
Journal of Combinatorics

Volume 8, Number 2, 255–287, 2017

A linear time algorithm for finding a maximum
independent set of a fullerene∗

Sean Daugherty and Wendy Myrvold

A fullerene is an all carbon molecule that can be represented by
a 3-regular planar graph with face sizes five or six. A subset S
of the vertices of a graph forms an independent set if the vertices
of S are pairwise non-adjacent. The problem of finding the size
of a maximum independent set of a graph is NP-complete when
restricted to 3-regular graphs. In contrast, for fullerenes we have
designed an algorithm that solves the problem in linear time.
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1. Independent sets of fullerenes

An independent set of a graph is a subset S of the vertices that are pairwise

non-adjacent. A maximum independent set for a graph is a largest indepen-

dent set. The independence number of a graph is the number of vertices in

a maximum independent set.

Fullerenes are all-carbon molecules whose molecular structures corre-

spond to 3-regular planar graphs that have face sizes equal to five or six.

Euler’s formula enforces that there must be exactly twelve pentagons in

any fullerene. The Atlas of Fullerenes [13] is an excellent starting point for

researchers interested in fullerenes and related graph theory questions.
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completion of a Ph.D. followed by a job as a professor at the University of Victoria.
I would like to thank Adrian for setting me on this path that leaves me still having
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Figure 1: Maximum independent sets (white vertices) of two fullerenes.

The face spiral conjecture for fullerenes [13, p. 24] is that the surface
of a fullerene polyhedron can be unwound in a continuous strip of edge-
sharing pentagons and hexagons such that each new face in the spiral after
the second one shares an edge with both (a) its immediate predecessor in the
spiral and (b) the first face in the preceding spiral that has an open edge. It
has been shown that a smallest counterexample to this conjecture has 380
vertices [4]. A fullerene face spiral can be represented by a sequence of 5’s
and 6’s that give the sizes of the faces it has. Chemists number the n-vertex
fullerenes by first choosing a lexicographically smallest sequence for each of
the n-vertex fullerenes. Then the n-vertex fullerenes are sorted according
to these sequences. The n-vertex fullerene that appears in position k when
the minimum face spiral sequences are sorted is denoted by Cn : k. This
numbering scheme gives names to all of the fullerenes having less than 380
vertices since all have at least one face spiral.

The fullerene that is easiest to synthesize is C60, the unique isomer on
60 vertices with isolated pentagons. A fascinating observation is that when
the C60 fullerene reacts with bromine, the end product is such that the
locations of the bromine atoms correspond to a maximum independent set
in the fullerene [12]. A picture of C60 showing the independent set that
corresponds to the positions of the bromine atoms in the molecule C60Br24
is shown in Figure 1(a). A second example of a maximum independent set
of a fullerene is shown in Figure 1(b).

Many practical algorithms for finding a maximum independent set (equiv-
alent to finding a maximum clique in the complement graph) have been pub-
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lished including [1, 2, 5, 19, 20, 21], and this problem was the subject of a
DIMACS challenge [17]. The problem of finding the independence number is
NP -Complete for cubic planar graphs [15, A1.GT20], a class that contains
fullerenes.

An icosahedral fullerene [13, pp. 18–21] is a fullerene that has the same
symmetries as an icosahedron. The smallest icosahedral fullerene is the do-
decahedron (the dual of an icosahedron). The famous Buckminster fullerene
(with 60 vertices) is an icosahedral fullerene (it has the same structure as a
soccer ball). The seven smallest ones have 20, 60, 80, 180 and 240 vertices.
Graver showed that for icosahedral fullerenes, the independence number can
be calculated from a formula in O(1) time [16]. The results here build on
his ideas [16] that apply to general fullerenes to describe an algorithm for
finding the independence number in O(n) time.

2. Basic definitions

It is assumed that a fullerene graph is represented by a rotation system (an
adjacency list where the order of the neighbors represents the clockwise order
in a planar embedding). A rotation system for the dual of a planar graph can
be obtained from the primal in O(n) time. The primal and dual graphs are
undirected, but computationally, it is useful to think of their corresponding
directed graphs that have two arcs (u, v) and (v, u) corresponding to each
edge (u, v) of the undirected graph.

A walk in a directed graph of length k from v0 to vk consists of an alter-
nating sequence of vertices and arcs of the form: v0, (v0, v1), v1, (v1, v2), v2, ...,
vk−1, (vk−1, vk), vk. Walks can repeat vertices or arcs. A circuit is a walk that
start and ends on the same vertex.

A dual walk is a walk in the dual graph. When a dual walk enters a
vertex v of degree six from arc (u, v), it is said to continue in the straight
direction if it leaves v using the arc that is three clockwise positions after arc
(v, u). The straight direction is not defined for a vertex of degree five. A walk
makes a sharp right turn at vertex v of degree five or six if it exits v using
the arc that is one counter-clockwise position after arc (v, u). A wide right
turn occurs when the walk exits using the arc that is two counter-clockwise
positions Figure 2 shows a pentagon in the primal with the arcs indicating
the turn types in the dual graph.

A quintant of a vertex v of degree five in the dual consists of a pair of arcs
from v, the x-arc and the y-arc, such that the x-arc is 1 clockwise position
after the y-arc. Figure 3 gives an example. Each degree five vertex has five
quintants. A walk along the x-axis (y-axis) of a quintant starts with the
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Figure 2: Entering at (a) means (b) is a sharp right turn, (c) is a wide right
turn, (d) is a wide left turn, and (e) is a sharp left turn.

Figure 3: The x- and y-arcs of a quintant.

x-arc (y-arc) and continues straight (since straight is not defined for degree
five vertices, the walk must terminate when it hits a degree five vertex).

3. Graver’s results and clear fields

In a maximum independent set of a fullerene, each hexagon would ideally
contribute three vertices. However, because the pentagons contribute at most
two independent set vertices each, this can create some disruptions in the
hexagons. Graver [16] showed that a maximum independent set of a fullerene
can be obtained by finding a way to pair the twelve pentagons of the fullerene
so that all the disruptions occur within six parallelogram-shaped regions
(clear fields) between the pairs of pentagons. The term clear field was chosen
because he proved that these regions must be free of pentagons other than
the two being paired [16, Lemma 7].

Definition 3.1 (Clear Field). A clear field with dimensions (x, y), x ≥ 1,
y ≥ 0, is a circuit in the dual graph of a fullerene that has 2x+2y arcs such
that the circuit and its internal region (the region on the right side of the
circuit) contain exactly two vertices a and b of degree five. When y = 0, the
walk starts at a, traverses the x-axis using x arcs to get to b then uses the
reverses of these arcs to return to a. When y > 0, the walk starts at a and
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traverses y arcs along the y-axis of a quintant, makes a wide right turn then
walks straight using x arcs to get to b. At b the walk makes a sharp right
turn and follows y arcs in the straight direction, and then takes a wide right
turn and walks straight along x arcs to return to a.

Figure 4 shows a subgraph of a fullerene overlaid with arcs indicating
the dual edges in a clear field with dimensions (5, 3). Note that the walks
for the clear fields are always along edges of the dual graph; the Coxeter
coordinization introduced in [6] does not impose this constraint. The clear
field subgraph for a given clear field is the primal subgraph induced by the
faces that correspond with either a dual vertex that is part of the clear field
or a dual vertex on the inside (right side) of the clear field. As per Graver
[16], the independent set vertices are colored white, a maximum independent
set of the rest is colored black, and the remaining vertices are gray.

In the final section of [16], Graver comments that to find a maximum
independent set on any fullerene, one could consider the independent sets
that correspond to each of the possible pairings of the pentagons that give
clear fields and select an independent set of maximum size. That is the
general approach taken by our algorithm. But there are several tricky issues
that make designing an algorithm harder than it sounds.

The first problem is that there is more than one way to cause disruption
in a clear field subgraph. The amount of disruption depends on how the
independent set vertices are selected from the boundary of the clear field.
This causes some hexagons to be deficient, i.e. they contain fewer than three
white vertices. The penalty assigned to an independent set of a clear field is
equal to one plus the number of hexagonal deficiencies. With this definition
of the penalties, the number α of independent set vertices satisfies

(1) α = n/2− (the sum over all the clear fields of the penalties)/3.

To see why this formula holds, first observe that if none of the hexagons
are deficient, then each 5-face has two independent set vertices and each 6-
face has three. Since the number of 5-faces is 12 and the number of 6-faces is
n/2−10, the independent set order in this case would be [24+3(n/2−10)]/3
(the division by three is because each vertex is in three faces) which is equal
to n/2−2. The formula based on the penalties gives the same result because
each of the six clear fields has penalty one. Subtracting off 1/3 times the
number of deficient hexagons gives the required correction for cases where
some of the hexagons have only two independent set vertices instead of three.
In Figure 4, two independent sets and their penalties are shown.

Another barrier to finding a fast algorithm is that there can be as many
as a linear number of clear fields between one pair of pentagons. To illustrate
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Figure 4: Examples of clear fields. The arcs of the clear fields are denoted by
arrows. Hexagons with fewer than three independent set vertices are gray
(yellow in the online version).
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Figure 5: A member of an infinite family with a linear number of clear fields:
the case when k = 2 (n = 48), with clear fields of dimensions (13, 0), (7, 1),
and (1, 2).

this, consider the infinite family of fullerenes defined for each k ≥ 0 with
n = 24 + 12k vertices and pentagons at positions

0, 1, 2, 3, 4, 6, n/2− 5, n/2− 3, n/2− 2, n/2− 1, n/2, n/2 + 1

of a face spiral. Figure 5 shows the case k = 2. Such a fullerene has k + 1
clear fields between the same two quintants: one quintant of the pentagon
at position 6 (labeled a in Figure 5) and one quintant of the pentagon at
position n/2−5 (labeled b). The k+1 clear fields have dimensions (6i+1, k−i)
for 0 ≤ i ≤ k.

Theorem 3.2. The number of clear fields is at most 3n/2.

Proof. Each clear field with y = 0 corresponds uniquely to a choice of one
edge from some pentagon a and one edge from another pentagon b of the
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primal graph. Hence the number with y = 0 can be at most 30 (the graph
has 12 pentagons, and 30 = 12 · 5/2). The other clear fields correspond to
two wide right turns in two hexagons. The number of hexagons is n/2− 10
which means there is at most 6(n/2− 10)/2 = 3n/2− 30 of these.

4. Proper clear fields

As noted earlier, Graver showed that for any maximum independent set of
a fullerene, the disruption in the hexagons falls into a set of exactly six
clear fields. This section includes some theorems about the six clear fields
that arise from selecting a maximum independent set. The proofs of these
results are technical and rely on a deeper understanding of Graver’s results.
In order to not detract from the presentation of the algorithm, the detailed
proofs have been included in the appendices. The first result is that when
a maximum independent set is chosen, the clear fields cannot overlap each
other.

Theorem 4.1. [For a proof, refer to Theorem B.3] The six clear field sub-
graphs that arise from some maximum independent set of a fullerene have
no faces in common.

The idea of the proof is that if the clear fields overlap, then there is a way
to choose a larger independent set. This contradicts the original assumption
that the chosen independent set was a maximum independent set.

Clear fields can overlap themselves as shown in Figure 6. A clear field
that does not overlap itself is called a proper clear field. Or equivalently,
a clear field with dimensions (x, y) is a proper clear field if its clear field
subgraph contains (x+ 1)(y + 1) unique faces.

Theorem 4.2. [For a proof, refer to Theorem B.4] The clear fields that
correspond to a maximum independent set of a fullerene must be proper
clear fields.

The next theorem is critical for achieving an O(n) running time for our
new algorithm.

Theorem 4.3. [For a proof, refer to Theorem B.6] The number of proper
clear fields is in O(log2 n).

The idea of the proof for this is to show that for any pair of quintants, the
number k of proper clear fields for those two quintants satisfies 2k−1 < n/2.
The number of pairs of quintants is a constant so this proves the theorem.
A key idea that is used both in the proof and in our algorithm is that
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Figure 6: Clear fields that are not proper.
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because clear fields have no pentagons in their interiors, when considering
the dimensions of the proper clear fields for a given quintant, the y values are
distinct, the x values are distinct, and ordering the clear fields by increasing
y-values implies that they are ordered by decreasing x-values.

5. Finding all the proper clear fields

The first step of the algorithm is to identify all the proper clear fields. The
quintants of the fullerene are numbered from 0 to 59. For each clear field,
its two quintants and its dimensions are recorded.

The trick used to accomplish this in linear time is that we start by doing
a walk in the dual graph along the x-axis of each quintant. A walk continues
either until it reaches a degree five vertex or until just before some dual
vertex is repeated (since continuing would result in clear fields that are not
proper). The quintant number plus the number of arcs walked so far for this
quintant are recorded on the arcs traversed. An arc of the graph can be on
the x-axis for at most one quintant, so the amount of information recorded
is O(n) in total. The graph has 60 quintants and walking each one takes at
most O(n) time for a total of O(n).

Some of these walks end in degree five vertices and correspond to clear
fields with y = 0. The information regarding the other clear fields can be
determined by examining the wide right turns of the hexagons. If one corre-
sponds to a corner of a clear field then the two quintants and the distance to
the pentagons can be recovered with the information stored with the arcs.

To ensure that the interiors are free of other pentagons as required by
the definition of a clear field, it suffices to realize that this condition means
that if the clear fields are sorted by increasing x value that the y values must
be strictly decreasing.

But which of these clear fields are proper clear fields? Since there can be
3n/2 possibilities to check, it is critical that this question can be answered
in O(1) time. The trick used to do this also enables us to check later if two
clear fields share a face or not in O(1) time.

The data structure used to solve this problem is an array:

min intersection[q1][q2][s]

where q1 and q2 are quintant numbers (values from 0 to 59) and s is the
number of steps (edges traversed) taken along the x-axis of q1 (0 ≤ s ≤ d1,
where d1 is the length of the x-axis for q1). For the segment of length s
that lies along the x-axis for q1, the value of min intersection[q1][q2][s] is
computed so that it is equal to the minimum distance along the x-axis for
q2 to a dual vertex that corresponds to one of the first s + 1 vertices along
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the x-axis of q1 (or infinity if the x-axis for q2 does not include any of the
initial s+ 1 vertices of the x-axis of q1).

The values can be computed by one more traversal of each of the axes.
The initial value of min intersection[q1][q2][0] is infinity. After following the
kth arc along q1 to a vertex w, the value of min intersection[q1][q2][k] is set
to the minimum of min intersection[q1][q2][k − 1] and any distance value to
quintant q2 associated with one of the entering arcs for w.

A clear field with y = 0 is always a proper clear field. A clear field with
y > 0 is a proper clear field if its four boundary segments only intersect
in four places: at the degree five vertices and the two locations of the wide
right turns.

To test that a clear field is a proper clear field, the four segments that
make up the boundary should be checked to ensure that there are no cross-
ings that occur too early. Suppose that the four segments corresponding to
the boundary are the x-axis of a pentagon p corresponding to q1 of length
d1, the y-axis of pentagon p corresponding to q2 of length d2, the x-axis of
a pentagon q corresponding to q3 of length d1, and the y-axis of pentagon
q corresponding to q4 of length d2. There is an intersection that occurs too
early in the pairs of segments that intersect to give the wide right turns of
the clear field (the x-axis of p and the y-axis of q or the y-axis of p and the
x-axis of q) if min intersection[q1][q4][d1] < d2, or min intersection[q2][q3][d2]
< d1. The other pairs of segments should not intersect. They intersect if

min intersection[q1][q2][d1] ≤ d2,min intersection[q1][q3][d1] ≤ d1,

min intersection[q2][q4][d2] ≤ d2, or min intersection[q3][q4][d1] ≤ d2.

6. Determining the independent set order

The next challenge in designing the algorithm is finding an approach for
determining the independent set order that results from a fixed choice of
six proper clear fields. This can be computed from the penalties of the clear
fields. A clear field of dimensions (x, y) has two choices for a penalty for the
clear field: either 2x + y or 2y + x. It should be noted that the choices for
the clear field penalties are not independent: making a choice for one forces
choices for the rest of then.

The pentagons are numbered from 0 to 11 (arbitrarily). The vertices of
each pentagon are numbered 0 to 4. The idea for finding all the penalties
for a given selection of six clear fields is that given the status of vertex 0 in
pentagon 0 (either white meaning it is in the independent set or black if it
is not), we compute whether vertex 0 of the remaining pentagons should be
white or black and this is sufficient to determine the penalties of the clear
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fields. The color of a clear field is defined to be the color of its vertex number
0 (that is, it is either white or black.

Examining Figure 4 reveals that many paths in the primal graph alter-
nate white vertices and black vertices. If a walk from a vertex u to a vertex
v does not use any of the primal arcs that correspond to the arcs of the dual
defining the left-hand or upper segments of the clear field, then the color of
v depends only on the distance between u and v. Vertex u is the same color
as v if the distance is even and otherwise it is a different color.

Complications arise when a walk from u to v uses some of the edges
shown in bold. For the purpose of this discussion, assume that the gray ver-
tices are recolored so that they are the same color as the neighbor connected
to it by the bold edge. If r bold edges are traversed on the walk from u to
v then vertex u is the same color as v if the distance plus r is even and
otherwise it is a different color.

The first step in creating the data structure is to perform a breadth first
search of the primal graph starting at vertex 0 of pentagon 0 whose aim is
to determine the distance to the vertex numbered 0 for each of the other
pentagons.

The next step is to again walk the x-axes of the quintants, this time
keeping track of 11 values (one for each pentagon p that is not pentagon 0).
Each arc of the dual has a constant sized array to record this information;
num arcs used[q][pentagon number] where the quintant q is from 0 to 59
and the pentagon number is between 1 and 11.

The value of num arcs used[q][p] associated with an arc which is the kth
arc used in walking the x-axis for quintant q is the number of dual arcs on
the walk so far whose corresponding primal edges were used in the BFS tree
to get from pentagon 0 to pentagon p.

The value num arcs used[q][p] for an arc is equal to num arcs used[q][p]
for the previous arc on the walk with 1 added on if the current dual arc
corresponds to a primal arc on the BFS tree on the path to vertex 0 to
pentagon p.

When y = 0 the number of bold arcs that correspond to BFS tree edges
from pentagon 0 to pentagon p is equal to num arcs used[q][p] for the last
arc on the x-axis of quintant q. For a clear field with y > 0, the required
information can be looked up using data stored with the two arcs defining
the upper left-hand corner of the clear field.

7. Determining an optimal selection of 6 clear fields

Once the O(log2 n) proper clear fields have been identified, it suffices to use
a backtracking approach to consider each viable choice for six of them since
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the number of ways to choose six is in O((log2 n)
6) which is in O(n). For

each choice, the min intersection data structure (as described in Section 4)
is used to first check that the clear fields have no faces in common (or equiv-
alently, that for each pair of clear fields, the boundary segments of one do
not intersect the boundary segments of the other one). The tactic described
in Section 6 is used to compute the number of independent set vertices re-
sulting from each of the two ways to select penalties for the selection of
clear fields. The maximum independent set order corresponds to the case
resulting in a maximum number of independent set vertices.

8. Computational checks

To ensure correctness of our implementation, four versions were implemented:
a very simple exponential time backtracking algorithm, an approach that
ignores the speed ups discussed earlier that takes time in O(n6), and two
variants of a linear time approach. The program fullgen [3] was used to gen-
erate the 10,190,782 fullerenes on up to 120 vertices. The information fullgen
provides gives a rotation system for a planar embedding without requiring
access to an algorithm for planar embedding. For the last three approaches,
in addition to checking for a correct maximum independent set order, we
ensured that the number of proper clear fields identified were the same.

9. Future research

When bromine reacts with C60 to form C60Br24, the final product is a com-
promise between a combination of steric constraints (bulky atoms cannot be
placed close together) and electronic constraints [12]. It is important that
each connected component of the graph induced by the carbons not bonded
to bromines is closed shell; that is, each of these components has even or-
der and has an adjacency matrix for which exactly half the eigenvalues are
strictly positive. Notice that the components induced by the black vertices
in Figure 1(a) each consist of two black vertices connected by an edge (these
components are closed-shell). In contrast, it is easy to check that the com-
ponents in Figure 1(b) are not all closed-shell (a component which is an
isolated vertex is not closed shell because the number of vertices is odd).

The closed-shell independence number [7, 12, 14] is defined to be the
maximum order of an independent set S such that the graph induced by
V −S has closed-shell components. This graph parameter encapsulates this
combination of steric and electronic constraints. The most effective algo-
rithm discovered so far for computing the closed-shell independence number
of a fullerene is an exponential approach that works reasonably well in prac-
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tice [8]. One important open question is whether or not the closed-shell
independence number can be computed in polynomial time.

Fullerenes are not far from being bipartite in that they only have a
constant number of faces that are odd cycles. It is possible that the tactics
applied in this paper could be applied to yield polynomial time algorithms
for other classes of planar graphs that do not have too many odd faces.

Having the maximum independent set orders for fullerenes may lead to
new conjectures regarding this graph parameter. The first step we plan to
take is to modify our program for visualizing fullerenes [18] so that the clear
fields and a Graver coloring can be shown on the picture of the fullerene.

Since the penalties of the clear fields must add up to a value that is six
or more, equation 1 in Section 3 gives an upper bound for the maximum
independent set order of n/2− 2. It is not hard to construct infinite families
of fullerenes realizing this upper bound.

The result of Dvořák, Lidický and Škrekovski [10] (who show that the
removal of at most

√
n vertices is required to leave a bipartite graph) implies

that a maximum independent set has cardinality at least n/2−O(
√
n) (take

out the O(
√
n) vertices then take the largest half of the bipartition of the

remaining vertices). Our computational results lead to a conjecture in 2009
[9] that all fullerenes have maximum independent set order at least n/2 −√

3n/5 and this conjecture was subsequently shown to be correct in 2012
by Faria, Klein, and Stehĺık [11].

An interesting avenue of future research is to determine other graph
parameters that are difficult to compute for planar graphs but can be de-
termined in polynomial time for fullerenes. A dominating set D of a graph
G is a subset of the vertices of G such that each vertex is either in D or has
an neighbor in D. A 3-regular graph has an obvious lower bound of �n/4�
on the order of a minimum dominating set since each vertex dominates four
vertices. Since an infinite hexagonal grid can be dominated by using 1/4 of
the vertices, it seems reasonable to assume that falling short of the bound
arises again due to disruptions caused by the pentagons. But preliminary
computational results indicate that the minimum dominating set order is at
most two off from the lower bound instead of possibly something on the order
of

√
n. A promising avenue of future research is to search for a polynomial

time algorithm for finding a minimum dominating set of a fullerene.

Appendix A. Graver’s results

This appendix contains the proofs omitted from the main body of the paper.
Some of the theorem statements are a little different in order to facilitate
the exposition of the proofs.
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Figure 7: The three possible configurations involving gray vertices [16,
Fig. 1].

An explanation of Graver’s colorings and his theorems are required to

understand the material that follows. Let W be a maximum independent

set of a fullerene F , let B be a maximum independent set of F −W and let

G be the remaining vertices (V −W − B). Color the vertices in W white,

those in B black, and those in G gray. The following property arises:

Lemma A.1. [16, Lemma 1] For every maximum independent set, every

gray vertex is adjacent to a black vertex and a white vertex.

Definition A.2 (Graver Coloring). A Graver coloring of a fullerene F =

(V,E) consists of a partitioning of the vertices into sets of white vertices

W , black vertices B and gray vertices G and a partitioning of the edges

into white edges EW , black edges EB and gray edges EG, such that W is a

maximum independent set of F , B is a maximum independent set of F −W ,

G is V −W −B, and EW , EB, and EG are defined as follows:

[Figure 7(a)]: If gray vertex g is adjacent to two black vertices and one

white vertex w, then edge (g, w) is assigned to EW .

[Figure 7(b)]: If gray vertex g is adjacent to two white vertices and one

black vertex b, then edge (g, b) is assigned to EB.

[Figure 7(c)]: For each pair of adjacent gray vertices, arbitrarily label one

as g1 and the other as g2. Vertex g1 is adjacent to one white vertex w1

and one black vertex b1 and g2 is adjacent to one white vertex w2 and

one black vertex b2. Assign (g1, b1) to EB and (g2, w2) to EW .

The edge set EG is defined to be E − EW − EB.

With the sets defined in this manner, each gray vertex is incident with

exactly one edge of either EW or EB. Note that this definition of EG differs

from Graver’s set EG in [16] in order to simplify some of the discussion.
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Lemma A.3. [16, Lemma 2] For any Graver coloring, |EW | + |EB| = |G|
(where G is the set of gray vertices) and no two edges in EW ∪ EB have a
common endpoint.

Lemma A.4. [16, Lemma 3] A Graver coloring will satisfy the following:

(i) Each pentagonal face contains exactly one edge from EW ∪ EB.
(ii) Each hexagonal face contains either exactly two edges from EW ∪ EB

or no edges from EW ∪ EB. If two edges from EW ∪ EB are opposite
one another on a hexagon, then they are either both from EW or both
from EB. If two edges from EW ∪ EB are on a hexagon and are not
opposite one another, then one is from EW and one is from EB.

An important relationship exists between |W |, |EW | and |EB|, which is
shown by the next lemma.

Lemma A.5. [16, Lemma 4] Given a Graver coloring, the independence
number can be computed as

(2) |W | = |V | /2− (2 |EW |+ |EB|)/3.

The next theorem allows one to view a correspondence between a max-
imum independent set and a pairing of the twelve pentagons.

Theorem A.6. [16, Theorem 1] Given a Graver coloring, the dual subgraph
induced by the dual edges corresponding to the primal edges in EW ∪ EB is
disconnected with six components, each of which is a simple path between a
different pair of vertices of degree five.

The paths in Theorem A.6 cannot make a sharp turn at any hexagon
due to Lemma A.4(ii). The next lemma introduces a restriction on the wide
turns that can be made.

Lemma A.7. [16, Lemma 6] If any particular one of the six paths in The-
orem A.6 is viewed as a dual walk from one degree five vertex to its mate,
then if the walk has a wide right (left) turn then the next turn cannot be
another wide right (left) turn.

Figures 4 and 8 show sample regions that may occur in a Graver coloring
of a fullerene. If a hexagon has fewer than three vertices from W then it is
shaded. The (primal) edges in EW ∪ EB are shown in bold. In each of the
four subfigures, the edges of the dual graph that correspond to the bold
primal edges induce a path that pairs the pentagons.

Two different colorings of a fullerene are said to be color-equivalent if
they have the same values for |W |, |B|, |EW | and |EB|. The colorings that
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Figure 8: Examples of clear fields. The arcs of the clear fields are denoted by
arrows. A Graver coloring is shown in each case. Bold primal edges denote
the edges in EW ∪ EB. If fewer than three vertices in W are on a hexagon
then it is shaded.

induce different paths in the clear field are color-equivalent and in particular

“any two [such] paths in the clear field between paired pentagons will have

the same contribution to 2 |EW |+|EB|; hence that contribution is a property

of the pairing” [16, p. 861]. A proof of this fact is given later by Theorem

B.2. The contribution that a clear field makes to 2 |EW |+ |EB| is called the

penalty of a clear field because in Equation (2), the sum of the penalties

divided by three gives the difference between |V | /2 and the independence

number. In the example in Figure 4(a), the clear field contains five edges in
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EW and three edges in EB for a penalty of 2·5+3 = 13. Any Graver coloring
that results in this clear field with the boundary colored as indicated will
have a path in the dual corresponding to the edges of EW ∪ EB that gives
the same penalty. Similarly, in Figure 4(b), the clear field contains three
edges in EW and five edges in EB for a penalty of 5 + 2 · 3 = 11.

Appendix B. Extensions of Graver’s results

This section proves some new results that expand on Graver’s work in order
to build a theoretical foundation for the algorithm. The first result uses the
Graver coloring properties to examine how the colors of two vertices are
related by examining primal walks that connect them.

Theorem B.1. Given a fullerene with a Graver coloring, let P be a primal
walk of length k from vertex v0 to vk such that v0 and vk are not gray. Let
� be the number of arcs of P that correspond to some edge in EW ∪ EB. If
k ≡ � mod 2 then v0 and vk are the same color, otherwise they are different
colors.

Proof. The possible internal vertex colorings are considered by cases.

Case 1 [k < 2]: If k = 0 then the result holds trivially. If k = 1 then the
single arc must connect a white and a black vertex and the edge it
corresponds to is hence not in EW ∪ EB, so the result holds.

Case 2 [k ≥ 2 and all internal vertices of P are gray]: There are two sub-
cases.

Case 2.1 [k = 2]: The Graver coloring properties illustrated in Fig-
ure 7 show that v0 and v2 are the same color if and only if neither
arc on the path corresponds to an edge in EW ∪ EB or if both
arcs correspond to the same edge in EW ∪EB. Otherwise, v0 and
v2 are different colors.

Case 2.2 [k ≥ 3]: No gray vertex has more than one gray neighbor,
so the situation must be the one shown in Figure 7(a). The k −
2 arcs of P that are not the first or last arc must correspond
with the edge that connects the two gray vertices (recall that
walks can have repeated arcs). Only the first and last arcs of
P can correspond with an edge in EW ∪ EB. If k is odd, then
v0 and vk are the same color if and only if exactly one of the
arcs corresponds with an edge in EW ∪ EB. If k is even, then v0
and vk are the same color if and only if zero or two of the arcs
correspond with an edge in EW ∪ EB. Otherwise, v0 and vk are
different colors.
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Case 3 [k ≥ 2 and not all internal vertices of P are gray]: Let vi be a ver-
tex in P that is not gray. Walk P can be decomposed into two smaller
walks P1 with length k1 from v0 to vi and P2 with length k2 from vi
to vk. Induction shows that if the result holds for P1 and P2, then the
result holds for P .

Some clear fields will be named as necessary in the discussions. Given a
specific clear field, arbitrarily label its two vertices of degree five a and b and
denote the clear field �� ��ab having dimensions (xab, yab). Multiple clear fields
may exist between two vertices of degree five and so it is important to note
that given two such vertices a and b, the label �� ��ab is not always sufficient to
identify a unique clear field. When such notation is used, however, ambiguity
will be avoided by identifying the clear field and then naming it. When a

clear field is named �� ��ab, let
−→
ab denote the subwalk of �� ��ab from a to b and

let
−→
ba denote the subwalk of �� ��ab from b to a.

Given a Graver coloring, the six connected components of the dual sub-
graph induced by the edges of EW ∪ EB are called the pairing paths. A
particular clear field �� ��ab is said to correspond to a pairing path if the path
pairs vertices a and b, all of the primal edges corresponding to the edges of
the path are in the clear field subgraph of �� ��ab, and the length of the path
is xab+ yab. A clear field is a pairing clear field if it corresponds to a pairing
path.

The faces in a clear field subgraph and their corresponding dual vertices
may be referred to using a coordinate system. Choose a clear field and label
it �� ��ab with degree five vertices a and b labeled arbitrarily. The two arcs
of �� ��ab that are incident with a correspond with one of the five quintants
of a (Figure 9). This quintant is said to be the quintant of a for �� ��ab. A
coordinate system is defined for �� ��ab such that a straight walk beginning
with the x-arc of the quintant defines the x-axis of the quintant and the
y-axis is similarly defined using the y-arc. A dual vertex corresponding to
a face in the clear field subgraph of �� ��ab receives the coordinate (x, y) if it
may be reached by following the y-axis for y arcs and, if x > 0, then making
a wide right turn (and following the appropriate arc) then taking x−1 more
arcs in the straight direction, as in Figure 9. Vertex a is the origin at (0, 0)
and b is located at (xab, yab).

It is important to note that the faces of the clear field subgraph do not
necessarily have unique coordinates, but each coordinate uniquely identifies
a face. Figure 6 is an example of such a situation. If the face at coordinate
(x1, y1) is the same face as the one at coordinate (x2, y2), then the notation
(x1, y1) ≡ (x2, y2) is used to express this fact.
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Figure 9: The faces in a clear field region may be labeled with coordinates
using one of the pentagons (a) as the origin (0, 0).

Figure 10: A numbering system for the vertices of a pentagon with the clear
field arcs shown.

Given a particular quintant, an x-direction walk at y is a straight dual
walk with its first arc from the dual vertex at (0, y) to the one at (1, y).
Similarly, a y-direction walk at x is a straight dual walk with its first arc
from the dual vertex at (x, 0) to the one at (x, 1).

For a Graver coloring, each vertex has a color and a pentagon is now
defined to have a color of white or black as follows. Let �� ��ab be the clear
field that pairs degree five vertices a and b given some Graver coloring. As
in Figure 10, number the primal vertices on the pentagon corresponding to
a in clockwise order as a0, . . . , a4 such that the dual arc of �� ��ab that enters
a crosses primal edge (a1, a2). Define the pentagon color of the pentagon for
a to be the color of a2, unless a2 is gray, in which case the pentagon receives
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the color of a1. In Figures 4(a) and 8(a), the pentagons are white and in
Figures 4(b) and 8(b), the pentagons are black.

Exactly one of (a0, a1) and (a1, a2) is in EW ∪EB because �� ��ab pairs a
and b. Note that if a2 is gray, then (a1, a2) ∈ EW ∪EB so a1 has a different
color than the other two neighbors of a2 (see Figure 7) and a color-equivalent
coloring may be obtained by swapping the colors of a1 and a2. Similarly, if
(a0, a1) ∈ EW ∪ EB then a color-equivalent coloring may be obtained by
swapping the colors of a0 and a1. Equivalently, the color of the pentagon for
a is white if (a1, a2) ∈ EW or (a0, a1) ∈ EB and is black if (a1, a2) ∈ EB or
(a0, a1) ∈ EW .

Theorem B.2. Let a and b be two degree five vertices that are paired by
a Graver coloring and let �� ��ab be their pairing clear field with dimensions
(x, y). Let F ′ = (V ′, E′) be the clear field subgraph of �� ��ab.

(i) There are exactly 2x+y
(
x+y
x

)
ways to color the vertices of F ′ such that

a pairing path exists between a and b and the pentagon for a is the
same color as in F .

(ii) If the pentagon for a is white then |EW ∩ E′| = x and |EB ∩ E′| = y,
otherwise |EW ∩ E′| = y and |EB ∩ E′| = x.

(iii) The colors of the pentagons for a and b are the same.

Proof. Label the vertices of the pentagon corresponding with a as a0 through
a4 as in Figure 10. Similarly, label b0 through b4.

(i) The paths in the dual of F ′ that pair a and b correspond to walks
of length x + y from a to b within the clear field region of �� ��ab such that
no two consecutive wide turns are made in the same direction. Counting
these walks is equivalent to the classical problem of counting the number of
lattice walks from the origin (0, 0) to (x, y) using steps in the north and east
directions only. The north direction corresponds with the y-direction from
a (taking the dual arc from a that crosses (a0, a1) and continuing straight).
Likewise, the east direction corresponds with the x-direction and (a1, a2).
The number of such lattice walks is

(
x+y
x

)
.

Once a pairing path P has been selected, it is easy to generate a coloring
of F ′ that induces the pairing path. Let EP be the edges in P . For each
primal edge corresponding to an edge in EP , select one incident vertex and
color it gray. Color a1 and/or a2 (whichever is not gray) black or white as
appropriate such that the pentagon for a is the same color in F ′ as in F .
The graph F ′ −EP is bipartite so there is a unique way that the remaining
uncolored vertices of F ′ can be colored with black and white.

Each of these possible paths pairing a with b contains x + y edges in
EW ∪ EB. No two edges in EW ∪ EB are adjacent so the colors of the
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vertices on the endpoints of an edge in EW ∪ EB may be swapped, for a
total of 2x+y ways to color each pairing path. Each coloring induces exactly
one pairing path, so 2x+y

(
x+y
x

)
counts each coloring exactly once.

(ii) Let e1, e2, . . . , ex+y be the arcs of the walk from a to b for some pairing
path and let v0, v1, . . . , vx+y be the vertices of the walk. Let e′1, e

′
2, . . . , e

′
x+y

be the edges in EW ∪ EB such that e′i is the primal edge crossed by ei. If
the walk follows the straight direction at vi (0 < i < x + y), then e′i and
e′i+1 are either both in EW or both in EB (Lemma A.4). Conversely, if the
walk makes a turn at vi, then one of e′i and e′i+1 is in EW and the other is
in EB (Lemma A.4). When the walk is viewed as a walk on the lattice from
the origin (0, 0) to (x, y), each step in the north direction indicates an edge
in one of EW or EB and each step in the east direction indicates an edge
in the other set. If the pentagon for a is white then either (a1, a2) ∈ EW or
(a0, a1) ∈ EB, so |EW ∩ E′| = x and |EB ∩ E′| = y. If the pentagon for a
is black then either (a1, a2) ∈ EB or (a0, a1) ∈ EW , so |EB ∩ E′| = x and
|EW ∩ E′| = y.

(iii) Continuing the argument from (ii), if the pentagon for a is white
and the final step of the walk from a to b is in the east direction, it crosses
(b1, b2) so (b1, b2) ∈ EW . If the final step is in the north direction, it crosses
(b0, b1) so (b0, b1) ∈ EB. In either case, the pentagon for b is white. If the
pentagon for a is black then either (b1, b2) ∈ EB or (b0, b1) ∈ EW , so the
pentagon for b is black.

Graver’s claim that each clear field will have the same contribution to
2 |EW |+ |EB| is backed up by Theorem B.2. Furthermore, it gives the ability
to replace one pairing path corresponding to a clear field with any other
pairing path corresponding to the same clear field without affecting the
independent set order.

The clear field color is defined as the color the clear field’s corresponding
pentagons. Figures 4(a) and 8(a) show white clear fields and Figures 4(b)
and 8(b) show black clear fields. If a clear field is white, then the primal
edges crossed by the edges of the pairing path in the x-direction are in EW

and if the clear field is black, these edges are in EB. Because the contribution
of a clear field to 2 |EW | + |EB| is the penalty of the clear field, it follows
from Theorem B.2(ii) that if a clear field with dimensions (x, y) is white, its
penalty is 2x+ y and if it is black, the penalty is x+ 2y. Equation (2) may
be rewritten as

(3) |W | = |V (G)|
2

− 1

3

∑

clear fields

(clear field penalties).
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Figure 11: Situation when two clear fields overlap in the proof of Theorem
B.3.

Theorem B.3. [Equivalent to Theorem 4.1] Given a Graver coloring of a
fullerene, let a and b be two dual vertices of degree five paired by the coloring
and let �� ��ab be their pairing clear field. Similarly, c and d are paired by
pairing clear field �� ��cd. The clear field subgraphs of �� ��ab and �� ��cd have
no faces in common.

Proof. For contradiction, assume the clear field subgraphs of �� ��ab and �� ��cd

has a face in common, so at least one of
−→
ab and

−→
ba have a dual vertex in

common with at least one of
−→
cd and

−→
dc. By Theorem A.6, the pairing paths

of �� ��ab and �� ��cd have no dual vertices in common. For such pairing paths

to exist, at least one of
−→
ab and

−→
ba must not share a dual vertex with either−→

cd nor
−→
dc and at least one of

−→
cd and

−→
dc must not share a dual vertex with

either
−→
ab nor

−→
ba. Therefore, by interchanging labels a and b and/or c and

d if necessary, it can be assumed without loss of generality that
−→
ba shares

at least one dual vertex with
−→
cd, as illustrated in Figure 11(a). It will be

shown that a better coloring exists by pairing a, b, c, and d differently, which
implies the coloring is not optimal and provides a contradiction.

Some distances in the graph are labeled in Figure 11(b). The length of
the pairing path between a and b is xab+yab. The distance from c to a using

the arcs of the clear fields involves the first yac arcs of
−→
cd followed by the

last xac arcs of
−→
ba. The other distances are similarly defined. Figure 12(a)

shows an example with �� ��ab with dimensions (7, 5), �� ��cd with dimensions
(6, 6), xac = 5, yac = 4, xbd = 4, and ybd = 3.

It can be assumed that no other pairing path uses any of the dual vertices
on the dual walk from c to a, nor on the walk from b to d. This is because
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if some other pairing path did cross between c and a, it must also cross
between b and d since it cannot share a dual vertex with the path pairing a
and b nor with the path pairing c and d. Such a path would indicate that
a third clear field shares dual vertices with �� ��ab and �� ��cd. Without loss
of generality, the third clear field can be renamed to be �� ��cd, repeating as
necessary, so as to assume that no pairing path shares a dual vertex with c
to a or b to d.

Label the vertices of the pentagon at a with a0 through a4 as per Figure
10 and similarly label the pentagons at b, c, and d. Consider the primal walk
from c2 to a2 around the boundary of the subgraph induced by the clear
field subgraphs of �� ��ab and �� ��cd. This walk includes an odd number of arcs
(three if xac = yac = 1 and 1 + 2(yac − 1) + 2(xac − 1) otherwise), none of
which are in EW ∪ EB because no pairing path crosses them. By Theorem
B.1, �� ��ab and �� ��cd have opposite colors. Figure 12(a) shows an example in
which �� ��ab is black and �� ��cd is white. This may be assumed without loss
of generality because the other option is obtained by interchanging labels a
and d as well as b and c.

Define a dual walk Wca from c to a as follows. If yac > 1, Wca begins

at c and uses the first yac − 1 arcs of
−→
cd, then it makes a wide left turn to

reach a dual vertex on �� ��ab. If yac = 1, Wca begins at c and uses the arc
that crosses primal arc (c0, c4). In either case, if xac > 1, Wca continues by

following the last xac − 1 arcs of
−→
ba to reach a. The total length of Wca is

xac + yac − 1. Similarly, define Wbd from b to d having length xbd + ybd − 1.
Figure 12(b) shows these walks on an example.

For the original coloring pairing of a with b and c with d, the clear field
subgraphs of �� ��ab and �� ��cd contribute yab+xcd edges to EW and xab+ ycd
edges to EB. Obtain a new coloring by instead pairing a with c and b with d.
Assign the primal edges crossed by Wca and Wbd to EW or EB and color the
clear field subgraphs of �� ��ab and �� ��cd such that a and b remain white and
c and d remain black. In this new coloring, the clear field subgraphs of �� ��ab
and �� ��cd contribute xbd + ybd − 1 edges to EW and xac + yac − 1 edges to
EB. The new coloring is better (it provides a larger |W |) because xac ≤ xab,
yac ≤ ycd, xbd ≤ xcd, and ybd ≤ yab. Note that if the new pairings make two
consecutive left turns (they do when xac + yac > 2 or xbd + ybd > 2), then
the new coloring is not optimal (Lemma A.7); however it is better than the
original coloring, which is sufficient for a contradiction.

The previous lemma shows that the clear field subgraphs of two clear
fields that pair pentagons cannot share a face with each other. The next
lemma extends that idea to a single clear field by showing that the clear
field subgraph of a pairing clear field cannot share a face with itself.
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Figure 12: Colorings of the subgraphs of two clear fields that share faces.
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Theorem B.4. [Equivalent to Theorem 4.2] Given a Graver coloring of a
fullerene, let a and b be two dual vertices of degree five paired by the coloring
and let �� ��ab be their pairing clear field with dimensions (x, y). If y = 0,
then the x + 1 dual vertices of �� ��ab from a to b are unique. If y > 0, then
all the dual vertices of �� ��ab are unique. That is, the clear field subgraph of
�� ��ab contains (x+ 1)(y + 1) unique faces.

Proof. For contradiction, suppose �� ��ab contains a repeated dual vertex.

Walk
−→
ab does not contain a repeated dual vertex because if it did, the clear

field subgraph of �� ��ab could be recolored using the primal edges crossed

by
−→
ab to induce a pairing path that is not a simple path and would violate

Theorem A.6. Likewise,
−→
ba does not contain a repeated dual vertex. It must

be that a repeated dual vertex in �� ��ab is found once in
−→
ab and once in

−→
ba.

The above gives the result for the case where y = 0. Henceforth, assume
y > 0.

Let u0, u1, . . . , ux+y be the dual vertices visited by
−→
ab and let v0, v1, . . .,

vx+y be the dual vertices visited by
−→
ba. Note that a ≡ u0 ≡ vx+y and

b ≡ v0 ≡ ux+y. Walks
−→
ab and

−→
ba make their wide right turns at uy and vy,

respectively. Let w0, w1, . . . , wk be the dual vertices of an arbitrary straight

dual walk. Because
−→
ab makes a wide right turn at uy, it is not possible for

the straight walk to “cut the corner” of
−→
ab. That is, wi and wj (i < j)

cannot exist such that wi is a vertex in {u1, . . . , uy−1}, wj is a vertex in
{uy+1, . . . , ux+y−1}, and {wi, . . . , wj} all correspond to faces in the clear

field subgraph of �� ��ab. Therefore, if
−→
ab and

−→
ba share a vertex, it must be

the situation pictured in Figure 6(a). That is,
−→
ba must “enter” �� ��ab by

meeting
−→
ab at a vertex uy through ux+y−1 and then make its turn and “exit”

�� ��ab by meeting
−→
ab at a vertex u1 through uy. More specifically, there is a

choice of 1 ≤ k1 ≤ y and y ≤ �1 ≤ x + y − 1 such that uk1
≡ v�1 and arc

(v�1 , v�1+1) is 1 clockwise position after arc (uk1−1, uk1
) and there is a choice

of y ≤ k2 ≤ x+y−1 and 1 ≤ �2 ≤ y such that uk2
≡ v�2 and arc (uk2

, uk2+1)
is 1 clockwise position after (v�2−1, v�2). Figure 6(b) shows an example of a
complete fullerene exhibiting the situation in Figure 6(a). Such a situation
is common in larger fullerenes.

Figure 13(a) shows an abstract drawing of a clear field that exhibits
the situation in Figure 6(a). Because the three-dimensional surface of the

fullerene is being drawn in two dimensions, one part of each of
−→
ab and

−→
ba

is drawn with a curved line, even though they represent the straight direc-
tion. The faces not in the clear field subgraph of �� ��ab induce two fullerene
subgraphs R1 and R2, which are also identified in Figure 6(a). Figure 13(b)
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Figure 13: More diagrams of the situation pictured in Figure 6.
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shows a more detailed drawing of the faces in the clear field subgraph of

�� ��ab that are adjacent to subgraph R1.

The clear field subgraph of �� ��ab contains two of the twelve pentagons,

leaving ten pentagons to be distributed between subgraphs R1 and R2. Five

of these pentagons are in R1 due to the following. Refer to Figure 13(b)

and note that the x-axis and y-axis of the quintant of a for �� ��ab meet at

the hexagon that has both coordinates (0, ky) and (kx, 0) when the origin

is defined at a. Subgraph R1 has a large outer face bordered by the faces

shown in the figure. This outer face of R1 has two vertices of degree three

from a, one from each of the first kx − 2 hexagons on the x-axis and one

from each of the first ky − 2 hexagons on the y-axis for a total of kx+ ky − 2

vertices of degree three. The remaining kx+ky−1 vertices on the outer face

of R1 have degree two. There are 2kx + 2ky − 3 edges on the outer face of

R1. Let p be the number of pentagonal faces in R1 and h be the number

of hexagonal faces in R1. The total number of faces, edges, and vertices,

respectively, are:

f = p+ h+ 1

e = (5p+ 6h+ (2kx + 2ky − 3))/2

v = (5p+ 6h− (kx + ky − 1)︸ ︷︷ ︸
outer vert. of deg. 2

+ (kx + ky − 2)︸ ︷︷ ︸
outer vert. of deg. 3

)/3 + (kx + ky − 1)︸ ︷︷ ︸
total vert. of deg. 2

= (5p+ 6h− 1)/3 + kx + ky − 1.

Euler’s formula (v − e+ f = 2) gives:

((5p+6h−1)/3+kx+ky −1)− ((5p+6h−3)/2+kx+ky)+ (p+h+1) = 2

that simplifies to p = 5.

Five pentagons are in R1, which implies that five are in R2. The dual

vertices of degree five corresponding to these ten pentagons are paired up

by the Graver coloring using clear fields, which implies that at least one

of these dual vertices, c, corresponding to a pentagon in R1 must be paired

with another dual vertex, d, corresponding to a pentagon in R2. This implies

that pairing clear field �� ��cd must share a dual vertex with �� ��ab, but this

cannot happen by Theorem B.3.

Definition B.5 (Proper Clear Field). A clear field with dimensions (x, y)

is called a proper clear field if its clear field subgraph contains (x+1)(y+1)

unique faces.
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The previous theorem shows that all pairing clear fields are proper clear
fields. The next two theorems consider clear fields on a fullerene whether or
not they pair two vertices of degree five for some coloring. The first shows
that there is a simple linear upper bound on the number of clear fields. The
second shows that there is a logarithmic upper bound for the number of
proper clear fields.

Theorem B.6. [The same as Theorem 4.3] The number of proper clear
fields is in O(log2n).

Proof. Let k be the number of proper clear fields between a quintant Qa of
a vertex a of degree five and a quintant Qb of another vertex b of degree
five. Denote these k clear fields as C1, C2, . . . , Ck with Ci having dimensions
(xi, yi). Fixing a as the origin (0, 0) and using Qa, assign coordinates to the
dual vertices (see Figure 9). A counter-intuitive situation emerges. Because
C1 pairs a and b using Qa with dimensions (x1, y1), b receives coordinate
(x1, y1). Similarly, C2 pairs a and b using Qa with dimensions (x2, y2), so b
also receives coordinate (x2, y2). This also holds for clear fields C3, C4, . . . Ck,
so b receives coordinates (x1, y1), (x2, y2), . . . , (xk, yk).

The y-dimensions of clear fields C1, C2, . . . Ck must be unique because
no two clear fields may share a wide right turn, as in the proof of Theorem
3.2. Likewise, the x-dimensions must be unique. Order the clear fields such
that y1 < y2 < . . . < yk.

Consider two of these clear fields with y-dimensions yi and yj such that
yi < yj . This non-intuitive situation is shown in Figure 14. Figure 14(a)
shows clear field Ci that starts at a with coordinate (0, 0), goes straight to
(0, yi) where it makes a wide right turn and continues straight along the path
marked B to b at (xi, yi). At b, Ci makes a sharp right turn and continues
straight to (xi, 0) where it makes a wide right turn and continues straight
along the path marked A to return to a at (0, 0). Figure 14(b) shows clear
field Cj in a more typical illustration that shows the tight right turns at a
(0, 0) and b (xj , yj) and the wide right turns at (0, yj) and (xj , 0). Figure
14(c) combines these figures to show the full picture, which must be as shown
because Ci and Cj both share quintants Qa and Qb.

To show that xi > xj , assume for contradiction that xi < xj . In this
case, the dual vertex at (xi, yi) is in the interior of Cj , which implies the
dual vertex at (xi, yi) has degree six. Because Ci pairs a and b, the dual
vertex at (xi, yi) is b, which has degree five, which provides the contradiction.
Therefore, xi > xj .

The subwalk of Ci from b to a makes its wide right turn at (xi, 0). There-
fore, the x-axis of a meets the y-axis of a at the dual vertex at coordinate
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Figure 14: Diagram for the proof of Theorem B.6. Some coordinates are la-
beled, using a as the origin. Lines of the same style represent the same dis-
tance. Arrows represent the continuation of a straight walk with the matched
ends identified by letters A and B.
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(xi − xj , 0), which is also (0, yj − yi) because Ci and Cj share Qa and Qb

(see Figure 14(c)). Clear field Ci is a proper clear field, so it contains no
repeated dual vertices. Therefore the vertex at (0, yj − yi) is not one of the
dual vertices at coordinates (0, 0) through (0, yi), so yj − yi > yi, which
implies 2yi + 1 ≤ yj . This gives 2k−1(y1 + 1) − 1 ≤ yk, which simplifies
to 2k−1 − 1 ≤ yk because y1 ≥ 0. Clear field Ck is a proper clear field, so
yk ≤ n/2− 10, the number of vertices of degree six. Therefore, 2k−1 < n/2,
which gives k < lg n.

There is a constant number of quintant pairs so the total number of
proper clear fields is in O(lg n).

This completes the necessary background to describe an algorithm to
find a maximum independent set of a fullerene.
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