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The index problem of group connectivity

Miaomiao Han, Hong-jian Lai, and Yehong Shao

Let G be a connected graph and L(G) be its line graph. De-
fine L0(G) = G and for any integer k ≥ 0, the kth iterated line
graph of G, denoted by Lk(G), is defined recursively as Lk+1(G) =
L(Lk(G)). For a graphical property P , the P-index of G is the
smallest integer k ≥ 0 such that Lk(G) has property P . In this
paper, we investigate the indices of group connectivity, and deter-
mine some best possible upper bounds for these indices. Let A be
an abelian group and let iA(G) be the smallest positive integer m
such that Lm(G) is A-connected. A path P of G is a normal di-
valent path if all internal vertices of P are of degree 2 in G and if
|E(P )| = 2, then P is not in a 3-cycle of G. Let

l(G) = max{m : G has a normal divalent path of length m}.

In particular, we prove the following.
(i) If |A| ≥ 4, then iA(G) ≤ l(G). This bound is best possible.
(ii) If |A| ≥ 4, then iA(G) ≤ |V (G)| − Δ(G). This bound is best
possible.
(iii) Suppose that |A| ≥ 4 and d = diam(G). If d ≤ |A| − 1, then
iA(G) ≤ d; and if d ≥ |A|, then iA(G) ≤ 2d− |A|+ 1.
(iv) iZ3

(G) ≤ l(G) + 2. This bound is best possible.

1. Introduction

Throughout this paper, we use Z to denote the set of all integers and N to
denote the set of all natural numbers. For an m ∈ Z with m > 1, we use
Zm to denote the set of all integers modulo m as well as the cyclic group of
order m. We use [2] for terminology and notation not defined here. Graphs
considered in this paper may have multiple edges but no loops. Following
[2], for a graph G, κ(G), κ′(G), δ(G) and Δ(G) denote the connectivity,
the edge-connectivity, the minimum degree and the maximum degree of G,
respectively. The line graph L(G) of a graph G is defined as the graph
whose vertices are the edges ofG and where two vertices in L(G) are adjacent
if and only if the corresponding edges in G are incident to a common vertex.
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We define L0(G) = G and for integers k ≥ 0, define recursively Lk+1(G) =
L(Lk(G)). Each Lk(G) is called the kth iterated line graph of G, or just
an iterated line graph of G. For an integer n > 0, let Pn and Cn denote the
path on n vertices and the cycle of order n, called an n-path and an n-cycle,
respectively. By the definition of line graphs, if G ∈ {K1,3}∪{Pn, Cn|n ∈ N},
then the iterated line graph of G is either stable as a cycle, or diminishing
when k becomes bigger. Therefore, throughout this paper, we always assume
that G is a connected graph that is not in {K1,3} ∪ {Pn, Cn|n ∈ N}.

The hamiltonian index ih(G) of G is the smallest positive integer k
such that Lk(G) is hamiltonian. The concept of hamiltonian index was first
introduced by Chartrand and Wall [3], who showed that (Theorem A of [3])
if a connected graph G is not a path, then ih(G) exists as a finite number.
Clark and Wormald [4] considered other indices related to hamiltonicity of
the iterated line graphs. More generally, the following is proposed in [16].

Definition 1.1. For a graphical property P and a connected nonempty sim-
ple graph G which is not in {K1,3} ∪ {Pn, Cn|n ∈ N}, define the P-index of
G, denoted P(G), as

P(G)=

{
min{k|Lk(G) has property P} if at least one such integer k exists
∞ otherwise

The index problem has been investigated by many, including [3], [4], [6],
[13], [17]. [21], [29], among others. The purpose of this paper is to investigate
the indices for group connectivity of graphs.

Throughout this paper, A denotes an (additive) abelian group with iden-
tity 0, and A∗ = A − {0}. Assume that G has an orientation D(G). If an
edge e ∈ E(G) is oriented from a vertex u to a vertex v, then let tail(e) = u
and head(e) = v. For a vertex v ∈ V (G), define

E+
D(v) = {e ∈ E(G)|v = tail(e)}, and E−

D(v) = {e ∈ E(G)|v = head(e)}.

Following Jaeger et al. [11], we define F (G,A) = {f |f : E(G) → A} and
F ∗(G,A) = {f |f : E(G) → A∗}. For a function f : E(G) → A, define
∂f : V (G) → A by

∂f(v) =
∑

e∈E+
D(v)

f(e)−
∑

e∈E−
D(v)

f(e),

where “
∑

” refers to the addition in A.
A mapping b : V (G) → A is an A-valued zero sum function on G if∑

v∈V (G) b(v) = 0. The set of all A-valued zero sum functions onG is denoted
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by Z(G,A). A function f ∈ F (G,A) is an A-flow of G if ∂f(v) = 0 for every
vertex v ∈ V (G). An A-flow f is a nowhere-zero A-flow (abbreviated as A-
NZF) if f ∈ F ∗(G,A). For a mapping b ∈ Z(G,A), a function f ∈ F ∗(G,A)
is a nowhere-zero (A, b)-flow (abbreviated as (A, b)-NZF) if ∂f = b. A
graph G is A-connected if for any b ∈ Z(G,A), G has an (A, b)-NZF. Let
〈A〉 be the family of graphs that are A-connected. The group connectivity
number of a graph G is defined as

Λg(G) = min{k| G ∈ 〈A〉 for every abelian group A with |A| ≥ k}.

The concept of group connectivity was first introduced by Jaeger, Linial,
Payan and Tarsi in [11] as a nonhomogeneous form of the nowhere-zero flow
problem. The nowhere-zero flow problem was first introduced by Tutte [27]
in his way to attach the 4-color-conjecture. Tutte left with several fascinating
conjectures in this area, which remain open as of today.

Conjecture 1.2. (Tutte [27], [10])
(i) Every graph G with κ′(G) ≥ 2 has a nowhere-zero Z5-flow.
(ii) Every graph G with κ′(G) ≥ 2 without a subgraph contractible to the
Peterson graph admits a nowhere-zero Z4-flow.
(iii) Every graph G with κ′(G) ≥ 4 admits a nowhere-zero Z3-flow.

Many efforts towards these conjectures have been made, as surveyed in
[10]. Seymour [22] proves that every 2-edge-connected graph has a nowhere
zero 6-flow. Jaeger et al. improve this result by showing that if G is a 3-
edge-connected graph, then Λg(G) ≤ 6. More recently, a break through on
Z3-connectivity has been made by Thomassen and by Lovaze et al.

Theorem 1.3. (Thomassen [25]) If κ′(G) ≥ 8, then G is strongly Z3-
connected.

This lower bound in Theorem 1.3 has recently been improved.

Theorem 1.4. (Lovasz, Thomassen, Wu and Zhang [19], Wu [28]) If
κ′(G) ≥ 6, then G is Z3-connected.

The goal of this research is to show that if G /∈ {K1,3}∪{Pn, Cn|n ∈ N},
then for any A, there exists a finite integer m ∈ N such that Lm(G) ∈ 〈A〉.
The smallest such m is denoted by iA(G), called the A-connected index
of G. We shall to determine best possible upper bounds for the indices of
A-connectedness of graphs, for all abelian groups A. In Section 2, we display
the tools we will use in the arguments. Best possible upper bounds of group
connectivity are studied in the last section.
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2. Triangular and triangulated connected indices

Throughout this section, G denotes a connected graph that is not in {K1,3}∪
{Pn, Cn|n ∈ N}. For each i ∈ N, let Di(G) denote the set of all vertices of
degree i in G, for an integer subset I, let DI(G) = ∪i∈IDi(G), and so
D≤i(G) = ∪1≤j≤iDj(G). A graph G is triangular if every edge of G lies in
a 3-cycle of G.

As our arguments will be back and forth between G and L(G), for each
edge e ∈ E(G), we will often use, in the proof arguments throughout the rest
of this paper, ve to denote the vertex in L(G) corresponding to e ∈ E(G).
Likewise, if u ∈ V (L(G)), then we often use e(u) to denote the edge in G
corresponding to u in L(G).

Proposition 2.1. The following are equivalent.
(i) L(G) is triangular;
(ii) For any v ∈ D1(G), NG(v) ⊆ D≥3(G); for any v ∈ D2(G), there exists
an K3 ⊆ G such that v ∈ V (K3).

Proof. Suppose that (i) holds, or L(G) is triangular. We argue by contra-
diction to prove (ii). Assume first that for some v1 ∈ D1(G), the only vertex
w in NG(v1) has degree at most 2. Since G is not a path, we have w ∈ D2(G).
Thus the vertex in L(G) corresponding to the edge v1w ∈ E(G) is a vertex
of degree 1, contrary to the assumption that L(G) is triangular. Thus every
vertex in D1(G) must be adjacent to a vertex in D≥3(G). Next, we assume
that G has a vertex v2 ∈ D2(G) with NG(v2) = {w1, w2}. If w1w2 /∈ E(G),
then by the definition of line graphs, the edge in L(G) joining the vertices
w1v2 and v2w2 in L(G) is not in a 3-cycle, contrary to the assumption that
L(G) is triangular. This proves (ii).

Conversely, assume thatG satisfies (ii). Let e1, e2 ∈ E(G) be an arbitrary
pair of adjacent vertices in L(G). Then L(G) has an edge f linking e1 and
e2. Then for some v ∈ V (G), both e1 and e2 are incident with v. If dG(v) =
k ≥ 3, then by the definition of line graphs, edges incident with v are vertices
in L(G) which induce a complete subgraph on k ≥ 3 vertices. As k ≥ 3, f
lies in a 3-cycle of L(G). Therefore, we assume that dG(v) = 2. By (ii), v
lies in a 3-cycle of G. Since e1 and e2 are the only edges incident with v, the
3-cycle in G containing v must also contain e1 and e2. By the definition of
line graphs, the edges of this 3-cycle is also a 3-cycle in L(G), and so f lies
in a 3-cycle in this case also. This proves that L(G) must be triangular, and
so (i) holds.

For any graph Γ, and for distinct edges e, e′ ∈ E(Γ), an (e, e′)-path of Γ
is a path P whose initial edge is e and whose terminal edge is e′. The edges
in E(P ) − {e, e′} are called the internal edges of P . By the definition of
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connectedness, a graph Γ is connected if and only if for any pair of distinct
edges e, e′ ∈ E(Γ), Γ has an (e, e′)-path.

For any e, e′ in a graph G, define e ∼ e′ if and only if e = e′ or there
exists a sequence C1, C2, · · · , Ck of cycles of length at most 3, such that
e ∈ E(C1) and e′ ∈ E(Ck) and for any 1 ≤ i ≤ k − 1, E(Ci) ∩E(Ci+1) 
= ∅.
Such a sequence of 3-cycles is called an triangular sequence connecting e
and e′. It is routine to verify that ∼ is an equivalence relation on E(G). Each
equivalence class induces a subgraph which is called a triangularly con-
nected component of G. If E(G) is a triangularly connected component,
then G is triangularly connected.

Proposition 2.2. Let G be a connected graph not in {K1,3}∪{Pn, Cn|n ∈ N}
with |E(G)| ≥ 3. The following are equivalent.
(i) L(G) is triangularly connected.
(ii) For any pair of distinct edges e, e′ ∈ E(G), G has an (e, e′)-path P such
that every internal edge of P lies in a 3-cycle of G.

Proof. Assume that (ii) holds. Let H1, H2, · · · , Hc be the triangularly con-
nected components of L(G). Since G is connected, L(G) is also connected.
We may assume that V (H1)∩V (H2) contains a vertex ve, corresponding to
an edge e ∈ E(G). By definition of ve, there exists a vertex ve1 ∈ V (H1) and
a vertex ve2 ∈ V (H2) such that e is incident with e1 and e2 in G. Therefore,
we assume that for i ∈ {1, 2}, G has vertices v1, v2 such that ei, e are inci-
dent with vi. Since ve1 and ve2 are not in the same triangularly connected
component of L(G), v1 
= v2. Thus e1 and e2 are distinct edges in G. By (ii),
G has an (e1, e2)-path P such that every internal edge of P lies in a 3-cycle
of G. Thus by the definition of L(G), for the two edges ee1 and ee2, L(G) has
a triangular sequence connecting ee1 and ee2. It follows that ee1 and ee2 are
in the same triangularly connected component, whence H1 = H2, contrary
to the fact that H1 
= H2. This contradiction justifies that (ii) implies (i) of
Lemma 2.2.

Conversely, assume that (i) holds. Let e, e′ be distinct edges in G. If e and
e′ are adjacent in G, then the path in G[{e, e′}] is a path satisfying (ii). Thus
we assume that e and e′ are not adjacent in G. Since G is connected, there
exist edges e1, e2 ∈ E(G) such that e, e1 are adjacent in G, and e′ and e2 are
adjacent inG. Thus ee1 and e′e2 are edges in L(G). Since L(G) is triangularly
connected, there exists a triangular sequence C1, C2, · · · , Ck connecting the
two edges ee1 and e′e2 in L(G). Among all such sequences, choose one such
that k is minimized. Let ve, ve′ denote the vertices in L(G) corresponding
to the edges e and e′ in G, respectively. Let P ′ be a (ve, ve′)-path in L(G)
with V (P ′) ⊂ ∪k

i=0V (Ci). As V (P ′) ⊆ E(G), we define P = G[V (P ′)]. Since



310 Miaomiao Han et al.

k is minimized, there is no 3-cycle in P , and so P is a path. Let xy be any
internal edge of P . By the definition of P ′, we have vxy ∈ V (Ci), for some
1 ≤ i ≤ k. Let uvxy be the common edge of Ci−1 and Ci in L(G). Then we
may assume that V (Ci) = {u, vxy, v} and, V (Ci−1) = {u, vxy, w}, for some
vertices v, w ∈ V (G). If G[e(u)∪ e(v)∪xy] = C3, then xy lies in this 3-cycle
in G. Thus we may assume that G[e(u) ∪ e(v) ∪ xy] = K1,3.

Since w is adjacent to u and vxy, and G[{e(u), e(w), xy}] = C3, if xy is
not in any 3-cycle in G, then we may assume that x is a common vertex in
e(u), e(v) and e(w), and so G[{e(u), e(v), xy, e(w)}] = K1,4, contrary to the
assumption that k is minimized. This proves (ii).

Corollary 2.3. Each of the following holds.
(i) If G is triangular, then L(G) is triangularly connected.
(ii) If a graph G is triangularly connected, then L(G) is also triangularly
connected.

Proof. (i) Let e, e′ be any pair of distinct edges in G, and e = u1u2,
e′ = v1v2. Since G is connected, there is (u1, v1)-path P in G. Since G
is triangular, every edge of P is in a 3-cycle C3. By Proposition 2.2, L(G) is
triangularly connected.

(ii) Since triangularly connected graph G is also a triangular graph, by
(i), it follows that L(G) is also triangularly connected.

Given a connected graph G, a path P of G is a divalent path of G if
every internal vertex of P has degree 2 in G. By this definition, if an edge
is incident with two vertices neither of which is of degree 2, then this edge e
induces a divalent path of G. We call P a normal divalent path of G, if all
internal vertices of P are of degree 2 in G and if |E(P )| = 2, then P is not
in a 3-cycle of G. Let P(G) denote the set of all normal divalent path of G,
and define,

l(G) = max{m| G has a normal divalent path of length m}.

As in the literature, many studies have used l(G) as an invariant to investi-
gate the hamiltonian index as well as other hamiltonian related indices, see
[3], [4], [6], [13], [29], among others. We present the following.

Proposition 2.4. Let G be a connected graph with at least 3 edges not in
{K1,3} ∪ {Pn, Cn|n ∈ N}, and let l = l(G). Each of the following holds.
(i) (Lemma 3.2 [26]) Ll(G) is triangular.
(ii) Ll+1(G) is triangularly connected.

Proof. It suffices to prove (ii). By (i), Ll(G) is triangular. Then, by Corol-
lary 2.3 (i), Ll+1(G) is triangularly connected.
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3. Group connectivity indices

Throughout this section, we always assume that A is a finite abelian group
with at least 3 elements and G is a connected graph not in {K1,3} ∪
{Pn, Cn|n ∈ N}. Define the A-connected index of G as

iA(G) = min{m ∈ N ∪ {∞} | Lm(G) is A-connected}.

We shall show that for any abelian groupA, ifG is not in {K1,3}∪{Pn, Cn|n ∈
N} then iA(G) exists as a finite number. We will determine best possible up-
per bounds for these indices. The following will be used in our arguments.

Lemma 3.1. Let A be an abelian group with |A| ≥ 3 and let T be a connected
spanning subgraph of a graph G. Each of the following holds.
(i) (Lemma 3.3 of [14]) If G is a cycle of length n ≥ 2, then G is A-connected
if and only if |A| ≥ n+ 1.
(ii) (Lemma 2.1 of [15]) If for each edge e ∈ E(T ), G has an A-connected
subgraph He with e ∈ E(He), then G is A-connected.

For a subset X ⊂ E(G), the contraction G/X is the graph obtained from
G by identifying the two ends of each edge in X and then deleting all loops
generated by this process. Note that even if G is simple, G/X may have
multiple edges. For simplicity, we write G/e for G/{e}, where e ∈ E(G).
If H is a subgraph of G, then G/H denotes G/E(H). If v ∈ V (G/H) is
obtained by contracting a connected subgraph H of G, then H is called the
preimage of v, and v is called the image of H.

Proposition 3.2. (Propostion 3.2 of [14])
(i) If H ∈ 〈A〉 and if e ∈ E(H), then H/e ∈ 〈A〉.
(ii) If H ∈ 〈A〉, then G/H ∈ 〈A〉 if and only if G ∈ 〈A〉.

Let H be an induced subgraph of G. We define I1(H) to be L(G)[E(H)],
the subgraph of L(G) induced by E(H). Let I1 : H → L(G)[E(H)] be
a mapping from the set of all induced subgraph H of G to the set of
all induced subgraphs of L(G). We define I−1 (I1(H)) = H. Inductively,
if Ik and I−k are defined, then Ik(H) is an induced subgraph of Lk(G),
and so Ik+1(H) = I1(Ik(H)) is an induced subgraph of Lk+1(G), and de-
fine I−k+1(H) = I−1 (I−k (H)). We adopt the notation I−k+1(e) if Ik+1(H) is a
path induced by an edge e. Let G be a graph. Define E′ = E′(G) = {e ∈
E(G)|e is in a cycle of G of length at most 3} and E′′(G) = E(G)−E′(G).
Also define

P (G) = {P |P is a divalent path in G with |E(P )| = l}.
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Lemma 3.3. (Lemma 12 of [17]) Let d > 0 be an integer and let e ∈
E′′(Ld−1(G)). Then I−d−1(e) is a divalent path in G with length at least d.

Let G∗ = G − E(P (G)), and let G∗
1, G

∗
2, · · · , G∗

t be the components of
G∗, where t ≥ 1. Let G′ be the graph obtained from G by contracting every
G∗

i ∈ G into a vertex, for any 1 ≤ i ≤ t and replace every P ∈ P (G) with
one edge. By definition, if G ∈ 〈A〉, then κ′(G) ≥ 2.

Theorem 3.4. Let G be a connected graph with l = l(G), and A be an
abelian group with |A| ≥ 4. Each of the following holds:
(i) If l = 1, then L(G) ∈ 〈A〉.
(ii) If l > 1, then iA(G) ≤ l, and the equality holds if and only if G′ /∈ 〈A〉.
Proof. (i). Assume that l = 1. By the definition of divalent paths, l = 1 if
and only if one of the following holds:
(A) δ(G) ≥ 3, or
(B) δ(G) ≤ 2 and every vertex of degree 2 is contained in a triangle.
For every edge e1e2 ∈ E(L(G)), there exists a vertex v ∈ V (G) such that
e1, e2 are both incident with v in G. If (A) holds, then the edge e1e2 in L(G)
lies in a complete subgraph of order dG(v) ≥ δ(G) ≥ 3. It follows by Lemma
3.1 that L(G) ∈ 〈A〉. If (B) holds, then G has a 3-cycle containing both e1
and e2, hence L(G) has a 3-cycle containing the edge e1e2. Again by Lemma
3.1 L(G) ∈ 〈A〉. This proves (i).
(ii). Suppose that l ≥ 2. By Proposition 2.4, every edge e of Ll(G) is in a
3-cycle. By Lemma 3.1(i), K3 ∈ 〈A〉, and so by Lemma 3.1(ii), Ll(G) ∈ 〈A〉.
This implies that iA(G) ≤ l; and that iA(G) = l if and only if Ll−1(G) /∈ 〈A〉.

By the definition of P (G), we have, for any 1 ≤ i ≤ t, iA(G
∗
i ) ≤ l(G∗

i ) ≤
l − 1. Thus Il−1(G

∗
i ) ∈ 〈A〉. By the definition of line graphs, every divalent

path of length l in a graph G will become a divalent path of length l − 1 in
L(G). It follows that if P ∈ P (G), then Il−1(P ) ∼= K2. By Proposition 3.2
(ii), Ll−1(G) /∈ 〈A〉 if and only if G′ /∈ 〈A〉.

Let Δ ≥ 3 be an integer and G(Δ) be the graph obtained from K1,Δ

and Pn−Δ by identifying a vertex in D1(K1,Δ) and a vertex in D1(Pn−Δ).
We observe that Δ is the maximum degree of G(Δ).

Theorem 3.5. Let G be a connected simple graph on n > 3 vertices, Δ =
Δ(G) and A be an abelian group with |A| ≥ 4. Each of the following holds.
(i) iA(G) ≤ n−Δ.
(ii) Equality in (i) holds if and only if G = G(Δ).

Proof. (i) Note that since G is not a cycle nor a path, we have Δ ≥ 3.
By the definition of line graphs, L(G) contains a KΔ as a subgraph. Since
Δ ≥ 3, by Lemma 3.1, KΔ ∈ 〈A〉. By Proposition 3.2 (ii), L(G) ∈ 〈A〉 if and
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only if L(G)/KΔ ∈ 〈A〉. Let w ∈ V (L(G)/KΔ) be the vertex in L(G)/KΔ)
onto which KΔ is contracted. By Theorem 3.4, iA(L(G)) ≤ l(L(G)/KΔ).

If l(G) = 1, then by Theorem 3.4(i), we have iA(G) ≤ 1 ≤ n−Δ. hence
we may assume that l(G) ≥ 2. As every divalent path of length l in G will
become a divalent path of length l− 1 in L(G). To prove iA(G) ≤ n−Δ, it
suffices to prove l(L(G)/KΔ) ≤ n − Δ − 1. Let P be any divalent path in
L(G)/KΔ with |E(P )| = l(L(G)/KΔ).
Case 1. w ∈ V (P ).
Suppose that dL(G)/KΔ

(w) = 1, or that dL(G)/KΔ
(w) ≥ 3. Let P ′ = P −{w}.

Then I−1 (P ′) is also a divalent path in G, and so

l(L(G)/KΔ) = |E(P )| ≤ |E(I−1 (P ′))| ≤ l ≤ n−Δ− 1.

Thus we assume that dL(G)/KΔ
(v) = 2. Let P 1 and P 2 be the two component

of P −{w}. Then I−1 (P 1) and I−1 (P2) are divalent paths in G. It follows that

l(L(G)/KΔ) = |E(P )| ≤ |E(P 1)|+ |E(P 2)|+ 2

≤ |E(I−1 (P 1))|+ |E(I−1 (P 2))| ≤ n−Δ− 1.

Case 2. w /∈ V (P ).
Fix a vertex v0 ∈ DΔ(G). Then I−1 (P ) is also a divalent path in G with

V (I−1 (P )) ∩NG(v0) = ∅. Hence l(L(G)/KΔ) = |E(P )| ≤ |E(I−1 (P ))| − 1 ≤
n−Δ− 1.

Since iA(G)− 1 = iA(L(G)), Combining Cases 1 and 2, we have proved
that iA(G) ≤ n−Δ, and so (i) must hold.
(ii) If G = G(Δ), then Ln−Δ−1(G) has one cut edge, and so Ln−Δ−1(G) /∈
〈A〉. Thus iA(G) = n − Δ. Conversely, assume that iA(G) = n − Δ. By
Theorem 3.4, l(G) ≥ iA(G) = n−Δ. Thus G must have a divalent path of
length at least n−Δ. Since Δ ≥ 3, we conclude that G = G(Δ).

The distance of two vertices u, v ∈ V (G), denoted distG(u, v), is the
length of a shortest path from u to v of G. The diameter of G, denoted by
diam(G), is defined as

diam(G) = max{distG(u, v) | u, v ∈ V (G)}.

Let G0 be a graph obtained from a cycle C2d by identifying a pendant edge,
and for any finite abelian group A with |A| ≥ 4, define

FA = {G : G has a subgraph H such that G/H is a cycle of length at least

d+ |A|}.
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Theorem 3.6. Let G be a connected graph with d = diam(G) ≥ 2 and A
be an abelian group with |A| ≥ 4.
(i) If d ≤ 3, then iA(G) ≤ d.
(ii) If d ≥ 4, then iA(G) ≤ d if and only if G /∈ FA.
(iii) If d ≤ |A| − 1, then iA(G) ≤ d− 1.
(iv) If d ≥ |A|, then iA(G) ≤ 2d− |A|+ 1.

Proof. Let l = l(G). If d ≥ l, by Theorem 3.4, then iA(G) ≤ l ≤ d. Thus
we may assume that l ≥ d+ 1. Fix a divalent path P0 ∈ P (G). Let u and v
denote the two end vertices of P0. If u 
= v, then there exists a (u, v)-path
P ′ in G with |E(P ′)| = d′ ≤ d. Since l > d, and since P is a divalent path,
we have V (P0) ∩ V (P ′) = {u, v} and l ≤ 2d. If u = v, then P0 is a cycle.
Since G 
= Cn, we also have l ≤ 2d.

(i). d ≤ 3. Then l ≤ 2d ≤ d+3. For any divalent path Q ∈ P (G), we observe
that Id(Q) is a divalent path with length at most 3 in Ld(G). We claim
that Ld(G) is triangular. If not, there exists one edge e ∈ E(Ld(G)) such
that e ∈ E′′(Ld(G)). By Lemma 3.3, I−d−1(e) is a divalent path Q′ in G with
length at least d. Take a midpoint w of P0 and a midpoint z of Q′. Then
distG(w, z) ≥ l/2 + d/2 ≥ (2d+ 1)/2 > d, contrary to the assumption that
d = diam(G). Hence Ld(G) must be triangular. By Lemma 3.1, we conclude
that iA(G) ≤ d. Thus (i) must hold.

(ii). d ≥ 4. Suppose that G has no subgraph H such that G/H is a cycle
of length at least d+ |A|. We claim that l ≤ d + |A| − 1. If not, then there
exists a divalent path P ∈ P (G) with |E(P )| ≥ d + |A|. Let P o denote the
set of all internal vertices of P . If G − P o is connected, then G/(G − P o)
is a cycle of length |E(P )| ≥ d + |A|, contrary to the assumption. Hence
every edge in E(P ) is a cut edge of G. Since G is not a path, at least one
end of P has degree at least 3 in G. It follows that d ≥ l, contrary to the
assumption that l ≥ d + 1. Thus we must have l ≤ d + |A| − 1. It follows
that l(Ld(G)) ≤ |A| − 1. If there exists an edge e ∈ E(Ld(G)) which is
not in a cycle of length at most |A| − 1 in Ld(G), then as |A| ≥ 4, we
note that e ∈ E′′(Ld(G)). By Lemma 3.3, I−d−1(e) is a divalent path Q in
G with length at least d. Take a midpoint w of P0 and a midpoint z of Q.
Then distG(w, z) ≥ l/2 + d/2 ≥ (2d + 1)/2 > d, contrary to the fact that
d = diam(G). Hence every edge of Ld(G) lies in a cycle of length at most
|A| − 1. By Lemma 3.1, iA(G) ≤ d.

Conversely, assume that d ≥ 4 and iA(G) ≤ d. By contradiction, suppose
that there exist H such that G/H is a cycle of length at least d+ |A|. Thus
E(G/H) induces a divalent path Q in G, and Q′ = Id(Q) is a divalent path
with length at least |A| in Ld(G). Let (Q′)o denote the set of all internal
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vertices of Q′. It follows that C ′ = Ld(G)/(Ld(G)−(Q′)o) is a cycle of length
at least |A|. By Lemma 3.1 (i), C ′ /∈ 〈A〉. Since Ld(G) ∈ 〈A〉, by Proposition
3.2 (ii), C ′ = Ld(G)/(Ld(G)− (Q′)o) ∈ 〈A〉. This contradiction justifies that
G /∈ FA.
(iii) We claim that κ′(Ld−1(G)) ≥ 2. If e is a cut edge of Ld−1(G), then by
Lemma 3.3, I−d−1(e) is a divalent path P of length at least d in G such that
every edge of P is a cut edge of G. Let P be a (u, v)-path of G. Since G is
not a path, we may assume that dG(u) ≥ 3, and so NG(u)−V (P ) has vertex
w. It follows that d ≥ distG(w, v) ≥ |E(P )| + 1 ≥ d + 1, a contradiction.
This proves our claim. Now suppose that Ld−1(G) has an induced cycle C of
length |E(C)| ≥ |A| ≥ 4. For each edge e ∈ E(C), by Lemma 3.3, I−d−1(e) is
a divalent path of length at least d ≥ 2 in G. Hence G has a pair of vertices
whose distance in G is least d + 1, contrary to the fact that d = diam(G).
Hence we conclude that every induced cycle of G must have length at most
|A| − 1. Since κ′(Ld−1(G)) ≥ 2, it follows that every edge of Ld−1(G) lies in
a cycle of length at most |A| − 1. By Lemma 3.1, Ld−1(G) is A-connected.
(iv) Now assume that d ≥ |A|. By Theorem 3.4, if l(G) ≤ d, then iA(G) ≤
d < 2d−|A|+1. Hence we may assume that l(G) ≥ d+1. Note that for any
divalent path P ∈ P (G), I2d−|A|+1(P ) is a divalent path with length at most

|A|−1 in L2d−|A|+1(G). If there exists an edge e ∈ E(L2d−|A|+1(G)) which is
not in a cycle of length at most |A| − 1 in L2d−|A|+1(G), then as |A| ≥ 4, we
have e ∈ E′′(L2d−|A|+1(G)). By Lemma 3.3, I−2d−|A|+1(e) is a divalent path

Q in G with length at least 2d − |A| + 2. Take the midpoint w of P and a
midpoint z of Q. We observe that d ≥ distG(w, z) ≥ l/2 + (2d− |A|+ 2)/2
≥ d+1+(l−|A|)/2 ≥ d+1, a contradiction. Thus every edge in L2d−|A|+1(G)
is in a cycle of length at most |A|−1. By Lemma 3.1, iA(G) ≤ 2d−|A|+1.

A wheel Wn is the graph obtained from Cn by adding one vertex and
joining it to each vertex of Cn. A fan Fn is the graph obtained from Pn by
adding one vertex and joining it to each vertex of Pn. As examples, K4

∼= W3

and K3
∼= F2. Let G1, G2 be two disjoint graphs. As in [7], G1 ⊕2 G2, called

the parallel connection of G1 and G2, is defined to be the graph obtained
from G1 ∪ G2 by identifying exactly one edge. Let WF be the family of
graphs that satisfy the following conditions:
(i) K3,W2n+1 ∈ WF ;
(ii) If G1, G2 ∈ WF , then G1 ⊕2 G2 ∈ WF .

Theorem 3.7. (Theorem 1.4 of [7]) Let G be a triangularly connected graph
with |V (G)| ≥ 3. Then G is not Z3-connected if and only if G ∈ WF .

Beineke [1] and Robertson [20] showed that any line graph cannot have
an induced subgraph isomorphic to W5 or K1,3. As for n ≥ 3, any induced
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W2n+1 contains an induced K1,3, Beineke and Robertson in fact proved the
following.

Theorem 3.8. (Beineke [1] and Robertson [20], see also page 74 of [9])
If a connected graph G is a line graph, then G has no induced subgraph
isomorphic to W2n+1 for n ≥ 2.

Lemma 3.9. If G is triangularly connected, then L(G) ∈ 〈Z3〉.
Proof. By Corollary 2.3(ii), L(G) is also triangularly connected. By The-
orem 3.7, to prove L(G) ∈ 〈Z3〉, it suffices to prove that L(G) /∈ WF . By
contradiction, we assume that L(G) ∈ WF . By the definition of WF , either
L(G) = G1 ⊕2 K3, or L(G) = G1 ⊕2 W2n+1. By Theorem 3.8, we must have
n = 1.
Case 1. L(G) = G1 ⊕2 K3.

Let V (K3) = {v1, v2, v3} in L(G), where dL(G)(v2) = 2. Then G[{e(v1),
e(v2), e(v3)}] ∈ {K3,K1,3} in G. Since G is triangularly connected, we must
have G[{e(v1), e(v2), e(v3)}] = K3. Let u1, u2, u3 denote the vertices of this
K3 in G such that e(v1) = u1u2, e(v2) = u2u3 and e(v3) = u3u1. Since
G 
= K3, we may assume that G − {u1, u2, u3} has a vertex u4 such that
u1u4 ∈ E(G). Since G is triangularly connected, there must be a 3-cycle
sequence connecting u1u4 and u2u3. It follows that there must be a vertex
u5 ∈ V (G) − {u1, u2, u3} such that u5u2 or u5u3 ∈ E(G). It follows that
dL(G)(v2) ≥ 3, contrary to the fact that dL(G)(v2) = 2. This contradiction
indicates that Case 1 cannot occur.
Case 2. L(G) = G1 ⊕2 W2n+1, where n = 1.

If n = 1, then W3 = K4 is a subgraph of L(G). Let V (W3) = {e1, e2, e3,
e4} ⊂ E(G), by the definition of line graphs, G[{e1, e2, e3, e4}] ∼= K1,4. Since
G is triangular, we may assume that for some e ∈ E(G), G[e1, e2, e}] is a
3-cycle. It follows that in L(G), e as a vertex is adjacent to both vertices
e1 and e2, contrary to the fact that L(G) = G1 ⊕2 W3. This contradiction
indicates that Case 2 cannot occur as well.

It follows that L(G) /∈ WF , and so by Theorem 3.7, L(G) ∈ 〈Z3〉.
Example 3.10. We consider two examples, which are useful in our discus-
sions below.
(i) A tree T is a (3,1)-tree if every vertex in T has degree equaling 3 or
1. Let Tn denote a (3, 1)-tree on n ≥ 4 vertices. Then l(Tn) = 1. Direct
computation indicates that L2(Tn) can be obtained from K3 and K4 via par-
allel connections. Hence L2(Tn) ∈ WF . It follows by the theorem below that
L3(Tn) ∈ Z3. This shows that iZ3

(Tn) = l(Tn) + 2.
(ii) Let d ≥ 3 and l ≥ 1 be integers. Define J(d, l) to be the graph ob-
tained from K1,d by replacing one edge of K1,d by a path of length l. Thus
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J(d, 1) = K1,d. Since any J(d, l) has n = d + l vertices with d = Δ(J(d, l))
being the maximum degree, if G(Δ) has n vertices, then G(Δ) = J(Δ, n−Δ).
Direct computation yields that L2(J(3, 2)) = K4 − e and L3(J(3, 2)) = W4.
Therefore, iZ3

(J(3, 2)) = 3.

Lemma 3.11. Each of the following holds.
(i) Let k > 0 be an integer. If H is a subgraph of G such that H /∈ {K1,3} ∪
{Pn, Cn|n ∈ N}, then Lk(H) is a subgraph of Lk(G).
(ii) (Lemma 2.4 of [7]) Let G be a triangularly-connected graph. Then G is
Z3-connected if and only if G has a nontrivial Z3-connected subgraph.
(iii) Let G be a connected graph with a vertex v of dG(v) = 1. If G − v is
triangular-connected, then L(G) is Z3-connected.
(iv) If l(G) ≥ 2, then iZ3

(G) ≤ l(G) + 1.

Proof. (i). By the definition of a line graph, L(H) is a subgraph of L(G). As
H /∈ {K1,3}∪{Pn, Cn|n ∈ N}, we note that L(H) /∈ {K1,3}∪{Pn, Cn|n ∈ N},
and so Lemma 3.11 (i) follows from induction.
(iii). Let H = G−v. Since H is triangular-connected, both δ(H) ≥ 2 and, by
Lemma 3.9, L(H) is Z3-connected. Let e denote the only edge incident with
v in G. Then by the definition of line graphs, L(G)− e = L(G− v) = L(H).
Since δ(H) ≥ 2, the vertex e is adjacent to at least 2 vertices in L(H). It
follows that L(G)/L(H) is spanned by a 2-cycle, which, by Lemma 3.1(i), is
Z3-connected. Since L(H) is Z3-connected, it follows by Proposition 3.2(ii)
that L(G) is Z3-connected. This justifies Lemma 3.11 (iii).
(iv). By Proposition 2.4, Ll+1(G) is triangularly-connected. By (ii), it suffices
to show that Ll+1(G) contains a nontrivial subgraph H such that H is Z3-
connected. Since l(G) = l, there exists a maximal divalent path P of G with
|E(P )| = l(G) ≥ 2. Since G is not a path, we may assume that P has an
end vertex u with dG(u) = d ≥ 3. Thus G contains a subgraph J(3, l) with
l ≥ 2. We shall show that Let H = Ll+1(J(3, l)). By Lemma 3.11 (i), H is
a subgraph of Ll+1(G).

To show that H is Z3-connected, we argue by induction on k ≥ 2 to show
that Lk+1(J(3, k)) is triangularly-connected and Z3-connected. If k = 2, then
by Example 3.10(ii), L3(J(3, 2)) is triangularly-connected and Z3-connected.
Assume that k ≥ 3, and that Lk(J(3, k − 1)) is triangularly-connected and
Z3-connected. By direct computation, Lk(J(3, k)) has a unique vertex v of
degree 1 such that Lk(J(3, k)) − v = Lk(J(3, k − 1)). By Lemma 3.11 (iii),
we conclude that Lk+1(J(3, k)) is triangularly-connected and Z3-connected.
Hence H is Z3-connected. As H is a subgraph of Ll+1(G), and as Ll+1(G)
is triangularly-connected, it follows by Lemma 3.11 (ii) that Ll+1(G) is Z3-
connected.
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Theorem 3.12. Let A = Z3 denote the cyclic group of order 3. For an
integer d > 0, define

Fd = {G : G has a subgraph H such that G/H is a cycle of length at least

d+ 5}.

If G is a connected graph with diam(G) = d and l = l(G), then each of the
following holds.
(i) iA(G) ≤ l + 2, and the equality holds if and only if G is a (3,1)-tree.
(ii) If d ≤ 3, then iA(G) ≤ d+ 2.
(iii) If d ≥ 4, then iA(G) ≤ d+ 2 if and only if G /∈ Fd.

Proof. (i) By Proposition 2.4, Ll+1(G) is triangularly connected. By Lemma
3.9, we have iA(G) ≤ l + 2. By Lemma 3.11 (iv), iA(G) = l + 2 if and only
if l(G) = 1 and Ll+1(G) /∈ 〈Z3〉. This happens, by Theorem 3.7, if and only
if L2(G) ∈ WF . By Theorem 3.8, L2(G) ∈ WF if and only if L2(G) can be
built via parallel-connected from K3 and K4. By Example 3.10(i), if G is a
(3, 1)-tree, then iZ3

(G) = 3. Conversely, since L(G) is triangular, if L2(G)
can be built via parallel-connected fromK3 andK4, then direct computation
indicates that G must be a (3, 1)-tree. This proves (i).

If d ≥ l, then by Proposition 2.4 and Lemma 3.9, iA(G) ≤ d+ 2. Hence
we assume that d < l. Pick any divalent path P ∈ P (G). Then |E(P )| = l ≥
d+ 1. Let u and v denote the two end vertices of P . Since l ≥ d+ 1, there
exists a (u, v)-path P ′ in G with |E(P ′)| = d′ ≤ d such that V (P )∩V (P ′) =
{u, v}. Note that u = v is possible. Since G is not a cycle, we always have
d+ 1 ≤ l ≤ 2d.
(ii). Assume that d ≤ 3. Then l ≤ 2d ≤ d + 3. For any divalent path
L ∈ P (G), Id(L) is a divalent path with length at most 3, and so Ld(G) is
triangular. By Corollary 2.3 and Lemma 3.9, iA(G) ≤ d+2. This proves (ii).
(iii). Assume that d ≥ 4. Fix a divalent path P ∈ P (G), and let P o denote
the internal vertices of P . Since d < l, edges in P cannot be cut edges of G,
and so HP = G − P o is connected. Hence G/HP is a cycle of length l. It
follows that if G has no subgraph H such that G/H is a cycle of length at
least d+5. then l ≤ d+4. We claim that Ld(G) is triangular. If not, then there
exists an edge e ∈ E′′(Ld(G)). By Lemma 3.3, I−d−1(e) is a divalent path Q
in G with length at least d. Take the midpoint w of P and the midpoint z of
Q. Direct computation yields then distG(w, z) ≥ l/2+d/2 ≥ (2d+1)/2 > d,
a contradiction. By Corollary 2.3 (i), and Lemma 3.9, iA(G) ≤ d+ 2.

Conversely, assume that iA(G) ≤ d + 2. By contradiction, we assume
further that G contains a subgraph H such that G/H is a cycle of length at
least d+5. Thus P0 = G[E(G/H)] is a divalent path in G; and C ′ = Id+2(P0)
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is a divalent path with length at least 4 in Ld+2(G). By Lemma 3.1 (i),
C ′ /∈ 〈A〉. On the other hand, since Ld+2(G) ∈ 〈A〉, by Proposition 3.2
(ii), C ′ = Ld+2(G)/Ld+2(H) ∈ 〈A〉. Thus a contradiction is obtained. This
completes the proof of (iii).
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