,
S ⊆ S

[v′]�w
v

vw for some v′ ∈ Iv. Since two vertices v1 and v2 in SI∩[v′]�w
v
cannot

share a common vertex in Cv and C is a clique, then Cv ∩Hg(S) = ∅. And
because w /∈ NG(v

′) and NG(SI \ {v}) = NG(v
′), we can conclude that

w /∈ Hg(S \ {w}), i.e., S is convexly independent.

From Theorem 10 we can characterize the maximum convexly indepen-
dent sets in split graphs. Let G be a split graph. For each v ∈ I and each

w ∈ NG[v] we let αvw := max{|S[v′]�w
v

vw | | ∀v1, v2 ∈ [v′]�w
v
, (N(v1) ∩N(v2)) ∩

Cv = ∅}.
Corollary 11. Let G be a split graph, then

rk(G) = maxv∈I

{
α(Bv[V (Bv) \ Iv]), α(B), max

w∈N(v)
{αvw}

}
.

Proof. By Theorem 10 we did not take into account in the above equality

only the sets S
[v′]�w

v
vw such that there exist v1, v2 ∈ [v′]�w

v
and (N(v1) ∩

N(v2)) ∩ Cv �= ∅. However, such sets are not convexly independent and for

each such set S
[v′]�w

v
vw , the set S

[v′]�w
v

vw \ {w} is convexly independent and is

included in I. Therefore, max{|S[v′]�w
v

vw | | ∃v1, v2 ∈ [v′]�w
v
, (N(v1)∩N(v2))∩

Cv �= ∅} ≤ α(B). This concludes the proof.

The algorithm for efficiently computing the rank of a split graph follows
directly from Corollary 11. The maximum independent set of a bipartite
graph having n vertices can be found by computing a matching [28], requir-
ing O(n2.5) time. For each v ∈ I and each w ∈ N [v] the equivalence classes

of �w
v can be found in O(n2) time and the sets S

[v′]�w
v

vw be constructed also
in O(n2) time. Corollary 11 implies that the rank of G can be determined
by O(n) computations of a maximum independent sets of bipartite graphs,

and the computations of O(n2) sets S
[v′]�w

v
vw . Then the overall complexity of

the algorithm is O(n4).

6. Monadic second-order logic

Monadic second-order logic is a logical language which has proved its im-
portance in complexity theory the last three decades due to its algorithmic
relations with graph complexity measures such as tree-width (see for in-
stance the book [14]). In this section we consider the definability of the rank
function in monadic second-order logic, and its consequences in graphs of
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bounded clique-width. We refer to [14] for more information since we re-
call only the necessary definitions for the understanding. We now review
monadic second-order formulas on graphs. We will use lower case variables
x, y, z, . . . (resp. upper case variables X,Y, Z, . . .) to denote vertices (resp.
subsets of vertices) of graphs. The atomic formulas are x = y, x ∈ X and
edg(x, y) where edg denotes the adjacency relation in graphs. The set MS1

of monadic second-order formulas is the set of formulas formed from atomic
formulas with Boolean connectives ∧, ∨, ¬, =⇒, ⇐⇒, element quantifica-
tions ∃x and ∀x, and set quantifications ∃X and ∀X. An occurrence of a
variable which is not under the scope of a quantifier is called a free variable.
We often write ϕ(x1, . . . , xm, Y1, . . . , Yq) to express that the formula ϕ has
x1, . . . , xm, Y1, . . . , Yq as free variables and G |= ϕ(a1, . . . , am, Z1, . . . , Zq) to
say that the formula ϕ(x1, . . . , xm, Y1, . . . , Yq) holds in G when substituting
(a1, . . . , am) ∈ V (G)m to element variables (x1, . . . , xm) and (Z1, . . . , Zq) ∈
(2V (G))q to set variables (Y1, . . . , Yq) in the formula ϕ. The following is an
example of a formula expressing that two vertices x and y are connected by
an induced path of length 2.

¬edg(x, y) ∧ ∃z(edg(x, z) ∧ edg(z, y)).

If ϕ(x1, . . . , xm, Y1, . . . , Yq) is a formula in MS1, we let optϕ, with opt ∈
{min,max}, be the problem that consists in, given a graph G, to finding a
tuple (Z1, . . . , Zq) of (2

V (G))q such that

∑
1≤i≤q

|Zi| = opt

⎧⎨
⎩

∑
1≤i≤q

|Wi| | G |= ϕ(a1, . . . , am,W1, . . . ,Wq)

⎫⎬
⎭ .

It is well-known that many optimization graph problems, e.g., minimum
feedback-vertex set, maximum clique, . . . , correspond to optϕ for some MS1

formula ϕ.
Clique-width is a graph complexity measure introduced by Courcelle

and Olariu in [15] and has many algorithmic applications. Roughly, a graph
has clique-width at most k if it can be obtained from the empty graph
by successively applying the following operations (1) the disjoint union of
two graphs, (2) add all the edges between vertices labeled i and vertices
labeled j, i �= j, i, j ∈ {1, . . . , k}, (3) relabel the vertices labeled i into
j, i, j ∈ {1, . . . , k} (4) creation of a graph with a single vertex labeled
i ∈ {1, . . . , k}. The obtained expression is called a clique-width expres-
sion. Examples of graph classes with bounded clique-width are distance-
hereditary graphs, graphs of bounded tree-width, (q, q − 4)-graphs (for in-
stance P4-sparse graphs), distance-hereditary graphs, P4-tidy graphs, . . . We
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refer to the book [14], which summarizes the most important results in this
area, for the exact definition of clique-width and for more information on it.

Theorem 12 ([14, Theorem 6.56, Page 499]). Let k be a fixed constant. For
every MS1 formula ϕ(x1, . . . , xm, Y1, . . . , Yq), optϕ, for opt ∈ {min,max},
can be solved in linear time in any graph of clique-width at most k, provided
the clique-width expression is given. If the clique-width expression is not
given, one can compute one using at most 2k+1 labels in cubic time.

Proposition 13. Let C be a graph convexity and let BC be the betweenness
relation associated with C. Let C be a graph class. If there is a monadic
second-order formula ϕB,C (x, z, y) expressing that z is between x and y for
vertices x, y, z of a graph G ∈ C , then there is a formula indC,C (X) express-
ing that X is convexly independent for every subset X of the vertex set of a
graph G ∈ C .

Proof. The first part of the proof is already given in [27], but we include it
for completeness. We write X ⊆ Y and X � Y as shortcuts for the formulas
∀x(x ∈ X =⇒ x ∈ Y ) and X ⊆ Y ∧ ∃y(y ∈ Y ∧ y /∈ X) respectively. The
following formula Closed(X), with free set variable X, says that X is in C.

∀x, y(x ∈ X ∧ y ∈ X =⇒ ¬
(
∃z(ϕB,C (x, z, y) ∧ � z ∈ X)

)
.

The validity of the formula Closed(X) is trivial since it states that
for each x, y ∈ X, all z ∈ V (G) such that BC(x, z, y) holds must be in
X, which is exactly the definition of convex sets. The following formula,
ConvexHull(X,Y ), with free set variables X and Y , says that Y is the
convex hull of X

Closed(Y ) ∧X ⊆ Y ∧ ∀Z(X ⊆ Z ∧ Z � Y =⇒ ¬Closed(Z)).

The formula ConvexHull(X,Y ) states that Y is closed, contains X and
for any X ⊆ Z ⊆ Y we have that Z is not a convex set, which is the
definition of a convex hull set. Therefore, ConvexHull(X,Y ) states that Y
is the convex hull of X.

We can now write the formula indC,C (X) stating that X is convexly
independent, the validity of which is easy to check. (We write X \{z} below
because one can write a formula φ(Z) stating that Z = X \ {z}.)

∀z(∀Y (z ∈ X ∧ ConvexHull(X \ {z}, Y ) =⇒ ¬z ∈ Y )).

As corollaries we get the following.
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Proposition 14. Let k be a fixed positive integer. For every graph G of
clique-width at most k one can compute rkP ∗

3
(G), rkP3

(G) and rkP (G) in
cubic time.

Proof. The following formula ϕP3
(x, z, y) := edg(x, z) ∧ edg(z, y) expresses

that z is a common neighbor of x and y. The formula ϕP ∗
3
(x, z, y) :=

¬edg(x, y) ∧ edg(x, z) ∧ edg(z, y) expresses that z is in a chordless path
of length 2 between x and y. A formula ϕP (x, z, y) stating that z is in a
chordless path between x and y is given in [27]. From Proposition 13 and
Theorem 12 one can conclude.

Proposition 15. For every distance-hereditary graph G one can compute
rkg(G) and rkP (G) in linear time.

Proof. From the definition of distance-hereditary graphs we know that every
chordless path is a shortest path. Hence, z is in a shortest path between x and
y if and only if z is in a chordless path between x and y and the geodetic and
monophonic convexities coincide. Therefore there is a formula ϕdh(x, z, y)
stating that z is in a shortest path between x and y for all vertices x, z, y of
a distance-hereditary graph (see [27]). Since distance-hereditary graphs have
clique-width at most 3 and a clique-width expression can be constructed in
linear time [25], one can conclude with Proposition 13 and Theorem 12.
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