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Note on “hook-length” as a graph invariant of trees*

Hua WaNG

The hook-length of a vertex v in a rooted tree T, analogous to
that defined in the Ferrers diagrams of integer partitions, is the
number of descendants of v (including v itself) in 7. In this note
we consider two different types of “average” hook-length of vertices
in a rooted tree, yielding a graph invariant that has interesting
correlation to the distance functions in trees. This correlation is
observed and used throughout the study of related properties and
extremal questions.

1. Introduction

The hook-length of a vertex v in a rooted tree T is defined as the number
of descendants of v including itself and denoted by hr(v). This concept is
comparable with the hook-length of a cell v in the Ferrers diagram of integer
partitions, defined as the number of cells, in the same row and column as v,
above or to the right of v including v itself. Many recent studies examine the
hook-length formulas from various aspects. See, for instance, [5, 7, 8, 9, 12,
13, 23] and the references therein. It is natural to consider the hook-length
as a function on vertices of a tree and examine the corresponding graph
invariant. In this note, we start with two different concepts of the “average”
hook-length of a vertex.
For a tree T, the mean hook-length at v is defined as

1
mhyp(v) = ) ug(:T) h, (u)

where T, is the tree T rooted at v, i.e., mean hook-length of all vertices when
v is the root. Intuitively, the function mhy(.) provides some indication of
how “centered” a vertex is in T'. Indeed we will see some evidence of this
intuition from the studies in this note. A closely related concept, named the
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average hook-length of v, is defined as

ahp(v) = ! Z hr, (v).

From the definitions it is natural to conjecture that these two functions
are somewhat correlated. This correlation will be shown through various
observations in this note. Considering mhz(.) and ahz(.) as local functions
on each single vertex, the corresponding global functions are denoted by

mh(T) := Z mhr(v)

veV(T)

and

ah(T):= Y ahr(v).

veV(T)

One of the most well known distance based graph invariants is the sum
of distances, also known as the Wiener index for its applications in biochem-
istry [22]. Restricting our attention to trees, the Wiener index of a tree T is
defined as

W(T):% S d(w)

veV(T)

where

d(v) :=dr(v) = Y d(u,v)

ueU(T)

is the sum of distances from all other vertices to v.

Characterizing extremal trees that maximize or minimize a certain graph
invariant has been an active area of research. For W(T'), the extremal trees
maximizing the Wiener index has been vigorously studied for trees with
given maximum degree [6], trees with given degree sequence [4, 14, 20, 24],
etc. Such studies lead to some interesting observations on the correlation be-
tween the Wiener index and the number of subtrees, whose extremal struc-
tures coincide [11, 15, 25]. The correlations between different topological
indices are studied in [18].

While the above mentioned extremal results deal with the global func-
tion, the local functions corresponding to different invariants very well define
the “middle part” of a tree that maximize or minimize the value of such a
function. The examination of different middle parts and related extremal
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problems are studied for both distance functions and the number of sub-
trees [1, 2, 16, 17].

In this note, we first study the properties of mhy(.) and ahp(.) in Sec-
tion 2. An interesting connection with the distance functions of trees are
found and discussed. With these observations, the related extremal prob-
lems are considered in Section 3. In Section 4, we point out the extremal
structures regarding the global functions mh(7T) and ah(T) as immediate
consequences of their correlation with the distance function. In Section 5,
the comparison of extremal structures are presented. This results in the
characterizations of many extremal structures as corollaries.

2. Middle parts defined by mhr(.) and ahr(.)

First recall that the centroid of a tree T', denoted by C(T), is the set of
vertices in a tree 7" minimizing d(.). It is known that C(T"), along with other
middle parts of trees defined on the number of subtrees and distances, has
the interesting property that it contains one or two adjacent vertices. For
C(T), this follows from the strict concavity of the function d(.) along any
path of the tree [10]. That is,

Proposition 2.1. For any three vertices x,y,z € V(T') such that zy,yz €
E(T), we have
2d(y) < d(x) + d(z).
Proposition 2.1 implies that, on any path of T, there are at most two
adjacent vertices with the smallest d(.) (since the sequence of values of d(.)
is strictly unimodal). Consequently one can conclude that C(T') contains at

most two adjacent vertices with minimum d(.).
We consider the analogous question for mhr(.) and ahr(.).

2.1. Behavior of mhr(.) and ahr(.) along any path of a tree
First we present the following simple but important observation showing the

close relation between mhyr(.) and d(.).

Proposition 2.2. For a tree T of order n and any vertex v € V(T), we
have

n - mhp(v) = d(v) + n.
Proof. By definition, we have

n - mhy(v ZhT ZD

ueV(T) weV (T)
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where D,(w) is the number of ancestor of w in T;. That is, the sum of
hook-lengths of all vertices is the sum of the numbers of times each vertex
contribute to the hook-length of its ancestor. Noting that

Dy(w) = d(w,v) + 1,
we have

nomhr(v)= Y  Dy(w)= Y d(w,v)+n=d@)+n. O

weV (T) weV(T)

Consequently, with given T' of order n, mhy(.) behaves in exactly the
same way as d(.) along any path of 7T'.

Corollary 2.3. For any three vertices x,y,z € V(T) such that xy,yz €
E(T) (Figure 1), we have

2mhr(y) < mhp(z) + mhrp(z).

Hence the values of mhr(.) along any path of T is strictly concave.

Figure 1: The tree T" with vertices x,y, 2.

Interestingly, ahp(.) behaves in exactly the opposite way.

Proposition 2.4. For any three vertices x,y,z € V(T) such that xy,yz €
E(T), we have

2ahr(y) > ahr(x) + ahr(z).
Hence the values of ahr(.) along any path of T is strictly convez.

Proof. Let Ty, Ty, T, be the connected components containing (respectively)
x,y, zinT—{zy} —{yz} (Figure 1). For convenience we consider n-ahp(.)
in our arguments.

Now compare n - ahr(y) and n - ahp(z). Note that, for any v € V(Ty),
we have

hr,(y) = hr, (z) - 1.



Note on “hook-length” 213

Similarly,
hr,(y) = hr, (x) + 1
for any v € V(T})) UV(T;). Thus

n-ahr(y) —n-ahr(x) = [V(T,)| + [V(T7)] = [V(T)|.
Similarly,
n-ahr(y) —n-ahr(z) = [V(T,)| + [V(T)| = [V(T2)].
Consequently
2n - ahr(y) — (n - ahr(x) +n - ahr(z)) = 2|V(Ty)| > 0. O
2.2. Middle parts of a tree with respect to mhr(.) and ahr(.)

Let Cppp(T') and Cup(T) denote the set of vertices of T' that (respectively)
minimize mhr(.) and maximize ahr(.). Corollary 2.3 and Proposition 2.4
imply that, along any path of a tree T', the value of mhr(.) (ahp(.)) is
minimized (maximized) in the middle at exactly one or two adjacent vertices
and maximized (minimized) at an end vertex of the path. Applying this fact
to all paths of T" we easily obtain the following conclusion analogous to those
for other “middle parts” of a tree.

Corollary 2.5. For a tree T', Cp,n,(T') and Cap(T) each contain one or two
adjacent vertices. On the other hand, the mazimum value of mhy(.) and
minimum value of ahr(.) are always obtained at some leaf vertex.

Given the similar (but opposite) behavior of mhz(.) and ahr(.), it is
natural to ask if Cy,,(T) and C,p(T) are always the same for a given tree
T. We see, from the following lemmas, that this is indeed the case.

Lemma 2.6. Given a tree T and v € Cpyp(T), let u be a neighbor of v. We
have

NV = Nyl
where ny,v denotes the number of vertices closer to v than w in T, with
equality if and only if u is also in Cpp(T).
Lemma 2.7. Given a tree T and v € Cup(T), let u be a neighbor of v. We
have

NV > Nyl

with equality if and only if u is also in Cyp(T).
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Remark 1. Noting the connection between mhr(.) and d(.), Lemma 2.6
follows from exactly the argument for the same statement on d(.). See, for
instance, [19]. Lemma 2.7 follows the same idea and is an immediate con-
sequence of the proof of Proposition 2.4.

As stated by Lemmas 2.6 and Lemma 2.7, Cp,,(T") and Cyp(T) are char-
acterized by the same conditions. Further noting that n,,v > ny,u implies
Nyuwt > Nyw for a neighbor w (different from v) of u, there are at most
a pair of adjacent vertices u and v with n.,v = ny,u and strict inequality
holds in this condition for any other pair of vertices. Hence we have the
following.

Theorem 2.8. For any given tree T', Cyp(T) and Con(T) are exactly the
same.

3. Extremal problems on mhr(.) and ahz(.)

As a first step of studying the related extremal problems, we consider the
characterizations of trees and the corresponding vertices that obtain the
maximum and minimum values of mhr(.) and ahr(.) among trees of given
order.

3.1. Among general trees

Among general trees, such extremal structures coincide with those with re-
spect to many other graph invariants, namely the star and the path.

Proposition 3.1. Among all trees of order n, the star T (with v being its
center) is the unique tree that obtains the minimum mhy(.) and mazimum
ahT(.).

Proof. First consider n - mhr(v) = 3, cy (1) hr, (1), note that each hr, (u)
is at least 1 in the summation for u # v and hg, (v) = n, we have

n - mhp(v) = Z hr,(u) > 2n —1
ueV(T)

with equality if and only if each u # v is a leaf. This is exactly when T is a
star centered at v.

Similarly, in the summation n - ahr(v) = 3_,cy () hr, (v), bz, (v) is at
most n — 1 unless u = v (in which case hr, (v) = n). Hence

n - ahp(v) = Z hy,(v) <n?—n+1
ueV(T)

with equality if and only if 7" is a star centered at v. O
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Considering the analogous question on maximizing d(.) among trees of
given order n, it is easy to see the following. We include the proof for com-
pleteness.

Proposition 3.2. Among all trees of order n, the path T (with v being one
of its end wvertices) is the unique tree that obtains the mazimum d(v) and
hence mhrp(.).

Proof. Consider d(u,v) for any u # v, d(u,v) = k > 1 if and only if there is
a vertex w (possibly v) such that d(w,v) =k — 1. Hence

n(n—1)

dw) <1+2+...+(n—1) = ——

with equality if and only if T' is a path with v as a leaf.
Correspondingly,

mh(v) < % (% 4 n>

with equality if and only if T" is a path with v as a leaf. O

Note that hr,(v) = 1 for any leaf v and any u # v, and hp,(v) = n
if u = v, we have the following simple observation. Unlike other cases, the
extremal tree and vertex minimizing ahp(v) is by no means unique.

Proposition 3.3. Among trees of order n > 2, the minimum

2n —1
n

ahp(v) =

1s obtained by any tree T with v being one of the leaves.
3.2. Among trees of given degree sequence

Extremal trees of given degree sequence (the non-increasing sequence of
degrees of all vertices) have been of great interests because of related appli-
cations and the generalization it provides for other categories of trees.

Among trees of given degree sequence, the caterpillar (a tree whose re-
moval of leaves yields a path) has been known as the analogue of the path
among general trees. In particular, it is known to maximize the Wiener in-
dex and minimize the number of subtrees [14, 20, 24]. However, the specific
characterization of the extremal caterpillar usually depends on the degree
sequence [4].
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Proposition 3.3 also answers the same question for trees with a given
degree sequence.

Corollary 3.4. Among all trees with a given degree sequence, the minimum
ahyp(.) is obtained by any such tree with v being one of the leaves.

To maximize mhr(.) among trees with given degree sequence, consider-
ing the distance version of the problem yields that the caterpillar is indeed
extremal. Furthermore, the extremal caterpillar can be characterized.

Proposition 3.5. Among trees with given degree sequence
(di,day...,dg,1,...,1)

(with k internal vertices and di > do > ... > dy, > 2), the mazimum d.)
and hence mhr(.) is uniquely obtained by a “biased” caterpillar T (defined
below) with v being one of the leaves.

Here T is formed by a longest path vouivs...vpv and pendant edges
such that deg(v;) = d; for 1 <i < k. Figure 2 shows an example of such a
“biased” caterpillar with the corresponding vertex v.

Proof. By Proposition 2.2, we only need to consider d(v) in T'. Since the
maximum value must be obtained by a leaf, let v be such a leaf and P(u,v)
be a longest path from v with u being a leaf. Supposing for contradiction
that T is not a caterpillar, there exists a vertex v' on P(u,v) such that a
neighbor w of v’ is neither a leaf nor on P(u,v). Let W denote the component
containing w in T — {v'w} (Figure 3).

Now consider a new tree 7" resulted from T by detaching W from w
and reattaching to u (Figure 3), i.e., T/ = T — {v'w} + {uw}. Through this
operation the distances from v to any other vertex stay the same but the
distances from v to any vertex in W strictly increases (note that v is at
least distance 2 away from u), thus a contradiction.

T

Figure 2: A “biased” caterpillar with degree sequence (6,5,4,4,1,...,1).
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N 7 N

RN W
T

Figure 3: The path P(u,v) and the vertices v, v and w.

Hence the maximum d(v) must be obtained by a caterpillar with a leaf
v that is one end of the longest path. It is obvious that, to maximize d(v),
larger degrees are assigned to internal vertices further away from v. This
results in exactly the structure of a “biased” caterpillar. O

We now consider trees with given degree sequence that minimize mhp(.).
We first define the following greedy tree, known to be extremal with respect
to many other graph invariants such as (minimizing) the Wiener index or
(maximizing) the number of subtrees [14, 20, 24].

Definition 1 (Greedy trees). Given a tree degree sequence deg, the greedy
tree is achieved through the following “greedy” algorithm:

i) Start with a single vertex v as the root and give v the appropriate
number of children so that it has the largest degree;

ii) Label the neighbors of v as vy, va, ..., assign to them the largest
available degrees such that deg(vy) > deg(vy) > ---;

ii1) Label the neighbors of v1 (except v) as v11, vi2, ... such that they
take all the largest degrees available and that deg(v11) > deg(viz) > ---,
then do the same for vs, vs, ...;

iv) Repeat (iii) for all the newly labeled vertices, always start with the
neighbors of the labeled vertex with largest degree whose meighbors are not
labeled yet.

For example, Fig. 4 shows a greedy tree with degree sequence
(4,4,4,3,3,3,3,3,3,3,2,2,1,...,1).
We will see that such a greedy tree and its root v indeed minimize d(v)

(and hence mhr(v)) but far less constrained structures can achieve the same.

Definition 2 (Semi-Greedy trees). With a given tree degree sequence deg,
a rooted tree is semi-greedy if deg(u) > deg(w) for any two vertices u and
w where the height of w is larger than that of u.



218 Hua Wang
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Figure 4: A greedy tree.

Remark 2. Note that the only difference between the semi-greedy trees and
the greedy tree is that we do not require the uniform ordering of degrees
of vertices of each “level” (height). It is easy to see that a greedy tree is
semi-greedy but not vice versa. Fig. 5 shows such an example.

Proposition 3.6. Among trees with given degree sequence, the minimum
d(v), and hence minimum mhyp(v) is obtained by a semi-greedy tree and its
root. Such extremal trees are generally not unique.

Proof. Again consider the distance version of the question. To minimize d(v)
in the tree rooted at v, one simply wants to accommodate as many vertices
as possible at height 1, then 2, etc. This is exactly what the conditions of a
semi-greedy tree achieves (i.e., assigning larger degrees to vertices closer to
the root so that we have the largest possible number of vertices of height 1,
height 2, etc.). O

Figure 5: A Semi-greedy tree that is not greedy.
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Next we consider trees of given degree sequence that maximize ahyp(.).
For this purpose, consider the extremal tree T' as rooted at v where the
maximum ahp(v) is obtained. Let T, T, ..., Ts denote the connected com-
ponents in T'—{v} and let n; = |V (T;)| for 1 < i < s. We have the following.
Theorem 3.7. Under the above notations, among all trees of given degree
sequence, the mazimum ahr(v) is obtained when the value Y 5 | n? is min-
imized. As a consequence, v has the largest degree in such an extremal tree.

Proof. First it is easy to see that

k

ini:n—1:Zdj—k+1
i=1 j=1

where di,ds, ..., d; are the degrees of internal vertices. See Figure 6.

v

AN AN

Figure 6: The extremal tree T and the components 7;’s.

Note that, in the summation n - ahr(v) = 3, cy ) hr, (v), a vertex
w € V(T;) contribute to the term hp, (v) if and only if u € V(T — T;). Thus

S

n - ahr(v Z hy, (v Z (n—ni)—i-n:nQ—zs:n%
i=1

ueV(T) =1

2 is minimized.

is maximized when 7 | n

We also claim that v must be of the largest degree in such an extremal
tree, otherwise, let deg(v) = s < r = deg(w) for some vertex w € V(11)
(without loss of generality). Let the children of w be w; for 1 < i < r —1,
denote by n be the order of the subtree induced by w; and its descendants
forl1 <i<r-—1.

We now create a new tree 1" by “switching” the degrees of v and w
through “moving” w; and its descendants from w to v (Figure 7) for 1 <

1 <d:=r —s. That is,
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T =T — {wwy,wwy, ..., wwg} + {vwy, vws, ..., vwg}

is a tree with the same degree sequence as T'.

Figure 7: Generating 7" from 7.

Then
s d 2 4
n - ahg (v) = n? — an - (m - Zni) - Z(n;)Q
i=2 i=1 i=1
S
>n? — Z n? —n?
i=2
=n-ahp(v),
contradicting to the optimality of T. O

Remark 3. As one can see from Theorem 3.7, the complete characteriza-
tion of the extremal trees that achieve the maximum ahy(v) depends on the
specific degree sequence. However, since the internal verter degrees in each
T; completely determines n;, Theorem 3.7 reduces the problem to a discrete
optimization question with specifically given degree sequences.

4. Extremal trees with respect to mh(T) and ah(T)

If mhp(.) and ahp(.) are considered as “local” functions on hook-length,
then mh(T) and ah(T') are the natural “global” versions. As aforementioned,
extremal questions on other graph invariants such as the Wiener index have
been vigorously studied.

First note the simple observation that
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n-ah(T)

= > (eaho()= Y D hnw)= > (n-mhr(v))
veV(T) veV(T) ueV (T) veV(T)

=n-mh(T).

From Proposition 2.2 and the definition of W (T'), we easily obtain the
following observation.

Proposition 4.1. Given any tree T' of order n, we have
n-mh(T) = 2W(T) + n®.
Thus the extremal structures with respect to mh(7T) and ah(T) follow

from the well known facts on W(T') (see, for instance, [6, 20]).

Corollary 4.2. Among all trees of given order, mh(T) = ah(T') is mini-
mized by the star and mazimized by the path; Among all trees of given degree
sequence, mh(T) = ah(T) is minimized by the greedy tree and mazximized by
a caterpillar.

5. Comparison between trees of different degree sequence

As a final remark on the extremal structures among trees with given degree
sequence, we consider their ordering with different degree sequences. Such
results in previous works on other indices yield many characterizations of
extremal structures as immediate corollaries.

Definition 3. For two nonincreasing sequences m = (do,- -+ ,dn—1) and
' =(dy, - ,d,_y), © is said to majorize w if for k=0,--- ,n—2

k k n—1 n—1
ddi<> d; and dodi=> d;
] ; =0 =0

This is denoted by

Tan.
Lemma 5.1. [21] Let 7 = (dy,---dp—1) and © = (dyy,--- ,d,_;) be two
nonincreasing graphic degree sequences. If m<n’, then there exists a series of
graphic degree sequences Ty, -+ , Ty, such that T1Amw <47y, <7, where m;

and mi+1 differ at evactly two entries, say d; (d;) and dy, (d},) of mi (Tit1),
with dj; = d; + 1, dj = d — 1 and j < k.
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With Lemma 5.1, it is easy to compare mhp(v) of two semi-greedy trees
or biased caterpillars with degree sequences differing by only two entries,
i.e., consider

W:(dﬂa"'dn—l)q( 67"'7 ;Lfl):ﬂ-/

with d;- =dj+1,d;=d; — 1 for some j <[ and all other entries the same.

For two biased caterpillars with degree sequences m and 7', it is obvious
that the one with degree sequence 7’ has one vertex further away from v
than that with m while all other vertices stay the same. Hence we have the
following.

Proposition 5.2. Let T be a biased caterpillar of order n with degree se-
quence w1 and T of order n with degree sequence my. If w1 < mwo, then the
corresponding mazimum value of d(.) (and hence mhp(.)) of Ty is at least
as large as that of Ty .

Similarly, the semi-greedy tree with degree sequence 7’ has some vertex
whose distance from v is at most that in the semi-greedy tree with degree
sequence 7 while all other vertices maintain the same distance from v. Thus
we have the following.

Proposition 5.3. Let T be a semi-greedy tree of order n with degree se-
quence 1 and Ts of order n with degree sequence mo. If w1 A mwo, then the
corresponding minimum value of d(.) (and hence mhr(.)) of Ty is at most
as large as that of T1.

For instance, it is obvious that the star (path) has degree sequences
majorizing (being majorized by) all other degree sequences among general
trees. The statements regarding mhr(.) in Propositions 3.1 and 3.2 are then
simple consequences of the above observations. Similarly, if the number of
leaves of a tree is given, we have the following.

Corollary 5.4. Among trees with given order n and number of leaves [, the
“star-like tree” (a tree formed by joining ends of paths, whose lengths differ
by at most 1; Figure 8) achieves the minimum mhr(.) and the “comet” (a
tree formed by attaching pendant edges at one end of a path, also called a
“broom”; Figure 9) achieves the mazimum mhr(.).

Proof. Indeed, the degree sequence
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majorizes all other degree sequences under the condition that there are ex-
actly [ 1’s. The corresponding semi-greedy tree is a star-like tree and the
corresponding biased caterpillar is a comet. ]

I

Figure 8: A star-like tree with n = 11 and [ = 4.

Figure 9: A comet or broom.

The analogous statement regarding the greedy trees of different degree
sequences that minimize n-mh(T) = n-ah(T) = 2W(T) + n?, although not
stated explicitly before, easily follows from the properties of d(.) in greedy
trees. See for instance [3, 20].

Theorem 5.5. Let T1 be a greedy tree of order n with degree sequence 1
and T of order n with degree sequence mo. If m Ao, then

n-mh(Ty) =n-ah(Ty) = 2W (Ts) +n? < n-mh(T1) = n-ah(T1) = 2W (T1) +n?.

As an example of the application, the “extended good k-ary trees” is
defined as the greedy tree but with all vertex degrees equal to k in the
recursive construction until one runs out of vertices (hence there is at most
one vertex of degree strictly between 1 and k, see Figure 10). For trees with
given order n and maximum vertex degree k, it is obvious that the degree
sequence

(ky.o.. k1 <r<k1,...,1)
majorizes all other degree sequences. The corresponding greedy tree yields

an extended good k-ary tree, showing the following. Interested readers can
check [3, 25] for many more such applications.
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Corollary 5.6. Among all trees of order n and maximum vertex degree k,
the extended good k-ary tree minimizes W (T') and hence mh(T') and ah(T).

Figure 10: An extended good 4-ary tree.

Acknowledgements

The author is in debt to the anonymous referee whose valuable suggestions
on both mathematical reasoning and presentation of the paper greatly im-
proved the quality of this manuscript. The author also thanks L. A. Székely
for introducing to him the concept of hook-length.

1]

2]

References

A. Addm. (1974). The centrality of vertices in trees. Studia Sci. Math.
Hung. 9 285-303. MR0406840

C. A. Barefoot, R. C. Entringer, L. A. Székely. (1997). Extremal val-
ues for ratios of distances in trees. Discrete Appl. Math. 80 37-56.
MR1489059

M. Bartlett, E. Krop, C. Magnant, F. Mutiso, H. Wang. (2014). Varia-
tions of distance-based invariants of trees. J. Combin. Math. Combin.
Comput. 91 19-29. MR3287704

E. Cela, N. S. Schmuck, S. Wimer, G. J. Woeginger. (2011). The Wiener
maximum quadratic assignment problem. Discrete Optim. 8 411-416.
MR2811629

W.Y. C. Chen, O. X. Q. Gao, P. L. Guo. (2011). Hook length formulas
for trees by Han’s expansion. FElectronic Journal of Combinatorics 16
#R62. MR2505104


http://www.ams.org/mathscinet-getitem?mr=0406840
http://www.ams.org/mathscinet-getitem?mr=1489059
http://www.ams.org/mathscinet-getitem?mr=3287704
http://www.ams.org/mathscinet-getitem?mr=2811629
http://www.ams.org/mathscinet-getitem?mr=2505104

[6]

[12]

[13]

[14]

Note on “hook-length” 225

M. Fischermann, A. Hoffmann, D. Rautenbach, L. A. Székely, L. Volk-
mann. (2002). Wiener index versus maximum degree in trees. Discrete

Appl. Math. 122 127-137. MR1907827

G. N. Han. (2010). New hook length formulas for binary trees. Combi-
natorica 30 253-256. MR2676840

G. N. Han. (2009). Yet another generalization of Postnikovs hook length
formula for binary trees. SIAM J. Discrete Mathematics 23 661-664.
MR2496909

G. N. Han. (2008). Discovering hook length formulas by an ex-
pansion technique. Electronic Journal of Combinatorics. 15 #R133.
MR2448883

C. Jordan. (1869). Sur les assemblages de lignes. J. Reine Angew. Math.
70 185-190. MR1579443

R. Kirk, H. Wang. (2008). Largest number of subtrees of trees with a
given maximum degree. STAM J. Discrete Mathematics 22(3) 985-995.
MR2424834

M. Kuba, A. Panholzer. (2013). A unifying approach for proving hook-
length formulas for weighted tree families. Graphs and Combinatorics
29 1839-1865. MR3119942

B. E. Sagan. (2009). Probabillistic proofs of hook length formulas in-
volving trees. Séminaire Lotharingien de Combinatoire 61A Article

B61Ab. MR2529393

N. Schmuck, S. Wagner, H. Wang. (2012). Greedy trees, caterpillars,
and Wiener-type graph invariants. MATCH Commun. Math. Comput.
Chem. 68(1) 273-292. MR2986487

L. A. Székely, H. Wang. (2005). On subtrees of trees. Advances in Ap-
plied Mathematics 34 138-155. MR2102279

L. A. Székely, H. Wang. (2013). Extremal values of ratios: distance
problems vs. subtree problems in trees. Electronic J. Combin. 20(1)
paper 67, 20 pp. MR3040629

L. A. Székely, H. Wang. (2014). Extremal values of ratios: distance
problems vs. subtree problems in trees II. Discrete Math. 322 36-47.
MR3164035

S. Wagner. (2007). Correlation of graph-theoretical indices. SIAM J.
Discrete Mathematics 21(1) 33-46. MR2299692


http://www.ams.org/mathscinet-getitem?mr=1907827
http://www.ams.org/mathscinet-getitem?mr=2676840
http://www.ams.org/mathscinet-getitem?mr=2496909
http://www.ams.org/mathscinet-getitem?mr=2448883
http://www.ams.org/mathscinet-getitem?mr=1579443
http://www.ams.org/mathscinet-getitem?mr=2424834
http://www.ams.org/mathscinet-getitem?mr=3119942
http://www.ams.org/mathscinet-getitem?mr=2529393
http://www.ams.org/mathscinet-getitem?mr=2986487
http://www.ams.org/mathscinet-getitem?mr=2102279
http://www.ams.org/mathscinet-getitem?mr=3040629
http://www.ams.org/mathscinet-getitem?mr=3164035
http://www.ams.org/mathscinet-getitem?mr=2299692

226

[19]

[20]

Hua

Hua Wang

H. Wang. (2015). Centroid, leaf-centroid, and internal-centroid. Graphs
Combin. 31 783-793. MR3338033

H. Wang. (2008). The extremal values of the Wiener index of a tree
with given degree sequence. Discrete Appl. Math. 156 2647-2654; Cor-
rigendum (2009). Discrete Appl. Math. 157 3754. MR2451087

W. D. Wei. (1982). The class U (R, S) of (0,1) matrices. Discrete Math-
ematics 39 201-205. MR0676194

H. Wiener. (1947). Structural determination of paraffin boiling point.
J. Amer. Chem. Soc. 69 17-20.

L. L. M. Yang. Generalizations of Han’s Hook Length Indentities.
arXiv:0805.0109.

X. D. Zhang, Q. Y. Xiang, L. Q. Xu, R. Y. Pan. (2008). The Wiener
index of trees with given degree sequences. MATCH Commun. Math.
Comput. Chem. 60 623-644. MR2457876

X. M. Zhang, X. D. Zhang, D. Gray, H. Wang. (2013). The number of
subtrees of trees with given degree sequence. J. Graph Theory. 73(3)
280-295. MR3062797

WANG

DEPARTMENT OF MATHEMATICAL SCIENCES
GEORGIA SOUTHERN UNIVERSITY

STAT
USA

ESBORO, GA 30460

E-mail address: hwang@georgiasouthern.edu

RECEIVED 27 MARCH 2015


http://www.ams.org/mathscinet-getitem?mr=3338033
http://www.ams.org/mathscinet-getitem?mr=2451087
http://www.ams.org/mathscinet-getitem?mr=0676194
http://www.ams.org/mathscinet-getitem?mr=2457876
http://www.ams.org/mathscinet-getitem?mr=3062797
mailto:hwang@georgiasouthern.edu

	Introduction
	Middle parts defined by mhT(.) and ahT(.)
	Behavior of mhT(.) and ahT(.) along any path of a tree
	Middle parts of a tree with respect to mhT(.) and ahT(.)

	Extremal problems on mhT(.) and ahT(.)
	Among general trees
	Among trees of given degree sequence

	Extremal trees with respect to mh(T) and ah(T)
	Comparison between trees of different degree sequence
	Acknowledgements
	References

