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Let χc(H) denote the circular chromatic number of a graph H. For
graphs F and G, the circular chromatic Ramsey number Rχc(F,G)
is the infimum of χc(H) over graphs H such that every red/blue
edge-coloring of H contains a red copy of F or a blue copy of G.
We characterize Rχc(F,G) in terms of a Ramsey problem for the
families of homomorphic images of F and G. Letting zt = 3− 2−t,
we prove that zt−1 < χc(G) ≤ zt implies 2zt−1 ≤ Rχc(G,G) ≤ 2zt.
For integer k with k > 1, there is a graph G with χc(G) ≥ k and
Rχc(G,G) ≤ k(k − 1). Our most difficult result is Rχc(F,G) = 4
when χc(F ), χc(G) ∈ (2, 5

2 ]. As a consequence, no graph G satisfies
4 < Rχc(G,G) < 5. We also prove 14

3 ≤ Rχc(C3, C5) ≤ 5 and
4 ≤ Rχc(C3, C7) ≤ 9

2 .
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1. Introduction

Given families F and G of graphs, classical graph Ramsey theory considers
graphs H such that every red/blue edge-coloring of H contains a red graph
from F or a blue graph from G; we then write H → (F ,G) and say that H
arrows (F ,G). The Ramsey number R(F ,G) is min{|V (H)| : H → (F ,G)}.
(When F or G is a single graph, we drop set braces.)

For any mononotone graph parameter ρ, the ρ-Ramsey number of (F ,G),
written Rρ(F ,G), is inf{ρ(H) : H → (F ,G)}. Besides the number of vertices,
the notion has been studied with ρ being the clique number [4, 11], chromatic
number [2, 17], number of edges (yielding the “size Ramsey number”) [3, 14],
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and maximum degree [8, 10]. In this paper we let ρ be the “circular chromatic
number”.

The circular chromatic number of a graph G, written χc(G), is the infi-
mum of p/q such that the vertices of H can be assigned congruence classes
modulo p so that the classes of adjacent vertices differ by at least q. Formally,
for p, q ∈ N with p ≥ 2q, the generalized complete graph or circular clique
Kp:q has vertex set {vi : 0 ≤ i ≤ p−1} and edge set {vivj : q ≤ |i−j| ≤ p−q}.
A homomorphism from G to H is a map φ : V (G) → V (H) that preserves
edges. When a homomorphism exists from G to Kp:q, we say that G is
(p, q)-colorable, so χc(G) = inf{p/q : G is (p, q)-colorable}. If G is finite,
then χc(G) is rational and the infimum is the minimum [1, 16].

Since a (p, 1)-coloring is just an ordinary proper p-coloring, χc(G) ≤
χ(G). It is also well known that always χc(G) > χ(G) − 1 [1, 16]. Hence
in fact χ(G) = �χc(G)�, meaning that the circular chromatic number is a
refinement of the chromatic number.

Letting ρ = χc, we study the circular chromatic Ramsey number:

Rχc
(F ,G) = inf{χc(H) : H → (F ,G)}.

Here the infimum is needed; the minimum may not exist.
Circular chromatic Ramsey number also arises from a different extension

of Ramsey number. In studying R(F ,G), we seek monochromatic copies of
graphs in F or G. If instead we are content with a monochromatic homo-
morphic image of such a graph when coloring E(Kn), then the least n that
suffices is Rχ(F ,G), by a result of [2] that we will state later. If we extend the
options for the host graph to all Kp:q, then the resulting value is Rχc

(F ,G).
In Section 2, we discuss the basic properties of Rχc

and characterize
Rχc

(F,G) in terms of which circular cliques arrow the families of homo-
morphic images of F and G. Section 3 begins with easy arguments for small
graphs analogous to the simplest Ramsey problems, obtainingRχc

(K3,Kp) =
R(K3,Kp) for p ∈ {3, 4, 5}. However,Rχc

(K4,K4) ≤ 17.5 < 18 = R(K4,K4).
We then obtain bounds on Rχc

(G) whenever 2 ≤ χc(G) ≤ 3. Letting
zt = 3−2−t, we show that zt−1 < χc(G) ≤ zt implies 2zt−1 ≤ Rχc

(G) ≤ 2zt.
This yields non-integer values of Rχc

between 5 and 6 when t ≥ 2. We also
obtain Rχc

(G) = 6 when χc(G) = 3.
For integer k with k > 2, in Section 4 we show the existence of a

graph Gk with χc(Gk) ≥ k and Rχc
(Gk, Gk) ≤ k(k − 1). This supports

an analogue of the conjecture from [2] that Rχ(k) = (k − 1)2 + 1, where
Rχ(k) = inf{Rχ(G,G) : χ(G) = k}, which was proved by Zhu [19]. This
result shows that the values of Rχc

(G,G) vary exponentially when χc(G) is
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fixed, since Rχc
(Kk,Kk) ≥ Rχ(Kk,Kk)− 1 = R(k, k)− 1 > O(k2k/2), using

the well-known lower bound on classical Ramsey numbers.
In Section 5 we prove our most difficult result: Rχc

(G,G) = 4 whenever
2 ≤ χc(G) ≤ 5/2. Combined with the observations of Section 2, we conclude
that if each of F and G contains no bipartite graph but contains a graph
with circular chromatic number at most 5/2 (such as an odd cycle of length
at least 5), then Rχc

(F ,G) = 4. Furthermore, there is no graph G such that
4 < Rχc

(G,G) < 5.
For the “non-diagonal” case, in Section 6 we prove 14

3 ≤ Rχc
(C3, C5) ≤ 5

and 4 ≤ Rχc
(C3, C7) ≤ 9

2 . In contrast to having Rχc
(C2k+1, C2k+1) = 4

whenever k ≥ 2, we now have different values for Rχc
(C3, C5) and

Rχc
(C3, C7), though we do not yet know either value.

2. General observations

The classical bounds χ(H)− 1 < χc(H) ≤ χ(H) yield analogous bounds on
Rχc

(F ,G).
Proposition 2.1. Rχ(F ,G)− 1 ≤ Rχc

(F ,G) ≤ Rχ(F ,G).
Proof. Since χc(H) ≤ χ(H) when H → (F ,G), also Rχc

(F ,G) ≤ Rχ(F ,G).
For the other inequality, if k ≤ Rχc

(F ,G) < k + 1 for some integer k, then
H → (F ,G) for some graph H with k ≤ χc(H) < k + 1. Since k ≤ χ(H) ≤
k + 1, we have Rχ(F ,G) ≤ k + 1, and hence Rχ(F ,G) ≤ Rχc

(F ,G) + 1. �
Early work on the circular chromatic number asked when χc(H) equals

χ(H) or is close to χ(H) − 1. We ask the same question for the bounds on
Rχc

(F ,G) in Proposition 2.1.
Like the chromatic Ramsey number in [2], the circular chromatic Ramsey

number can be phrased as a classical graph Ramsey problem using homo-
morphisms. If there is a homomorphism from H to H ′, then H ′ need not
contain every subgraph in H, but it contains a homomorphic image of every
subgraph in H. The resulting lemma will help us rephrase Rχc

using circular
cliques. Given a family F , let Hom(F) denote the family of all homomorphic
images of graphs in F via surjective maps.

Lemma 2.2. If H → (F ,G) and there is a homomorphism φ : H → H ′,
then H ′ → (Hom(F),Hom(G)).
Proof. Let f ′ be a red/blue edge-coloring of H ′. For e ∈ E(H), let f(e) =
f ′(φ(e)). Under f , in H there is a red subgraph belonging to F or a blue
subgraph belonging to G. This subgraph maps under φ to a subgraph of H ′

in Hom(F) or Hom(G) that has the specified color under f ′. Hence H ′ →
(Hom(F),Hom(G)). �
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Burr, Erdős, and Lovász [2] proved

Rχ(F ,G) = R(Hom(F),Hom(G)) = inf{n : Kn → (Hom(F),Hom(G))}.

They used the bipartite version of Ramsey’s Theorem and the blowup J [n]
of a graph J , defined to be the graph obtained from J by expanding each
vertex into an independent set of size n (and each edge into a copy of the
complete bipartite graph Kn,n). Their idea applies also to Rχc

, yielding the
following result.

Theorem 2.3. If F and G are finite, then

Rχc
(F ,G) = inf{p/q : Kp:q → (Hom(F),Hom(G))}.

Proof. Whenever H → (F ,G) with χc(H) = p/q, Lemma 2.2 yields Kp:q →
(Hom(F),Hom(G)). Thus inf{p/q : Kp:q →(Hom(F),Hom(G))}≤Rχc

(F ,G).
For the reverse inequality, suppose Kp:q → (Hom(F),Hom(G)). Let H =

Kp:q[n], where n is the largest number of vertices among graphs in F or
G. When N is sufficiently large, every 2-edge-coloring of H[N ] contains a
copy of H in which each copy of Kn,n corresponding to a single edge of
Kp:q is monochromatic. This is proved by iterating the bipartite version of
Ramsey’s Theorem, as in [2]. The resulting 2-edge-coloring of Kp:q has a red
copy of some graph in Hom(F) or a blue copy of some graph in Hom(G),
since Kp:q → (Hom(F),Hom(G)). In the 2-edge-coloring of H, this subgraph
expands into a monochromatic copy of the corresponding graph in F or G
with the right color. Hence H[N ] → (F ,G). Since χc(H[N ]) = p/q, we have
Rχc

(F ,G) ≤ inf{p/q : Kp:q → (Hom(F),Hom(G))}. �

Lemma 2.4. If each graph in F ′ contains a homomorphic image of some
graph in F , and similarly for G′ and G, then Rχc

(F ,G) ≤ Rχc
(F ′,G′).

Proof. Given any p, q ∈ N with p/q ≥ Rχc
(F ′,G′), let f be a red-blue

coloring of Kp:q. By Theorem 2.3 and symmetry, we may assume that f on
Kp:q yields a red copy of some graph F ′′ in Hom(F ′). By definition, there
exists F ′ ∈ F ′ that admits a homomorphism onto F ′′.

By hypothesis, there exists F ∈ F that admits a homomorphism to F ′.
By composition, the red copy of F ′′ contains a homomorphic image of F .
Thus Kp:q → (Hom(F ,G)). We conclude Rχc

(F ,G) ≤ p/q. Since this holds
whenever p/q ≥ Rχc

(F ′,G′), we have Rχc
(F ,G) ≤ Rχc

(F ′,G′). �

When F = G = {G}, we write H → G for H → (G,G) and Rρ(G) for
Rρ(G,G).
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Corollary 2.5. If a graph G′ contains a homomorphic image of a graph G,

then Rχc
(G) ≤ Rχc

(G′).

Proof. This statement is just the special case of Lemma 2.4 when F = G
and F ′ = G′ and each family consists of a single graph. �

Corollary 2.5 yields Rχc
(G) ≤ Rχc

(Kp:q) when χc(G) = p/q, so we

study Rχc
(Kp:q) to obtain upper bounds on Rχc

(G), especially when χc(G)

is small. In Section 3, we compute circular chromatic Ramsey numbers for

small complete graphs and obtain bounds for some circular cliques. Since

C2k+1
∼= K(2k+1):2, this theme continues when we consider odd cycles and

pairs of odd cycles in Sections 5 and 6.

Theorem 5.4 proves Rχc
(C5) = 4. Using the general observations above,

this result implies the following.

Corollary 2.6. Rχc
(F ,G) ≤ 4 whenever F and G each contain some graph

with circular chromatic number at most 5
2 . Equality holds when neither F

nor G contains a bipartite graph.

Proof. Every graph with circular chromatic number at most 5/2 admits a

homomorphism into C5. Thus F ′ = G′ = {C5} in Lemma 2.4 yields the

upper bound. For the lower bound, every graph with chromatic number at

most 4 decomposes into two bipartite graphs. �

From the characterization of Rχ(G) in [2], it follows that Rχ(G) ∈ {5, 6}
when G is 3-chromatic, and the value is 5 if and only if G is (5, 2)-colorable.

On the other hand, 2 < χc(G) ≤ 5
2 implies Rχc

(G) = 4. When 5
2 < χc(G) ≤

3, we have Rχ(G) = 6. Since Proposition 2.1 yields Rχ(G)− 1 ≤ Rχc
(G) ≤

Rχ(G), it follows that 5
2 < χc(G) ≤ 3 implies 5 ≤ Rχc

(G) ≤ 6, and hence

there are no circular chromatic Ramsey numbers between 4 and 5. However,

we show in Section 3 that there are such values between 5 and 6, using the

following remark.

Remark 2.7. Upper and lower bounds. By Theorem 2.3, Kp:q → Hom(G)

implies Rχc
(G) ≤ p/q. Also, if Kp:q → Hom(G) and p′/q′ ≥ p/q, then

Kp′:q′ → Hom(G), by Lemma 2.2. The homomorphic images of G all have

circular chromatic number at least χc(G) and include all Kr:s with r/s ≥
χc(G). Therefore, if there exists Kr:s having a red/blue edge-coloring such

that each color class has circular chromatic number less than χc(G), then

Rχc
(G) ≥ r/s. We use this method in Section 3 to obtain upper and lower

bounds showing that if 11
4 ≤ χc(G) < 3, then 5.5 < Rχc

(G) < 6.



194 Kyle F. Jao et al.

3. Bounds and small values

Using the known colorings that establish lower bounds for R(K3, G), we
prove Rχc

(K3, G) = R(K3, G) for G ∈ {K3,K4,K5}. Since Rχc
(F,G) ≤

R(F,G), we need only discuss the lower bounds. Let an (F ,G)-avoidance on
H be a red/blue edge-coloring of H having no red subgraph in F and no
blue subgraph in G.

The length of an edge vivj in Kp:q is min{|i− j|, p− |i− j|}. Recall that
Hom(Kn) = {Kn}.

Proposition 3.1. Rχc
(K3,K3) = R(K3,K3) = 6.

Proof. It suffices to find for all q a (K3,K3)-avoidance on K(6q−1):q. Assign
red to the edges with lengths q, . . . , 2q−1, and blue to the edges with lengths

2q, . . . , 	 (6q−1)
2 
.

The lengths of the edges of a triangle in K(6q−1):q are a, b, c with a +
b + c = 6q − 1 or a + b = c. For red edges of any lengths a, b, c, we have
a+b+c ≤ 6q−3 < 6q−1 and a+b ≥ 2q > c. For blue edges of these lengths,
we have a + b + c ≥ 6q > 6q − 1 and a + b ≥ 4q > c. With a contradiction
in each case, there is no monochromatic triangle. �

Proposition 3.2. Rχc
(K3,K4) = R(K3,K4) = 9.

Proof. It suffices to find for all q a (K3,K4)-avoidance on K(9q−1):q. Assign
blue to all edges with lengths q, . . . , 3q−1 and red to the edges with lengths

3q, . . . , 	 (9q−1)
2 
.

The lengths of the three edges of a triangle in K(9q−1):q are a, b, c with
a ≤ b ≤ c so that a + b + c = 9q − 1 or a + b = c ≤ (9q − 1)/2. Since the
lengths of three red edges sum to at least 9q, and two sum to at least 6q,
there is no red triangle.

Consider the four vertices of a 4-clique in K(9q−1):q in cyclic order of
indices. The edge joining two opposite vertices u and v forms triangles with
each of the two remaining vertices, x and y. In one of these triangles, the
three lengths sum to 9q− 1. Since three blue lengths sum to at most 9q− 3,
there is no blue copy of K4. �

The particular coloring in Proposition 3.2 was noticed by Daniel
Cranston. It is slightly simpler than our original coloring.

Proposition 3.3. Rχc
(K3,K5) = R(K3,K5) = 14.

Proof. It suffices to find for all q a (K3,K5)-avoidance on K(14q−1):q. Assign
red to all edges with lengths 2q, . . . , 4q − 1 and blue to all other edges.
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Since 12q − 3 < 14q − 1, a red triangle can occur only by using two red
lengths that sum to a red length, but 2q + 2q > 4q − 1 prevents this.

It remains to prohibit blue 5-cliques. Blue edges include short edges with
lengths from q to 2q − 1 and long edges with lengths at least 4q. Consider
the separations among consecutive vertices of a blue 5-clique when viewed
in cyclic order of subscripts. The separations must sum to 14q−1 using blue
lengths. The sum of two short blue lengths is between 2q and 4q − 2, all
of which are red lengths, so a blue 5-clique cannot have consecutive short
separations. Hence it has at most two short separations. Since the long
separations are at least 4q each, the sum of the five separations in a blue
5-clique is at least 14q, a contradiction. �

The behavior of Rχc
(K4,K4) is quite different. Although R(K4,K4) =

18, we will prove Rχc
(K4,K4) ≤ 17.5. Greenwood and Gleason [6] showed

R(K4,K4) = 18 by coloring K17 with no monochromatic 4-clique, using
cyclic symmetry. Viewed as K17:1, the edges of lengths 1, 2, 4, 8 are one
color, and those of lengths 2, 5, 6, 7 are the other color. The coloring has
monochromatic 4-cycles, but their chords do not both have that color. In
fact, there is only one graph on 17 vertices having no set of four pairwise
adjacent or pairwise nonadjacent vertices; the survey of Radziszowski [13]
states that this was proved by Kalbfleisch [9]. We use that each color class
in the (K4,K4)-avoidance on K17 is 4-regular. The next lemma will enable
us to use this.

Lemma 3.4. If the red and blue subgraphs in every (F ,G)-avoidance on
Kp:r are regular, then every (F ,G)-avoidance on K(2p+1):2r is constant on
consecutive pairs of length classes, each pair consisting of all edges with
lengths 2i or 2i+ 1 for some i in {r, . . . , 	p/2
}.

Proof. The subgraph of K(2p+1):2r induced by {v0, v2, . . . , v2p−2} is isomor-
phic to Kp:r; call it K. The length of the edge from the first to the last of
these vertices is 3 instead of 2. Substituting v2p for v0 yields another copy
K ′ of Kp:r. Given that every (F ,G)-avoidance on Kp:r is regular, any edge
v0v2i lost from K by deleting v0 must be replaced by the edge v2pv2i having
the same color, for r ≤ i ≤ p− r.

Now fix i ∈ {r, . . . , 	p/2
}. Replace {v2j : 1 ≤ j ≤ i − 1} in K ′ with
{v2j−1 : 1 ≤ j ≤ i − 1} to obtain Li, and replace v2i with v2i−1 in Li to
form L′

i. By the same argument as before, v2pv2i and v2pv2i−1 have the same
color. In particular, v2pv2i−1 and v0v2i have the same color. Having shown
that consecutive edges of length 2i have the same color, we conclude that
all edges of length 2i have the same color. Also, since the consecutive edges
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were linked by an edge of length 2i+ 1 with that color, the edges of length
2i+ 1 have the same color as the edges of length 2i. �
Proposition 3.5. Rχc

(K4,K4) ≤ 17.5.

Proof. If some vertex in a red/blue edge-coloring of K17 has nine neighbors
of the same color, then R(K3,K4) = 9 yields a monochromatic copy of K4.
Hence in every (K4,K4)-avoidance on K17:1, every vertex is incident to eight
edges of each color. By Lemma 3.4, a (K4,K4)-avoidance f on K35:2 must
be constant on pairs of consecutive distance classes.

We may assume that the pair {8, 9} is red. Hence the cycle [v0, v9, v17, v26]
is all red. Both chords have length 17, so the pair {16, 17} is blue.

If {2, 3} is red, then [0, 3, 5, 8] ⇒ {4, 5} is blue, [0, 5, 17, 22] ⇒ {12, 13} is
red, [0, 2, 10, 12] ⇒ {10, 11} is blue, and [0, 3, 9, 12] ⇒ {6, 7} is blue, leaving
[0, 7, 17, 24] as a blue copy of K4.

If {2, 3} is blue, then [0, 2, 17, 19] ⇒ {14, 15} is red, [0, 3, 16, 19] ⇒
{12, 13} is red, [0, 6, 14, 20] ⇒ {6, 7} is blue, [0, 7, 17, 24] ⇒ {10, 11} is red,
and [0, 5, 15, 20] ⇒ {4, 5} is blue, leaving [0, 2, 4, 6] as a blue copy of K4.

Hence there is no (K4,K4)-avoidance on K35:2. �
Question 3.6. What is the value of Rχc

(K4,K4)?

Possibly Rχc
(K4,K4) = 17, which would be proved by showing

K17q+1:q → K4 for infinitely many q. Each such q yields an upper bound;
Proposition 3.5 does this for q = 2.

Next we use colorings where the color of an edge in Kp:q is determined
only by its length to obtain upper and lower bounds on Rχc

(G) for all G
with 2 < χc(G) ≤ 3. From Proposition 3.1, Remark 2.7, and the fact that
4-colorable graphs decompose into two bipartite graphs, we already know
4 ≤ Rχc

(G) ≤ 6, but now we improve the bounds. They become more
accurate when χc(G) is close to 3, and indeed limχc(G)→3− Rχc

(G) = 6. In

Section 5 we prove Rχc
(G) = 4 whenever 2 < χc(G) ≤ 5

2 .

Lemma 3.7. In K(6q−1):q, the edges of lengths q through 2q − 1 form a
subgraph isomorphic to K(6q−1):2q.

Proof. Redraw the graph by putting vi in position 2i (modulo 6q − 1) in
the ordering of the vertices around a circle. The edge to vj from vi now has
length 2(j−i). Thus edges of lengths q, q+1, . . . , 2q−1 from vi become edges
of lengths 2q, 2q+2, . . . , 4q−2, while edges of lengths −q,−q−1, . . . ,−2q+1
become edges of lengths −2q,−2q−2, . . . ,−4q+2, which equal 4q−1, 4q−3,
. . . , 2q + 1. Thus in the redrawing two vertices are adjacent if and only if
they are separated by at least 2q positions, as desired. �
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Since no vertex can have three incident edges of one color, every (K3,K3)-
avoidance onK5 has complementary monochromatic 5-cycles. Again we take
advantage of regularity.

Lemma 3.8. Let Gt = K(3·2t−1):2t and Ht = K(3·2t−1):2t−1. Let f be a
(K3,K3)-avoidance on Ht. For t ≥ 1, each color class is isomorphic to Gt.
For t ≥ 2, all edges with length at least 2t have one color, and all shorter
edges have the other color.

Proof. Let n = 3 · 2t − 1. For t = 1, we have observed that each color class
in a (K3,K3)-avoidance on K5:1 is a 5-cycle. For t ≥ 2, note that the edges
of length at least 2t form Gt, and by Lemma 3.7 the subgraph consisting of
the shorter edges is also isomorphic to Gt.

Hence it suffices to prove the partitioning statement for t ≥ 2; we use
induction on t. Explicitly forK5:1 when t = 2, or by the induction hypothesis
when t > 2, every (K3,K3)-avoidance on Ht−1 is regular. By Lemma 3.4, f
is constant on length classes in Ht, with edges of lengths 2i and 2i+1 having
the same color. For t = 2, this suffices: the coloring of K11:2 gives edges of
lengths 2 and 3 the same color and gives edges of lengths 4 and 5 the same
color. The two sets must have different colors, completing the description.

For t > 2, we must strengthen the statement about which classes have
the same color. Let H be the subgraph of Ht induced by {v2j : 0 ≤ j ≤
3 ·2t−1−2}. Note that H ∼= Ht−1, even though vn−3 and v0 are separated by
three positions instead of two. Also f restricts to a (K3,K3)-avoidance on
H. By the induction hypothesis, all edges of lengths 2t−2 through 2t−1 − 1
in this copy H of Ht−1 have one color, say red, and the longer edges are all
blue. Edges of length i with respect to H have length 2i or 2i+1 in the given
numbering of Ht, and there is at least one of length 2i+ 1. Since the edges
of length 2i or 2i+ 1 all have the same color, we conclude that all edges of
length 2t−1 through 2t − 1 are red, and the longer edges are all blue. �

In the special case F = G = {G}, Corollary 2.6 states that Rχc
(G) = 4

when 2 < χc(G) ≤ 5
2 . This is a stronger statement than would be provided

by the statement of the next result for the omitted case t = 1. The theorem
provides upper and lower bounds for Rχc

(G) when 2.5 < χc(G) < 3.

Theorem 3.9. Let zt = 3−2−t. If zt−1 < χc(G) ≤ zt with t ≥ 2, then
2zt−1 ≤ Rχc

(G) ≤ 2zt.

Proof. For t ≥ 1, let Gt = K(3·2t−1):2t and Ht = K(3·2t−1):2t−1 , so χc(Gt) = zt
and χc(Ht) = 2zt. By Lemma 3.8, every 2-coloring of E(Ht) has a monochro-
matic triangle (which is a homomorphic image of Gt) or has both color
classes isomorphic to Gt. Hence Ht → Hom(Gt), which yields Rχc

(Gt) ≤
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χc(Ht) = 2zt. Also, since Gt is Kp:q with p/q = zt, it contains a homomor-
phic image of every graph with circular chromatic number at most zt, and
hence Corollary 2.5 yields Rχc

(G) ≤ Rχc
(Gt) ≤ 2zt.

For the lower bound, Lemma 3.8 yields a 2-coloring of E(Ht−1) such that
each color class is isomorphic to Gt−1. Since χc(Gt) > χc(Gt−1), neither class
contains a homomorphic image of Gt. Therefore, Ht−1 �→ Hom(Gt). Note
that Ht−1 is Kr:s with r/s = 2zt−1. We have given Kr:s a red/blue edge-
coloring such that each color class has circular chromatic number zt−1, which
by hypothesis is less than χc(G). By Remark 2.7, Rχc

(G) ≥ r/s = 2zt−1. �
A slightly different argument about length classes proves for q ∈ {3, 4}

that Rχc
(G) ≤ 5 + 1

q when χc(G) ≤ 5
2 + 1

2q . This refines the bounds when
5
2 < χc(G) ≤ 8

3 (the case q = 2 is already the case t = 2 in Theorem 3.9).
When χc(G) gets all the way to 3, we can determine Rχc

(G) exactly.

Corollary 3.10. If χc(G) = 3, then Rχc
(G) = 6.

Proof. We use the notation of the statement and proof of Theorem 3.9. For
t ≥ 2, let G′

t be a graph such that χc(G
′) = zt and G ∈ Hom(G′

t). Such
a graph G′

t always exists. For example, Theorem 4.2, which we will state
shortly, allows us to use G′

t = G × Gt, where × is the categorical product
defined in Section 4. Thus G is a homomorphic image of G′

t. By Corollary 2.5
and Theorem 3.9, we have 6 = Rχc

(K3) ≥ Rχc
(G) ≥ Rχc

(G′
t) ≥ 2zt−1. Since

limt→∞ zt = 3, this yields Rχc
(G) = 6. �

4. Extremal problem when χc ≥ z

Since Kp:q → Kr:s immediately yields Rχc
(G) ≤ p/q for all G such that

χc(G) ≤ r/s, one naturally wonders how small Rχc
can be among graphs

with the same circular chromatic number. Note first that χc(G) does not
determine Rχc

(G). For example, K4 and the graph G obtained from C5

by adding one vertex joined to the other five both have circular chromatic
number 4. However, in [12] it is shown that Rχ(G) = 14, so 13 ≤ Rχc

(G) ≤
14, while our Proposition 3.5 shows 17 ≤ Rχc

(K4) ≤ 17.5.
Let Rχc

(z)=inf{Rχc
(G) :χc(G)≥z} and Rχ(k)=inf{Rχ(G) :χ(G)=k}.

Using the result of Zhu [19] that Rχ(k) = (k − 1)2 + 1 (conjectured in [2]),

Rχc
(k) = inf{Rχc

(G) : χc(G) ≥ k} ≤ inf{Rχ(G) : χc(G) ≥ k}
≤ inf{Rχ(G) : χ(G) ≥ k + 1} = k2 + 1.

We use χc(G) ≥ z instead of χc(G) = z in the definition of Rχc
(z) because

it is not clear that inf{Rχc
(G) : χc(G) = k} ≤ inf{Rχ(G) : χ(G) = k}.
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We prove the stronger inequality Rχc
(k) ≤ k(k − 1) using the method

of [19]. The fractional chromatic number of a graph G, written χf (G), is the
linear programming relaxation of the chromatic number. That is, χf (G) is
the minimum sum of weights on the independent sets in G such that each
vertex receives total weight at least 1. It is well known that χf (G) ≤ χc(G)
(as noted in [18], it is easy to obtain a weighting with total weight p/q from
a (p, q)-coloring of G).

The categorical or direct product G×H of graphs G and H has vertex set
V (G)×V (H), with (u, v) and (u′, v′) adjacent if and only if uu′ ∈ E(G) and
vv′ ∈ E(H). By coloring G×H according to a proper coloring φ of one factor
(for example, let the color of (u, v) be φ(u) for all v), always χ(G × H) ≤
min{χ(G), χ(H)}, and the corresponding inequalities for χc and χf also
hold. Hedetniemi [7] conjectured that always χ(G×H) = min{χ(G), χ(H)}.
Zhu [19] proved the equality for χf , and Tardif [15] proved the equality for
χc when the minimum over the factors is at most 4.

Theorem 4.1 ([19]). Always χf (G×H) = min{χf (G), χf (H)}.
Theorem 4.2 ([15]). If z ≤ 4 and χc(G), χc(H) ≥ z, then χc(G×H) ≥ z.

Iterating the product yields χf (G1×· · ·×Gt) = min{χf (G1), . . . , χf (Gt)}.
Similarly, χc(G1 × · · · × Gt) = min{χc(G1), . . . , χc(Gt)} if the minimum is
at most 4.

Lemma 4.3. If every 2-edge-coloring of a graph H contains a monochro-
matic subgraph with fractional chromatic number at least z, then there exists
a graph G with χf (G) ≥ z such that H → Hom(G). When z ≤ 4, the same
statement holds for circular chromatic number.

Proof. Let t be the number of 2-edge-colorings of H. Let Gi be a graph
with fractional chromatic number at least z that occurs as a monochromatic
subgraph in the ith coloring. Let G = G1 × · · · × Gt. Each Gi is a homo-
morphic image of G, obtained by mapping the independent sets having a
fixed value in the ith coordinate into the corresponding vertices in Gi. Hence
H → Hom(G), by construction.

When χf (Gi) ≥ z for each i, the conclusion χf (G) ≥ z follows from
Theorem 4.1. When z ≤ 4 and χc(Gi) ≥ z for each i, the conclusion χc(G) ≥
z follows from Theorem 4.2. �

In the next result, the comment about circular chromatic number im-
proves the upper bound on Rχc

(z) when z ≤ 4, because a monochromatic
subgraph with χc ≥ z may be forced by Kp:q with smaller p/q than needed
for χf ≥ z, since always χc ≥ χf .
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Lemma 4.4. If every 2-edge-coloring of Kp:q contains a monochromatic
subgraph with fractional chromatic number at least z, then Rχc

(z) ≤ p/q;
that is, there exists a graph G with χc(G) ≥ z and Rχc

(G) ≤ p/q. When
z ≤ 4, the same conclusion follows also when the monochromatic subgraphs
are only required to have circular chromatic number at least z.

Proof. By Lemma 4.3, there exist a graph G with χf (G) ≥ z and Kp:q →
Hom(G). Since χc(G) ≥ χf (G) and Rχc

(G) = inf{p/q : Kp:q → Hom(G)},
the claim follows. When z ≤ 4, applying the second statement of Lemma 4.3
yields Rχc

(z) ≤ p/q directly. �

Theorem 4.5. Rχc
(k) ≤ k(k − 1) for k ∈ N− {1}.

Proof. Let R and B be the spanning subgraphs formed by the color classes
in a red/blue edge-coloring of Kk(k−1). If R has a clique of size k, then
χf (R) ≥ k; otherwise, B has independence number at most k− 1, and then
χf (B) ≥ k(k − 1)/(k − 1) = k. Since Kk(k−1) = Kk(k−1):1, the claim follows
from Lemma 4.4. �

Note that although Theorem 4.5 applies only to integers, it is consistent
with the bounds obtained in Theorem 3.9.

Question 4.6. Is it true for all z ∈ R with z > 3 that Rχc
(z) ≤ z(�z�− 1)?

If true, is the bound sharp?

5. Odd cycles

When k = 1, Theorem 3.9 yields 4 ≤ Rχc
(G) ≤ 5 when 2 ≤ χc(G) ≤ 5

2 .
We prove Rχc

(G) = 4 for all such graphs. As observed in Corollary 2.6, this
yields Rχc

(F ,G) = 4 whenever F and G both consist of nonbipartite graphs
and have a member with circular chromatic number at most 5

2 .

Our main task is proving Rχc
(C5) = 4. Since C3 and C5 are homomor-

phic images of C5, we do this by proving for q ≥ 1 that every 2-edge-coloring
of K4q+1:q has a monochromatic 3-cycle or a monochromatic 5-cycle.

Let K−
p:q denote Kp:q − v0vq (deleting a shortest edge). We call the end-

points of the edge that was deleted the special pair. Let a 3, 5-free coloring of
a graph G be a 2-edge-coloring having no monochromatic 3-cycle or 5-cycle.

Lemma 5.1. Every 3, 5-free coloring of K−
5:1 has monochromatic paths of

length 2 in both colors joining v0 and v4, the endpoints of the missing edge.

Proof. Consider a 3, 5-free coloring. There are nine edges; let red be the
larger class. Each color class must be bipartite.
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There are five or six red edges, since the maximum number of edges in
a bipartite subgraph of K5 is 6, achieved only by K2,3. To have at least five
red edges, the partite sets of the red graph must have sizes 2 and 3. Hence
the red graph is K2,3 with at most one edge deleted.

Since the blue graph must not contain a triangle, the partite set of size
3 must contain {v0, v4}. Now there is a blue path joining them through the
third vertex of that part. There is a red path joining them via the other
partite set, because there are two such possible paths and at most one edge
was deleted from K2,3 to form the red graph. �

Lemma 5.2. In V (K−
4q+1:q), let S = {v0, vq, v2q+1, v3q+1} and let T =

{v0, vq, v2q, v3q+1}. Both K−
4q+1:q − S and K−

4q+1:q − T are isomorphic to

K−
4(q−1)+1:q−1, with {vq+1, v2q} being the special pair when S is deleted and

{v2q+1, v3q} being the special pair when T is deleted.

Proof. The vertices of S or T are spaced by q, q, q, q+1 (in cyclic order) along
the indexing. Hence when S or T is deleted, any two vertices at least q − 1
steps apart in the new indexing were separated by a deleted vertex and hence
were at least q steps apart in the old indexing, except the pair {vq+1, v2q} in
the first case and the pair {v2q+1, v3q} in the second case. Hence the edges
are those of K−

4(q−1)+1:q−1, with the special pairs as specified. �

When q = 2, the special pairs in the two resulting subgraphs in Lem-
ma 5.2 are {v3, v4} and {v5, v6}. In the inductive proof of the main theorem,
we will combine Lemma 5.2 with the following technical result about these
two pairs in K−

9:2. Write a path or cycle with vertices v1, . . . , vn in order as
〈v1, . . . , vn〉 or [v1, . . . , vn], respectively.
Lemma 5.3. Any 3, 5-free coloring of K−

9:2 − {v1, v8} having no monochro-
matic v3, v4-path or v5, v6-path of length 3 has monochromatic v0, v2-paths
of length 2 in both colors.

Proof. Let G′ = K−
9:2−{v1, v8} and G = G′− v0, shown in bold in Figure 1.

Let Gr and Gb be the red and blue color classes of G under the given 3, 5-free
coloring. Since G has only six vertices, Gr and Gb are bipartite. We prove
first that v3 and v4 are in the same partite set in each of Gr and Gb, as are
v5 and v6. By symmetry, it suffices to forbid v3 and v4 being in opposite
parts in Gr.

By hypothesis there is no red v3, v4-path of length 3, so being in opposite
parts requires a spanning v3, v4-path P in Gr. After v3, the next vertex u
must be one of {v5, v6, v7}. In each case, we obtain a contradiction. If u = v5,
then P = 〈v3, v5, v7, v2, v6, v4〉, but then 〈v5, v7, v2, v6〉 is a forbidden red
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v5, v6-path of length 3. If u = v6, then P = 〈v3, v6, v2, v5, v7, v4〉. To avoid
completing red odd cycles with edges of P , both v3v7 and v7v2 must be blue.
Now there are v3, v2-paths of length 2 in both colors, and one extends along
v2v4 to complete a monochromatic v3, v4-path of length 3. If u = v7, then
P = 〈v3, v7, v5, v2, v6, v4〉. To avoid completing red odd cycles with edges of
P , all of {v7v2, v2v4, v4v7} must be blue, which completes a blue 3-cycle.

•
•

•

•

••

•

•

•

v0

v1

v2

v3

v4v5

v6

v7

v8

Figure 1: The graphs G′ and G in Lemma 5.3.

Now each of {v3, v4} and {v5, v6} lies in one partite set in bothGr andGb.
Since {v2, v4, v6} and {v3, v5, v7} form triangles, putting all of v3, v4, v5, v6
into the same part in Gr or Gb forces v2 and v7 into the other part. Similarly,
since {v2, v7} cannot lie in the same part with v4 or v5, putting {v3, v4} and
{v5, v6} into opposite parts forces v2 and v7 into opposite parts. Hence each
of the resulting bipartions R and B of the indices has three possibilities:
(3456|27), (347|562), and (342|567). Since the edges within a partite set
get the other color, each choice for R restricts the choice for B. Since the
two subgraphs cannot have the same bipartition, by symmetry there remain
three cases. In each case we study G′ to obtain the monochromatic v0, v2-
paths of length 2 in both colors.

Case 1. R = (3456|27), B = (347|562). If v0v7 is red, then avoiding
[v0, v7, v4] in red makes v0v4 blue. Now avoiding [v0, v4, v6, v3, v5] in blue
makes v0v5 red, so 〈v0, v5, v2〉 is red. Avoiding [v4, v7, v0, v5, v2] in red makes
v4v2 blue, so 〈v0, v4, v2〉 is blue.

If v0v7 is blue, then 〈v0, v7, v2〉 is blue. Avoiding 〈v0, v5, v2〉 and 〈v0, v6, v2〉
in red would make v0v5 and v0v6 blue. Avoiding [v0, v4, v6] in blue then
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makes v0v4 red. Avoiding [v2, v7, v0, v6, v4] in blue makes v4v2 red, and now

〈v0, v4, v2〉 is red.

Case 2. R = (3456|27), B = (342|567). If v0v7 is red, then avoiding

[v0, v7, v5] in red makes v0v5 blue. Now avoiding [v0, v5, v3, v6, v4] in blue

makes v0v4 red, and hence 〈v0, v4, v2〉 is red. Avoiding [v5, v7, v0, v4, v2] in

red makes v5v2 blue, so 〈v0, v5, v2〉 is blue.
If v0v7 is blue, then 〈v0, v7, v2〉 is blue. Avoiding 〈v0, v4, v2〉 in red would

make v0v4 blue, and then avoiding [v0, v4, v6] in blue makes v0v6 red. Avoid-

ing [v2, v7, v0, v4, v6] in blue makes v2v6 red, and now 〈v0, v6, v2〉 is red.

Case 3. R = (342|567), B = (347|562). If v0v7 is red, then avoiding

[v0, v7, v4] in red makes v0v4 blue, so 〈v0, v4, v2〉 is blue. Now avoiding [v0, v4,

v2, v7, v5] in blue makes v2v7 or v0v5 red, so 〈v0, v7, v2〉 or 〈v0, v5, v2〉 is red.
If v0v7 is blue, then avoiding [v0, v7, v5] in blue makes v0v5 red, so

〈v0, v5, v2〉 is red. Avoiding [v0, v5, v2, v7, v4] in red makes v2v7 or v0v4 blue,

so 〈v0, v7, v2〉 or 〈v0, v4, v2〉 is blue. �

Theorem 5.4. Rχc
(C5) = 4.

Proof. It suffices to show K4q+1:q → {C3, C5} for q ≥ 1. We use induction on

q to prove that every 3, 5-free coloring of K−
4q+1:q contains monochromatic

v0, vq-paths of length 2 in both colors. Adding the edge v0vq then completes

a monochromatic triangle. Lemma 5.1 proves the case q = 1.

For q > 1, let G = K−
4q+1:q, and consider a 3, 5-free coloring of G.

Let S = {v0, vq, v2q+1, v3q+1} and T = {v0, vq, v2q, v3q+1}. By Lemma 5.2,

both G − S and G − T are isomorphic to K−
4(q−1)+1:q−1, with special pairs

{vq+1, v2q} and {v2q+1, v3q}, respectively. By the induction hypothesis, there

are monochromatic vq+1, v2q-paths and v2q+1, v3q-paths of length 2 in both

colors. A monochromatic vq+1, v2q-path or v2q+1, v3q-path of length 3 in G

then completes a monochromatic closed odd walk of length 5, which yields

a monochromatic 3-cycle or 5-cycle, so there is no such path for either pair.

The subgraph of G induced by {v0, vq, vq+1, v2q, v2q+1, v3q, v3q+1} is now

isomorphic toK−
9:2−{v1, v8}, with vertices representing v0, v2, v3, v4, v5, v6, v7

in order. By Lemma 5.3, there are monochromatic v0, vq-paths of length 2

in both colors. �

6. Non-diagonal Ramsey numbers for cycles

In this section we prove 4 ≤ Rχc
(C3, C7) ≤ 9

2 < 14
3 ≤ Rχc

(C3, C5) ≤ 5.
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For Rχc
(C3, C5), we first found a lower bound of 9

2 using a red/blue col-
oring of K9:2 that was not constant on distance classes. In fact, this coloring
arises by the natural homomorphism from K9:2 into the coloring of K14:3

in Theorem 6.1 (found by Daniel Cranston). It is not yet known whether
distance-invariant optimal lower-bound colorings can always be found for
Rχc

(F,G), although certainly such colorings are much easier to study than
more general colorings.

Theorem 6.1. 14
3 ≤ Rχc

(C3, C5) ≤ 5.

Proof. For the upper bound, it suffices to showK5:1 → (Hom(C3),Hom(C5)).
Note that Hom(C5) = {C3, C5}. We have remarked that the only red/blue-
coloring of K5 having no monochromatic triangle has monochromatic 5-
cycles in both colors.

For the lower bound, we color E(K14:3). Edges of lengths 3 and 4 are
blue; edges of lengths 5, 6, and 7 are red. Since the lengths of two red edges
sum to at least 10 and the lengths of three sum to at least 15, there is no
red triangle. The lengths of two blue edges sum to at least 6 and the lengths
of three sum to at most 12, so there is no blue triangle.

Now consider blue 5-cycles. The cycle may take steps in both directions,
but the total net movement in one direction must be a multiple of 14. With
five steps in the same direction, the sum is at least 15 and at most 20. With
four edges in one direction (total from 12 to 16) and one in the other (length
3 or 4), the net movement is at least 8 and at most 13, not a multiple of
14. Similarly, three edge in one direction (total from 9 to 12) and two in the
other (total from 6 to 8) yield net movement at least 1 and at most 6, again
not a multiple of 14. Hence there is no blue 5-cycle. �

Other colorings of E(K14:3) also establish this lower bound. One can
make the edges of lengths 3 and 4 red, the edges of lengths 6 and 7 blue,
and alternate red and blue along the 14-cycle formed by the edges of length
5. Both this and the coloring in Theorem 6.1 have 35 red edges and 28 blue
edges, but they are not isomorphic. There is also a messy coloring that is not
distance-invariant. This multiplicity of colorings suggests that there could
be better colorings, but we show next that they will be hard to find.

Remark 6.2. The construction in Theorem 6.1 does not generalize to a
larger lower bound for Rχc

(C3, C5) or a smaller lower bound for
Rχc

(C3, C2k+1). Consider a red/blue coloring of E(Kp:q) with p/q > 4 such
that all edges with lengths from q to r are blue, all edges with lengths from
r+1 to 	p/2
 are red, no triangle is red, and no odd cycle of length at most
2k + 1 is blue. In Theorem 6.1 we have the case (p, q, r) = (14, 3, 4) and
k = 2.
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To avoid red triangles, we must have r+1 > p/3. Avoiding blue triangles
requires r < p/3. Hence p ∈ {3r+1, 3r+2}. To avoid creating blue 5-cycles
that take three steps forward and two steps back, we need 3q > 2r. Now
2p ≤ 6r + 4 ≤ 9q + 1. However, we must also avoid blue 5-cycles with four
steps forward and one step back for net movement p. The smallest such total
is 4q − r, the largest is 4r − q, and all values between them are achievable.
With q = r − s, these values range from 3r − 3s to 3r + s.

Since p ∈ {3r+1, 3r+2}, the range includes p unless s = 1 and p = 3r+2.
Now also q = r − 1, so p/q = 3 + 5/q. Since we want 4 < p/q < 5, the
only possible instances are (p, q, r) = (14, 3, 4) (as in Theorem 6.1) and
(p, q, r) = (17, 4, 5). Since 17

4 < 14
3 , the second construction would be of

interest only for Rχc
(C3, C7). However, the construction contains a blue 7-

cycle in that case, since 6 · 5 + 4 = 2 · 17.
Making the short edges red and long edges blue also does not succeed.

We next give an upper bound for Rχc
(C3, C7). Let a good coloring of a

graph be a red/blue edge-coloring having no red triangle and no blue triangle
or 5-cycle. Recall from Section 5 that the endpoints of the missing edge in
K−

5:1 are v0 and v4, cyclically indexed.

Lemma 6.3. Good colorings of K−
5:1 are of two types. One has monochro-

matic paths of length 2 in both colors joining v0 and v4. The other consists
of a red 5-cycle and a spanning blue path with endpoints v0 and v4. edge.

Proof. By Lemma 5.1, every good coloring having no monochromatic 3-cycle
or 5-cycle is of the first type. Hence we need only consider colorings that
have a red 5-cycle. Since v0 and v4 are not adjacent, they are not consecutive
on the cycle. Since v1, v2, and v3 are in the same isomorphism class, we may
assume by symmetry that the cycle visits v0, v1, v4, v2, v3 in order. Any red
chord creates a red triangle, so the remaining four edges must be blue,
yielding the blue path with vertices v0, v2, v1, v3, v4 in order. �
Theorem 6.4. Rχc

(C3, C7) ≤ 9
2 .

Proof. It suffices to show that every red/blue coloring of K9:2 has a red
triangle or a blue odd cycle with length at most 7. Consider a coloring that
avoids this.

If the edges of length 2 are all red, then the edges of length 4 form a
blue 9-cycle. Any additional blue edge would be a chord yielding a shorter
blue odd cycle, so the edges of length 3 are all red and form triangles.

Hence we may assume by symmetry that the edge v0v2 is blue. Consider
the copies of K−

5:1 induced by {v1, v3, v5, v7, v0} and {v2, v4, v6, v8, v1}; call
them Q− and Q+, respectively. Note that Q− and Q+ share only v1. By
Lemma 6.3, if either Q− or Q+ has a good coloring of the first type, then
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the union of the guaranteed blue v0, v1-path in Q−, the guaranteed blue
v1, v2-path in Q+, and the edge v2v0 is a blue 5-cycle or 7-cycle.

If both Q− and Q+ have good colorings of the second type, then the
union of the guaranteed blue paths with the edge v2v0 is a blue 9-cycle.
Again any additional blue edge would yield a shorter blue odd cycle, so the
blue graph is precisely a 9-cycle.

If both copies have blue paths of length 4, then G has a blue 9-cycle and
any additional blue edge is a chord and completes a shorter cycle. Therefore,
the blue graph is C9. Edges joining V (Q−) and V (Q+) must now all be red.
These include v0v4, v4v7, v0v6, and v6v3. To avoid red triangles, v0v7 and
v0v3 must be blue. Now v0 has two incident blue edges other than v0v2,
which contradicts the blue graph being C9. �

The difficulty of extending the construction of Theorem 6.1 via Re-
mark 6.2 suggests perhaps Rχc

(C3, C5) = 14
3 . The same difficulty, coupled

with Theorem 6.4, suggests perhaps Rχc
(C3, C2k+1) = 4 for k ≥ 3.
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[3] P. Erdős, R. J. Faudree, C. C. Rousseau, and R. H. Schelp, The size
Ramsey number, Period. Math. Hungar. 9 (1978), 145–161. MR0479691

[4] J. Folkman, Graphs with monochromatic complete subgraphs in every
edge coloring, SIAM J. Appl. Math. 18 (1970), 19–24. MR0268080

[5] R. L. Graham, B. L. Rothchild, and J. H. Spencer, Ramsey Theory
(Wiley, 1990). MR1044995

[6] R. E. Greenwood and A. M. Gleason, Combinatorial relations and chro-
matic graphs, Canad. J. Math. 7 (1955), 1–7. MR0067467

[7] S. Hedetniemi, Homomorphisms and graph automata, University of
Michigan, Technical report 03105-44-T, 1966. MR2615860

http://www.ams.org/mathscinet-getitem?mr=1067243
http://www.ams.org/mathscinet-getitem?mr=0419285
http://www.ams.org/mathscinet-getitem?mr=0479691
http://www.ams.org/mathscinet-getitem?mr=0268080
http://www.ams.org/mathscinet-getitem?mr=1044995
http://www.ams.org/mathscinet-getitem?mr=0067467
http://www.ams.org/mathscinet-getitem?mr=2615860


Circular chromatic Ramsey number 207

[8] T. Jiang, K. G. Milans, and D. B. West, Degree Ramsey number for
cycles and blowups of trees, Europ. J. Combin. 34 (2013), 414–423.
MR2994408

[9] J. G. Kalbfleisch, Chromatic graphs and Ramsey’s theorem, Ph.D. the-
sis, University of Waterloo, January 1966.

[10] W. B. Kinnersley, K. G. Milans, and D. B. West, Degree Ramsey
numbers of graphs, Combin., Probab., Comput. 21 (2012), 229–253.
MR2900061
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