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An incidence of an undirected graph G is a pair (v, e) where v is
a vertex of G and e an edge of G incident with v. Two incidences
(v, e) and (w, f) are adjacent if one of the following holds: (i) v = w,
(ii) e = f or (iii) vw = e or f . An incidence coloring of G assigns a
color to each incidence of G in such a way that adjacent incidences
get distinct colors. In 2012, Yang [15] proved that every planar
graph has an incidence coloring with at most Δ + 5 colors, where
Δ denotes the maximum degree of the graph. In this paper, we
show that Δ+4 colors suffice if the graph is planar and without a
C3 adjacent to a C4. Moreover, we prove that every planar graph
without C4 and C5 and maximum degree at least 5 admits an
incidence coloring with at most Δ + 3 colors.

1. Introduction

Let G be a graph without loops and multiple edges. Let V (G) and E(G)
be its vertex and edge set respectively. We denote by Δ(G) the maximum
degree of G.

A proper edge-coloring of a graph G = (V,E) is an assignment of colors
to the edges of the graph such that no two adjacent edges use the same
color. A strong edge-coloring (called also distance 2 edge-coloring) of G is a
proper edge-coloring where each color class induces a matching. We denote
by χ′

s(G) the strong chromatic index of G which is the smallest integer k
such that G can be strong edge-colored with k colors.

An incidence in G is a pair (v, e) with v ∈ V (G) and e ∈ E(G), such
that v and e are incident. The set of all incidences in G is denoted by I(G),
where
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I(G) = {(v, e) ∈ V (G)× E(G) : edge e is incident to v}.
Two incidences (u, e) and (v, f) are adjacent if one of the following holds:

i) u = v, ii) e = f , and iii) the edge uv = e or uv = f .

An incidence k-coloring of a graph G is defined as a function φ from
I(G) to a set of colors C = {1, 2 · · · , k}, such that adjacent incidences are
assigned with distinct colors. The minimum cardinality k for which G has
an incidence k-coloring is the incidence chromatic number χi(G) of G.

An alternate way of looking at the incidence chromatic number of a
graph G is to consider the bipartite graph G′ = (X ∪ Y,E), obtained from
G such that, X = V (G), Y = E(G) and E(G′) = {(v, e), v ∈ V (G), e ∈
E(G), v is incident with e}. Each edge of G′ corresponds to an incidence
of G; therefore, any incidence coloring of G corresponds to a strong edge
coloring of G′.

χi(G) = χ′
s(G

′).

The notion of incidence coloring was introduced by Brualdi and Massey
[3] in 1993. They proved the following theorem:

Theorem 1 (Brualdi and Massey [3]). For every graph G, Δ(G) + 1 ≤
χi(G) ≤ 2Δ(G).

And they proposed the Incidence Coloring Conjecture, which states that:

Conjecture 1 (Brualdi and Massey [3]). For every graph G, χi(G) ≤
Δ(G) + 2.

However, in 1997, by observing that the concept of incidence coloring is a
particular case of directed star arboricity introduced by Algor and Alon [1],
Guiduli [6] disproved the Incidence Coloring Conjecture showing that Paley
graphs have an incidence chromatic number at least Δ + Ω(logΔ). He also
improved the upper bound proposed by Brualdy and Massey in Theorem 1.

Theorem 2 (Guiduli [6]). For every graph G, χi(G) ≤ Δ(G)+O(logΔ(G)).

The incidence coloring of graphs has been extensively studied. Most of
authors consider the values of χi(G) on particular classes of graphs (tree
[3], cubic graphs [7, 10, 14], Halin graphs [12], k-degenerated graphs [4], K4-
minor free graph [4], outerplanar graphs [13], regular graphs and complement
graphs [11], pseudo-Halin graphs [8], the powers of cycles [9], graphs with
maximum degree 3 [7]).

In [4], Hosseini Dolama, Sopena and Zhu gave an upper bound of χi(G)
for planar graph.
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Theorem 3 (Hosseini Dolama et al. [4]). For every planar graph G, χi(G) ≤
Δ(G) + 7.

This last result was improved by Yang in [15], (paper written in 2007) by
using the link between the incidence chromatic number, the star arboricity
and the chromatic index of a graph:

Theorem 4 (Yang [15]). For every planar graph G, χi(G) ≤ Δ(G) + 5, if
Δ(G) �= 6 and χi(G) ≤ 12, if Δ(G) = 6

An interesting question is to see how the incidence chromatic number be-
haves for sparse planar graphs. Recall that the girth of a graph is the length
of a shortest cycle in this graph. For instance, we collect results concerning
the incidence chromatic number of planar graphs in the following lemma:

Lemma 1.

1. χi(G) ≤ Δ(G) + 4 for every triangle free planar graph G. [5]
2. χi(G) ≤ Δ(G) + 3 for every planar graph G with girth g ≥ 6. [5]
3. χi(G) ≤ Δ(G) + 2 for every planar graph G with girth g ≥ 6 and

Δ(G) ≥ 5. [5]
4. χi(G) ≤ Δ(G) + 2 for every planar graph G with girth g ≥ 11. [5]
5. χi(G) = Δ(G) + 1 for every planar graph G with girth g ≥ 14 and

Δ(G) ≥ 4. [2]

Our mains results in this paper improve the upper bound in Theorem 3
and in Theorem 4 for some classes of planar graphs. We denote by Ck a
cycle of length k (k ∈ N, k ≥ 3). In particular, we show the following.

Theorem 5.

1. χi(G) ≤ Δ(G) + 4 for every planar graph G without a C3 adjacent to
a C4.

2. χi(G) ≤ Δ(G) + 3 for every planar graph G without C4 and C5 when
Δ(G) �= 4, and χi(G) ≤ 8 if Δ(G) = 4.

From this first item of the previous Theorem we easely deduce:

Corollary 1. χi(G) ≤ Δ(G) + 4 for every planar graph G without a C4.

Before proving our results we introduce some notations.

2. Notation

Let G be a planar graph. We use V (G), E(G), and F (G) to denote, respec-
tively, the set of vertices, edges, and faces of G. Let d(v) denote the degree
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of a vertex v in G and r(f) the degree of a face f in G. A vertex of degree
k is called a k-vertex. A k+-vertex (respectively, k−-vertex) is a vertex of
degree at least k (respectively, at most k). A (l1, · · · , lk)-vertex is a k-vertex
having k-neighbors x1, · · · , xk such that d(xi) = li for i ∈ {1, · · · , k}. We
will also use for li the notation l+i (respectively l−i ), if xi is a vertex of degree
at least li (respectively at most li). We use the same notations for faces: a
k-face (respectively, k+-face, k−-face) is a face of degree k (respectively, at
least k, at most k). A k-face having the boundary vertices x1, x2, ..., xk
in the cyclic order is denoted by [x1x2...xk]. A (l1, · · · , lk)-face is a k-face
[x1x2...xk] such that d(xi) = li for i ∈ {1, · · · , k}. We will also use for li the
notation l+i (respectively l−i ), if xi is a vertex of degree at least li (respec-
tively at most li). A (k1, k2, k3)-triangle is a 3-face [x1x2x3] with d(x1) = k1,
d(x2) = k2 and d(x3) = k3. As above, we will use for ki the notation k+i
(respectively k−i ), if xi is a vertex of degree at least ki (respectively at most
ki). For a vertex v ∈ V (G), let ni(v) denote the number of i-vertices ad-
jacent to v for i ≥ 1, and mi(v) the number of i-faces incident to v for
i ≥ 1.

If φ is an incidence coloring of a graph G, and S a set of incidences of
G, then φ(S) denotes the set of colors used to color the incidences belonging
to S.

Definition 1 (Hosseini Dolama et al. [4]). Let G be a graph, for every
vertex u of G we denote by Iu the set of incidences of the form (u, uw)
and by Au the set of incidences of the form (w,wu), for all neighbors w
of u.

1. A partial incidence coloring φ′ of G, is an incidence coloring only de-
fined on some subset I of I(G). For every uncolored incidence (u, uv) ∈
I(G) \ I, F φ′

G (u, uv) is defined by the set of forbidden colors of (u, uv),
that is:

F φ′

G (u, uv) = φ′(Au) ∪ φ′(Iu) ∪ φ′(Iv),

2. An incidence (k, l)-coloring of a graph G is a incidence k-coloring φ
of G such that for every vertex v ∈ V (G), | φ(Av) |≤ l.

Remark 1. It is easy to see that every incidence (k, l)-coloring is also an
incidence (k′, l)-coloring for any k′ > k.

The following observation will be used implicitly throughout.

Observation 1. For every graph G with maximum degree Δ(G), by Theo-
rem 1 and Definition 1, G admits an incidence (2Δ(G),Δ(G))-coloring.
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3. Proof of Theorem 5.1

We will prove the following stronger version of Theorem 5.1:

Theorem 6. Every planar graph G without a C3 adjacent to a C4 admits

an incidence (k + 4, 4)-coloring for every k ≥ Δ(G), k ∈ N. Therefore,
χi(G) ≤ Δ(G) + 4.

Observation 2. We have to consider only k ≥ Δ(G) ≥ 5 since otherwise

we obtain by Theorem 1

χi(G) ≤ 2Δ(G) ≤ Δ(G) + 4 ≤ k + 4.

3.1. Structural properties

We proceed by contradiction. Let H be a counterexample to the theorem

that minimizes |E(H)| + |V (H)|. By hypothesis there exists k ≥
max{Δ(G), 5} such that H does not admit an incidence (k + 4, 4)-coloring.
Let k ≥ max{Δ(G), 5} be the smallest integer such that H does not ad-
mit an incidence (k + 4, 4)-coloring. By using Remark 1, we must have
k = max{Δ(G), 5}. Moreover by minimality it is easy to see that H is
connected. H satisfies the following properties:

Lemma 2. H does not contain:

1. 1-vertices,
2. 2-vertices,
3. a 3-vertex adjacent to a 4−-vertex,
4. a (4−, 4−,Δ−)-triangle,
5. a (3, 3, 3, 3,Δ−)-vertex.

For each of the parts of Lemma 2, we will suppose that the described
configuration exists in H. Then we construct a graph H ′ obtained from H
by deleting a certain number of vertices and edges. Due to the minimality
of H, the graph H ′ admits an incidence (k′ + 4, 4)-coloring φ′ for any k′ ≥
max{Δ(H ′), 5}. Since Δ(H) ≥ Δ(H ′), the set of integers k′ contains the set
of integers k. Hence for the value k′ = k, H ′ admits an incidence (k + 4, 4)-
coloring φ′. Finally, for each case, we will prove a contradiction by extending
φ′ to an incidence (k + 4, 4)-coloring φ of H.

Proof. We recall that k ≥ 5, its implies that the minimum number of colors
we can use is 9.



172 Hervé Hocquard et al.

1. Suppose H contains a 1-vertex u and let v be its unique neighbor in H.
Consider H ′ = H − {u}. By minimality of H, H ′ admits an incidence
(k + 4, 4)-coloring φ′. We will extend φ′ to an incidence (k + 4, 4)-
coloring φ of H as follows.
Since for all w ∈ V (H ′), | φ′(Aw) |≤ 4, we have | F φ′

H (v, vu) |=|
φ′(Iv) ∪ φ′(Av) ∪ φ′(Iu) |≤ Δ(H) − 1 + 4 + 0 = Δ(H) + 3 ≤ k + 3,

then there exists at least one color, say α, such that α /∈ F φ′

H (v, vu).
Hence, we set φ(v, vu) = α and one can observe that | φ(Au) |= 1 ≤ 4.
According to | φ′(Av) |≤ 4, it suffices to set φ(u, uv) = β for any
color β in φ′(Av) and we are done. We have extended the coloring, a
contradiction.

2. Suppose H contains a 2-vertex v and let u, w be the two neighbors of
v in H. Consider H ′ = H−{uv}. Then by minimality of H, H ′ admits
an incidence (k + 4, 4)-coloring φ′. We will extend φ′ to an incidence
(k + 4, 4)-coloring φ of H as follows. First, we uncolor the incidence
(v, vw) and assume that φ′(w,wv) = β. By a counting argument, there

exists at least one color α /∈ F φ′

H (u, uv). Then we color (u, uv) with α
and | φ(Av) |= 2 ≤ 4. For coloring the incidence (v, vu), we consider
the following cases:

(a) If | φ′(Au) |= 4 then we color (v, vu) with a color γ ∈ φ′(Au)\{β}
(note that α /∈ φ′(Au)).

(b) If | φ′(Au) |≤ 3 then we color (v, vu) with a color γ /∈ F φ′

H (v, vu)
(note that we have three choices). One can observe that | φ(Au) |≤
4.

Now, we color the incidence (v, vw) as follows:

(a) If | φ′(Aw) |= 4 then we color (v, vw) with a color ζ ∈ φ′(Aw) \
{α, γ} and we have | φ(Av) |= 2.

(b) If | φ′(Aw) |≤ 3 then we color (v, vw) with a color ζ /∈ F φ′

H (v, vw)
and we have | φ(Aw) |≤ 4 (note that we have two choices).

So, we have extended the coloring, a contradiction.
3. Suppose H contains a 3-vertex u adjacent to a 4−-vertex v. Consider

H ′ = H−{uv}. By minimality of H, H ′ admits an incidence (k+4, 4)-
coloring φ′. We will extend φ′ to an incidence (k + 4, 4)-coloring φ of
H as follows. As above, by a counting argument, it is easy to see
that there exists at least one color α /∈ F φ′

H (v, vu). Then we color the
incidence (v, vu) with α and | φ(Au) |≤ 3 ≤ 4. Now we color the

incidence (u, uv) with a color β /∈ F φ′

H (u, uv)∪ {α} (| F φ′

H (u, uv) |≤ 7),
we have | φ(Av) |≤ 4. We have extended the coloring, a contradiction.
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4. Suppose H contains a 3-face [uvw] such that d(u) ≤ 4, d(v) ≤ 4.
By minimality of H, the graph H ′ = H − {uv} admits an incidence
(k+4, 4)-coloring. We will extend φ′ to an incidence (k+4, 4)-coloring
φ of H as follows.

Figure 1: | F φ′

H (u, uv) |= 9.

First we color (u, uv).
It is easy to see that

| F φ′

H (u, uv) |=| φ′(Iu) ∪ φ′(Au) ∪ φ′(Iv) |≤ 3 + 3 + 3 = 9

• Assume that: | F φ′

H (u, uv) |= 9, then we are in the situation de-
scribed in Figure 1. We replace 2 by 7 and we color (u, uv) with
2 (7 /∈ φ(Iw) by definition).

Now we consider φ′(Au) and φ′(Av). If there is a color a in φ′(Au)\
φ′(Av). We color (v, vu) with a. If φ′(Au) = φ′(Av), let b be the
color of (w,wv), we interchange the colors of (w,wu) and (w,wv).
Then we color (v, vu) with the color b.

• We assume now that | F φ′

H (u, uv) |< 9 and | F φ′

H (v, vu) |< 9. If
there are two free colors for one of the two incidences, it is done.
So we assume that | F φ′

H (u, uv) |= 8 and | F φ′

H (v, vu) |= 8 and the
two incidences have the same free color.

We have two cases:

Case 1: | φ′(Au) |= 2

Case 1.1Without loss of generality, assume that φ′(u1, u1u)=
φ′(u2, u2u) = 4, and that the only free color is 5.
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(a) If we can replace 7 by 2 (2 /∈ φ(Iw)), then we color (u, uv)
with 7 and (v, vu) by 5, it is done. Hence we cannot re-
place 7 by 2, it means that 2 ∈ φ′(Av \ (w,wv)). Without
loss of generality let φ′(v1, v1v) = 2.

(b) If we can color (v, vu) with 6, then we color (u, uv) with
5 and it is done. Hence 6 ∈ φ′(Av), the only possibility is
φ′(v2, v2v) = 6.

(c) If we can color (v, vu) with 4, then we color (u, uv) with 5
and it is done. Hence 4 ∈ φ′(Av), then the only possibility
is φ′(w,wv) = 4.
So now we permute 6 and 4 around w and we color (v, vu)
with 4 and (u, uv) with 5. It follows that we have ex-
tended the coloring, a contradiction.

Case 1.2 If φ′(u1, u1u) �= φ′(u2, u2u), Without loss of gen-
erality, we can assume that φ′(w,wu) = 4 and that the only
free color is 6.

(a) If we can replace 7 by 2 (2 /∈ φ(Iw)), then we color (u, uv)
with 7 and (v, vu) by 6, it is done. Hence ve cannot re-
place 7 by 2, it means that 2 ∈ φ′(Av). Without loss of
generality let φ′(v1, v1v) = 2.

(b) If we can color (v, vu) with 4, then we color (u, uv) with
6 and it is done. Hence 4 ∈ φ′(Av), let φ

′(v2, v2v) = 4.

(c) If we can color (v, vu) with 5, then we color (u, uv) with
6 and it is done. Hence 5 ∈ φ′(Av), let φ

′(w,wv) = 5.

So now we permute 4 and 5 around w and we color (v, vu)
with 5 and (u, uv) with 6. It follows that we have extended
the coloring, a contradiction.

Case 2: | φ′(Au) |= 3
In this case one of the colors of (u1, u1u) or (u2, u2u) must
be in φ′(Iv) or the color of (w,wu) is in φ′(Iv).

Case 2.1 One of the colors of (u1, u1u) or (u2, u2u) is in
φ′(Iv). In our figure assume that 4 is the color of (v, vv1).
Then the free color is 8.

(a) If we can replace 7 by 2, then we color (u, uv) with 7 and
(v, vu) by 8, it is done. Hence ve cannot replace 7 by 2,
it means that 2 ∈ φ′(Av). Without loss of generality let
φ′(v1, v1v) = 2.

(b) If we can color (v, vu) with 6, then we color (u, uv) with
8 and it is done. Hence 6 ∈ φ′(Av), let φ

′(v2, v2v) = 6.
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(c) If we can color (v, vu) with 5, then we color (u, uv) with
8 and it is done. Hence 5 ∈ φ′(Av), let φ

′(w,wv) = 5.

So now we permute 6 and 5 around w and we color (v, vu)
with 5 and (u, uv) with 8. It follows that we have extended
the coloring, a contradiction.

Case 2.2 The color of (w,wu) is in φ′(Iv). In our figure
assume that 6 is the color of (v, vv1). Then the free color
is 8.

(a) If we can replace 7 by 2, then we color (u, uv) with 7 and
(v, vu) by 8, it is done. Hence we cannot replace 7 by 2,
it means that 2 ∈ φ′(Av). Without loss of generality let
φ′(v1, v1v) = 2.

(b) If we can color (v, vu) with 4, then we color (u, uv) with
8 and it is done. Hence 4 ∈ φ′(Av), let φ

′(v2, v2v) = 4 or
φ′(w,wv) = 4.

(c) If we can color (v, vu) with 5, then we color (u, uv) with
8 and it is done. Hence 5 ∈ φ′(Av), let φ′(w,wv) = 5
(resp φ′(v2, v2v) = 5) if φ′(v2, v2v) = 4 (resp. φ′(w,wv) =
4).

Now we replace 2 by 7 (7 /∈ φ(Iw)) then we color (u, uv) with
2 and (v, vu) by 8, it is done. It completes the proof.

5. Suppose H contains a (3, 3, 3, 3,Δ−)-vertex u. Let ui for i ∈ {1, 2, 3, 4}
be the neighbors of u having a degree equal to 3 and v be the neighbor
such that d(v) ≤ Δ. By minimality of H, the graph H ′ = H − {u}
admits an incidence (k + 4, 4)-coloring φ′. We will extend φ′ to an
incidence (k + 4, 4)-coloring φ of H as follows.

• We have | F φ′

H (v, vu) |=| φ′(Iv)∪φ′(Av)∪φ′(Iu) |≤ Δ(H)−1+4 =
Δ(H) + 3 ≤ k + 3

There is one free color for (v, vu). Without loss of generality, we
set φ(v, vu) = 1. For (u, uv) we have 4 free colors (φ′(Av)).

• We denote by Li the list of available colors of (ui, uiu) for i ∈
{1, 2, 3, 4} and by L′

i the list of available colors of (u, uui) for
i ∈ {1, 2, 3, 4}. We denote by Lu the list available colors of (u, uv).
By a computation as above it is easy to see that | L′

i |≥ k +
1 ≥ 6 (we recall that (v, vu) is colored with 1) and | Li |≥
k ≥ 5.

• Using a counting argument it is easy to see that there exists
a color α belonging to at least 3 lists among the lists Li, i ∈
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{1, 2, 3, 4}. Without loss of generality. we assume that α belongs
to Li i ∈ {1, 2, 3}.
(a) If α = 1, first we set φ(ui, uiu) = 1 for i ∈ {1, 2, 3}. Next we

color (u, uv) (we have the 4 colors of φ(Av)) and (u4, u4u)
from the list L4. Now we color (u, uui) for i ∈ {1, 2, 3, 4} in
this order one after the other. We have extended the coloring,
a contradiction.

(b) If α �= 1. Without loss of generality, we assume that α = 2,
we color (ui, uiu) for i ∈ {1, 2, 3} by 2. Next we color (u, uv)
with a color belonging to φ′(Av) different from 2 and 1, we
set φ(u, uv) = 3. Then we color (u, uui) for i ∈ {1, 2, 3, 4} in
this order one after the other. We have enough colors in each
list of each incidence (u, uui), i ∈ {1, 2, 3, 4}. Without loss
of generality, we set φ(u, uui) = i + 3 for i ∈ {1, 2, 3, 4}. If
we can color properly the incidence (u4, u4u) we are done. If
we cannot color (u4, u4u). It means that L4 = {3, 4, 5, 6, 7}.
Without loss of generality, we can assume that φ′(Au4

) ∪
φ′(Iu4

) = {1, 2, 8, 9}. Assume that we can replace one of the
colors of (u, uui), i ∈ {1, 2, 3} by 8 or 9 without destroying the
incidence coloring (let say 8), then we color the corresponding
incidence by 8 (let say φ(u, uu1) = 8), and we color (u4, u4u)
with 4. We are done. Hence φ(Iui

) = {2, 8, 9}, i ∈ {1, 2, 3}.
We recall that | Li |≥ 5,hence by the previous argument,
Li ⊂ {1, 2, 3, 4, 5, 6, 7}, for i ∈ {1, 2, 3}.
– If there exists an other color β /∈ {1, 2} belonging to

∩i=3
i=1Li, this color belongs also to L4. Then we color

(ui, uiu) for i ∈ {1, 2, 3, 4} with β, (u, uv) with a color
different from β. Next we color (u, uui), i ∈ {1, 2, 3, 4}
one after the other, by the way we extend the coloring a
contradiction.

– If it is not the case, then it is easy to see that each element
of {1, 3, 4, 5, 6, 7} belongs to exactly two lists Li. Without
loss of generality, we assume that 1 ∈ L1 ∩ L2. We color
(u1, u1u) and (u2, u2u) with 1. We recall that | Li |≥ 5, we
take any color of L3∩L4 to color (u3, u3u) and (u4, u4u),
let say 3. Then we color (u, uv) with a color different
from 3. Next we color (u, uui), i ∈ {1, 2, 3, 4} one after the
other, by the way we extend the coloring, a contradiction.
This completes the proof.
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3.2. Discharging procedure

Euler’s formula |V (H)|−|E(H)|+|F (H)| = 2 can be rewritten as (6|E(H)|−
10|V (H)|)+(4|E(H)|−10|F (H)|) = −20. Using the relation

∑
v∈V (H) d(v) =∑

f∈F (H) r(f) = 2|E(H)|, we get that:

(1)
∑

v∈V (H)

(3d(v)− 10) +
∑

f∈F (H)

(2r(f)− 10) = −20

We define the weight function ω : V (H) ∪ F (H) −→ R by ω(x) =
3d(x)− 10 if x ∈ V (H) and ω(x) = 2r(x)− 10 if x ∈ F (H). It follows from
Equation (1) that the total sum of weights is equal to −20. In what follows,
we will define discharging rules (R1) to (R8) and redistribute weights accord-
ingly. Once the discharging is finished, a new weight function ω∗ is produced.
However, the total sum of weights is kept fixed when the discharging is fin-
ished. Nevertheless, we will show that ω∗(x) ≥ 0 for all x ∈ V (H) ∪ F (H).
This will lead us to the following contradiction:

0 ≤
∑

x∈V (H)∪F (H)

ω∗(x) =
∑

x∈V (H)∪F (H)

ω(x) = −20 < 0

and hence will demonstrate that such a counterexample cannot exist.

The discharging rules are defined as follows:

(R1) Every k-vertex, for k ≥ 5, gives 1
3 to each adjacent 3-vertex.

(R2) Every 4-vertex gives 1 to each incident 3-face.
(R3) Every k-vertex, for k ≥ 5, gives 2 to each incident 3-face.
(R4) Every 4-vertex gives 1

2 to each incident 4-face.
(R5) Every k-vertex, for k ≥ 5, gives 1 to each incident 4-face: (5+, 3, 5+, 3).
(R6) Every k-vertex, for k ≥ 5, gives 3

4 to each incident 4-face: (5+, 3, 5+, 4).
(R7) Every k-vertex, for k ≥ 5, gives 2

3 to each incident 4-face: (5+, 5+, 5+, 3).
(R8) Every k-vertex, for k ≥ 5, gives 1

2 to each incident 4-face: (5+, 4+,
4+, 4+).

Since H does not contain a C4 adjacent to a C3, by hypothesis, the
following fact is easy to observe and will be frequently used throughout the
proof without further notice.

Observation 3. H does not contain the following structures:

1. adjacent 3-cycles,
2. a 4-cycle adjacent to a 3-cycle.
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One can easily derive the following observation.

Observation 4. Let v be a k-vertex with k ≥ 3 then m3(v) ≤ 
k2� and we
have the following cases by Observation 3:

- If m3(v) = 
k2� then m4(v) = 0.

- If 1 ≤ m3(v) < 
k2� then m4(v) ≤ d(v)− 2×m3(v)− 1.
- If m3(v) = 0 then m4(v) ≤ d(v).

Let v ∈ V (H) be a k-vertex. By Lemma 2.1 and Lemma 2.2, k ≥ 3.
Consider the following cases:

Case k = 3. Observe that ω(v) = −1. By Lemma 2.3, v has three
neighbors both of degree at least 5. Then, by (R1), we have: ω∗(v) =
−1 + 3× 1

3 = 0.
Case k = 4. Observe that ω(v) = 2. By Lemma 2.3, v has four neigh-
bors both of degree at least 4. By Observation 4, we have the following
cases:

- If m3(v) = 2 then m4(v) = 0. Hence, by (R2), we have: ω∗(v) ≥
2− 2× 1 = 0.

- If m3(v) = 1 then m4(v) ≤ 1. Hence, by (R2) and (R4), we have:
ω∗(v) ≥ 2− 1× 1− 1× 1

2 > 0.

- If m3(v) = 0 then m4(v) ≤ 4. Hence, by (R4), we have: ω∗(v) ≥
2− 4× 1

2 = 0.

Case k = 5. Observe that ω(v) = 5. By Lemma 2.5, v has at most 3
neighbors whose degrees are all of 3. By Observation 4, we have the
following cases:

- If m3(v) = 2 then m4(v) = 0. Hence, by (R1) and (R3), we have:
ω∗(v) ≥ 5− 2× 2− 3× 1

3 = 0.

- If m3(v) = 1 then m4(v) ≤ 2. In the worst-case v is incident to two
(5, 3, 5+, 3)-faces Hence, by (R1), (R3) and (R5), we have: ω∗(v) ≥
5− 1× 2− 2× 1− 3× 1

3 = 0.

- If m3(v) = 0 then m4(v) ≤ 5. We have to consider several cases:

(a) If n3(v) = 3, then we have three cases (we always consider the
worst-case, it is the case when v gives the biggest amount of
charge):

(i) v is incident to two (5, 3, 5+, 3)-faces, two (5, 3, 5+, 4)-
faces and one (5, 4+, 4+, 4+)-face. Hence, by (R1), (R5),
(R6) and (R8), we have: ω∗(v) ≥ 5− 2× 1− 2× 3

4 − 3×
1
3 − 1

2 = 0.
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(ii) v is incident to two (5, 3, 5+, 3)-faces and three (5+, 5+,
5+, 3)-faces. Hence, by (R1), (R5) and (R7), we have:
ω∗(v) ≥ 5− 1× 2− 3× 2

3 − 3× 1
3 = 0.

(iii) v is incident to one (5, 3, 5+, 3)-face and four (5, 3, 5+, 4)-
faces. Hence, by (R1), (R5) and (R6), we have: ω∗(v) ≥
5− 1× 1− 4× 3

4 − 3× 1
3 = 0.

(b) If n3(v) = 2, then we have 3 cases to consider:

(i) v is incident to one (5, 3, 5+, 3)-face, and four (5, 3, 5+, 4+)-
faces. By (R1), (R5) and (R6), we have: ω∗(v) ≥ 5− 1×
1− 4× 3

4 − 2× 1
3 = 1

3 ≥ 0.

(ii) v is incident to four (5, 3, 5+, 4+)-faces and one (5, 4+, 4+,
4+)-face. Hence, by (R1), (R6) and (R8), we have: ω∗(v) ≥
5− 4× 3

4 − 1× 1
2 − 2× 1

3 = 5
6 ≥ 0.

(iii) v is incident to two (5, 3, 5+, 4+)-faces and three (5, 5+, 5+,
3)-faces. Hence, by (R1), (R6) and (R7), we have: ω∗(v) ≥
5− 2× 3

4 − 3× 2
3 − 2× 1

3 = 5
6 ≥ 0.

(c) If n3(v) = 1, in the worst-case v may give 1/3 to the neighbor
of degree 3 and 5 times 3/4 to the 5 incident faces. Hence,
ω∗(v) ≥ 5− 1× 1

3 − 5× 3
4 = 11

12 ≥ 0.

(d) If n3(v) = 0, in the worst-case v can be incident to five (5, 5+, 5+,
3)-faces. Then by (R7), we have: ω∗(v) ≥ 5− 5× 2

3 = 5
3 ≥ 0.

Case k = 6. Observe that ω(v) = 8. By Observation 4, we have the
following cases:

- If m3(v) = 3 then m4(v) = 0. By Lemma 2.3 and Lemma 2.4, v is
adjacent to at most three 3-vertices. Hence, by (R1) and (R3), we
have: ω∗(v) ≥ 8− 3× 2− 3× 1

3 = 1 > 0.

- If m3(v) = 2 then m4(v) ≤ 1. By Lemma 2.3 and Lemma 2.4, v
is adjacent to at most four 3-vertices and incident to at most one
(5+, 3, 5+, 3)-face. Hence, by (R1), (R3) and (R5), we have: ω∗(v) ≥
8− 2× 2− 1× 1− 4× 1

3 = 5
3 > 0.

- If m3(v) = 1 then m4(v) ≤ 3. By Lemma 2.3 and Lemma 2.4, v
is adjacent to at most five 3-vertices and incident to at most three
(5+, 3, 5+, 3)-faces. Hence, by (R1), (R3) and (R5), we have: ω∗(v) ≥
8− 1× 2− 3× 1− 5× 1

3 = 4
3 > 0.

- If m3(v) = 0 then m4(v) ≤ 6. v can be incident to six (5+, 3, 5+, 3)-
faces. Hence, by (R1) and (R5), we have: ω∗(v) ≥ 8−6×1−6× 1

3 = 0.

Case k = 7. Observe that ω(v) = 11. By Observation 4, we have the
following cases:
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- If m3(v) = 3 then m4(v) = 0. By Lemma 2.3 and Lemma 2.4, v is
adjacent to at most four 3-vertices. Hence, by (R1) and (R3), we
have: ω∗(v) ≥ 11− 3× 2− 4× 1

3 = 11
3 > 0.

- If m3(v) = 2 then m4(v) ≤ 2. By Lemma 2.3 and Lemma 2.4, v
is adjacent to at most five 3-vertices and incident to at most two
(5+, 3, 5+, 3)-face. Hence, by (R1), (R3) and (R5), we have: ω∗(v) ≥
11− 2× 2− 2× 1− 5× 1

3 = 10
3 > 0.

- If m3(v) = 1 then m4(v) ≤ 4. By Lemma 2.3 and Lemma 2.4, v
is adjacent to at most six 3-vertices and incident to at most four
(5+, 3, 5+, 3)-faces. Hence, by (R1), (R3) and (R5), we have: ω∗(v) ≥
11− 1× 2− 4× 1− 6× 1

3 = 3 > 0.

- Ifm3(v) = 0 thenm4(v) ≤ 7. v can be incident to seven (5+, 3, 5+, 3)-
faces and seven 3-vertices. Hence, by (R1) and (R5), we have: ω∗(v) ≥
11− 7× 1− 7× 1

3 = 5
3 > 0.

Case k ≥ 8. Observe that ω(v) = 3k−10. By Observation 4, we have
the following cases:

- If m3(v) = 
k2� then m4(v) = 0. Hence, by (R1) and (R3):

ω∗(v) = 3k − 10− 2×m3(v)−
1

3
× n3(v)

≥ 3k − 10− 2×
⌊
k

2

⌋
− 1

3
× k

≥ 5

3
k − 10 > 0

- If 1 ≤ m3(v) ≤ 
k2� − 1 then m4(v) ≤ k − 3. Hence, by (R1), (R3)
and (R5), we have:

ω∗(v) = 3k − 10− 2×m3(v)− 1×m4(v)−
1

3
× n3(v)

≥ 3k − 10− 2×
(⌊

k

2

⌋
− 1

)
− (k − 3)× 1− 1

3
× k

≥ 2

3
k − 5 > 0

- If m3(v) = 0 then m4(v) ≤ k. Hence, by (R1) and (R5), we have:
ω∗(v) ≥ 3k − 10− k × 1− k × 1

3 = 5
3k − 10 > 0.

Let f ∈ F (H) be a k-face.
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Case k = 3. Observe that ω(f) = −4. Suppose f = [rst]. Consider
the following cases:

(a) Suppose d(r) = 3. Then, by Lemma 2.3, r is the unique 3-vertex
and d(s) ≥ 5 and d(t) ≥ 5. Hence, by (R3), we have: ω∗(f) =
−4 + 2× 2 = 0

(b) Suppose now d(r) ≥ 4, d(s) ≥ 4 and d(t) ≥ 4. By Lemma 2.4, at
least two of the three vertices r, s and t is a 5+-vertex. Assume
that d(s) ≥ 5 and d(t) ≥ 5. Then, by (R2) and (R3), we have:
ω∗(f) ≥ −4 + 2× 2 + 1× 1 = 1 ≥ 0.

Case k = 4. The initial charge of f is ω(f) = −2. By Lemma 2.3,
at most two 3-vertices are incident to the 4-face. Suppose f = [rstu].
Consider the following cases:

(a) Suppose d(r) = d(t) = 3. Then, by Lemma 2.3, d(s) ≥ 5 and
d(u) ≥ 5. Hence, by (R5), we have: ω∗(f) = −2 + 2× 1 = 0

(b) Suppose now d(r) = 3. Then, by Lemma 2.3, d(s) ≥ 5 and d(u) ≥
5. Moreover, assume d(t) = 4. Then, by (R4) and (R6), we have:
ω∗(f) ≥ −2 + 2 × 3

4 + 1 × 1
2 = 0. If d(t) ≥ 5, by (R7) we have

ω∗(f) ≥ −2 + 3× 2
3 = 0.

(c) Assume d(r) ≥ 4, d(s) ≥ 4, d(t) ≥ 4 and d(u) ≥ 4. Then, by
(R4), we have: ω∗(f) ≥ −2 + 4× 1

2 = 0.

Case k ≥ 5. The initial charge of f is ω(f) = 2k − 10 ≥ 0 and
it remains unchanged during the discharging process. Hence, ω(v) =
ω∗(v) = 2k − 10 ≥ 0.

After performing the discharging procedure the new weights of all faces
and vertices are positive and therefore, H cannot exist. This completes
the proof of Theorem 5.1

4. Proof of Theorem 5.2

We will prove the following stronger version of Theorem 5.2:

Theorem 7. Every planar graph G without C4 and C5 admits an incidence
(k + 3, 3)-coloring for every k ≥ Δ(G) ≥ 5, k ∈ N. Therefore, χi(G) ≤
Δ(G) + 3.

Observation 5. We consider only k ≥ Δ(G) ≥ 5. If Δ(G) < 4, we obtain
by Theorem 1

χi(G) ≤ 2Δ(G) ≤ Δ(G) + 3 ≤ k + 3.
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4.1. Structural properties

We proceed by contradiction. Let H be a counterexample to the theorem
that minimizes |E(H)|+ |V (H)|. By hypothesis there exists k ≥ max{Δ(G),
5} such that H does not admit an incidence (k + 3, 3)-coloring. Let k ≥
max{Δ(G), 5} be the smallest integer such that H does not admit an inci-
dence (k+3, 3)-coloring. By using Remark 1, we must have k = max{Δ(G),
5}. Moreover by minimality it is easy to see that H is connected.

H satisfies the following properties:

Lemma 3. H does not contain:

1. 1-vertices,
2. 2-vertices,
3. a 3-vertex adjacent to a 3-vertex,
4. a (3, 4, 4)-triangle.

Proof. First, we will suppose by contradiction that the described configura-
tion exists in H. Then we consider a graph H ′ obtained from H by deleting
an edge or a vertex from H. The graph H ′ does not contain a C4 nei-
ther a C3. Due to the minimality of H, the graph H ′ admits an incidence
(k′ + 3, 3)-coloring for any k′ ≥ max{Δ(H ′), 5}. Since Δ(H) ≥ Δ(H ′), the
set of integers k′ contains the set of integers k. Hence for the value k′ = k,
H ′ admits an incidence (k+3, 3)-coloring φ′. Finally, for each cases, we will
prove a contradiction by extending φ′ to an incidence (k + 3, 3)-coloring φ
of H.

1. By using the same method as in the proof of Theorem 5.1 and
Lemma 2.1, it is easy to prove Lemma 3.1.

2. By using the same method as in the proof of Theorem 5.1 and
Lemma 2.2, it is easy to prove Lemma 3.2.

3. Suppose H contains a 3-vertex u adjacent to a 3-vertex v. By minimal-
ity of H, the graph H ′ = H \ {uv} has an incidence (k+3, 3)-coloring
φ′. We recall that we have at least 8-colors and | φ′(Au) |≤ 2 and
| φ′(Av) |≤ 2. Note that

| F φ′

H (u, uv) |=| φ′(Iu) ∪ φ′(Au) ∪ φ′(Iv) |≤ 2 + 2 + 2 = 6

We have at least k − 3 ≥ 2 free colors for (u, uv). Choose a color for
(u, uv), then for (v, vu) by using the same calculation at most 7 colors
are forbidden for this incidence. We have at least k−4 ≥ 1 free colors.
So we can extend the coloring, a contradiction.
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4. Suppose that H contains a (3, 4, 4)-triangle. Let u be the vertex of
degree equal to 3 and v, w the two vertices of degree equal to 4. Let t
be the neighbor of u different from v and w. By minimality of H, the
graph H ′ = H − {uv, uw} admits an incidence (k + 3, 3)-coloring. We
will extend φ′ to an incidence (k+3, 3)-coloring φ of H as follows. We
recall that we have at least 8 colors. We have:

• | F φ′

H (v, vu) |=| φ′(Iv) ∪ φ′(Av) ∪ φ′(Iu) |≤ 3 + 3 + 1 = 7. Hence
we have one available color for (v, vu).

• In the same way, we have one available for (w,wu).

• We have 3 available colors for (u, uv) belonging to φ′(Av) and 3
available colors for (u, uw) belonging to φ′(Aw).

Without loss of generality, we assume that we are in the situation
described in Figure 2.

Figure 2: | F φ′

H (u, uv) |≤ 7.

First, we can assume that φ′(u, ut) = α /∈ {3, 4}, because if it is not
the case we can recolor (u, ut) with a color different from 3 and 4 (it
is possible because we have 3 available colors for (u, ut) belonging to
φ′(At)).
Now, we color (v, vu) with the available color (say a) and (w,wu) with
one available color (say b). We consider two cases.

• Assume that we can color (u, uv) with 4. If we can color (u, uw)
with 3, we are done. If we cannot color (u, uw) with 3. It means
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that φ′(t, tu) = 3 (note that α �= 3 and 3 /∈ φ′(Iw)). If we cannot

color (u, uw) with an other color of φ′(Aw) we have to φ′(Aw) =

{3, a, α}. Then we permute 3 and a in φ′(Iv) and we color (u, uw)

with a color a, we are done.

• Assume that we cannot color (u, uv) with 4, it means that

φ′(t, tu) = 4 (note that α �= 4). If we cannot color (u, uv) with an

other color of φ′(Av) (if it is the case then we can color (u, uw)

with 3, we are done), it means that φ′(Av) = {4, b, α}. Then we

permute 4 and b in φ′(Iw) and we color (u, uv) with a color b and

(u, uv) with color 3, we are done.

We have extended the coloring for all the cases, a contradiction.

4.2. Discharging procedure

Euler’s formula |V (H)|−|E(H)|+|F (H)| = 2 can be rewritten as (4|E(H)|−
6|V (H)|) + (2|E(H)| − 6|F (H)|) = −12. Using the relation

∑
v∈V (H) d(v) =∑

f∈F (H) r(f) = 2|E(H)| we get that:

(2)
∑

v∈V (H)

(2d(v)− 6) +
∑

f∈F (H)

(r(f)− 6) = −12

We define the weight function ω : V (H) ∪ F (H) −→ R by ω(x) =

2d(x) − 6 if x ∈ V (H) and ω(x) = r(x) − 6 if x ∈ F (H). It follows

from Equation (2) that the total sum of weights is equal to -12. In what

follows, we will define discharging rules (R1) and (R2). Next we redistribute

weights accordingly. Once the discharging is finished, a new weight function

ω∗ is produced. However, the total sum of weights is kept fixed when the

discharging is finished. Nevertheless, we will show that ω∗(x) ≥ 0 for all

x ∈ V (H) ∪ F (H). This will lead us to the following contradiction:

0 ≤
∑

x∈V (H)∪F (H)

ω∗(x) =
∑

x∈V (H)∪F (H)

ω(x) = −12 < 0

and hence will demonstrate that such a counterexample cannot exist.

The discharging rules are defined as follows:

(R1) Every 4-vertex, gives 1 to each incident 3-face.

(R2) Every k-vertex, for k ≥ 5, gives 2 to each incident 3-face.
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Let v ∈ V (H) be a k-vertex.

By Lemma 3.1 and Lemma 3.2, k ≥ 3. We recall that since H does not

contain C4, there are no adjacent 3-faces. Consider the following cases:

Case k = 3. Observe that ω(v) = 0. v does not give anything and

does not get anything. We have ω∗(v) = ω(v) = 0.

Case k = 4. ω(v) = 2. It is easy to see that v is incident to at most

two 3-faces. Then, by (R1) we have ω∗(v) ≥ 2− 2× 1 = 0.

Case k ≥ 5.Observe that ω(v) = 2k−6. It is easy to see that m3(v) ≤

k2�. Hence, by (R2), we have: ω∗(v) ≥ 2k − 6− 2× 
k2� ≥ 0.

Let f ∈ F (H) be a k-face.

Case k = 3. Observe that ω(f) = −3. Suppose f = [rst]. Consider

the following cases:

(a) Suppose d(r) = 3. Then, by Lemma 3.3, r is the unique 3-vertex

and by Lemma 3.4, d(s) ≥ 4 and d(t) ≥ 5. Hence, by (R1) and

(R2), we have ω∗(f) ≥ −3 + 1× 1 + 1× 2 = 0

(b) Suppose now d(r) ≥ 4, d(s) ≥ 4 and d(t) ≥ 4.Then, by (R1) and

(R2), ω∗(f) ≥ −3 + 3× 1 = 0.

Case k ≥ 6. The face is not involved in the discharging procedure.

ω(f) = ω∗(f) ≥ 0.

After performing the discharging procedure the new weights of all faces

and vertices are positive and therefore, H cannot exist. This completes

the proof of Theorem 5.2

Question 1. By Theorem 1, the bound of Theorem 5.2 is true for Δ(G) ≤ 3,

χi(G) ≤ Δ(G) + 3. In Theorem 5.2 for Δ(G) = 4 we have χi(G) ≤ 8, can

we prove χi(G) ≤ 7?
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