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Induced forests in bipartite planar graphs
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Akiyama and Watanabe conjectured that every simple planar bi-
partite graph on n vertices contains an induced forest on at least
5n/8 vertices. We apply the discharging method to show that ev-
ery simple bipartite planar graph on n vertices contains an induced
forest on at least �(4n+ 3)/7� vertices.
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1. Introduction

In this paper, we consider simple graphs only. Clearly, every bipartite graph
contains an independent set of size at least half of its vertices. It is natural
to ask under what conditions can we find considerably larger sparse induced
subgraphs, for example, induced forests? The study of the maximum size of
induced forests was initiated by Erdős, Saks, and Sós in 1986 [10]. Later,
Matoušek and Šámal [12], and also Fox, Loh, and Sudakov [9] studied large
induced trees in triangle-free graphs and Kr-free graphs, respectively.

For a graph G, let |G| = |V (G)| and let a(G) denote the largest number
of vertices of an induced forest in G. For later convenience, we use A(G) to
denote an induced forest in G of size a(G). Albertson and Berman [2] (also
see Albertson and Haas in [3]) conjectured in 1979 that a(G) ≥ |G|/2 for
any planar graph G. For bipartite planar graphs, Akiyama and Watanabe
[1] made the following in 1987

Conjecture 1.1. If G is a bipartite planar graph, then a(G) ≥ 5|G|/8.
The bound in Conjecture 1.1 is tight with Q3 (the 3-cube), and more

examples can be constructed, for example, by adding a matching between
two 4-cycles in two Q3’s.

Planar graphs have average degree strictly less than 6. Alon [4] consid-
ered bipartite graphs G with average degree at most d ≥ 1, and showed that
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a(G) ≥ (12 + e−bd2

)|G|, for some absolute constant b > 0. Conlon et al. [7]
improved Alon’s bound to (12 + d−b′d)|G|, for some constant b′ > 0. Since
the average degree of any bipartite planar graph is less than 4, the above
results give a nontrivial bound for Conjecture 1.1.

There has been some recent activities on Conjecture 1.1. It is shown in
[13] (also see [11]) that if G is a triangle-free planar graph then a(G) ≥
(17|G|+24)/32, which is improved to (6|G|+7)/11 in [8]. In this paper, we
prove the following

Theorem 1.2. Let G be a bipartite planar graph. Then a(G) ≥ �(4|G| +
3)/7�.

In our proof of Theorem 1.2, we apply the discharging method. Suppose
Theorem 1.2 is false, and let G be a counterexample with |G| minimum.
Using the discharging technique, we force some small configurations, which
are reducible in the sense that after certain operations we can use an induced
forest from a smaller graph to construct an induced forest in G. Often such
operations involve the identification of vertices, which may result in multiple
edges; we remove all but one such edges after the identification. Note that
we always identify vertices in the same color class of the bipartite graph G.
Hence, there will be no loop after the identification.

We need some notations and terminologies. Let v ∈ V (G) and X,Y ⊆
V (G). N(v) denotes the set of neighbors of v, and G[X] denotes the induced
subgraph of G on X. We define G−v := G[V (G)−{v}], G−X := G[V (G)−
X], G[X + v] := G[X ∪{v}] and G[X +Y ] := G[X ∪Y ]. Let n be a positive
integer. We denote Vn, V≤n, V≥n the set of vertices of degree exactly n,
at most n, and at least n, respectively. We call a vertex v in G is a n-
vertex (n+-vertex, n−-vertex, respectively) if v ∈ Vn (v ∈ V≥n, v ∈ V≤n,
respectively) If G is a planar graph and v1, v2, ..., vk are vertices of G incident
with a common face F , then G/v1v2...vk denotes the simple plane graph
obtained from G by identifying v1, v2, ..., vk in F as a new vertex w. We
define G/{v1v2, ..., vk−1vk} = (G/v1v2)/{v3v4, ..., vk−1vk}. G+ v1v2 denotes
the simple plane graph obtained from G by adding the edge v1v2 in F if
v1v2 �∈ E(G). X	Y denotes the symmetric difference between X and Y . A
separation in a graph G consists of a pair of subgraphs G1, G2, denoted as
(G1, G2), such that E(G1)∪E(G2) = E(G), E(G1 ∩G2) = ∅, G1 �⊆ G2, and
G2 �⊆ G1. e(X) denotes the number of edges in G[X] and e(X,Y ) denotes
the number of edges of G between vertices in X and vertices in Y .

The rest of the paper is organized as follows. In Section 2, we present
some inequalities that we use, which can be established by considering re-
mainders modular 7. We also set up some notation for a minimum coun-
terexample G of Theorem 1.2, and prove some basic properties about G.
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In Section 3, we derive information about the structures around a vertex of

degree 2 in G. In Section 4, we work on the neighbors of a degree 3 ver-

tex. In Section 5 and 6, we deal with two forbidden configurations around

a 3-vertex. In Section 7, we work with degree 5 and 6 vertices. We prove

Theorem 1.2 in Section 8 by giving discharging rules based on the structural

information obtained in the previous sections.

2. Useful inequalities and the minimum counterexample

We begin with some inequalities that will be used frequently throughout the

paper.

Lemma 2.1. Let a1, a2 ≥ 1 be integers such that a1 + a2 = n+ 3− k, with

k ≤ 8. Then max{�(4a1 +3)/7�+ �(4a2 +3)/7�+2, �(4a1 − 1)/7�+ �(4a2 −
1)/7�+ 3} ≥ �(4n+ 3)/7�.

Proof. Note the symmetry between a1 and a2. If 4a1 + 3 ≡ 0 mod 7 then

�(4a1 − 1)/7� + �(4a2 − 1)/7� + 3 ≥ (4a1 − 1 + 4)/7 + (4a2 − 1)/7 + 3 =

(4n+ 3− 4k + 32)/7 ≥ (4n+ 3)/7.

So we may assume 4ai + 3 �≡ 0 mod 7 for i = 1, 2. Let 4ai + 3 ≡ ri
mod 7 with 1 ≤ ri ≤ 6 for i = 1, 2. If r1 �= 6 or r2 �= 6 then �(4a1 + 3)/7�+
�(4a2+3)/7�+2 ≥ (4a1+3)/7+(4a2+3)/7+2+3/7 = (4n+3−4k+32)/7 ≥
(4n+ 3)/7.

So assume r1 = r2 = 6. Then �(4a1 − 1)/7� + �(4a2 − 1)/7� + 3 ≥
(4a1 − 1 + 5)/7 + (4a2 − 1 + 5)/7 + 3 = (4n+ 3− 4k + 38)/7 > (4n+ 3)/7.

Therefore, the conclusion holds since the left hand side of the inequality

is an integer.

With similar, but more involved arguments, we have the following in-

equalities. We leave out the details.

Lemma 2.2. Let a, a1, a2, ..., ak, c, n be positive integers where k ≥ 1. Let L

be a set of integers and bj be a positive integer for all j ∈ L.

(1) If (4a+3)/7+
k∑

i=1
(4ai+3)/7+

∑
j∈L

(4bj+3)/7+c−k ≥ (4n+3−3k)/7,

then max
Ai∈{0,1},
∀i∈[k]

{�(4(a−
k∑

i=1
Ai)+3)/7�+

k∑
i=1

�(4(ai−Ai)+3)/7�+
∑
j∈L

�(4bj+

3)/7�+ c−
k∑

i=1
(1−Ai)} ≥ �(4n+ 3)/7�.
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(2) If (4a+3)/7+(4a1+3)/7+ c− 1 ≥ (4n− 1)/7 and (4a+3, 4a1+3) �≡
(0, 4), (4, 0) mod 7, then max

A1∈{0,1}
{�(4(a−A1)+3)/7�+ �(4(a1−A1)+

3)/7�+ c− (1−A1)} ≥ �(4n+ 3)/7�;
(3) If (4a+3)/7+(4a1+3)/7+c ≥ (4n−1)/7, then �(4a+3)/7�+�(4a1+

3)/7�+ c ≥ �(4n+3)/7� if (4a+3, 4a1+3) �≡ (0, 0), (0, 6), (0, 5), (0, 4),
(4, 0), (6, 5), (5, 6), (5, 0), (6, 6), (6, 0) mod 7;

(4) If (4a+3)/7+
2∑

i=1
(4ai+3)/7+c−2 ≥ (4n−4)/7, then max

A1,A2∈{0,1}
{�(4(a−

2∑
i=1

Ai)+3)/7�+
2∑

i=1
�(4(ai−Ai)+3)/7�+c−

2∑
i=1

(1−Ai)} ≥ �(4n+3)/7�,

unless (4a + 3, 4a1 + 3, 4a2 + 3) ≡ (1, 0, 0), (4, 0, 4), (4, 4, 0), (0, 4, 4)
mod 7;

(5) If (4a+3)/7+
2∑

i=1
(4ai+3)/7+c−2 ≥ (4n−5)/7, then max

A1,A2∈{0,1}
{�(4(a−

2∑
i=1

Ai)+3)/7�+
2∑

i=1
�(4(ai−Ai)+3)/7�+c−

2∑
i=1

(1−Ai)} ≥ �(4n+3)/7�,

unless (4a + 3, 4a1 + 3, 4a2 + 3) ≡ (0, 0, 0), (1, 0, 0), (4, 0, 3), (4, 3, 0),
(3, 0, 4), (4, 0, 4), (3, 4, 0), (4, 4, 0), (1, 6, 0), (1, 0, 6), (0, 3, 4), (0, 4, 3),
(0, 4, 4), (6, 4, 4), (4, 4, 6), (4, 6, 4) mod 7;

(6) If
k∑

i=1
(4ai + 3)/7 + c ≥ (4n+ 2)/7, then

k∑
i=1

�(4ai + 3)/7�+ c ≥ �(4n+

3)/7�, unless 4ai + 3 ≡ 0 mod 7 for i ∈ [k];

(7) If
k∑

i=1
(4ai + 3)/7 + c ≥ (4n+ 1)/7, then

k∑
i=1

�(4ai + 3)/7�+ c ≥ �(4n+

3)/7�, unless there exists j ∈ [n] such that 4aj + 3 ≡ 0, 6 mod 7 and
4ai + 3 ≡ 0 mod 7 for i ∈ [k]− {j};

(8) If (4a+3)/7+(4a1+3)/7+c ≥ 4n/7, then �(4a+3)/7�+�(4a1+3)/7�+
c ≥ �(4n + 3)/7� unless (4a + 3, 4a1 + 3) ≡ (0, 0), (0, 6), (0, 5), (5, 0),
(6, 6), (6, 0) mod 7.

Note that in applications a1, a2, ..., ak, b1, ..., bl are the numbers of ver-
tices in some subgraphs of a given graph, and Ai is the indicator function
whether a vertex is included or not. Moreover, we have k ≤ 4 and l ≤ 2 in
all applications.

We now set up some notation for the proof of Theorem 1.2. Throughtout
the remainder of this paper, let G be a bipartite plane graph with |G| = n
such that

(i) a(G) < �(4n+ 3)/7�,
(ii) subject to (i), |G| is minimum, and
(iii) subject to (ii), |E(G)| is maximum.
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Lemma 2.3. G is a connected quadrangulation, δ(G) ≥ 2, and for each
v ∈ V≤3 we may choose A(G) so that v ∈ A(G).

Proof. If G is disconnected, let G1, ..., Gk be the components of G (hence
k ≥ 2). By the choice of G, a(Gi) ≥ �(4|Gi| + 3)/7� for i ∈ [k]. So a(G) ≥∑k

i=1�(4|Gi|+ 3)/7� ≥ �(4n+ 3)/7�, a contradiction. So G is connected.
If G is not a quadrangulation, then G has a facial walk a1a2...aka1 with

k ≥ 6. By the choice of G, a(G + a1a4) ≥ �(4n + 3)/7�. This implies that
a(G) ≥ �(4n + 3)/7�, a contradiction. Thus G is a quadrangulation, and
hence, δ(G) ≥ 2.

Now let F = A(G) with v ∈ V≤3 − V (F ). By the maximality of A(G),
N(v) ∩ V (F ) �= ∅. If |V (F ) ∩ N(v)| ≤ 2, then let w ∈ V (F ) ∩ N(v); if
|V (F )∩N(v)| = 3, then there exists w ∈ V (F ) such that no two vertices in
V (F )∩N(v) are contained in the same component of F−w. Now G[F−w+v]
is a maximum induced forest in G containing v.

The following notation will be convenient when performing graph oper-
ations.

Notation 2.4. Let v ∈ V (G) and U ⊆ N(v). Define Rv,U := R1
v,U ∪ R2

v,U

where R1
v,U = {{r} ⊆ N(v)−U : r ∈ V≤2} and R2

v,U = {{r1, r2} ⊆ N(v)−U :
r1, r2 ∈ V3 and r1, r2 are cofacial}.
Lemma 2.5. For any v ∈ V (G) and U ⊆ N(v), if R1, R2 ∈ Rv,U , then
R1 ∩R2 �= ∅.
Proof. First, assume that there exist distinct {x}, {y} ∈ R1

v,U . Let F ′ =
A(G−{v, x, y}). By the choice of G, |F ′| = a(G′) ≥ �(4(n−3)+3)/7�. Hence
G[F ′ + {x, y}] is an induced forest in G; so a(G) ≥ |F ′|+ 2 ≥ �(4n+ 3)/7�,
a contradiction.

Now assume there exist {x} ∈ R1
v,U , {y, z} ∈ R2

v,U . Let w ∈ V (G) such
that vywzv is a facial cycle. Let F ′ = A(G − {v, x, y, z, w}). Then |F ′| ≥
�(4(n−5)+3)/7� by the choice of G. Clearly, G[F ′+{x, y, z}] is an induced
forest in G; so a(G) ≥ |F ′|+ 3 ≥ �(4n+ 3)/7�, a contradiction.

Finally, assume {x1, x2}, {y1, y2} ∈ R2
v,U with {x1, x2} ∩ {y1, y2} = ∅.

Let x3, y3 ∈ V (G) such that vx1x3x2v and vy1y3y2v are facial cycles. Let
F ′ = A(G − {v, x1, x2, x3, y1, y2, y3}). By the choice of G, |F ′| ≥ �(4(n −
7) + 3)/7�. Now G[F ′ + {x1, x2, y1, y2}] is an induced forest in G, implying
a(G) ≥ |F ′|+ 4 ≥ �(4n+ 3)/7�, a contradiction.

Notation 2.6. Let v ∈ V (G) and U ⊆ N(v), and let R ∈ Rv,U . We define
G ∗ R = G − {v, r} if R = {r}, and G ∗ R = (G − v)/r1r2 if R = {r1, r2}.
For F ⊆ G ∗ R, define F · R = G[F + r] if R = {r}. If R = {r1, r2} and
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r ∈ F where r denotes the identification of r1 and r2, then define F · R =
G[F − r + {r1, r2}].
Remark 2.7. Let v ∈ V (G) and U ⊆ N(v). If R = {r1, r2} ∈ R2

v,U and
r denotes the identification of r1 and r2, then by Lemma 2.3 there exists
F = A(G ∗R) such that r ∈ F .

3. Structure around 2-vertices

The objective of this section is to prove the following lemma about neighbors
of a 2-vertex in G. This will be used later for discharging rules.

Lemma 3.1. For each x ∈ V2, there exist v5, v
′
5 ∈ V≥5∩N(x) or there exist

v4 ∈ V≤4 ∩N(x) and v6 ∈ V≥6 ∩N(x).

Remark 3.2. Apply Lemma 2.5 with v = v5 and U = ∅, we have Rv5,∅ =
{{x}} because any two elements in Rv5,∅ intersect. Similarly, Rv′

5,∅ = {{x}}
and Rv4,∅ = Rv6,∅ = {{x}}.
Proof. First, e(V2) = 0. For, suppose there exists xy ∈ E(G) with x, y ∈ V2.
Let z ∈ N(y)−{x} and F ′ = A(G−{x, y, z}). Then |F ′| ≥ �(4(n−3)+3)/7�.
Clearly, G[F ′ + {x, y}] is an induced forest in G; so a(G) ≥ |F ′| + 2 ≥
�(4n+ 3)/7�, a contradiction.

Next, we claim that for each y ∈ V2, it is impossible that y has one neigh-
bor of degree 3 and the other neighbor of degree at most 5. For otherwise,
there exists a path xyz in G with x ∈ V3, y ∈ V2, z ∈ V≤5. Let N(x)−{y} =
{x1, x2}. Note that {x1, x2} ⊆ N(z) since G is a quadrangulation. Then,
d(z) = 5; otherwise, with F ′ = A(G − {x, y, z, x1, x2}), G[F ′ + {x, y, z}]
is an induced forest in G showing that a(G) ≥ |F ′| + 3 ≥ �(4(n − 5) +
3)/7� + 3 ≥ �(4n + 3)/7�, a contradiction. So let N(z) = {x1, y, x2, z2, z1}
such that xi and zi are cofacial for i = 1, 2. If |N(x1) ∩ N(z1)| ≤ 2,
then let F ′ = A((G − {x, y, z, x2})/x1z1) with w as the identification of
x1 and z1; now G[F ′ + {x, y, z}] (if w �∈ F ′) or G[F ′ − w + {x, y, x1, z1}]
(if w ∈ F ′) is an induced forest in G showing that a(G) ≥ |F ′| + 3 ≥
�(4(n−5)+3)/7� ≥ �(4n+3)/7�, a contradiction. Thus, let |N(x1)∩N(z1)| ≥
3. Then there exist u ∈ N(x1) ∩ N(z1) − {z} and a separation (G1, G2)
in G such that V (G1 ∩ G2) = {x1, z1, u}, {x, y, z, x2, z2} ⊆ V (G1), and

N(x1) ∩ N(z1) − {z} ⊆ V (G2). Let F
(1)
1 = A(G1 − {x1, z1, x, y, z, x2}) and

F
(1)
2 = A(G2−{x1, z1}). Then G[F

(1)
1 ∪F (1)

2 +{x, y, z}−({u}∩(F (1)
1 	F

(1)
2 ))]

is an induced forest in G, which implies that

a(G) ≥ |F (1)
1 |+ |F (1)

2 |+2 ≥ �(4(|G1|− 6)+3)/7�+ �(4(|G2|− 2)+3)/7�+2.
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Now let F
(2)
1 = A(G1−{x1, z1, x, y, z, x2, u}) and F

(2)
2 = A(G2−{x1, z1, u}).

Then G[F
(2)
1 ∪ F

(2)
2 + {x, y, z}] is an induced forest in G, showing that

a(G) ≥ |F (2)
1 |+ |F (2)

2 |+3 ≥ �(4(|G1|− 7)+3)/7�+ �(4(|G2|− 3)+3)/7�+3.

By Lemma 2.1, we have a(G) ≥ �(4n+ 3)/7�, a contradiction.

Thus, to complete the proof of Lemma 3.1, it suffices to show that for
each y ∈ V2, it is impossible that y has one neighbor of degree 4 and the
other neighbor of degree at most 5. For otherwise, there exists a path xyz
such that x ∈ V4, y ∈ V2 and z ∈ V≤5. Thus, z ∈ V4 ∪ V5 by the above
claims. Let N(x) = {x1, x2, x3, y} and N(z) = {z1, z2, x2, x3, y} if z ∈ V5 or
N(z) = {z1, x2, x3, y} if z ∈ V4.

Case 1. N(x2)∩N(x3) = {x, z} and either |N(z1)∩N(z2)| ≤ 2 or z ∈ V4.

Let F ′ = A((G−{x, y, z})/{x2x3, z1z2}) (when z ∈ V5) and F ′ = A((G−
{x, y, z, z1})/x2x3) (when z ∈ V4). Let x′ (respectively, z′ when z ∈ V5)
denote the identification of x2 and x3 (respectively, z1 and z2). Let z

′ = z1
if z ∈ V4. By the choice of G, |F ′| ≥ �(4(n − 5) + 3)/7�. It is easy to
see that one of the following is an induced forest in G: G[F ′ + {x, y, z}]
(if x′, z′ �∈ F ′), or G[(F ′ − z′) + {x, y, z1, z2}] (if x′ �∈ F ′ and z′ ∈ F ′), or
G[(F ′ − x′) + {x2, x3, y, z}] (if x′ ∈ F ′ and z′ �∈ F ′), or G[(F ′ − {x′, z′}) +
{x2, x3, y, z1, z2}] (if x′, z′ ∈ F ′). Therefore, a(G) ≥ |F ′|+ 3 ≥ �(4n+ 3)/7�,
a contradiction.

Case 2. |N(x2) ∩N(x3)| ≥ 3 and either |N(z1) ∩N(z2)| ≤ 2 or z ∈ V4.

Then there exist w ∈ N(x2) ∩ N(x3) and a separation (G1, G2) in G
such that V (G1 ∩ G2) = {w, x2, x3, x}, {y, z, z1, z2} ⊆ V (G1), and N(x2) ∩
N(x3)− {z} ⊆ V (G2). Let F

(1)
1 = A((G1 − {w, x2, x3, x, y, z})/z1z2) (when

z ∈ V5) or F
(1)
1 = A(G1 − {w, x2, x3, x, y, z, z1}) (when z ∈ V4), and let

F
(2)
2 = A(G2 − {w, x2, x3, x}). Let z′ denote the identification of z1 and z2.

Then G[F
(1)
1 ∪ F

(1)
2 + {x, y, z}] (if z ∈ V4 or if z ∈ V5 and z′ �∈ F

(1)
1 ), or

G[F
(1)
1 ∪ F

(1)
2 − z′ + {x, y, z1, z2}] (if z ∈ V5 and z′ ∈ F

(1)
1 ) is an induced

forest in G, showing that

a(G) ≥ |F (1)
1 |+ |F (1)

2 |+3 ≥ �(4(|G1|− 7)+3)/7�+ �(4(|G2|− 4)+3)/7�+3.

Let F
(2)
1 = A((G1 − {x, x2, x3, x, y, z})/z1z2) (when z ∈ V5) with z′ as the

identification of z1 and z2, or F
(2)
1 = A(G1 − {x2, x3, x, y, z, z1}) (when

z ∈ V4), and let F
(2)
2 = A(G2−{x2, x3, x}). Then G[F

(2)
1 ∪F

(2)
2 + {x, y, z}−
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({w} ∩ (F
(2)
1 	F

(2)
2 ))] (if z ∈ V4 or z ∈ V5 and z′ �∈ F

(2)
1 ), or G[F

(2)
1 ∪ F

(2)
2 −

z′ + {x, y, z1, z2} − ({w} ∩ (F
(2)
1 	F

(2)
2 ))] (if z ∈ V5 and z′ ∈ F

(2)
1 ) is an

induced forest in G, giving

a(G) ≥ |F (2)
1 |+ |F (2)

2 |+2 ≥ �(4(|G1|− 6)+3)/7�+ �(4(|G2|− 3)+3)/7�+2.

Hence, by Lemma 2.2(1) (with k = 1, a = |G1| − 6, a1 = |G2| − 3, c = 3, L =
∅), a(G) ≥ �(4n+ 3)/7�, a contradiction.

Case 3. N(x2) ∩N(x3) = {x, z} and |N(z1) ∩N(z2)| ≥ 3.
Then there exist u ∈ N(z1) ∩ N(z2) and a separation (G1, G2) in G

such that V (G1 ∩ G2) = {z1, z2, u}, {x, y, z, x2, x3} ⊆ V (G1), and N(z1) ∩
N(z2)−{z} ⊆ V (G2). Let F

(1)
1 = A((G1 −{z1, z2, x, y, z})/x2x3) with x′ as

the identification of x2 and x3, and F
(1)
2 = A(G2 − {z1, z2}). Then G[F

(1)
1 ∪

F
(1)
2 +{x, y, z}− ({u}∩ (F

(2)
1 	F

(2)
2 ))] (if x′ �∈ F

(1)
1 ) or G[(F

(1)
1 −x′)∪F

(1)
2 +

{x2, x3, y, z} − ({u} ∩ (F
(2)
1 	F

(2)
2 ))] (if x′ ∈ F

(1)
1 ) is an induced forest in G,

which, by the choice of G, implies

a(G) ≥ |F (1)
1 |+ |F (1)

2 |+2 ≥ �(4(|G1|− 6)+3)/7�+ �(4(|G2|− 2)+3)/7�+2.

Let F
(2)
1 = A((G1 − {u, z1, z2, x, y, z})/x2x3) with x′ as the identification of

x2 and x3, and F
(2)
2 = A(G2−{u, z1, z2}). Then G[F

(2)
1 ∪F

(2)
2 + {x, y, z}] (if

z′ �∈ F
(2)
1 ) or G[(F

(2)
1 − x′)∪F

(2)
2 + {x2, x3, y, z}] (if z′ ∈ F

(2)
1 ) is an induced

forest in G. So by the choice of G.

a(G) ≥ |F (2)
1 |+ |F (2)

2 |+3 ≥ �(4(|G1|− 7)+3)/7�+ �(4(|G2|− 3)+3)/7�+3.

So by Lemma 2.2(1) (with k = 1, a = |G1| − 6, a1 = |G2| − 2, c = 3, L = ∅),
a(G) ≥ �(4n+ 3)/7�, a contradiction.

Case 4. |N(x2) ∩N(x3)| ≥ 3 and |N(z1) ∩N(z2)| ≥ 3.
Then there exist w ∈ N(x2) ∩N(x3)− {x, z}, u ∈ N(z1) ∩N(z2)− {z},

and subgraphs G1, G2, G3 of G such that G2 is the maximal subgraph of G
contained in the closed region of the plane bounded by the cycle wx2xx3w
containing N(x2) ∩ N(x3) − {z}, G3 is the maximal subgraph of G con-
tained in the closed region of the plane bounded by the cycle zz1uz2z
containing N(z1) ∩ N(z2) − {z}, and G1 is obtained from G by removing
G2 − {w, x, x2, x3} and G3 − {u, z, z1, z2}.

Define Ai = {u} for i = 1, 3, Ai = ∅ for i = 2, 4, and Ai = {u} − Ai.
Define Wi = {w} for i = 3, 4, Wi = ∅ for i = 1, 2 and Wi = {w} −
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Wi. For i ∈ [4], let F
(i)
1 = A(G1 − {x, y, z, x2, x3, z1, z2} − Ai − Wi) and

F
(i)
2 = A(G2 − {x2, x3, x} − Wi) and F

(i)
3 = A(G3 − {z1, z2} − Ai). Then

|F (i)
1 | ≥ �(4(|G1| − 7 − |Ai| − |Wi|) + 3)/7�, |F (i)

2 | ≥ �(4(|G2| − 3 − |Wi|) +
3)/7�, and |F (i)

3 | ≥ �(4(|G3| − 2 − |Ai|) + 3)/7� + 3. Since G[F
(i)
1 ∪ F

(i)
2 ∪

F
(i)
3 + {x, y, z} − {u,w} ∩ (F

(i)
1 	(F

(i)
2 ∪ F

(i)
3 ))] is an induced forest in G,

a(G) ≥ |F (i)
1 |+ |F (i)

2 |+ |F (i)
3 |+3− (1− |Ai|)− (1− |Wi|). Let (n1, n2, n3) :=

(4(|G1| − 7) + 3, 4(|G2| − 3) + 3, 4(|G3| − 2) + 3). So by Lemma 2.2(4) (with
a = |G1| − 7, a1 = |G2| − 3, a2 = |G3| − 2, c = 3),

(n1, n2, n3) ≡ (1, 0, 0), (4, 0, 4), (4, 4, 0), (0, 4, 4) mod 7.

Subcase 4.1. (n1, n2, n3) ≡ (1, 0, 0) (resp. (4, 4, 0)) mod 7.
Let W5 = W6 = {w} and W6 = W5 = ∅. Let i = 5 if (n1, n2, n3) ≡

(1, 0, 0) mod 7 and i = 6 if (n1, n2, n3) ≡ (4, 4, 0) mod 7. Let F
(i)
1 =

A((G1 − {x, y, z, x2, x3} −Wi)/z1z2) with z′ as the identification of z1 and

z2, F
(i)
2 = A(G2 − {x2, x3, x} −Wi), and F

(i)
3 = A(G3). By the choice of G,

|F (i)
1 | ≥ �(4(|G1|−6−|Wi|)+3)/7�, |F (i)

2 | ≥ �(4(|G2|−3−|Wi|)+3)/7�, and
|F (i)

3 | ≥ �(4|G3|+3)/7�. Then G[F
(i)
1 ∪F

(i)
2 ∪F

(i)
3 +{x, y, z}−{z1, z2, u, w}∩

(F
(i)
1 	(F

(i)
2 ∪F

(i)
3 )] (if z′ �∈ F

(i)
1 ) or G[(F

(i)
1 −z′)∪F

(i)
2 ∪F

(i)
3 +{x, y, z1, z2}−

{u,w, z1, z2}∩((F (i)
1 ∪{z1, z2})	(F

(i)
2 ∪F (i)

3 )] (if z′ ∈ F
(i)
1 ) is an induced forest

in G, showing that a(G) ≥ |F (i)
1 |+ |F (i)

2 |+ |F (i)
3 |+3−3−|Wi| ≥ �(4n+3)/7�,

a contradiction.

Subcase 4.2. (n1, n2, n3) ≡ (4, 0, 4) mod 7.

Let F
(7)
1 = A(G1−{x, y, z, x2, x3, z1, w}), F (7)

2 = A(G2−{x2, x3, x, w}),
and F

(7)
3 = A(G3 − {z1}). Then |F (7)

1 | ≥ �(4(|G1| − 7) + 3)/7�, |F (7)
2 | ≥

�(4(|G2| − 4) + 3)/7�, and |F (7)
3 | ≥ �(4(|G3| − 1) + 3)/7�. Clearly, G[F

(7)
1 ∪

F
(7)
2 ∪ F

(7)
3 + {x, y, z} − {u, z2} ∩ (F

(7)
1 	(F

(7)
2 ∪ F

(7)
3 )] is an induced forest

in G, showing that a(G) ≥ |F (7)
1 | + |F (7)

2 | + |F (7)
3 | + 1 ≥ �(4n + 3)/7�, a

contradiction.

Subcase 4.3. (n1, n2, n3) ≡ (0, 4, 4) mod 7.

Let F
(8)
1 = A(G1 − {y, z, x2, x3, z1} + xz2), F

(8)
2 = A(G2 − {x2, x3}),

and F
(8)
3 = A(G3 − {z1}). Then |F (8)

1 | ≥ �(4(|G1| − 5) + 3)/7�, |F (8)
2 | ≥

�(4(|G2|−2)+3)/7�, and |F (8)
3 | ≥ �(4(|G3|−1)+3)/7�. Now G[F

(8)
1 ∪F

(8)
2 ∪

F
(8)
3 + {y, z} − ({u,w, x, z2} ∩ (F

(8)
1 	(F

(8)
2 ∪ F

(8)
3 ))] is an induced forest in

G, which implies that a(G) ≥ |F (8)
1 | + |F (8)

2 | + |F (8)
3 | − 2 ≥ �(4n + 3)/7�, a

contradiction. This completes the proof of Lemma 3.1.
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4. Structure around 3-vertices

In this section, we derive useful information about strutures around a 3-
vertex.

Lemma 4.1. Let x1 ∈ V3 and N(x1) = {x, y1, z1}, with y1, z1 ∈ V4, x2 ∈
N(x)∩N(y1)−{x1} and xx1y1x2x be a facial cycle in G. Then z1x2 /∈ E(G).

Proof. For, suppose z1x2 ∈ E(G). Then G has a separation (G1, G2) such
that V (G1 ∩ G2) = {x1, x2, z1}, y1 ∈ V (G1), and x ∈ V (G2). For i =

1, 2, let F
(1)
i = A(Gi − {z1, x1, x2}); so |F (1)

i | ≥ �(4(|Gi| − 3) + 3)/7�. Now

G[F
(1)
1 ∪F

(1)
2 +x1] is an induced forest in G, giving a(G) ≥ |F (1)

1 |+ |F (1)
2 |+1.

Let F
(2)
1 = A(G1 − {z1, x1, x2, y1}) and F

(2)
2 = A(G2 − {z1, x1, x2, x}).

Then |F (2)
i | ≥ �(4(|Gi|−4)+3)/7� for i = 1, 2. IfN(z1)∩V (G1)−{x1, x2} �= ∅

and N(z1) ∩ V (G2) − {x1, x2} �= ∅, then G[F
(2)
1 ∪ F

(2)
2 + {x1, z1}] is an

induced forest in G, giving a(G) ≥ |F (2)
1 |+ |F (2)

2 |+ 2. Thus, by Lemma 2.1,
a(G) ≥ �(4n+ 3)/7�, a contradiction.

If N(z1) ∩ V (G1) − {x1, x2} = ∅, then since G is a quadrangulation,
y1, x1, z1, x2 are incident to a common face. This is a contradiction since
|N(y1)| = 4. So N(z1) ∩ V (G2) − {x1, x2} = ∅. Then since G is a quad-
rangulation, x, x1, z1, x2 are incident to a common face. This implies that

|N(x)| = 2. So G[F
(2)
1 ∪ F

(2)
2 + {x1, x}] is an induced forest in G, giving

a(G) ≥ |F (2)
1 | + |F (2)

2 | + 2. Thus, by Lemma 2.1, a(G) ≥ �(4n + 3)/7�, a
contradiction.

Lemma 4.2. Δ(G[V≤3]) ≤ 1.

Proof. First, we claim e(V2) = 0. For, suppose there exists xy ∈ E(G)
with x, y ∈ V2. Let z ∈ N(y) − {x} and F ′ = A(G − {x, y, z}). Then
|F ′| ≥ �(4(n− 3) + 3)/7�. Clearly, G[F ′ + {x, y}] is an induced forest in G;
so a(G) ≥ |F ′|+ 2 ≥ �(4n+ 3)/7�, a contradiction.

Suppose G[V≤3] contains a path, say xyz. By the claim above and
Lemma 2.5, we may assume that |N(y)| = |N(z)| = 3. Suppose |N(x)| = 2.
Since every face of G has length 4, x and z have a common neighbor,
say s. Let N(x) = {s, y}, N(y) = {y1, x, z} and N(z) = {z1, s, y}. Let
F ′ = A(G−{x, y, z, s, y1}). Then by the choice ofG, |F ′| ≥ �(4(n−5)+3)/7�.
Now G[F ′+{x, y, z}] is an induced forest in G and, hence, a(G) ≥ |F ′|+3 ≥
�(4n+ 3)/7�, a contradiction. So |N(x)| = 3.

Since every face of G has length 4, x and z have a common neighbor,
say s. Let N(x) = {x1, s, y}, N(y) = {y1, x, z} and N(z) = {z1, s, y}. If
x1 = z1, let F ′ = A(G − {x, y, z, s, x1}). Then by the choice of G, |F ′| ≥
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�(4(n−5)+3)/7�. Now G[F ′+{x, y, z}] is an induced forest in G and, hence,

a(G) ≥ |F ′|+ 3 ≥ �(4n+ 3)/7�, a contradiction. So x1 �= z1.

If N(x1) ∩ N(z1) = {y1}, let F ′ = A((G − {x, y, z, s})/x1z1) with x′

as the identification of x1 and z1. Then |F ′| ≥ �(4(n − 5) + 3)/7�. Now

G[F ′ + {x, y, z}] (if x′ �∈ F ′) or G[(F ′ − x′) + {x, z, x1, z1}] (if x′ ∈ F ′) is an
induced forest in G. So a(G) ≥ |F ′|+ 3 ≥ �(4n+ 3)/7�, a contradiction.

So |N(x1) ∩ N(z1)| ≥ 2. Then there exist w ∈ N(x1) ∩ N(z1) − {y1}
and a separation (G1, G2) in G such that V (G1 ∩ G2) = {w, x1, y1, z1},
{x, y, z, s} ⊆ V (G1), and N(x1)∩N(z1) ⊆ V (G2). Let W1 = W2 = {w} and

W1 = W2 = ∅. For i = 1, 2, let F
(i)
1 = A(G1−{s, x, y, z, x1, y1, z1}−Wi) and

F
(i)
2 = A(G2−{x1, z1}−Wi). Then |F (i)

1 | ≥ �(4(|G1|−7−|Wi|)+3)/7� and
|F (i)

2 | ≥ �(4(|G2| − 2− |Wi|) + 3)/7�. Now G[F
(i)
1 ∪ F

(i)
2 + {x, y, z} − ({w} ∩

(F
(i)
1 	F

(i)
2 ))] is an induced forest in G, giving a(G) ≥ |F (i)

1 |+|F (i)
2 |+3−|Wi|.

By Lemma 2.2(1) (with k = 1, a = |G1| − 7, a1 = |G2| − 2, L = ∅, c = 3),

a(G) ≥ �(4n+ 3)/7�, a contradiction.

Lemma 4.3. Let x ∈ V3. If y ∈ N(x) and Ry,{x} �= ∅ then for any z ∈
N(x)− {y}, Rz,{x} = ∅.

Proof. For otherwise, suppose z ∈ N(x) − {y} and Rz,{x} �= ∅. Let R1 ∈
Ry,{x} and R2 ∈ Rz,{x}.

If |R1| = 1 or |R2| = 1, let F ′ = A(((G − {x, y, z}) ∗ R1) ∗ R2). Then

|F ′| ≥ �(4(n− 5)+ 3)/7�. Now G[((F ′ + x) ·R1) ·R2] is an induced forest in

G, showing a(G) ≥ |F ′|+ 3 ≥ �(4n+ 3)/7�, a contradiction.

So |R1| = |R2| = 2, let R1 = {r1, r2} and yr1y
′r2y bound a 4-face.

Suppose y′ = z. Let F ′ = A(G− {x, y, z, r1, r2}). Then |F ′| ≥ �(4(n − 5) +

3)/7�. Now G[F ′ + {x, r1, r2}] is an induced forest in G, showing a(G) ≥
|F ′|+ 3 ≥ �(4n+ 3)/7�, a contradiction.

Now, we may assume y′ �= z. Suppose R1 ∩ R2 �= ∅. Without loss of

generality, let R2 = {r2, r3}. Since G is a quadrangulation, zr2y
′r3z bounds a

4-face. Let F ′′ = A(G−{x, y, z, r1, r2, r3, y′}). Then |F ′′| ≥ �(4(n−7)+3)/7�.
Now G[F ′′+{x, r1, r2, r3}] is an induced forest in G, showing a(G) ≥ |F ′′|+
4 ≥ �(4n+ 3)/7�, a contradiction.

Finally, we may assumeR1∩R2 = ∅. Let F ′′′=A((G−{x, y, z, r1, r2, y′})∗
R2). Then |F ′′′| ≥ �(4(n − 7) + 3)/7�. Now G[(F ′′′ + {x, r1, r2}) · R2] is an

induced forest in G, showing a(G) ≥ |F ′′′|+ 4 ≥ �(4n+ 3)/7�, a contradic-

tion.

Lemma 4.4. Let x ∈ V3. If y ∈ N(x) ∩ V≤4 then for any z ∈ N(x) − {y},
Rz,{x} = ∅.
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Proof. Let N(x) = {u, y, z}, y ∈ V≤4 and R ∈ Rz,{x}. Let vyxzv be a facial
cycle, N(y) = {y1, x, v} if y ∈ V3 and N(y) = {y1, y2, x, v} if y ∈ V4. In the
proof below, we assume y ∈ V4 as for y ∈ V3. We simply delete y1 instead
of identifying y1 and y2. Define Wi = {v} for i = 1, 3, 5, 8 and Wi = ∅ if
i = 2, 4, 6, 7, and let Wi = {v} −Wi for i ∈ [8].

Suppose R = {y2}. This implies that zy2 ∈ E(G) and |N(y2)| = 2. Since
G is a plane graph, uv �∈ E(G). Let F = A(G−{x, y, z, y1, y2}+uv). By the
choice of G, |F | ≥ �(4(n− 5) + 3)/7�. Then G[F + {x, y, y2}] is an induced
forest in G. So a(G) ≥ |F |+3 ≥ �(4n+3)/7�, a contradiction. So R �= {y2}.
Similarly, R �= {y1}.

Case 1. |N(y1) ∩N(y2)| ≤ 2 and uv �∈ E(G).
Let F ′ = A((G− {x, y, z}) ∗ R)/y1y2 + uv) with y′ as the identification

of y1 and y2. By the choice of G, |F ′| ≥ �(4(n − 5) + 3)/7�. Then G[(F ′ +
{x, y}) · R] (if y′ �∈ F ′) or G[(F ′ − {y′} + {x, y1, y2}) · R] (if y′ ∈ F ′) is an
induced forest in G. So a(G) ≥ |F ′|+ 3 ≥ �(4n+ 3)/7�, a contradiction.

Case 2. |N(y1) ∩N(y2)| ≤ 2 and uv ∈ E(G).
Then G has a separation (G1, G2) such that V (G1 ∩ G2) = {u, v, x},

{y, y1, y2} ⊆ V (G1), z ∈ V (G2). For i = 1, 2, let F
(i)
1 = A((G1 − {u, x, y} −

Wi)/y1y2)) with y′ as the identification of y1 and y2, and F
(i)
2 = A((G2 −

{u, x, z} −Wi) ∗R). Then |F (i)
j | ≥ �(4(|Gj | − 4− |Wi|) + 3)/7� for j = 1, 2.

Now G[(F
(i)
1 ∪ F

(i)
2 + {x, y}) · R − ({v} ∩ (F

(i)
1 	F

(i)
2 ))] (if y′ �∈ F

(i)
1 ) or

G[((F
(i)
1 − y′) ∪ F

(i)
2 + {x, y1, y2}) · R − ({v} ∩ (F

(i)
1 	F

(i)
2 ))] is an induced

forest in G, showing that a(G) ≥ |F (i)
1 |+ |F (i)

2 |+3− |Wi|. By Lemma 2.2(1)
(with k = 1, a = |G1| − 4, a1 = |G2| − 4, L = ∅, c = 3), a(G) ≥ �(4n+ 3)/7�,
a contradiction.

Case 3. |N(y1) ∩N(y2)| ≥ 3 and uv �∈ E(G).
There exist w ∈ N(y1)∩N(y2) and a separation (G1, G2) in G such that

V (G1∩G2) = {y1, y2, w}, {x, y, z, u, v} ⊆ V (G1), and N(y1)∩N(y2)−{y} ⊆
V (G2). Define Ai = {w} if i = 1, 3, 4 and Ai = ∅ if i = 2, 5, 6, and let

Ai = {w}−Ai. For i = 1, 2, let F
(i)
1 = A((G1−{x, y, z, y1, y2}−Ai)∗R+uv),

and F
(i)
2 = A(G2−{y1, y2}−Ai). Then |F (i)

1 | ≥ �(4(|G1| − 6− |Ai|)+3)/7�,
and |F (i)

2 | ≥ �(4(|G2| − 2− |Ai|) + 3)/7�. Now G[(F
(i)
1 ∪ F

(i)
2 + {x, y}) ·R−

({w} ∩ (F
(i)
1 	F

(i)
2 ))] is an induced forest in G, implying a(G) ≥ |F (1)

1 | +
|F (1)

2 | + 3 − |Ai|. So by Lemma 2.2(1) (with k = 1, a = |G1| − 6, a1 =
|G2| − 2, L = ∅, c = 3), a(G) ≥ �(4n+ 3)/7�, a contradiction.

Case 4. |N(y1) ∩N(y2)| ≥ 3 and uv ∈ E(G).
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There exist w ∈ N(y1) ∩ N(y2) and subgraphs G1, G2, G3 of G such

that G2 is the maximal subgraph of G contained in the closed region of the

plane bounded by uxzvu and containing R, G3 is obtained by deleting y

from the maximal subgraph of G contained in the closed region bounded

by y1yy2wy1 and containing N(y1) ∩N(y2), and G1 is obtained from G by

removing G2 − {u, v, x} and G3 − {w, y1, y2}. For i = 3, 4, 5, 6, let F
(i)
1 =

A(G1 −{x, u, y, y1, y2}−Ai −Wi), F
(i)
2 = A((G2 −{u, x, z}−Wi) ∗R), and

F
(i)
3 = A(G3−{y1, y2}−A1). Then |F (i)

1 | ≥ �(4(|G1|−5−|Wi|−|Ai|)+3)/7�,
|F (i)

2 | ≥ �(4(|G2|−4−|Wi|)+3)/7�, and |F (i)
3 | ≥ �(4(|G3|−2−|Ai|)+3)/7�.

Now G[(F
(i)
1 ∪ F

(i)
2 ∪ F

(i)
3 + {x, y}) ·R− {v, w} ∩ (F

(i)
1 	(F

(i)
2 ∪ F

(i)
3 ))] is an

induced forest in G, showing a(G) ≥ |F (i)
1 |+ |F (i)

2 |+ |F (i)
3 |+3− |Wi| − |Ai|.

Let (n1, n2, n3) := (4(|G1| − 5) + 3, 4(|G2| − 4) + 3, 4(|G3| − 2) + 3). By

Lemma 2.2(4) (with a = |G1|−5, a1 = |G2|−4, a2 = |G3|−2), (n1, n2, n3) ≡
(1, 0, 0), (4, 0, 4), (4, 4, 0), (0, 4, 4) mod 7.

Subcase 4.1. (n1, n2, n3) ≡ (1, 0, 0) (resp. (4, 4, 0) mod 7).

For i = 7 (resp. i = 8), let F
(i)
1 = A(G1 − {u, x, y} − Wi), F

(i)
2 =

A(G2 −{u, x}−Wi) and F
(i)
3 = A(G3). Then |F (i)

1 | ≥ �(4(|G1| − 3)+ 3)/7�,
|F (i)

2 | ≥ �(4(|G2| − 2) + 3)/7� and |F (i)
3 | ≥ �(4|G3| + 3)/7�. Now G[F

(i)
1 ∪

F
(i)
2 ∪ F

(i)
3 + {x} − Wi − {y1, y2, w} ∩ (F

(i)
1 	F

(i)
3 )] is an induced forest in

G, showing a(G) ≥ |F (i)
1 | + |F (i)

2 | + |F (i)
3 | + 1 − 3 − |Wi| ≥ �(4n + 3)/7�, a

contradiction.

Subcase 4.2. (n1, n2, n3) ≡ (4, 0, 4), (0, 4, 4) mod 7.

Let F
(9)
1 = A(G1 − {u, x, y, y1, v}), F (9)

2 = A(G2 − {u, x, v}) and F
(9)
3 =

A(G3 − {y1}). Then |F (9)
1 | ≥ �(4(|G1| − 5) + 3)/7�, |F (9)

2 | ≥ �(4(|G2| −
3) + 3)/7�, and |F (9)

3 | ≥ �(4(|G3| − 1) + 3)/7�. Now G[F
(9)
1 ∪ F

(9)
2 ∪ F

(9)
3 +

{x, y} − {y2, w} ∩ (F
(9)
1 	F

(9)
3 )] is an induced forest in G, showing a(G) ≥

|F (9)
1 |+ |F (9)

2 |+ |F (9)
3 |+ 2− 2 ≥ �(4n+ 3)/7�, a contradiction.

Lemma 4.5. For each x ∈ V3, N(x) �⊆ V≤4.

Proof. Let x ∈ V3 with N(x) = {w, y, z} ⊆ V≤4. By Lemma 4.2, |N(x) ∩
V≤3| ≤ 1; so let N(z) = {x, z1, z2, w1} and N(w) = {x,w1, w2, y1}. Suppose
y ∈ V2. Let N(y) = {x, y1}. Since G is a quadrangulation, we may assume

z1 = y1. Let F = A(G−{x, y, z, w, y1, w1, z2}). Then |F | ≥ �(4(n−7)+3)/7�.
Therefore, G[F +{x, y, z, w}] is an induced forest in G, showing that a(G) ≥
|F |+ 4 ≥ �(4n+ 3)/7�, a contradiction.
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Now let N(y) = {x, y1, z1} if y ∈ V3 and N(y) = {x, y1, y2, z1} if y ∈ V4.

In the argument to follow, we treat the case y ∈ V4, as the proof for y ∈ V3

is the same by replacing identification of y1 and y2 with the deletion of y1.

Case 1. |N(y1)∩N(y2)| ≤ 2, |N(z1)∩N(z2)| ≤ 2 and |N(w1)∩N(w2)| ≤ 2.

Let F ′ = A(G − {x, y, z, w}/{y1y2, z1z2, w1w2}) with y′, z′, w′ as the

identifications of y1 and y2, z1 and z2, and w1 and w2, respectively. Then

|F ′| ≥ �(4(n − 7) + 3)/7�. Let F = F ′ + {x, y, z, w} if w′, y′, z′ �∈ F ′, and
otherwise, let F be obtained from F ′+{x, y, z, w} by deleting w,w′ (respec-
tively, y, y′, z, z′) adding {w1, w2} (respectively, {y1, y2}, {z1, z2}) if w′ ∈ F ′

(respectively, y′ ∈ F ′, z′ ∈ F ′). Then G[F ] is an induced forest in G, showing

that a(G) ≥ |F ′|+ 4 ≥ �(4n+ 3)/7�, a contradiction.

Case 2. Exactly one of |N(y1)∩N(y2)|, |N(z1)∩N(z2)|, |N(w1)∩N(w2)|
is greater than 2.

By symmetry, assume |N(z1)∩N(z2)| ≥ 3. Then there exist z′ ∈ N(z1)∩
N(z2) and a separation (G1, G2) in G such that V (G1 ∩ G2) = {z1, z2, z′},
{x, y, z, w, y1, y2, w1, w2} ⊆ V (G1), N(z1) ∩ N(z2) − {z} ⊆ V (G2). Define

Ai = {z′} for i = 1, 5 or Ai = ∅ for i = 2, 6, and let Ai = {z′} − Ai.

For i = 1, 2, let F
(i)
1 = A((G1 − {x, y, z, w, z1, z2} − Ai)/{y1y2, w1w2}) with

y′, w′ as the identifications of y1 and y2, w1 and w2, respectively, and let

F
(i)
2 = A(G2 −{z1, z2}−Ai). Then |F (i)

1 | ≥ �(4(|G1| − 8− |Ai|) + 3)/7� and

|F (i)
2 | ≥ �(4(|G2| − 2 − |Ai|) + 3)/7�. Let F (i) = F

(i)
1 ∪ F

(i)
2 + {x, y, z, w} −

({z′}∩ (F
(i)
1 	F

(i)
2 )) if w′, y′ �∈ F

(i)
1 , and otherwise, let F (i) be obtained from

F
(i)
1 ∪ F

(i)
2 + {x, y, z, w} − ({z′} ∩ (F

(i)
1 	F

(i)
2 )) by deleting {y, y′} (respec-

tively, {w,w′}) and adding {y1, y2} (respectively, {w1, w2}) when y′ ∈ F
(i)
1

(respectively, w′ ∈ F
(i)
1 ). Then G[F (i)] is an induced forest in G, giving

a(G) ≥ |F (i)
1 |+ |F (i)

2 |+ 4− |Ai|. By Lemma 2.2(2) (with a = |G1| − 8, a1 =

|G2| − 2, c = 4), (4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (4, 0), (0, 4) mod 7.

Subcase 2.1. (4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (4, 0) mod 7.

Let F
(3)
1 = A((G1−{x, y, z, w})/{y1y2, w1w2, z1z2}) with y′, w′, z′′ as the

identification of y1 and y2, w1 and w2, and z1 and z2, respectively, and let

F
(3)
2 = A(G2). Then |F (3)

1 | ≥ �(4(|G1| − 7) + 3)/7� and |F (3)
2 | ≥ �(4|G2| +

3)/7�. Let F (3) = F1
(3) ∪ F

(3)
2 − ({z′, z1, z2} ∩ (F1

(3)	F
(3)
2 )) where F1

(3)
=

F1
(3) + {x, y, z, w} if w′, y′, z′′ �∈ F

(3)
1 ; otherwise, let F1

(3)
be obtained from

F1
(3) + {x, y, z, w} by deleting y, y′ (respectviely, w,w′, z, z′′) and adding

{y1, y2} (respectively, {w1, w2}, {z1, z2}) when y′ ∈ F
(3)
1 (respectively, w′ ∈
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F
(3)
1 , z′′ ∈ F

(3)
1 ). Therefore, G[F (3)] is an induced forest in G, showing that

a(G) ≥ |F (3)
1 |+ |F (3)

2 |+ 4− 3 ≥ �(4n+ 3)/7�, a contradiction.

Subcase 2.2. (4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (0, 4) mod 7.

If wz2 �∈ E(G), then let F
(4)
1 = A((G1 − {x, y, z, z1, w1})/y1y2 + wz2)

with y′ as the identification of y1 and y2, and F
(4)
2 = A(G2 − {z1}). Then

|F (4)
1 | ≥ �(4(|G1|−6)+3)/7� and |F (4)

2 | ≥ �(4(|G2|−1)+3)/7�. Now G[F
(4)
1 ∪

F
(4)
2 +{x, y, z}−({z′, z2}∩(F (4)

1 	F
(4)
2 ))] (if y′ �∈ F

(4)
1 ) or G[(F

(4)
1 −y′)∪F (4)

2 +

{x, y1, y2, z} − ({z′, z2} ∩ (F
(4)
1 	F

(4)
2 ))] (if y′ ∈ F

(4)
1 ) is an induced forest in

G, giving a(G) ≥ |F (4)
1 |+ |F (4)

2 |+ 3− 2 ≥ �(4n+ 3)/7�, a contradiction.
So wz2 ∈ E(G). Then there exist subgraphs G′

1, G
′
2, G

′
3 of G such that

G′
2 = G2, G

′
3 is the maximal subgraph of G contained in the closed region of

the plane bounded by the cycle wxzz2w and containing N(w)∩N(z)−{x},
and G′

1 is obtained from G by removing G′
2−{z1, z2, z′} and G′

3−{w, z, z2}.
For i = 5, 6, let F

(i)
1 = A(G′

1−{w, x, z, z1, z2}−Ai), F
(i)
2 = A(G′

2−{z1, z2}−
Ai), and F

(i)
3 = A(G′

3−{w, z, z2}). Then |F (i)
1 | ≥ �(4(|G′

1|−5−|Ai|)+3)/7�,
|F (i)

2 | ≥ �(4(|G′
2| − 2 − |Ai|) + 3)/7� and |F (i)

3 | ≥ �(4(|G′
3| − 3) + 3)/7�. So

G[F
(i)
1 ∪ F

(i)
2 ∪ F

(i)
3 + {x, z} − ({z′} ∩ (F

(i)
1 	F

(i)
2 ))] is an induced forest

in G, giving a(G) ≥ |F (i)
1 | + |F (i)

2 | + |F (i)
3 | + 2 − |A1|. By Lemma 2.2(1)

(with k = 1, L = {1}, a = |G′
1| − 5, a1 = |G′

2| − 2, b1 = |G′
3| − 3, c = 2),

a(G) ≥ �(4n+ 3)/7�, a contradiction.

Thus, by symmetry, we have Case 3. At least two of |N(y1) ∩ N(y2)|,
|N(z1)∩N(z2)| and |N(w1)∩N(w2)| are greater than 2, and at least two of
|N(z1) ∩N(y2)|, |N(w1) ∩N(z2)| and |N(w2) ∩N(y1)| are greater than 2.

First, suppose |N(y1) ∩ N(y2)| > 2, |N(y1) ∩ N(w2)| > 2, |N(w1) ∩
N(w2)| > 2 and |N(w1)∩N(z2)| > 2. Then there exist y′ ∈ N(y1)∩N(y2)−
{y}, w′ ∈ N(y1) ∩N(w2)− {w}, w′′ ∈ N(w1) ∩N(w2)− {w}, z′ ∈ N(w1) ∩
N(z2) − {z}, and subgraphs G1, G2, G3, G4, G5 of G such that G2 is the
maximal subgraph of G contained in the closed region of the plane bounded
by the cycle yy1y

′y2y and containing N(y1)∩N(y2)−{y}, G3 is the maximal
subgraph of G contained in the closed region of the plane bounded by the
cycle wy1w

′w2w and containing N(y1) ∩ N(w2) − {w}, G4 is the maximal
subgraph of G contained in the closed region of the plane bounded by the
cycle ww1w

′′w2w and containing N(w1) ∩N(w2)− {w}, G5 is the maximal
subgraph of G contained in the closed region of the plane bounded by the
cycle zw1w

′′z2z and containing N(z2) ∩ N(w1) − {z}, and G1 is obtained
from G by removing G2 − {y1, y2, y′}, G3 − {y1, w2, w

′}, G4 − {w1, w2, w
′′}

and G5−{w1, z2, z
′}. Let A1 ⊆ {y′}, B1 ⊆ {w′}, C1 ⊆ {w′′}, D1 ⊆ {z′}. Let



108 Yan Wang et al.

A1 = {y′} −A1, B1 = {w′} −B1, C1 = {w′′} − C1, D1 = {z′} −D1. For all

choices of A1, B1, C1, D1, let F
(i)
1 = A(G1−{w, y, x, z, z1, z2, y1, y2, w1, w2}−

A1−B1−C1−D1), F
(i)
2 = A(G2−{y1, y2}−A1), F

(i)
3 = A(G3−{y1, w2}−

B1), F
(i)
4 = A(G4 − {w1, w2} − C1), and F

(i)
5 = A(G5 − {w1, z2} − D1).

Then |F (i)
1 | ≥ �(4(|G1| − 10 − |A1| − |B1| − |C1| − |D1|) + 3)/7�, |F (i)

2 | ≥
�(4(|G2| − 2 − |A1|) + 3)/7�, |F (i)

3 | ≥ �(4(|G3| − 2 − |B1|) + 3)/7�, |F (i)
4 | ≥

�(4(|G4| − 2− |C1|) + 3)/7�, and |F (i)
5 | ≥ �(4(|G5| − 2− |D1|) + 3)/7�. Now

G[F
(i)
1 ∪F

(i)
2 ∪F

(i)
3 ∪F

(i)
4 ∪F

(i)
5 +{w, x, y, z}− ({y′}∩ (F

(i)
1 	F

(i)
2 ))− ({w′}∩

(F
(i)
1 	F

(i)
3 )) − ({w′′} ∩ (F

(i)
1 	F

(i)
4 )) − ({z′} ∩ (F

(i)
1 	F

(i)
5 ))] is an induced

forest in G. Hence, a(G) ≥ |F (i)
1 |+ |F (i)

2 |+ |F (i)
3 |+ |F (i)

4 |+ |F (i)
5 |+4− |A1| −

|B1|−|C1|−|D1|. By Lemma 2.2(1) (with k = 4, a = |G1|−10, aj = |Gj+1|−2

for j = 1, 2, 3, 4, L = ∅, c = 4), a(G) ≥ �(4n+ 3)/7�, a contradiction.

Thus, by symmetry, we may assume that |N(y1)∩N(y2)| > 2, |N(y1)∩
N(w2)| > 2, |N(z1)∩N(z2)| > 2 and |N(w1)∩N(z2)| > 2. Then there exist

y′ ∈ N(y1)∩N(y2)−{y}, w′ ∈ N(y1)∩N(w2)−{w}, z′ ∈ N(z1)∩N(z2)−{w},
z′′ ∈ N(w1)∩N(z2)−{z}, and subgraphs G1, G2, G3, G4, G5 of G such that

G2 is the maximal subgraph of G contained in the closed region of the plane

bounded by the cycle yy1y
′y2y and containing N(y1)∩N(y2)−{y}, G3 is the

maximal subgraph of G contained in the closed region of the plane bounded

by the cycle wy1w
′w2w and containing N(y1) ∩ N(w2) − {w}, G4 is the

maximal subgraph of G contained in the closed region of the plane bounded

by the cycle zz1z
′z2z and containing N(z1)∩N(z2)−{z}, G5 is the maximal

subgraph of G contained in the closed region of the plane bounded by the

cycle zw1z
′′z2z and containing N(z2) ∩ N(w1) − {z}, and G1 is obtained

from G by removing G2−{y1, y2, y′}, G3−{y1, w2, w
′}, G4−{z1, z2, z′} and

G5 − {w1, z2, z
′′}. Let A1 ⊆ {y′}, B1 ⊆ {w′}, C1 ⊆ {z′}, D1 ⊆ {z′′}. Let

A1 = {y′} − A1, B1 = {w′} − B1, C1 = {z′} − C1, D1 = {z′′} −D1. For all

choices of A1, B1, C1, D1, let F
(i)
1 = A(G1−{w, y, x, z, z1, z2, y1, y2, w1, w2}−

A1−B1−C1−D1), F
(i)
2 = A(G2−{y1, y2}−A1), F

(i)
3 = A(G3−{y1, w2}−

B1), F
(i)
4 = A(G4 − {z1, z2} − C1), and F

(i)
5 = A(G5 − {w1, z2} − D1).

Then |F (i)
1 | ≥ �(4(|G1| − 10 − |A1| − |B1| − |C1| − |D1|) + 3)/7�, |F (i)

2 | ≥
�(4(|G2| − 2 − |A1|) + 3)/7�, |F (i)

3 | ≥ �(4(|G3| − 2 − |B1|) + 3)/7�, |F (i)
4 | ≥

�(4(|G4| − 2− |C1|) + 3)/7�, and |F (i)
5 | ≥ �(4(|G5| − 2− |D1|) + 3)/7�. Now

G[F
(i)
1 ∪F

(i)
2 ∪F

(i)
3 ∪F

(i)
4 ∪F

(i)
5 +{w, x, y, z}− ({y′}∩ (F

(i)
1 	F

(i)
2 ))− ({w′}∩

(F
(i)
1 	F

(i)
3 ))−({z′}∩(F (i)

1 	F
(i)
4 ))−({z′′}∩(F (i)

1 	F
(i)
5 ))] is an induced forest

in G, showing a(G) ≥ |F (i)
1 |+ |F (i)

2 |+ |F (i)
3 |+ |F (i)

4 |+ |F (i)
5 |+4−|A1|−|B1|−
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|C1| − |D1|. By Lemma 2.2(1) (with k = 4, a = |G1| − 10, aj = |Gj+1| − 2 for
j = 1, 2, 3, 4, L = ∅, c = 4), a(G) ≥ �(4n+ 3)/7�, a contradiction.

By Lemmas 4.3, 4.4, 4.5, we have the following:

Corollary 4.6. Let x ∈ V3. Then there exists v ∈ N(x) ∩ V≥5 such that
Rv,{x} = ∅.

5. A forbidden configuration around a 3-vertex

We prove the following, which eliminates two configurations around a 3-
vertex.

Lemma 5.1. Let x ∈ V3, {y, z} ⊆ V≤4, N(x) = {w, y, z}. Suppose xzvwx
is a facial cycle and w ∈ V5. Then Rv,{w,z} = ∅ and v �∈ V≤4.

Proof. We may assume {y, z} ⊆ V4 because the case when y ∈ V3 or z ∈ V3

is identical by replacing identifying neighbors of 4-vertex with deleting a
neighbor of 3-vertex.

In the first part, we prove Rv,{w,z} = ∅. For, suppose R ∈ Rv,{w,z}. Let
N(y) = {x, y1, y2, z1}, N(z) = {x, v, z1, z2} and y2w ∈ E(G).

First, we claim that wz1 �∈ E(G). For, suppose wz1 ∈ E(G). There exists
a separation (G1, G2) such that V (G1 ∩ G2) = {w, z, z1}, {x, y, y1, y2} ⊆
V (G1), and v ∈ V (G2). Let F

(1)
1 = A(G1−{z1, z, w, x}), and F

(1)
2 = A((G2−

{z1, z, w, v})∗R). Then |F (1)
1 | ≥ �(4(|G1|−4)+3)/7�, and |F (1)

2 | ≥ �(4(|G2|−
5)+3)/7�. Now G[(F

(1)
1 ∪F (1)

2 +{x, z})·R] is an induced forest in G, showing

a(G) ≥ |F (1)
1 |+ |F (1)

2 |+ 3 ≥ �(4n+ 3)/7�, a contradiction.
Secondly, we claim that wz2 �∈ E(G). For otherwise, there exists a sep-

aration (G1, G2) such that V (G1 ∩ G2) = {w, v, z2}, {x, y, z, z1, y1, y2} ⊆
V (G1), and R ⊆ V (G2). Let F

(2)
1 = A(G1 − {x, z, z1, z2, w, v}), and F

(2)
2 =

A(G2−{z2, w}). Then |F (2)
1 | ≥ �(4(|G1|−6)+3)/7�, and |F (2)

2 | ≥ �(4(|G2|−
2) + 3)/7�. Now G[F

(2)
1 ∪ F

(2)
2 + {x, z}] is an induced forest in G, showing

a(G) ≥ |F (2)
1 | + |F (2)

2 | + 2. This implies 4(|G2| − 2) + 3 ≡ 0, 5, 6 mod 7.

If |N(y1) ∩ N(y2)| ≤ 2, let F
(3)
1 = A((G1 − {x, y, z, z1, w, v})/y1y2) with

y′ as the identification of {y1, y2}, and F
(3)
2 = A((G2 − {w, v}) ∗ R). Then

|F (3)
1 | ≥ �(4(|G1| − 7) + 3)/7�, and |F (3)

2 | ≥ �(4(|G2| − 3) + 3)/7�. Now

F (3) := G[(F
(3)
1 ∪F

(3)
2 +{x, y, z}) ·R− ({z2}∩ (F

(3)
1 	F

(3)
2 ))] (if y′ �∈ F

(3)
1 ) or

G[((F
(3)
1 − y′)∪F

(3)
2 + {x, y1, y2, z}) ·R− ({z2}∩ (F

(3)
1 	F

(3)
2 ))] (if y′ ∈ F

(3)
1 )

is an induced forest in G, showing a(G) ≥ |F (3)
1 | + |F (3)

2 | + 4 − 1. By
Lemma 2.2(1) (with k = 1, a = |G1| − 6, a1 = |G2| − 2, L = ∅, c = 3),
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a(G) ≥ �(4n + 3)/7�, a contradiction. So |N(y1) ∩ N(y2)| > 2. Then there
exist a1 ∈ N(y1)∩N(y2) and subgraphs G′

1, G
′
2, G

′
3 of G such that G′

2 = G2,
G′

3 is the maximal subgraph of G contained in the closed region of the plane
bounded by the cycle yy1a1y2y and containing N(y1)∩N(y2)−{y}, and G1 is
obtained fromG by removingG′

2−{w, v, z2} andG′
3−{a1, y2, y1}. Let A4 = ∅

and A5 = {a1}. For i = 4, 5, let F
(i)
1 = A(G′

1 − {x, y, z, z1, w, v, y1, y2, z2} −
Ai), F

(i)
2 = A((G′

2 − {w, v, z2}) ∗ R), and F
(i)
3 = A(G′

3 − {y1, y2} − Ai).

Then |F (i)
1 | ≥ �(4(|G′

1| − 9 − |Ai|) + 3)/7�, |F (i)
2 | ≥ �(4(|G′

2| − 4) + 3)/7�,
and |F (i)

3 | ≥ �(4(|G′
3| − 2 − |Ai|) + 3)/7�. Now G[(F

(i)
1 ∪ F

(i)
2 ∪ F

(i)
3 +

{x, y, z, w}) · R − ({a1} ∩ (F
(i)
1 	F

(i)
3 ))] is an induced forest in G, showing

a(G) ≥ |F (i)
1 | + |F (i)

2 | + |F (i)
3 | + 5 − (1 − |Ai|). By Lemma 2.2(1) (with

k = 1, a = |G′
1| − 8, a1 = |G′

3| − 2, L = {1}, b1 = |G′
2| − 4, c = 5),

a(G) ≥ �(4n+ 3)/7�, a contradiction.

Case 1. |N(y1) ∩N(y2)| ≤ 2 and |N(z1) ∩N(z2)| ≤ 2.
Let F ′ = A(((G − {x, y, z, v}) ∗ R)/{y1y2, z1z2} + wz′) with y′ (re-

spectively, z′) as the identifications of {y1, y2} (respectively, {z1, z2}). Then
|F ′| ≥ �(4(n − 7) + 3)/7�. Let F := (F ′ + {x, y, z}) · R if y′, z′ �∈ F ′, and
otherwise F ′ obtained from (F ′ + {x, y, z}) · R by deleting {y, y′} (respec-
tively, {z′, z}) and adding {y2, y1} (respectively, {z1, z2}) when y′ ∈ F ′ (re-
spectively, z′ ∈ F ′). Therefore, G[F ′] is an induced forest in G, showing
a(G) ≥ |F ′|+ 4 ≥ �(4n+ 3)/7�, a contradiction.

Case 2. |N(y1) ∩N(y2)| > 2.
There exist a1 ∈ N(y1) ∩ N(y2) and a separation (G1, G2) such that

V (G1∩G2) = {y1, y2, a1}, and {x, y, z, w, v} ⊆ V (G1), N(y1)∩N(y2)−{y} ⊆
V (G2). Define A1 = A2 = {a1} and A2 = A1 = ∅. For i = 1, 2, let F

(i)
1 =

A((G1−{x, y, z, z1, y1, y2, v})∗R−Ai+wz2), and F
(i)
2 = A(G2−{y1, y2}−Ai).

Then |F (i)
1 | ≥ �(4(|G1|− 8−|Ai|)+3)/7�, and |F (i)

2 | ≥ �(4(|G2|− 2−|Ai|)+
3)/7�. Now G[(F

(i)
1 ∪F

(i)
2 +{x, y, z}) ·R−({a1}∩(F

(i)
1 	F

(i)
2 ))] is an induced

forest in G, showing a(G) ≥ |F (i)
1 |+ |F (i)

2 |+4− (1−|Ai|). By Lemma 2.2(2),
(4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (4, 0), (0, 4) mod 7.

Subcase 2.1. (4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (4, 0) mod 7.

Let F
(5)
1 = A(((G1 − {x, y, z, z1, v}) ∗ R)/y1y2 + wz2) with y′ as the

identification of {y1, y2}, and F
(5)
2 = A(G2). Then |F (5)

1 | ≥ �(4(|G1| − 7) +

3)/7�, and |F (i)
2 | ≥ �(4|G2| + 3)/7�. Now G[(F

(5)
1 ∪ F

(5)
2 + {x, y, z}) · R −

({y1, y2, a1} ∩ (F
(5)
1 	F

(5)
2 ))] (if y′ �∈ F

(5)
1 ) or G[(F

(5)
1 ∪F

(5)
2 + {x, y1, y2, z}−

{y′}) · R − ({a1} ∩ (F
(5)
1 	F

(5)
2 )) − ({y1, y2} − F

(5)
2 )] (if y′ ∈ F

(5)
1 ) is an
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induced forest in G, showing a(G) ≥ |F (5)
1 |+ |F (5)

2 |+ 4− 3 ≥ �(4n+ 3)/7�,
a contradiction.

Subcase 2.2. (4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (0, 4) mod 7.

If wy1 �∈ E(G) and |N(v) ∩ N(z2)| ≤ 2, then let F
(6)
1 = A(G1 −

{x, y, z, z1, y2})/vz2+wy1) with z′ as the identification of {v, z2}, and F
(6)
2 =

A(G2−y2). Then |F (6)
1 | ≥ �(4(|G1|−6)+3)/7�, and |F (6)

2 | ≥ �(4(|G2|−1)+

3)/7�. Let F = F
(6)
1 ∪ F

(6)
2 + {x, y, z} − ({y1, a1} ∩ (F

(6)
1 	F

(6)
2 )). Now G[F ]

(if z′ �∈ F
(6)
1 ) or G[F − {z, z′}+ {v, z2}] (if z′ ∈ F

(6)
1 ) is an induced forest in

G, showing a(G) ≥ |F (6)
1 | + |F (6)

2 | + 3 − 2 ≥ �(4n + 3)/7�, a contradiction.

So we have wy1 ∈ E(G) or |N(v) ∩N(z2)| ≥ 3.

If wy1 ∈ E(G), then there exists a separation (G′
1, G

′
2) such that V (G′

1∩
G′

2) = {y1, y2, w}, {x, y, z, v} ⊆ V (G′
1), and N(y1) ∩N(y2)− {y} ⊆ V (G′

2).

Let F
(7)
1 = A((G1−{w, x, y, z, y1, y2, z1, v})∗R) and F

(7)
2 = A(G2−{y1, w}).

Then |F (7)
1 | ≥ �(4(|G′

1| − 9) + 3)/7� and |F (7)
2 | ≥ �(4(|G′

2| − 2) + 3)/7�. Now

G[(F
(7)
1 ∪ F

(7)
2 + {x, y, z}) · R] is an induced forest in G, showing a(G) ≥

|F (7)
1 |+ |F (7)

2 |+ 4. Let F
(8)
1 = A((G1 − {w, x, y, z, y1, y2, z1, z2, v}) ∗R), and

F
(8)
2 = A(G2−{y1, w, y2}). Then |F (8)

1 | ≥ �(4(|G′
1|−10)+3)/7�, and |F (8)

2 | ≥
�(4(|G′

2| − 3) + 3)/7�. Now F (8) := G[(F
(8)
1 ∪ F

(8)
2 + {x, y, z, w}) · R] is an

induced forest in G, showing a(G) ≥ |F (8)
1 | + |F (8)

2 | + 5. By Lemma 2.2(1)

(with k = 1, a = |G′
1| − 9, a1 = |G′

2| − 2, L = ∅, c = 4), a(G) ≥ �(4n+ 3)/7�,
a contradiction.

If |N(v)∩N(z2)| > 2, then there exist c1 ∈ N(v)∩N(z2) and subgraphs

G′′
1, G

′′
2, G

′′
3 of G such that G′′

2 = G2, G′′
3 is the maximal subgraph of G

contained in the closed region of the plane bounded by the cycle zvc1z2 and

containing N(v) ∩ N(z2) − {z}, and G′′
1 is obtained from G by removing

G′′
2 −{y1, y2, a1} and G′′

3 −{v, z2, c1}. By symmetry, assume R ⊆ G′′
1. Define

C8 = C9 = {c1} and C9 = C8 = ∅. For i = 8, 9, let F
(i)
1 = A((G′′

1 −
{x, y, z, y2, z1, z2, v}−Ci)∗R+wy1), F

(i)
2 = A(G′′

2 −y2), and F
(i)
3 = A(G′′

3 −
{c, z2} − Ci). Then |F (i)

1 | ≥ �(4(|G′′
1| − 8− |Ci|) + 3)/7�, |F (i)

2 | ≥ �(4(|G′′
2| −

1) + 3)/7�, and |F (i)
3 | ≥ �(4(|G′′

3| − 2 − |Ci|) + 3)/7�. Now G[(F
(i)
1 ∪ F

(i)
2 ∪

F
(i)
3 + {x, y, z}) · R − ({y1, a1} ∩ (F

(i)
1 	F

(i)
2 )) − ({c1} ∩ (F

(i)
1 	F

(i)
3 ))] is an

induced forest in G, showing a(G) ≥ |F (i)
1 | + |F (i)

2 | + |F (i)
3 | + 4 − 2 − |C1|.

By Lemma 2.2(1) (with k = 1, a = |G′′
1| − 8, a1 = |G′′

3| − 2, L = {1}, b1 =

|G′′
2| − 1, c = 2), a(G) ≥ �(4n+ 3)/7�, a contradiction.

Case 3. |N(z1) ∩N(z2)| > 2.
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There exist b1 ∈ N(z1) ∩ N(z2) and a separation (G1, G2) such that
V (G1∩G2) = {z1, z2, b1}, {x, y, z, w, v} ⊆ V (G1), and N(z1)∩N(z2)−{z} ⊆
V (G2). Let B1 = {b1} and B2 = ∅. For i = 1, 2, let F

(i)
1 = A(((G1 −

{x, y, z, z1, z2, v}−Bi)∗R)/y1y2) with y′ as the identification of {y1, y2}, and
F

(i)
2 = A(G2−{z1, z2}−Bi). Then |F (i)

1 | ≥ �(4(|G1| − 8− |Bi|)+ 3)/7�, and
|F (i)

2 | ≥ �(4(|G2|−2−|Bi|)+3)/7�. Let F = (F
(i)
1 ∪F (i)

2 +{x, y, z})·R−({b1}∩
(F

(i)
1 	F

(i)
2 )). Now G[F ] (if y′ �∈ F

(i)
1 ) or G[F−{y, y′}+{y1, y2}] (if y′ ∈ F

(i)
1 )

is an induced forest in G, showing a(G) ≥ |F (i)
1 |+ |F (i)

2 |+4− (1− |Bi|). By
Lemma 2.2(2), (4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (0, 4), (4, 0) mod 7.

Subcase 3.1. (4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (0, 4) mod 7.

Let F
(3)
1 = A(((G1 − {x, y, z, v, z1}) ∗ R)/y1y2 + wz2) with y′ as the

identification of {y1, y2}, and F
(3)
2 = A(G2−z1). Then |F (3)

1 | ≥ �(4(|G1|−7)+

3)/7�, and |F (3)
2 | ≥ �(4(|G2|−1)+3)/7�. Let F = (F

(3)
1 ∪F (3)

2 +{x, y, z})·R−
({z2, b1}∩(F (3)

1 	F
(3)
2 )). NowG[F ] (if y′ �∈ F

(3)
1 ) or G[F−{y, y′}+{y1, y2}] (if

y′ ∈ F
(3)
1 ) is an induced forest in G, showing a(G) ≥ |F (3)

1 |+ |F (3)
2 |+4−2 ≥

�(4n+ 3)/7�, a contradiction.

Subcase 3.2. (4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (4, 0) mod 7.

Let F
(4)
1 = A(((G1 − {x, y, z, v}) ∗ R)/{y1y2, z1z2} + wz′) with y′ (re-

spectively, z′) as the identification of {y1, y2} (respectively, {z1, z2}), and
F

(9)
2 = A(G2). Then |F (4)

1 | ≥ �(4(|G1| − 7) + 3)/7�, and |F (4)
2 | ≥ �(4|G2| +

3)/7�. Now F (4) := (F1
(4) ∪ F

(4)
2 ) · R − ({z1, z2, b1} ∩ (F1

(4)	F
(4)
2 )) where

F1
(4)

= F1
(4) + {x, y, z} if y′, z′ �∈ F

(4)
1 ; or obtained from F1

(4) + {x, y, z} by
deleting {z, z′} ({y, y′} respectively) and adding {z1, z2} ({y1, y2} respec-
tively) when z′ ∈ F1

(4) (y′ ∈ F1
(4) respectively). Therefore, G[F (4)] is an

induced forest of size |F (4)
1 |+ |F (4)

2 |+ 4− 3 ≥ �(4n+ 3)/7�, a contradiction.

We now prove v �∈ V≤4. By Lemma 3.1, v � V2. For otherwise, v ∈ V4.
The case v ∈ V3 is identical by replacing identification of neighbors of v
with deletion of a neighbor of v. Let N(y) = {x, y1, y2, z1} and N(z) =
{x, v, z1, z2} and y2w ∈ E(G). Let N(v) = {z, w, v1, v2} and v1vzz2v1 be a
facial cycle.

Claim 1. wz1 �∈ E(G).
For, suppose wz1 ∈ E(G). There exists a separation (G1, G2) such that

V (G1 ∩G2) = {w, x, z1}, {y, y1, y2} ⊆ V (G1), and {z, v} ⊆ V (G2). For i =

1, 2, let F
(1)
i = A(Gi − {z1, w, x}). Then |F (1)

i | ≥ �(4(|Gi| − 3) + 3)/7�. Now

G[F
(1)
1 ∪F (1)

2 +x] is an induced forest in G, showing a(G) ≥ |F (1)
1 |+|F (1)

2 |+1.



Induced forests in bipartite planar graphs 113

By Lemma 2.2(7) (with k = 1, ai = |Gi| − 3 for i = 1, 2), (4(|G1| − 3) +

3, 4(|G2| − 3) + 3) ≡ (0, 0), (0, 6), (6, 0) mod 7.

If wz2 �∈ E(G) and wy1 �∈ E(G), let F
(2)
1 = A(G1 − {z1, x, y, y2}+wy1),

and F
(2)
2 = A(G2 − {z1, z, x, v}+ wz2). For i = 1, 2 |F (2)

i | ≥ �(4(|Gi| − 4) +

3)/7�. NowG[F
(2)
1 ∪F (2)

2 +{x, y, z}−({w}∩(F (2)
1 	F

(2)
2 ))] is an induced forest

in G, showing a(G) ≥ |F (2)
1 |+ |F (2)

2 |+3− 1 ≥ �(4n+3)/7�, a contradiction.

If wz2 ∈ E(G), let F
(3)
1 = A(G1 − {z1, w, x, y, y2}), and F

(3)
2 = A(G2 −

{z1, w, x, z, v, z2}). Then |F (3)
1 | ≥ �(4(|G1|−5)+3)/7�, and |F (3)

2 | ≥ �(4(|G2|−
6)+3)/7�. Now G[F

(3)
1 ∪F (3)

2 +{x, y, z, w}] is an induced forest in G, showing

a(G) ≥ |F (3)
1 |+ |F (3)

2 |+ 4 ≥ �(4n+ 3)/7�, a contradiction.

So wy1 ∈ E(G). Let F
(4)
1 = A(G1 − {z1, w, x, y, y2, y1}), and F

(4)
2 =

A(G2 − {z1, w, x, z, v}). Then |F (4)
1 | ≥ �(4(|G1| − 6) + 3)/7�, and |F (4)

2 | ≥
�(4(|G2| − 5) + 3)/7�. Now G[F

(4)
1 ∪ F

(4)
2 + {x, y, z, w}] is an induced forest

in G, showing a(G) ≥ |F (4)
1 |+ |F (4)

2 |+ 4 ≥ �(4n+ 3)/7�, a contradiction.

Claim 2. wz2 �∈ E(G). (By symmetry, wy1 �∈ E(G).)

For, suppose wz2 ∈ E(G). There exists a separation (G1, G2) such

that V (G1 ∩ G2) = {w, z, z2}, {x, y, y1, y2} ⊆ V (G1), and v ∈ V (G2).

Let F
(1)
1 = A(G1 − {w, z, z2, x, z1}), and F

(1)
2 = A(G2 − {w, z, z2}). Then

|F (1)
1 | ≥ �(4(|G1| − 5) + 3)/7�, and |F (1)

2 | ≥ �(4(|G2| − 3) + 3)/7�. Now

G[F
(1)
1 ∪ F

(1)
2 + {x, z}] is an induced forest in G, showing a(G) ≥ |F (1)

1 | +
|F (1)

2 | + 2. By Lemma 2.2(8) (with a = |G1| − 5, a1 = |G2| − 3), (4(|G1| −
5) + 3, 4(|G2| − 3) + 3) ≡ (0, 0), (0, 6), (0, 5), (5, 0), (6, 6), (6, 0) mod 7.

If wy1 �∈ E(G), let w′ ∈ N(w)− {y2, v, z2, x, y1}. Let e = w′y if w′ ∈ G1

and otherwise e = ∅. Let F (2)
1 = A(G1 −{w, z, z2, x, y2, z1}+ e), and F

(2)
2 =

A(G2 − {w, z, z2, v}). Then |F (2)
1 | ≥ �(4(|G1| − 6) + 3)/7�, and |F (2)

2 | ≥
�(4(|G2| − 4) + 3)/7�. Now G[F

(2)
1 ∪ F

(2)
2 + {w, x, z}] is an induced forest of

size |F (2)
1 |+ |F (2)

2 |+ 3 ≥ �(4n+ 3)/7�, a contradiction.

So wy1 ∈ E(G). By Lemma 3.1, |N(y2)| > 2. There exist subgraphs

G′
1, G

′
2, G

′
3 of G such that G′

2 = G2, G′
3 is the maximal subgraph of G

contained in the closed region of the plane bounded by the cycle wy2yy1w

and containingN(y2), and G′
1 is obtained from G by removing G′

2−{w, z, z2}
and G′

3 − {w, y2, y, y1}. Note G′
3 − {y, y1, y2, w} �= ∅ since |N(y2)| > 2.

Let F
(4)
1 = A(G′

1 − {z1, w, x, y, z, y1, y2, z2}), F (4)
2 = A(G′

2 − {z2, w, z, v}),
and F

(3)
3 = A(G′

3 − {y1, y2, w, y}). Then |F (4)
1 | ≥ �(4(|G′

1| − 8) + 3)/7�,
|F (4)

i | ≥ �(4(|G′
i|−4)+3)/7� for i = 2, 3. Note |F (4)

2 | ≥ �(4(|G2|−4)+3)/7� ≥
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(4(|G2|−4)+3)/7+4/7. Now G[F
(4)
1 ∪F (4)

2 ∪F (4)
3 +{x, y, z, w}] is an induced

forest in G, showing a(G) ≥ |F (4)
1 | + |F (4)

2 | + |F (4)
3 | + 4 ≥ �(4n + 3)/7�, a

contradiction.

Note that we did not use the information on v in the above proof. So by

symmetry, wy1 �∈ E(G).

Claim 3. v2z2 �∈ E(G).

For, suppose v2z2 ∈ E(G). There exists a separation (G1, G2) of G such

that V (G1 ∩ G2) = {v, v2, z2}, {x, y, y1, y2} ⊆ V (G1), and v1 ∈ V (G2). Let

F
(1)
1 = A(G1 − {v, v2, z2, z, x}+wz1), and F

(1)
2 = A(G2 − {z2, v, v2}). Then

|F (1)
1 | ≥ �(4(|G1| − 5) + 3)/7�, and |F (1)

2 | ≥ �(4(|G2| − 3) + 3)/7�. Now

G[F
(1)
1 ∪ F

(1)
2 + {v, z}] is an induced forest in G, showing a(G) ≥ |F (1)

1 | +
|F (1)

2 | + 2. By Lemma 2.2(8) (with a = |G1| − 5, a1 = |G2| − 3), (4(|G1| −
5) + 3, 4(|G2| − 3) + 3) ≡ (0, 0), (0, 6), (0, 5), (5, 0), (6, 6), (6, 0) mod 7.

If |N(z1) ∩ N(z2)| ≤ 2, then let F
(2)
1 = A((G1 − {x, z, v, w, v2})/z1z2)

with z′ as the identification of {z1, z2}, and F
(2)
2 = A(G2 − {v, v2}). Then

|F (2)
1 | ≥ �(4(|G1|−6)+3)/7�, and |F (2)

2 | ≥ �(4(|G2|−2)+3)/7�. Now G[F
(2)
1 ∪

F
(2)
2 + {x, v, z}− {z2}] (if z′ �∈ F

(2)
1 ) or G[(F

(2)
1 − z′)∪F

(2)
2 + {x, v, z2, z1}−

({z2}−F
(2)
2 )] (if z′ ∈ F

(2)
1 ) is an induced forest of size |F (2)

1 |+ |F (2)
2 |+3− 1,

which implies a(G) ≥ �(4n+ 3)/7�, a contradiction.

So |N(z1) ∩N(z2)| > 2. Then there exist a1 ∈ N(z1) ∩N(z2) and sub-

graphs G′
1, G

′
2, G

′
3 such that G′

2 = G2, G
′
3 is the maximal subgraph of G

contained in the closed region of the plane bounded by the cycle zz1a1z2z

and containing N(z1)∩N(z2)−{z}, and G′
1 is obtained from G by removing

G′
2−{v2, v, z2} and G′

3−{z2, a1, z1}. Let A3 = {a1} and A4 = ∅. For i = 3, 4,

let F
(i)
1 = A(G′

1−{x,w, z, v, z1, z2, v2}−Ai), F
(i)
2 = A(G′

2−{z2, v2, v}), and
F

(i)
3 = A(G′

3 − {z1, z2} − Ai). Then |F (i)
1 | ≥ �(4(|G′

1| − 7 − |Ai|) + 3)/7�,
|F (i)

2 | ≥ �(4(|G′
2| − 3) + 3)/7�, and |F (i)

3 | ≥ �(4(|G′
3| − 2 − |Ai|) + 3)/7�.

Now F (i) := G[F
(i)
1 ∪ F

(i)
2 ∪ F

(i)
3 + {x, v, z} − ({a1} ∩ (F

(i)
1 	F

(i)
2 ))] is an

induced forest in G showing a(G) ≥ |F (3)
1 |+ |F (3)

2 |+ |F (3)
3 |+ 3− (1− |Ai|).

Let (n1, n2, n3) := (4(|G′
1| − 7) + 3, 4(|G′

2| − 3) + 3, 4(|G′
3| − 2) + 3). By

Lemma 2.2(2), (n1, n2, n3) ≡ (0, 0, 4), (4, 0, 0) mod 7.

If (n1, n2, n3) ≡ (0, 0, 4) mod 7, let F
(4)
1 = A(G′

1−{x, y, z, v, z1}+wz2),

F
(4)
2 = A(G′

2−v), and F
(4)
3 = A(G′

3−z1). Then |F (4)
1 | ≥ �(4(|G′

1|−5)+3)/7�,
|F (4)

2 | ≥ �(4(|G′
2|−1)+3)/7�, and |F (4)

3 | ≥ �(4(|G′
3|−1)+3)/7�. Now G[F

(4)
1 ∪

F
(4)
2 ∪ F

(4)
3 + {x, z} − ({a1, z2} ∩ (F

(4)
1 	F

(4)
3 ))− ({v2, z2} ∩ (F

(4)
1 	F

(4)
2 ))] is
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an induced forest in G, showing a(G) ≥ |F (4)
1 | + |F (4)

2 | + |F (4)
3 | + 2 − 4 ≥

�(4n+ 3)/7�, a contradiction.

If (n1, n2, n3) ≡ (4, 0, 0) mod 7, then by Lemma 4.1, yv �∈ E(G). Let

F
(5)
1 = A(G′

1 − {w, x, z, z1, z2, a1} + yv), F
(5)
2 = A(G′

2 − z2), and F
(5)
3 =

A(G′
3−{z1, z2, a1}). Then |F (5)

1 | ≥ �(4(|G′
1|−6)+3)/7�, |F (5)

2 | ≥ �(4(|G′
2|−

1) + 3)/7�, and |F (5)
3 | ≥ �(4(|G′

3| − 3) + 3)/7�. Now G[F
(5)
1 ∪ F

(5)
2 ∪ F

(5)
3 +

{x, z} − ({v, v2} ∩ (F
(5)
1 	F

(5)
2 ))] is an induced forest in G, showing a(G) ≥

|F (5)
1 |+ |F (5)

2 |+ |F (5)
3 |+ 2− 2 ≥ �(4n+ 3)/7�, a contradiction.

Claim 4. v2z1 �∈ E(G).

For, suppose v2z1 ∈ E(G). By Lemma 4.1, y �∈ {v1, v2}. There exists a
separation (G1, G2) such that V (G1 ∩ G2) = {v, v2, z, z1}, {x, y, y1, y2} ⊆
V (G1), and {z2, v1} ⊆ V (G2). Let F

(1)
1 = A(G1 − {v, v2, z, z1, w, x}) and

F
(1)
2 = A(G2 − {v, v2, z, z1, v1}). Then |F (1)

1 | ≥ �(4(|G1| − 6) + 3)/7�, and
|F (1)

2 | ≥ �(4(|G2|−5)+3)/7�. Now G[F
(1)
1 ∪F (1)

2 +{v, z, x}] is an induced for-

est of size |F (1)
1 |+|F (1)

2 |+3. Let (n1, n2) := (4(|G1|−6)+3, 4(|G2|−5)+3). By
Lemma 2.2(3), (n1, n2) ≡ (0, 0), (0, 6), (0, 5), (0, 4), (4, 0), (6, 5), (5, 6), (5, 0),
(6, 6), (6, 0) mod 7.

If (n1, n2) ≡ (0, 0), (0, 6), (0, 5), (0, 4) mod 7, then for i = 1, 2, let F
(2)
i =

A(Gi − {v, v2, z, z1}). Then |F (2)
i | ≥ �(4(|Gi| − 4) + 3)/7�. Now G[F

(2)
1 ∪

F
(2)
2 + {v}] is an induced forest of size |F (2)

1 |+ |F (2)
2 |+ 1 ≥ �(4n+ 3)/7�, a

contradiction.

If (n1, n2) ≡ (5, 0), (6, 0), (6, 5), (5, 6), (6, 6) mod 7, then let F
(3)
1 =

A(G1 −{x, y, z, v, z1, v2, y2} + wy1) and F
(3)
2 = A(G2 − {v, v2, z, z1}) Then

|F (3)
1 | ≥ �(4(|G1| − 7) + 3)/7� and |F (3)

2 | ≥ �(4(|G2| − 4) + 3)/7�. Now

G[F
(3)
1 ∪ F

(3)
2 + {x, y, z}] is an induced forest of size |F (3)

1 | + |F (3)
2 | + 3 ≥

�(4n+ 3)/7�, a contradiction.

So (n1, n2) ≡ (4, 0) mod 7, then let F
(4)
1 = A(G1 − {z, z1, v} + xv2)

and F
(4)
2 = A(G2 − {z, z1, v}) Then |F (4)

1 | ≥ �(4(|G1| − 3) + 3)/7� and

|F (4)
2 | ≥ �(4(|G2|−3)+3)/7�. Now G[F

(4)
1 ∪F (4)

2 +{z}−{v2}∩(F (4)
1 	F

(4)
2 )] is

an induced forest of size |F (4)
1 |+|F (4)

2 |+1−1 ≥ �(4n+3)/7�, a contradiction.

Claim 5. yz2 �∈ E(G), y1z �∈ E(G).

By symmetry, suppose that y1 = z2. By Lemma 3.1, |N(z1)| ≥ 3.
Then there exists a separation (G1, G2) such that V (G1 ∩ G2) = {z1, y1},
{x, y, z} ⊆ V (G1), and N(z1) − {y, z} ⊆ V (G2). Let F

(1)
1 = A(G1 −

{x, y, z, y1, z1}), and F
(1)
2 = A(G2 − {y1, z1}). Then |F (1)

1 | ≥ �(4(|G1| −
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5)+ 3)/7�, and |F (1)
2 | ≥ �(4(|G2| − 2)+ 3)/7�. Now G[F

(1)
1 ∪F

(1)
2 + {y, z}] is

an induced forest in G, showing a(G) ≥ |F (1)
1 |+ |F (1)

2 |+2. By Lemma 2.2(8)
(with a = |G1| − 5, a1 = |G2| − 2, c = 2), (4(|G1| − 5) + 3, 4(|G2| − 2) + 3) ≡
(0, 0), (0, 6), (0, 5), (5, 0), (6, 6), (6, 0) mod 7. Let F

(2)
1 = A(G1 − {x, y, z, y1,

z1, v}) and F
(2)
2 = A(G2 − y1). Then |F (2)

1 | ≥ �(4(|G1| − 6) + 3)/7� and

|F (2)
2 | ≥ �(4(|G2| − 1)+3)/7�. Now G[F

(2)
1 ∪F

(2)
2 + {y, z}] is an induced for-

est in G, showing a(G) ≥ |F (2)
1 |+ |F (2)

2 |+2 ≥ �(4n+3)/7�, a contradiction.

Next, we distinguish several cases.

Case 1. |N(z1)∩N(z2)| ≤ 2, |N(y1)∩N(y2)| ≤ 2 and |N(w)∩N(v2)| ≤ 2.
Let F ′ = A((G − {x, y, z, v})/{z1z2, y1y2, wv2} + v′z′) with z′ (respec-

tively, y′, v′) as the identification of {z1, z2} (respectively, {y1, y2}, {w, v2}).
Then |F ′| ≥ �(4(n − 7) + 3)/7�. Let F := F ′ + {x, y, v, z} if z′, y′, v′ �∈ F ′

and otherwise, let F be obtained by F ′ + {x, y, v, z} by deleting {z, z′} (re-
spectively, {y, y′}, {v, v′}) and adding {z1, z2} (respectively, {y1, y2}, {v2, w})
when z′ ∈ F ′ (respectively, when y′ ∈ F ′, v′ ∈ F ′). Therefore, G[F ] is an
induced forest in G, showing |F ′|+ 4 ≥ �(4n+ 3)/7�, a contradiction.

Case 2. |N(z1)∩N(z2)| > 2, |N(y1)∩N(y2)| ≤ 2 and |N(w)∩N(v2)| ≤ 2.
There exist a1 ∈ N(z1) ∩ N(z2) and a separation (G1, G2) of G such

that V (G1 ∩G2) = {z1, z2, a1}, {x, y, y1, y2} ⊆ V (G1), and N(z1)∩N(z2)−
{z} ⊆ V (G2). Let A1 = A2 = {a1} and A2 = A1 = ∅. For i = 1, 2, let

F
(i)
1 = A((G1−{x, y, z, v, z1, z2}−Ai)/{y1y2, wv2}) with y′ (respectively, v′)

as the identification of {y1, y2} (respectively, {w, v2}), and F
(i)
2 = A(G2 −

{z1, z2} − Ai). Then |F (i)
1 | ≥ �(4(|G1| − 8 − |Ai|) + 3)/7�, and |F (i)

2 | ≥
�(4(|G2| − 2 − |Ai|) + 3)/7�. Let F (i) = F

(i)
1 ∪ F

(i)
2 + {x, y, v, z} − ({a1} ∩

(F
(i)
1 	F

(i)
2 )) if y′, v′ �∈ F ′ and otherwise, let F (i) be obtained by F

(i)
1 ∪F

(i)
2 +

{x, y, v, z} − ({a1} ∩ (F
(i)
1 	F

(i)
2 )) by deleting {y, y′} (respectively, {v, v′})

and adding {y1, y2} (respectively, {v2, w}) when y′ ∈ F ′ (respectively, v′ ∈
F ′). Therefore, G[F (i)] is an induced forest in G, showing a(G) ≥ |F (i)

1 | +
|F (i)

2 | + 4 − |Ai|. By Lemma 2.2(2) (with a = |G1| − 8, a1 = |G2| − 2),
(4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (0, 4), (4, 0) mod 7.

Subcase 2.1. (4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (4, 0) mod 7.

Let F
(1)
1 = A((G1−{x, y, z, v})/{z1z2, y1y2, wv2}+v′z′) with z′ (respec-

tively, y′, v′) as the identification of {z1, z2} (respectively, {y1, y2}, {w, v2}),
and F

(1)
2 = A(G2). Then |F (1)

1 | ≥ �(4(|G1| − 7) + 3)/7�, and |F (1)
2 | ≥

�(4|G2|+3)/7�. Let F (1) = F1
(1)∪F

(1)
2 − ({z1, z2, a1}∩ (F1

(1)	F
(1)
2 )), where



Induced forests in bipartite planar graphs 117

F1
(1)

= F1
(1) + {x, y, v, z} if z′, y′, v′ �∈ F ′ and otherwise, let F1

(1)
be ob-

tained by F1
(1) + {x, y, v, z} by deleting {z, z′} (respectively, {y, y′}, {v, v′})

and adding {z1, z2} (respectively, {y1, y2}, {v2, w}) when z′ ∈ F ′ (respec-
tively, when y′ ∈ F ′, v′ ∈ F ′). Therefore, G[F (1)] is an induced forest in G,

showing a(G) ≥ |F (1)
1 |+ |F (1)

2 |+ 4− 3 ≥ �(4n+ 3)/7�, a contradiction.

Subcase 2.2. (4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (0, 4) mod 7.

Let F
(2)
1 = A((G1−{x, y, z, v, z1})/y1y2+wz2) with y′ as the identifica-

tion of {y1, y2}, and F
(2)
2 = F (G2− z1). Then |F (2)

1 | ≥ �(4(|G1|− 6)+3)/7�,
and |F (2)

2 | ≥ �(4(|G2|−1)+3)/7�. Let F = F
(2)
1 ∪F

(2)
2 +{x, y, z}−({z2, a1}∩

(F
(2)
1 	F

(2)
2 )). NowG[F ] (if y′ �∈ F

(2)
1 ) orG[F−{y, y′}+{y1, y2}] (if y′ ∈ F

(2)
1 )

is an induced forest inG, showing a(G) ≥ |F (2)
1 |+|F (2)

2 |+3−2 ≥ �(4n+3)/7�,
a contradiction.

Case 3. |N(z1)∩N(z2)| ≤ 2, |N(y1)∩N(y2)| ≤ 2 and |N(w)∩N(v2)| > 2.
There exist c1 ∈ N(z1) ∩ N(z2) and a separation (G1, G2) of G such

that V (G1 ∩G2) = {w, v2, c1}, {x, y, y1, y2} ⊆ V (G1), and N(w) ∩N(v2)−
{v} ⊆ V (G2). Let C1 = C2 = {c1} and C1 = C2 = ∅. For i = 1, 2,

let F
(i)
1 = A((G1 − {x, y, z, v, w, v2} − Ci)/{y1y2, z1z2}) with y′ (respec-

tively, z′) as the identification of {y1, y2} (respectively, {z1, z2}) and F
(i)
2 =

A(G2−{w, v2}−Ci). Then |F (i)
1 | ≥ �(4(|G1|− 8−|Ci|)+3)/7� and |F (i)

2 | ≥
�(4(|G2| − 2 − |Ci|) + 3)/7�. Let F (i) = F

(i)
1 ∪ F

(i)
2 + {x, y, v, z} − ({c1} ∩

(F
(i)
1 	F

(i)
2 )) if y′, z′ �∈ F

(i)
1 and otherwise, let F (i) be obtained by F

(i)
1 ∪

F
(i)
2 + {x, y, v, z} − ({c1} ∩ (F

(i)
1 	F

(i)
2 )) by deleting {y, y′} (respectively,

{z, z′}) and adding {y1, y2} (respectively, {z1, z2}) when y′ ∈ F ′ (respec-
tively, z′ ∈ F ′). Therefore, G[F (i)] is an induced forest in G, showing a(G) ≥
|F (i)

1 |+ |F (i)
2 |+4−|Ci|. By Lemma 2.2(2) (with a = |G1|−8, a1 = |G2|−2),

(4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (0, 4), (4, 0) mod 7.

Subcase 3.1. (4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (4, 0) mod 7.

Let F
(1)
1 = A((G1−{x, y, z, v})/{z1z2, y1y2, wv2}+v′z′) with z′ (respec-

tively, y′, v′) as the identification of {z1, z2} (respectively, {y1, y2}, {w, v2}),
and F

(1)
2 = A(G2). Then |F (1)

1 | ≥ �(4(|G1| − 7) + 3)/7� and |F (1)
2 | ≥

�(4|G2|+3)/7�. Let F (1) = F1
(1)∪F

(1)
2 − ({w, v2, c1}∩ (F1

(1)	F
(1)
2 )), where

F1
(1)

= F1
(1) + {x, y, v, z} if z′, y′, v′ �∈ F ′ and otherwise, let F1

(1)
be ob-

tained by F1
(1) + {x, y, v, z} by deleting {z, z′} (respectively, {y, y′}, {v, v′})

and adding {z1, z2} (respectively, {y1, y2}, {v2, w}) when z′ ∈ F ′ (respec-
tively, y′ ∈ F ′, v′ ∈ F ′). Therefore, G[F (1)] is an induced forest in G, showing

a(G) ≥ |F (1)
1 |+ |F (1)

2 |+ 4− 3 ≥ �(4n+ 3)/7�, a contradiction.
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Subcase 3.2. (4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (0, 4) mod 7.

Let F
(2)
1 = A(G1 − {w, x, y, z}/{y1y2, z1z2}) with y′ (respectively, z′) as

the identification of {y1, y2} (respectively, {z1, z2}), and F
(2)
2 = A(G2 − w).

Then |F (2)
1 | ≥ �(4(|G1| − 6) + 3)/7�, and |F (2)

2 | ≥ �(4(|G2| − 1) + 3)/7�. Let
F (2) := F1

(2)∪F (2)
2 −({v2, c1}∩(F1

(2)	F
(2)
2 )), where F1

(2)
= F1

(2)+{x, y, z}
if y′, z′ �∈ F

(2)
1 , and otherwise, F1

(2)
obtained from F1

(2)
= F1

(2)+{x, y, z} by
deleting y, y′ (respectively, z, z′) and adding {y1, y2} (respectively, {z1, z2})
when y′ ∈ F

(2)
1 (respectively, z′ ∈ F

(2)
1 ). Therefore, G[F (2)] is an induced

forest in G, showing a(G) ≥ |F (2)
1 |+ |F (2)

2 |+3− 2 ≥ �(4n+3)/7�, a contra-
diction.

Case 4. |N(z1)∩N(z2)| ≤ 2, |N(y1)∩N(y2)| > 2 and |N(w)∩N(v2)| ≤ 2.
There exist b1 ∈ N(y1)∩N(y2) and a separation (G1, G2) of G such that

V (G1∩G2) = {y1, y2, b1}, {x, z, y1, y2} ⊆ V (G1), and N(y1)∩N(y2)−{y} ⊆
V (G2). Let B1 = B2 = {b1}, and let B2 = B1 = ∅. For i = 1, 2, let F

(i)
1 =

A((G1−{x, y, z, v, y1, y2}−Bi)/{wv2, z1z2}+v′z′) with v′ (respectively, z′) as

the identification of {w, v2}, {z1, z2} and F
(i)
2 = A(G2−{y1, y2}−Bi). Then

|F (i)
1 | ≥ �(4(|G1|−8−|Bi|)+3)/7� and |F (i)

2 | ≥ �(4(|G2|−2−|Bi|)+3)/7�. Let
F (i) := G[F1

(i)∪F (i)
2 −({b1}∩(F1

(i)	F
(i)
2 ))], where F1

(i)
:= F1

(i)+{x, y, v, z}
if v′, z′ �∈ F

(i)
1 , and otherwise let F1

(i)
be obtained from F1

(i) + {x, y, v, z}
by deleting {z, z′} (respectively, {v, v′}) and adding {z1, z2} (respectively,
{v2, w}) when z′ ∈ F1

(i) (respectively, y′ ∈ F1
(i)). Therefore, F (i) is an

induced forest inG, showing a(G) ≥ |F (i)
1 |+|F (i)

2 |+4−|Bi|. By Lemma 2.2(2)
(with a = |G1|−8, a1 = |G2|−2), (4(|G1|−8)+3, 4(|G2|−2)+3) ≡ (4, 0), (0, 4)
mod 7.

Subcase 4.1. (4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (4, 0) mod 7.

Let F
(1)
1 = A((G1−{x, y, z, v})/{z1z2, y1y2, wv2}+v′z′) with z′ (respec-

tively, y′, v′) as the identification of {z1, z2} (respectively, {y1, y2}, {w, v2}),
and F

(1)
2 = A(G2). Then |F (1)

1 | ≥ �(4(|G1| − 7) + 3)/7�, and |F (1)
2 | ≥

�(4|G2|+3)/7�. Let F (1) = F1
(1)∪F

(1)
2 − ({y1, y2, b1}∩ (F1

(1)	F
(1)
2 )), where

F1
(1)

= F1
(1) + {x, y, v, z} if z′, y′, v′ �∈ F ′, and otherwise, F1

(1)
obtained

from F1
(1) + {x, y, v, z} by deleting {z, z′} (respectively, {y, y′}, {v, v′}) and

adding {z1, z2} (respectively, {y1, y2}, {v2, w}) when z′ ∈ F ′ (respectively,
y′ ∈ F ′, v′ ∈ F ′). Therefore, G[F (1)] is an induced forest in G, showing

a(G) ≥ |F (1)
1 |+ |F (1)

2 |+ 4− 3 ≥ �(4n+ 3)/7�, a contradiction.

Subcase 4.2. (4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (0, 4) mod 7.
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By Claim 3, v2z2 �∈ E(G); so |N(v) ∩ N(z2)| ≤ 2. Let F
(2)
1 = A((G1 −

{z1, x, y, z, y2})/vz2+wy1) with z′ as the identification of {v, z2}, and F
(2)
2 =

A(G2−y2). Then |F (2)
1 | ≥ �(4(|G1|−6)+3)/7�, and |F (2)

2 | ≥ �(4(|G2|−1)+

3)/7�. Let F = F
(2)
1 ∪ F

(2)
2 + {x, y, z} − ({y1, b1} ∩ (F

(2)
1 	F

(2)
2 )). Now G[F ]

(if z′ �∈ F
(2)
1 ) or G[F − {z, z′}+ {v, z2}] (if z′ ∈ F

(2)
1 ) is an induced forest of

size |F (2)
1 |+ |F (2)

2 |+ 3− 2 ≥ �(4n+ 3)/7�, a contradiction.

Case 5. |N(z1) ∩N(z2)| > 2, |N(y1) ∩N(y2)| > 2.

There exist a1 ∈ N(z1) ∩ N(z2), b1 ∈ N(y1) ∩ N(y2) and subgraphs

G1, G2, G3 of G such that G2 is the maximal subgraph of G contained in

the closed region of the plane bounded by the cycle zz1a1z2z and containing

N(z1) ∩ N(z2) − {z}, G3 is the maximal subgraph of G contained in the

closed region of the plane bounded by the cycle yy1b1y2y and containing

N(y1)∩N(y2)−{y}, and G1 is obtained from G by removing G2−{z1, z2, a1}
and G3 − {y1, b1, y2}. Let Ai = {a1} if i = 1, 2 and Ai = ∅ if i = 3, 4.

Let Bi = {b1} if i = 1, 3 and Bi = ∅ if i = 2, 4. For i ∈ [4], let F
(i)
1 =

A((G1−{x, y, z, v, y1, y2, z1, z2}−Ai−Bi)/wv2) with v′ as the identification

of {w, v2}, F (i)
2 = A(G2 − {z1, z2} − Ai), and F

(i)
3 = A(G3 − {y1, y2} − Bi).

Then |F (i)
1 | ≥ �(4(|G1| − 9 − |Ai| − |Bi|) + 3)/7�, |F (i)

2 | ≥ �(4(|G2| − 2 −
|Ai|)+ 3)/7�, and |F (i)

3 | ≥ �(4(|G3| − 2− |Bi|)+ 3)/7�. Let F = F
(i)
1 ∪F

(i)
2 ∪

F
(i)
3 + {x, y, v, z} − ({a1} ∩ (F

(i)
1 	F

(i)
2 )) − ({b1} ∩ (F

(i)
1 	F

(i)
3 )). Now G[F ]

(if v′ �∈ F
(i)
1 ) or G[F − {v′, v} + {w, v2}] (if v′ ∈ F

(i)
1 ) is an induced forest

of size |F (i)
1 |+ |F (i)

2 |+ |F (i)
3 |+ 4− (1− |Ai|)− (1− |Bi|). Let (n1, n2, n3) :=

(4(|G1| − 9) + 3, 4(|G2| − 2) + 3, 4(|G3| − 2) + 3). By Lemma 2.2(5) (with

a = |G1| − 9, a1 = |G2| − 2, a2 = |G3| − 2), (n1, n2, n3) ≡ (0, 0, 0), (1, 0, 0),

(4, 0, 3), (4, 3, 0), (3, 0, 4), (4, 0, 4), (3, 4, 0), (4, 4, 0), (1, 6, 0), (1, 0, 6), (0, 3, 4),

(0, 4, 3), (0, 4, 4), (6, 4, 4), (4, 4, 6), (4, 6, 4) mod 7.

Subcase 5.1. (n1, n2, n3) ≡ (0, 0, 0), (1, 0, 0) mod 7.

If |N(w)∩N(v2)| ≤ 2, let F
(1)
1 = A((G1−{x, y, z, v})/{z1z2, y1y2, wv2}+

v′z′) with z′ (respectively, y′, v′) as the identification of {z1, z2} (respectively,
{y1, y2}, {w, v2}) and F

(1)
2 = A(G2), and F

(1)
3 = A(G3). Then |F (1)

1 | ≥
�(4(|G1| − 7)+ 3)/7�, |F (1)

2 | ≥ �(4|G2|+3)/7�, and |F (1)
3 | ≥ �(4|G3|+3)/7�.

Let F (1) := G[F1
(1)∪F (1)

2 ∪F (1)
3 −({z1, z2, a1}∩(F1

(1)	F
(1)
2 ))−({y1, y2, b1}∩

(F1
(1)	F

(1)
3 ))] where F1

(1)
:= F1

(1) + {x, y, v, z} if v′, y′, z′ �∈ F
(1)
1 and oth-

erwise F1
(1)

obtained from F1
(1) + {x, y, v, z} by deleting {z, z′} (respec-

tively, {v, v′}, {y, y′}) and adding {z1, z2} (respectively, {v2, w}, {y1, y2})



120 Yan Wang et al.

when z′ ∈ F1
(1) (respectively, v′ ∈ F1

(1), y′ ∈ F1
(1)). Therefore, F (1) is an in-

duced forest inG, showing a(G) ≥ |F (1)
1 |+|F (1)

2 |+|F (1)
3 |+4−6 ≥ �(4n+3)/7�,

a contradiction.

If |N(w) ∩ N(v2)| > 2, there exist c1 ∈ N(w) ∩ N(v2) and subgraphs

G′
1, G

′
2, G

′
3, G

′
4 of G such that G′

2 = G2, G
′
3 = G3, G

′
4 is the maximal sub-

graph of G contained in the closed region of the plane bounded by the cycle

vwc1v2v and containing N(w) ∩ N(v2) − {v}, and G′
1 is obtained from G

by removing G2 − {z1, z2, a1}, G′
3 − {y1, b1, y2} and G′

4 − {w, v2, v}. Let

C9 = ∅ and C10 = {c1}. For i = 9, 10, let F
(i)
1 = A((G′

1 −{x, y, w, z, v, v2}−
Ci)/{y1y2, z1z2}) with y′ (respectively, z′) as identification of {y1, y2} (re-

spectively, {z1, z2}), F
(i)
2 = A(G′

2), F
(i)
3 = A(G′

3), and F
(i)
4 = A(G4 −

{w, v2} − Ci). Then |F (i)
1 | ≥ �(4(|G′

1| − 8− |Ci|) + 3)/7�, |F (i)
2 | ≥ �(4|G′

2|+
3)/7�, |F (i)

3 | ≥ �(4|G′
3|+3)/7�, and |F (i)

4 | ≥ �(4(|G′
4| − 2− |Ci|)+ 3)/7�. Let

F (i) := G[F1
(i)∪F (i)

2 ∪F (i)
3 ∪F (i)

4 −({z1, z2, a1}∩(F1
(i)	F

(i)
2 ))−({y1, y2, b1}∩

(F1
(i)	F

(i)
2 )) − ({c1} ∩ (F1

(i)	F
(i)
4 ))] where F1

(i)
= F1

(i) + {x, y, z, v} if

y′, z′ �∈ F
(i)
1 and F1

(i)
obtained from F1

(i) + {x, y, z, v} by deleting y, y′ (re-
spectively, {z, z′}) and adding {y1, y2} (respectively, {z1, z2}) when y′ ∈ F1

(i)

(respectively, z′ ∈ F1
(i)). Therefore, F (i) is an induced forest in G, showing

a(G) ≥ |F (i)
1 |+ |F (i)

2 |+ |F (i)
3 |+ |F (i)

4 |+4−6−(1−|Ci|). Let (n′
1, n

′
2, n

′
3, n

′
4) :=

(4(|G′
1|−8)+3, 4(|G′

2|−2)+3, 4(|G′
3|−2)+3, 4(|G′

4|−2)+3). By Lemma 2.2(2),

(n′
1, n

′
2, n

′
3, n

′
4) ≡ (4, 0, 0, 0), (0, 0, 0, 4) mod 7.

If (n′
1, n

′
2, n

′
3, n

′
4) ≡ (0, 0, 0, 4) mod 7, let F

(11)
1 = A((G′

1 − {x, y, z,
w})/{z1z2, y1y2}) with z′ (respectively, y′) as the identification of {z1, z2}
(respectively, {y1, y2}), F (11)

2 = A(G′
2), F

(11)
3 = A(G′

3), and F
(11)
4 = A(G′

4 −
w). Then |F (11)

1 | ≥ �(4(|G′
1|− 6)+3)/7�, |F (11)

2 | ≥ �(4|G′
2|+3)/7�, |F (11)

3 | ≥
�(4|G′

3|+ 3)/7� and |F (11)
4 | ≥ �(4(|G′

4| − 1) + 3)/7�. Let F (11) := G[F1
(11) ∪

F
(11)
2 ∪F

(11)
3 ∪F

(11)
4 − ({z1, z2, a1}∩ (F1

(11)	F
(11)
2 ))− ({y1, y2, b1}∩ (F1

(11)	
F

(11)
3 ))− ({v2, c1} ∩ (F1

(11)	F
(11)
4 ))] where F1

(11)
= F1

(11) + {x, y, z} when

z′, y′ �∈ F
(11)
1 , and otherwise, let F1

(11)
be obtained from F1

(11) by deleting

{z, z′} (respectively, {y, y′}) and adding {z1, z2} (respectively, {y1, y2}) when
z′ ∈ F1

(11) (respectively, y′ ∈ F1
(11)). Therefore, F (11) is an induced forest in

G, showing a(G) ≥ |F (11)
1 |+ |F (11)

2 |+ |F (11)
3 |+ |F (11)

4 |+3−8 ≥ �(4n+3)/7�,
a contradiction.

If (n′
1, n

′
2, n

′
3, n

′
4) ≡ (4, 0, 0, 0) mod 7, let F

(12)
1 = A((G′

1 − {x, y, z, v})/
{z1z2, y1y2, wv2} + v′z′) with z′ (respectively, y′, v′) as the identification of

{z1, z2} (respectively, {y1, y2}, {w, v2}), F (12)
2 = A(G′

2), F
(12)
3 = A(G′

3), and
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F
(12)
4 = A(G′

4). Then |F (12)
1 | ≥ �(4(|G′

1|−7)+3)/7�, |F (12)
2 | ≥ �(4|G′

2|+3)/7�,
|F (12)

3 | ≥ �(4|G′
3| + 3)/7� and |F (12)

4 | ≥ �(4|G′
4| + 3)/7�. Let F (12) :=

G[F1
(12)∪F (12)

2 ∪F (12)
3 ∪F (12)

4 −({z1, z2, a1}∩(F1
(12)	F

(12)
2 ))−({y1, y2, b1}∩

(F1
(12)	F

(12)
3 )) − ({w, v2, c1} ∩ (F1

(12)	F
(12)
4 ))] where F1

(12)
= F1

(12) +

{x, y, z, v} when z′, y′, v′ �∈ F
(12)
1 , and otherwise, let F1

(12)
be obtained from

F1
(12) by deleting {z, z′} (respectively, {y, y′}, {v, v′}) and adding {z1, z2}

(respectively, {y1, y2}, {w, v2}) when z′ ∈ F1
(12) (respectively, y′, v′ ∈ F1

(12)).

Therefore, F (12) is an induced forest in G, showing a(G) ≥ |F (12)
1 |+ |F (12)

2 |+
|F (12)

3 |+ |F (12)
4 |+ 4− 9 ≥ �(4n+ 3)/7�, a contradiction.

Subcase 5.2. (n1, n2, n3) ≡ (3, 0, 4), (4, 0, 4), (3, 4, 0), (4, 4, 0), (0, 4, 4),
(6, 4, 4), (4, 4, 6), (4, 6, 4) mod 7.

Let F
(2)
1 = A((G1 − {x, y, z, y2, z1})/vz2 + wy1) with v′ as the iden-

tification of {v, z2}, F
(2)
2 = A(G2 − z1), and F

(2)
3 = A(G3 − y2). Then

|F (2)
1 | ≥ �(4(|G1| − 6) + 3)/7�, |F (2)

2 | ≥ �(4(|G2| − 1) + 3)/7�, and |F (2)
3 | ≥

�(4(|G3| − 1) + 3)/7�. Now G[F
(2)
1 ∪ F

(2)
2 ∪ F

(2)
3 + {x, y, z} − ({z2, a1} ∩

(F
(2)
1 	F

(2)
2 ))−({y1, b1}∩(F (2)

1 	F
(2)
3 ))] (if v′ �∈ F

(2)
1 ) or G[(F

(2)
1 −v′)∪F (2)

2 ∪
F

(2)
3 +{x, y, v, z2}−({z2, a1}∩((F (2)

1 ∪{z2})	F
(2)
2 ))−({y1, b1}∩(F (2)

1 	F
(2)
3 ))]

(if v′ ∈ F
(2)
1 ) is an induced forest in G, showing a(G) ≥ |F (2)

1 | + |F (2)
2 | +

|F (2)
3 |+ 3− 4 ≥ �(4n+ 3)/7�, a contradiction.

Subcase 5.3. (n1, n2, n3) ≡ (0, 4, 3) mod 7.

Let F
(3)
1 = A(G1 − {x, y, z, v, y1, y2, z1}+ wz2), F

(3)
2 = A(G2 − z1), and

F
(3)
3 = A(G3 − {y1, y2}). Then |F (3)

1 | ≥ �(4(|G1| − 7) + 3)/7�, |F (3)
2 | ≥

�(4(|G2|−1)+3)/7� and |F (3)
3 | ≥ �(4(|G3|−2)+3)/7�. Now G[F

(3)
1 ∪F

(3)
2 ∪

F
(3)
3 +{x, y, z}−({z2, a1}∩(F (3)

1 	F
(3)
2 ))−({b1}∩(F (3)

1 	F
(3)
3 ))] is an induced

forest in G, showing a(G) ≥ |F (3)
1 |+ |F (3)

2 |+ |F (3)
3 |+ 3− 3 ≥ �(4n+ 3)/7�,

a contradiction.

Subcase 5.4. (n1, n2, n3) ≡ (0, 3, 4) mod 7.

Let F
(4)
1 = A(G1 −{x, y, z, v, y2, z1, z2}+wy1), F

(4)
2 = A(G2 −{z1, z2}),

and F
(4)
3 = A(G3 − y2). Then |F (4)

1 | ≥ �(4(|G1| − 7) + 3)/7�, |F (4)
2 | ≥

�(4(|G2|−2)+3)/7� and |F (4)
3 | ≥ �(4(|G3|−1)+3)/7�. Now G[F

(4)
1 ∪F

(4)
2 ∪

F
(4)
3 +{x, y, z}−({a1}∩(F (4)

1 	F
(4)
2 ))−({b1, y1}∩(F (4)

1 	F
(4)
3 ))] is an induced

forest in G, showing a(G) ≥ |F (4)
1 |+ |F (4)

2 |+ |F (4)
3 |+ 3− 3 ≥ �(4n+ 3)/7�,

a contradiction.

Subcase 5.5. (n1, n2, n3)≡ (4, 3, 0) mod 7 (respectively, (1, 6, 0) mod 7).
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If |N(w) ∩ N(v2)| ≤ 2, let A5 = ∅ and A6 = {a1}. For i = 5 (respec-

tively, i = 6), let F
(i)
1 = A((G1 − {x, y, z, v, z1, z2} − Ai)/{y1y2, wv2}) with

y′ (respectively, v′) as the identification of {y1, y2} (respectively, {w, v2}),
F

(i)
2 = A(G2−{z1, z2}−Ai) and F

(i)
3 = A(G3). Then |F (i)

1 | ≥ �(4(|G1|−8−
|Ai|)+3)/7�, |F (i)

2 | ≥ �(4(|G2|−2−|Ai|)+3)/7� and |F (i)
3 | ≥ �(4|G3|+3)/7�.

Let F (i) := G[F1
(i) ∪ F

(i)
2 ∪ F

(i)
3 − ({a1} ∩ (F1

(i)	F
(i)
2 )) − ({y1, y2, b1} ∩

(F1
(i)	F

(i)
3 ))], where F1

(i)
:= F1

(i) + {x, y, v, z} if v′, y′ �∈ F
(1)
1 , and oth-

erwise, F1
(1)

obtained from F1
(i) + {x, y, v, z} by deleting {y, y′} (respec-

tively, {v, v′}) and adding {y1, y2} (respectively, {v2, w}) when y′ ∈ F1
(i)

(respectively, v′ ∈ F1
(i)). Therefore, F (i) is an induced forest in G, show-

ing a(G) ≥ |F (i)
1 | + |F (i)

2 | + |F (i)
3 | + 4 − 3 − (1 − |Ai|) ≥ �(4n + 3)/7�, a

contradiction.

If |N(w) ∩ N(v2)| > 2, there exist c1 ∈ N(w) ∩ N(v2) and subgraphs

G′
1, G

′
2, G

′
3, G

′
4 of G such that G′

2 = G2, G
′
3 = G3, G

′
4 is the maximal sub-

graph of G contained in the closed region of the plane bounded by the

cycle vwc1v2v and containing N(w) ∩ N(v2) − {v}, and G′
1 is obtained

from G by removing G2 − {z1, z2, a1}, G′
3 − {y1, b1, y2} and G′

4 − {w, v2, v}.
Let Ai = {a1} if i = 13, 14, 17, 19 and Ai = ∅ if i = 15, 16, 18, 20. Let

Ci = {c1} if i = 13, 15 and Ci = ∅ if i = 14, 16. For i = 13, 14, 15, 16,

let F
(i)
1 = A((G′

1 − {x, y, w, z, v, v2, z1, z2} − Ai − Ci)/y1y2) with y′ as the

identification of {y1, y2}, F (i)
2 = A(G′

2 − {z1, z2} − Ai), F
(i)
3 = A(G′

3), and

F
(i)
4 = A(G′

4−{w, v2}−Ci). Note |F (i)
1 | ≥ �(4(|G′

1|−9−|Ai|− |Ci|)+3)/7�,
|F (i)

2 | ≥ �(4(|G′
2| − 2 − |Ai|) + 3)/7�, |F (i)

3 | ≥ �(4|G′
3| + 3)/7�, and |F (i)

4 | ≥
�(4(|G′

4| − 2− |Ci|) + 3)/7�. Now G[F
(i)
1 ∪ F

(i)
2 ∪ F

(i)
3 ∪ F

(i)
4 + {x, y, z, v} −

({y1, y2, b1}∩(F1
(i)	F

(i)
3 ))−({a1}∩(F1

(i)	F
(i)
2 ))−({c1}∩(F1

(i)	F
(i)
4 ))] (if

y′ �∈ F
(i)
1 ) or G[(F

(i)
1 −y′)∪F

(i)
2 ∪F

(i)
3 ∪F

(i)
4 +{x, y1, y2, z, v}− ({y1, y2, b1}∩

((F1
(i) + {y1, y2})	F

(i)
3 )) − ({a1} ∩ (F1

(i)	F
(i)
2 )) − ({c1} ∩ (F1

(i)	F
(i)
4 ))]

(if y′ ∈ F
(i)
1 ) is an induced forest in G, showing a(G) ≥ |F (i)

1 | + |F (i)
2 | +

|F (i)
3 |+ |F (i)

4 |+4−3− (1−|Ai|)− (1−|Ci|). Let (n′
1, n

′
2, n

′
3, n

′
4) := (4(|G′

1|−
9) + 3, 4(|G′

2| − 2) + 3, 4(|G′
3| − 2) + 3, 4(|G′

4| − 2) + 3). By Lemma 2.2(2),

(n′
1, n

′
2, n

′
3, n

′
4) ≡ (4, 3, 0, 0), (4, 6, 0, 0), (0, 3, 0, 4), (0, 6, 0, 4) mod 7.

If (n′
1, n

′
2, n

′
3, n

′
4) ≡ (4, 6, 0, 0) mod 7 (respectively, (4, 3, 0, 0) mod 7),

for i = 17 (respectively, i = 18), let F
(i)
1 = A((G′

1 − {x, y, z, v, z1, z2} −
Ai)/{y1y2, wv2}) with y′ (respectively, v′) as the identification of {y1, y2}
(respectively {w, v2}), F (i)

2 = A(G′
2 − {z1, z2} − Ai), F

(i)
3 = A(G′

3), and

F
(i)
4 = A(G′

4). Then |F (i)
1 | ≥ �(4(|G′

1| − 8− |Ai|) + 3)/7�, |F (i)
2 | ≥ �(4(|G′

2| −
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2− |Ai|) + 3)/7�, |F (i)
3 | ≥ �(4|G′

3|+ 3)/7�, and |F (i)
4 | ≥ �(4|G′

4|+ 3)/7�. Let
F (i) := G[F1

(i)∪F (i)
2 ∪F (i)

3 ∪F (i)
4 −({y1, y2, b1}∩(F1

(i)	F
(i)
3 ))−({w, v2, c1}∩

(F1
(i)	F

(i)
3 )) − ({a1} ∩ (F1

(i)	F
(i)
4 ))], where F1

(i)
= F1

(i) + {x, y, z, v} if

y′, v′ �∈ F
(i)
1 , and otherwise, F1

(i)
obtained from F1

(i)+{x, y, z, v} by deleting
{y, y′} (respectively, {v, v′}) and adding {y1, y2} (respectively, {v2, w}) when
y′ ∈ F1

(i) (respectively, v′ ∈ F1
(i)). Therefore, F (i) is an induced forest in G,

showing a(G) ≥ |F (i)
1 |+|F (i)

2 |+|F (i)
3 |+|F (i)

4 |+4−6−(1−|Ai|) ≥ �(4n+3)/7�,
a contradiction.

If (n′
1, n

′
2, n

′
3, n

′
4) ≡ (0, 6, 0, 4) mod 7 (respectively, (0, 3, 0, 4) mod 7),

for i = 19 (respectively, i = 20), let F
(i)
1 = A((G′

1 − {x, y, z, w, z1, z2} −
Ai)/y1y2) with y′ as the identification of {y1, y2}, F (i)

2 = A(G′
2 − {z1, z2} −

Ai), F
(i)
3 = A(G′

3), and F
(i)
4 = A(G′

4 − w). Then |F (i)
1 | ≥ �(4(|G′

1| − 7 −
|Ai|)+3)/7�, |F (i)

2 | ≥ �(4(|G′
2|−2−|Ai|)+3)/7�, |F (i)

3 | ≥ �(4|G′
3|+3)/7�, and

|F (i)
4 | ≥ �(4(|G′

4|−1)+3)/7�. NowG[F
(i)
1 ∪F (i)

2 ∪F (i)
3 ∪F (i)

4 +{x, y, z}−({a1}∩
(F

(i)
1 	F

(i)
2 ))− ({y1, y2, b1} ∩ (F

(i)
1 	F

(i)
3 ))− ({v2, c1} ∩ (F

(i)
1 	F

(i)
4 ))] (if y′ �∈

F
(i)
1 ) or G[(F

(i)
1 −y′)∪F (i)

2 ∪F (i)
3 ∪F (i)

4 +{x, y1, y2, z}−({a1}∩(F (i)
1 	F

(i)
2 ))−

({y1, y2, b1}∩((F (i)
1 +{y1, y2})	F

(i)
3 ))−({v2, c1}∩(F (i)

1 	F
(i)
4 ))] (if y′ ∈ F

(i)
1 )

is an induced forest in G, showing a(G) ≥ |F (i)
1 | + |F (i)

2 | + |F (i)
3 | + |F (i)

4 | +
3− 5− (1− |Ai|) ≥ �(4n+ 3)/7�, a contradiction.

Subcase 5.6. (n1, n2, n3)≡ (4, 0, 3) mod 7 (respectively, (1, 0, 6) mod 7).
If |N(v2)∩N(w)| ≤ 2, let B7 = ∅ and B8 = {b1}. For i = 7 (respectively,

i = 8), let F
(i)
1 = A((G1 − {x, y, z, v, y1, y2} − Bi)/{z1z2, wv2} + z′v′) with

z′ (respectively, v′) as the identification of {z1, z2} (respectively, {w, v2}),
F

(i)
2 = A(G2), and F

(i)
3 = A(G3 − {y1, y2} − B1). Then |F (i)

1 | ≥ �(4(|G1| −
8 − |Bi|) + 3)/7�, |F (i)

2 | ≥ �(4|G2| + 3)/7�, and |F (i)
3 | ≥ �(4(|G3| − 2 −

|B1|) + 3)/7�. Let F (i) := G[F1
(i) ∪ F

(i)
2 ∪ F

(i)
3 − ({b1} ∩ (F1

(i)	F
(i)
3 )) −

({z1, z2, a1}∩ (F1
(i)	F

(i)
2 ))], where F1

(i)
:= F1

(i)+{x, y, v, z} if z′, v′ �∈ F
(1)
1 ,

and otherwise, F1
(1)

obtained from F1
(i) + {x, y, v, z} by deleting {z, z′}

(respectively, {v, v′}) and adding {z1, z2} (respectively, {v2, w}) when z′ ∈
F1

(i) (respectively, v′ ∈ F1
(i)). Therefore, F (i) is an induced forest in G,

showing a(G) ≥ |F (i)
1 |+ |F (i)

2 |+ |F (i)
3 |+ 4− 3− (1− |Bi|) ≥ �(4n+ 3)/7�, a

contradiction.
If |N(v2) ∩ N(w)| > 2, there exist c1 ∈ N(w) ∩ N(v2) and subgraphs

G′
1, G

′
2, G

′
3, G

′
4 of G such that G′

2 = G2, G
′
3 = G3, G

′
4 is the maximal sub-

graph of G contained in the closed region of the plane bounded by the
cycle vwc1v2v and containing N(w) ∩ N(v2) − {v}, and G′

1 is obtained
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from G by removing G2 − {z1, z2, a1}, G′
3 − {y1, b1, y2} and G′

4 − {w, v2, v}.
Let B1 = {b1} if i = 21, 22, 25, 27 and ∅ if i = 23, 24, 26, 28. Let C1 =

{c1} if i = 21, 23 and ∅ if i = 22, 24. For i = 21, 22, 23, 24, let F
(i)
1 =

A((G′
1 − {x, y, w, z, v, v2, y1, y2} − Bi − Ci)/z1z2) with z′ as the identifica-

tion of {z1, z2}, F (i)
2 = A(G′

2), F
(i)
3 = A(G′

3 − {y1, y2} − Bi), and F
(i)
4 =

A(G′
4 − {w, v2} − Ci). Then |F (i)

1 | ≥ �(4(|G′
1| − 9 − |Ai| − |Ci|) + 3)/7�,

|F (i)
2 | ≥ �(4|G′

2| + 3)/7�, |F (i)
3 | ≥ �(4(|G′

3| − 2 − |Bi|) + 3)/7� and |F (i)
4 | ≥

�(4(|G′
4| − 2− |Ci|) + 3)/7�. Now G[F

(i)
1 ∪ F

(i)
2 ∪ F

(i)
3 ∪ F

(i)
4 + {x, y, z, v} −

({z1, z2, a1} ∩ (F
(i)
1 	F

(i)
2 ))− ({b1} ∩ (F

(i)
1 	F

(i)
3 ))− ({c1} ∩ (F

(i)
1 	F

(i)
4 )) (if

z′ �∈ F
(i)
1 ) or G[(F

(i)
1 −z′)∪F

(i)
2 ∪F

(i)
3 ∪F

(i)
4 +{x, y, z1, z2, v}−({z1, z2, a1}∩

((F
(i)
1 + {z1, z2})	F

(i)
2 )) − ({b1} ∩ (F

(i)
1 	F

(i)
3 )) − ({c1} ∩ (F

(i)
1 	F

(i)
4 )) (if

z′ ∈ F
(i)
1 ) is an induced forest of size |F (i)

1 | + |F (i)
2 | + |F (i)

3 | + |F (i)
4 | + 4 −

3 − (1 − |Bi|) − (1 − |Ci|). Let (n′
1, n

′
2, n

′
3, n

′
4) := (4(|G′

1| − 2) + 3, 4(|G′
2| −

2) + 3, 4(|G′
3| − 2) + 3, 4(|G′

4| − 2) + 3). By Lemma 2.2(2), (n′
1, n

′
2, n

′
3, n

′
4) ≡

(4, 0, 3, 0), (4, 0, 6, 0), (0, 0, 3, 4), (0, 0, 6, 4) mod 7.

If (n′
1, n

′
2, n

′
3, n

′
4) ≡ (4, 0, 6, 0) mod 7 (respectively, (4, 0, 3, 0) mod 7),

for i = 25 (respectively, i = 26), let F
(i)
1 = A((G′

1 − {x, y, z, v, y1, y2} −
Bi)/{z1z2, wv2}+z′v′) with z′ (respectively, v′) as the identification of {z1z2}
(respectively {w, v2}), F (i)

2 = A(G′
2), F

(i)
3 = A(G′

3−{z1, z2}−Bi), and F
(i)
4 =

A(G′
4). Then |F (i)

1 | ≥ �(4(|G′
1| − 8− |Bi|) + 3)/7�, |F (i)

2 | ≥ �(4|G′
2|+ 3)/7�,

|F (i)
3 | ≥ �(4(|G′

3| − 2 − |Bi|) + 3)/7� and |F (i)
4 | ≥ �(4|G′

4| + 3)/7�. Now

F (i) := G[F1
(i) ∪ F

(i)
2 ∪ F

(i)
3 ∪ F

(i)
4 − ({z1, z2, a1} ∩ (F1

(i)	F
(i)
3 )) − ({b1} ∩

(F1
(i)	F

(i)
3 ))− ({w, v2, c1} ∩ (F1

(i)	F
(i)
4 ))], where F1

(i)
= F

(i)
1 + {x, y, z, v}

if z′, v′ �∈ F
(i)
1 , and otherwise, let F1

(i)
be obtained from F

(i)
1 + {x, y, z, v}

by deleting {z, z′} (respectively, {v, v′}) and adding {z1, z2} (respectively,

{v2, w}) when z′ ∈ F
(i)
1 (respectively, v′ ∈ F

(i)
1 ). Therefore, F (i) is an induced

forest in G, showing a(G) ≥ |F (i)
1 |+ |F (i)

2 |+ |F (i)
3 |+ |F (i)

4 |+4−6−(1−|Bi|) ≥
�(4n+ 3)/7�, a contradiction.

If (n′
1, n

′
2, n

′
3, n

′
4) ≡ (0, 0, 6, 4) mod 7 (respectively, (0, 0, 3, 4) mod 7),

for i = 27, 28, let F
(i)
1 = A(G′

1−{x, y, z, w, y1, y2}−Bi)/z1z2) with z′ as the

identification of {z1, z2}, F (i)
2 = A(G′

2), F
(i)
3 = A(G′

3 − {z1, z2} − Bi), and

F
(i)
4 = A(G′

4−w). Then |F (i)
1 | ≥ �(4(|G′

1|−7−|Bi|)+3)/7�, |F (i)
2 | ≥ �(4|G′

2|+
3)/7�, |F (i)

3 | ≥ �(4(|G′
3|−2−|Bi|)+3)/7� and |F (i)

4 | ≥ �(4(|G′
4|−1)+3)/7�.

Now G[F
(i)
1 ∪F (i)

2 ∪F (i)
3 ∪F (i)

4 +{x, y, z}−({z1, z2, a1}∩(F (i)
1 	F

(i)
2 ))−({b1}∩

(F
(i)
1 	F

(i)
3 ))− ({v2, c1}∩ (F

(i)
1 	F

(i)
4 ))] (if z′ �∈ F

(i)
1 ) or G[(F

(i)
1 −z′)∪F

(i)
2 ∪
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F
(i)
3 ∪F

(i)
4 + {x, y, z1, z2}− ({z1, z2, a1} ∩ ((F

(i)
1 + {z1, z2})	F

(i)
2 ))− ({b1} ∩

(F
(i)
1 	F

(i)
3 ))−({v2, c1}∩(F (i)

1 	F
(i)
4 ))] (if z′ ∈ F

(i)
1 ) is an induced forest inG,

showing a(G) ≥ |F (i)
1 |+|F (i)

2 |+|F (i)
3 |+|F (i)

4 |+3−5−(1−|Bi|) ≥ �(4n+3)/7�,
a contradiction.

Case 6. |N(z1)∩N(z2)| > 2, |N(y1)∩N(y2)| ≤ 2 and |N(w)∩N(v2)| > 2.

There exist a1 ∈ N(z1) ∩ N(z2), c1 ∈ N(w) ∩ N(v2) and subgraphs
G1, G2, G3 of G such that G2 is the maximal subgraph of G contained in
the closed region of the plane bounded by the cycle zz1a1z2z and containing
N(z1) ∩ N(z2) − {z}, G3 is the maximal subgraph of G contained in the
closed region of the plane bounded by the cycle vwc1v2v and containing
N(w)∩N(v2)−{v}, and G1 is obtained from G by removing G2−{z1, z2, a1}
and G3 − {w, c1, v2}. Let Ai = {a1} if i = 1, 2 and Ai = ∅ if i = 3, 4.

Let Ci = {c1} if i = 1, 3 and Ci = ∅ if i = 2, 4. For i ∈ [4], let F
(i)
1 =

A((G1−{x, y, z, v, w, v2, z1, z2}−Ai−Ci)/y1y2) with y′ as the identification

of {y1, y2}, F (i)
2 = A(G2 − {z1, z2} − Ai), and F

(i)
3 = A(G3 − {w, v2} − Ci).

Then |F (i)
1 | ≥ �(4(|G1| − 9 − |Ai| − |Ci|) + 3)/7�, |F (i)

2 | ≥ �(4(|G2| − 2 −
|Ai|) + 3)/7�, and |F (i)

3 | ≥ �(4(|G3| − 2 − |Ci|) + 3)/7�. Let F = F
(i)
1 ∪

F
(i)
2 ∪ F

(i)
3 + {x, y, v, z} − ({a1} ∩ (F

(i)
1 	F

(i)
2 ))− ({c1} ∩ (F

(i)
1 	F

(i)
3 )). Now

G[F ] (if y′ �∈ F
(i)
1 ) or G[F − {y, y′} + {y1, y2}] (if y′ ∈ F

(i)
1 ) is an induced

forest of size a(G) ≥ |F (i)
1 |+ |F (i)

2 |+ |F (i)
3 |+ 4− (1− |A1|)− (1− |C1|). Let

(n1, n2, n3) := (4(|G1|−9)+3, 4(|G2|−2)+3, 4(|G3|−2)+3). By Lemma 2.2(5)
(with a = |G1| − 9, a1 = |G2| − 2, a2 = |G3| − 2, c = 4), (n1, n2, n3) ≡
(0, 0, 0), (1, 0, 0), (4, 0, 3), (4, 3, 0), (3, 0, 4), (4, 0, 4), (3, 4, 0), (4, 4, 0), (1, 6, 0),
(1, 0, 6), (0, 3, 4), (0, 4, 3), (0, 4, 4), (6, 4, 4), (4, 4, 6), (4, 6, 4) mod 7.

Subcase 6.1. |N(v1) ∩N(v2)| > 2.

There exist d1 ∈ N(v1) ∩ N(v2) and subgraphs G′
1, G

′
3, G

′
4 such that

G′
3 = G3, G

′
4 is the maximal subgraph of G contained in the closed region of

the plane bounded by the cycle vv1d1v2v and containing N(v1)∩N(v2)−{v},
and G′

1 is obtained from G by removing G′
3−{w, c1, v2} and G′

4−{v1, v2, v}.
Let Ci = {c1} if i = 1, 2 and Ci = ∅ if i = 3, 4. Let Di = {d1} if i = 1, 3 and

Di = ∅ if i = 2, 4. For i ∈ [4], let F
(i)
1 = A(G′

1 − {x, z, z1, v, w, v1, v2} −Ci −
Di + yz2), F

(i)
2 = A(G′

3 − {w, v2} − Ci), and F
(i)
3 = A(G′

4 − {v1, v2} −Di).

Then |F (i)
1 | ≥ �(4(|G′

1| − 7 − |Ci| − |Di|) + 3)/7�, |F (i)
2 | ≥ �(4(|G′

3| − 2 −
|Ci|) + 3)/7�, and |F (i)

3 | ≥ �(4(|G′
4| − 2− |Di|) + 3)/7�. Now G[F

(i)
1 ∪ F

(i)
2 ∪

F
(i)
3 + {x, z, v} − ({c1} ∩ (F

(i)
1 	F

(i)
2 ))− ({d1} ∩ (F

(i)
1 	F

(i)
3 ))] is an induced

forest in G, showing a(G) ≥ |F (i)
1 |+ |F (i)

2 |+ |F (i)
3 |+3− (1−|Ci|)− (1−|Di|).



126 Yan Wang et al.

Let (n′
1, n

′
2, n

′
3) := (4(|G′

1| − 7) + 3, 4(|G′
3| − 2) + 3, 4(|G′

4| − 2) + 3). By

Lemma 2.2(4) (with a = |G′
1| − 7, a1 = |G′

3| − 2, a2 = |G′
4| − 2, c = 3),

(n′
1, n

′
2, n

′
3) ≡ (1, 0, 0), (0, 4, 4), (4, 4, 0), (4, 0, 4) mod 7.

If (n′
1, n

′
2, n

′
3) ≡ (0, 4, 4) mod 7, let F

(5)
1 = A(G′

1 − {x, z, w, v, v1}),
F

(5)
2 = A(G′

3−w), and F
(5)
3 = A(G′

4−v1). Then |F (5)
1 | ≥ �(4(|G′

1|−5)+3)/7�,
|F (5)

2 | ≥ �(4(|G′
3|−1)+3)/7�, and |F (5)

3 | ≥ �(4(|G′
4|−1)+3)/7�. Now G[F

(5)
1 ∪

F
(5)
2 ∪ F

(5)
3 + {x, v} − ({c1, v2} ∩ (F

(5)
1 	F

(5)
2 ))− ({d1, v2} ∩ (F

(5)
1 	F

(5)
3 ))] is

an induced forest in G, showing a(G) ≥ |F (5)
1 | + |F (5)

2 | + |F (5)
3 | + 2 − 4 ≥

�(4n+ 3)/7�, a contradiction.

If (n′
1, n

′
2, n

′
3)≡ (4, 4, 0) mod 7, let F

(6)
1 =A((G′

1−{x, z, w, v, z1})/v1v2+
yz2) with v′ as the identification of {v1, v2}, F (6)

2 = A(G′
3 − w), and F

(6)
3 =

A(G′
4). Then |F (6)

1 | ≥ �(4(|G′
1| − 6) + 3)/7�, |F (6)

2 | ≥ �(4(|G′
3| − 1) + 3)/7�,

and |F (6)
3 | ≥ �(4|G′

4|+3)/7�. Now G[F
(6)
1 ∪F

(6)
2 ∪F

(6)
3 +{x, v, z}−({v2, c1}∩

(F
(6)
1 	F

(6)
2 ))− ({v1, v2, d1} ∩ (F

(6)
1 	F

(6)
3 ))] (if v′ �∈ F

(6)
1 ) or G[(F

(6)
1 − v′) ∪

F
(6)
2 ∪ F

(6)
3 + {x, v1, v2, z} − ({v2, c1} ∩ ((F

(6)
1 + v2)	F

(6)
2 ))− ({v1, v2, d1} ∩

((F
(6)
1 + {v1, v2})	F

(6)
3 ))] (if v′ �∈ F

(6)
1 ) is an induced forest in G, showing

a(G) ≥ |F (6)
1 |+ |F (6)

2 |+ |F (6)
3 |+ 3− 5 ≥ �(4n+ 3)/7�, a contradiction.

If (n′
1, n

′
2, n

′
3) ≡ (4, 0, 4) mod 7, let F

(7)
1 = A(G′

1 − {x, z, w, v, v2, c1}),
F

(7)
2 = A(G′

3 − {w, v2, c1}), and F
(7)
3 = A(G′

4 − {v2}). Then |F (7)
1 | ≥

�(4(|G′
1| − 6)+ 3)/7�, |F (7)

2 | ≥ �(4(|G′
3| − 3)+ 3)/7�, and |F (7)

3 | ≥ �(4(|G′
4| −

1)+3)/7�. Now G[F
(7)
1 ∪F

(7)
2 ∪F

(7)
3 +{x, v}− ({v1, d1}∩ (F

(7)
1 	F

(7)
3 ))] is an

induced forest in G, showing |F (7)
1 |+ |F (7)

2 |+ |F (7)
3 |+ 2− 2 ≥ �(4n+ 3)/7�,

a contradiction.

If (n′
1, n

′
2, n

′
3) ≡ (1, 0, 0) mod 7, then there exist a1 ∈ N(z1)∩N(z2) and

subgraphs G′′
1, G

′′
2, G

′′
3, G

′′
4 of G such that G′′

3 = G′
3, G

′′
4 = G′

4, G
′′
2 is the max-

imal subgraph of G contained in the closed region of the plane bounded by

the cycle zz1a1z2z and containing N(v1)∩N(v2)− {v}, and G′′
1 is obtained

fromG by removingG′′
2−{z1, a1, z2},G′′

3−{w, c1, v2} andG′′
4−{v1, v2, v}. Let

A8 = {a1} and A9 = ∅. For i = 8, 9, let F
(i)
1 = A((G′′

1 − {x, y, z, v, z1, z2} −
Ai)/{y1y2, wv2}) with y′ (respectively, v′) as the identification of {y1, y2}
(respectively, {w, v2}), F (i)

2 = A(G′′
2 − {z1, z2} − Ai), F

(i)
3 = A(G′′

3), and

F
(i)
4 = A(G′′

4). Then |F (i)
1 | ≥ �(4(|G′′

1| − 8− |Ai|)+ 3)/7�, |F (i)
2 | ≥ �(4(|G′′

2| −
2− |Ai|) + 3)/7�, |F (i)

3 | ≥ �(4|G′′
3|+ 3)/7�, and |F (i)

4 | ≥ �(4|G′′
4|+ 3)/7�. Let

F (i) := G[F1
(i) ∪ F

(i)
2 ∪ F

(i)
3 ∪ F

(i)
4 − ({a1} ∩ (F1

(i)	F
(i)
2 )) − ({w, v2, c1} ∩

(F1
(i)	F

(i)
3 ))−({v1, v2, d1}∩(F1

(i)	F
(i)
4 ))], where F1

(i)
= F1

(i)+{x, y, v, z}
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if y′, v′ �∈ F
(i)
1 , and otherwise, F1

(i)
obtained from F1

(i)+{x, y, v, z} by delet-
ing {y, y′} (respectively, {v, v′}) and adding {y1, y2} (respectively, {w, v2})
when y′ ∈ F1

(i) (respectively, v′ ∈ F1
(i)). Therefore, F (i) is an induced

forest in G, showing a(G) ≥ |F (i)
1 | + |F (i)

2 | + |F (i)
3 | + 4 − 6 − (1 − |Ai|). By

Lemma 2.2(2), (4(|G′′
1|−8)+3, 4(|G′′

2 |−2)+3, 4(|G′′
3|−2)+3, 4(|G′′

4|−2)+3) ≡
(4, 0, 0, 0), (0, 4, 0, 0) mod 7.

If (4(|G′′
1| − 8) + 3, 4(|G′′

2| − 2) + 3, 4(|G′′
3| − 2) + 3, 4(|G′′

4| − 2) + 3) ≡
(4, 0, 0, 0) mod 7, let F

(10)
1 = A((G′′

1 − {x, y, z, v})/{z1z2, y1y2, wv2}+ v′z′)
with z′ (respectively, y′, v′) as the identification of {z1, z2} (respectively,

{y1, y2}, {w, v2}) and F
(10)
2 = A(G′′

2), F
(10)
3 = A(G′′

3), and F
(10)
4 = A(G′′

4).

Then |F (10)
1 | ≥ �(4(|G′′

1| − 7) + 3)/7�, |F (10)
2 | ≥ �(4|G′′

2| + 3)/7�, |F (10)
3 | ≥

�(4|G′′
3| + 3)/7�, and |F (10)

4 | ≥ �(4|G′′
4| + 3)/7�. Let F (10) := G[F1

(10) ∪
F

(10)
2 ∪F (10)

3 −({z1, z2, a1}∩(F1
(10)	F

(10)
2 ))−({w, v2, c1}∩(F1

(10)	F
(10)
3 ))−

({v1, v2, d1}∩(F1
(10)	F

(10)
4 ))], where F1

(1)
:= F1

(10)+{x, y, v, z} if v′, y′, z′ �∈
F

(10)
1 , and otherwise, F1

(10)
obtained from F1

(10) + {x, y, v, z} by delet-
ing {z, z′} (respectively, {v, v′}, {y, y′}) and adding {z1, z2} (respectively,
{v2, w}, {y1, y2}) when z′ ∈ F1

(1) (respectively, v′ ∈ F1
(10), y′ ∈ F1

(10)).

Therefore, F (10) is an induced forest in G, showing a(G) ≥ |F (10)
1 |+ |F (10)

2 |+
|F (10)

3 |+ |F (10)
4 |+ 4− 9 ≥ �(4n+ 3)/7�, a contradiction.

If (4(|G′′
1|−8)+3, 4(|G′′

2|−2)+3, 4(|G′′
3|−2)+3, 4(|G′′

4|−2)+3) ≡ (0, 4, 0, 0)

mod 7, let F
(11)
1 = A(G′′

1−{x, z, w, v, v1, v2, z1, c1, d1}+yz2), F
(11)
2 = A(G′′

2−
{z1}), F (11)

3 = A(G′′
3 − {w, v2, c1}), and F

(11)
4 = A(G′′

4 − {v1, v2, d1}). Then
|F (11)

1 | ≥ �(4(|G′′
1| − 9) + 3)/7�, |F (11)

2 | ≥ �(4(|G′′
2| − 1) + 3)/7�, |F (11)

3 | ≥
�(4(|G′′

3|−3)+3)/7�, and |F (11)
4 | ≥ �(4(|G′′

4|−3)+3)/7�. NowG[F
(11)
1 ∪F (11)

2 ∪
F

(11)
3 ∪ F

(11)
4 + {x, z, v}]− ({z2, a1} ∩ (F

(11)
1 	F

(11)
2 )). Therefore, F (16) is an

induced forest inG, showing a(G) ≥ |F (11)
1 |+|F (11)

2 |+|F (11)
3 |+|F (11)

4 |+3−2 ≥
�(4n+ 3)/7�, a contradiction.

Subcase 6.2. |N(v1) ∩N(v2)| ≤ 2.

Subcase 6.2.1. (n1, n2, n3) ≡ (0, 0, 0), (1, 0, 0) mod 7.

Let F
(1)
1 = A((G1−{x, y, z, v})/{z1z2, y1y2, wv2}+v′z′) with z′ (respec-

tively, y′, v′) as the identification of {z1, z2} (respectively, {y1, y2}, {w, v2}),
F

(1)
2 = A(G2), and F

(1)
3 = A(G3). Then |F (1)

1 | ≥ �(4(|G1| − 7) + 3)/7�,
|F (1)

2 | ≥ �(4|G2|+3)/7�, and |F (1)
3 | ≥ �(4|G3|+3)/7�. Let F (1) := G[F1

(1) ∪
F

(1)
2 ∪F (1)

3 −({z1, z2, a1}∩(F1
(1)	F

(1)
2 ))−({w, v2, c1}∩(F1

(1)	F
(1)
3 ))], where

F1
(1)

:= F1
(1) + {x, y, v, z} if v′, y′, z′ �∈ F

(1)
1 , and otherwise, F1

(1)
obtained



128 Yan Wang et al.

from F1
(1) + {x, y, v, z} by deleting {z, z′} (respectively, {v, v′}, {y, y′}) and

adding {z1, z2} (respectively, {v2, w}, {y1, y2}) when z′ ∈ F1
(1) (respectively,

v′ ∈ F1
(1), y′ ∈ F1

(1)). Therefore, F (1) is an induced forest in G, show-

ing a(G) ≥ |F (1)
1 | + |F (1)

2 | + |F (1)
3 | + 4 − 6 ≥ �(4n + 3)/7�, a contradic-

tion.

Subcase 6.2.2. (n1, n2, n3) ≡ (3, 0, 4), (4, 0, 4), (3, 4, 0), (4, 4, 0), (0, 4, 4),
(6, 4, 4), (4, 4, 6), (4, 6, 4) mod 7.

Let F
(2)
1 = A(G1−{x, z, z1, w, v}/v1v2+yz2) with v′ as the identification

of {v1, v2}, F (2)
2 = A(G2 − {z1}), and F

(2)
3 = A(G3 − {w}). Then |F (2)

1 | ≥
�(4(|G1| − 6)+ 3)/7�, |F (2)

2 | ≥ �(4(|G2| − 1)+ 3)/7�, and |F (2)
3 | ≥ �(4(|G3| −

1)+ 3)/7�. Now G[F
(2)
1 ∪F

(2)
2 ∪F

(2)
3 + {x, v, z}− ({z2, a1} ∩ (F

(2)
1 	F

(2)
2 ))−

({c1, v2}∩(F (2)
1 	F

(2)
2 ))] (if v′ �∈ F

(2)
1 ) or G[(F

(2)
1 −v′)∪F (2)

2 ∪F (2)
3 +{x, v, z}−

({z2, a1} ∩ (F
(2)
1 	F

(2)
2 )) − ({c1, v2} ∩ ((F

(2)
1 + v2)	F

(2)
2 ))] (if v′ ∈ F

(2)
1 ) is

an induced forest in G, showing a(G) ≥ |F (2)
1 | + |F (2)

2 | + |F (2)
3 | + 3 − 4 ≥

�(4n+ 3)/7�, a contradiction.

Subcase 6.2.3. (n1, n2, n3) ≡ (0, 4, 3) mod 7.

Let F
(3)
1 = A(G1 − {x, z, v, w, z1, v1, v2} + yz2), F

(3)
2 = A(G2 − z1),

and F
(3)
3 = A(G3 − {w, v2}). Then |F (3)

1 | ≥ �(4(|G1| − 7) + 3)/7�, |F (3)
2 | ≥

�(4(|G2|−1)+3)/7� and |F (3)
3 | ≥ �(4(|G3|−2)+3)/7�. Then G[F

(3)
1 ∪F

(3)
2 ∪

F
(3)
3 +{x, v, z}−({z2, a1}∩(F (3)

1 	F
(3)
2 ))−({c1}∩(F (3)

1 	F
(3)
3 ))] is an induced

forest in G, showing a(G) ≥ |F (3)
1 |+ |F (3)

2 |+ |F (3)
3 |+ 3− 3 ≥ �(4n+ 3)/7�,

a contradiction.

Subcase 6.2.4. (n1, n2, n3) ≡ (0, 3, 4) mod 7.

Let F
(4)
1 = A((G1−{x, y, z, w, z1, z2})/y1y2) with y′ as the identification

of {y1, y2}, F (4)
2 = A(G2 − {z1, z2}), and F

(4)
3 = A(G3 − w). Then |F (4)

1 | ≥
�(4(|G1|−7)+3)/7�, |F (4)

2 | ≥ �(4(|G2|−2)+3)/7� and |F (4)
3 | ≥ �(4(|G3|−1)+

3)/7�. Let F = F
(4)
1 ∪F (4)

2 ∪F (4)
3 +{x, y, z}−({a1}∩(F (4)

1 	F
(4)
2 ))−({c1, v2}∩

(F
(4)
1 	F

(4)
3 )). NowG[F ] (if y′ �∈ F

(4)
1 ) orG[F−{y′, y}+{y1, y2}] (if y′ ∈ F

(4)
1 )

is an induced forest in G, showing a(G) ≥ |F (4)
1 |+ |F (4)

2 |+ |F (4)
3 |+ 3− 3 ≥

�(4n+ 3)/7�, a contradiction.

Subcase 6.2.5. (n1, n2, n3)≡ (4, 3, 0) mod 7 (respectively (1, 6, 0) mod 7).

Let A5 = ∅ and A6 = {a1}. For i = 5, 6, let F
(i)
1 = A((G1−{x, y, z, v, z1,

z2} − Ai)/{y1y2, wv2}) with y′ (respectively, v′) as the identification of

{y1, y2} (respectively, {w, v2}), F (i)
2 = A(G2 − {z1, z2} − Ai), and F

(i)
3 =
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A(G3). Then |F (i)
1 | ≥ �(4(|G1|−8−|Ai|)+3)/7�, |F (i)

2 | ≥ �(4(|G2|−2−|Ai|)+
3)/7� and |F (i)

3 | ≥ �(4|G3|+3)/7�. Let F (i) := G[F1
(i)∪F

(i)
2 ∪F

(i)
3 − ({a1}∩

(F1
(i)	F

(i)
2 ))−({w, v2, c1}∩(F1

(i)	F
(i)
3 ))], where F1

(i)
= F1

(i)+{x, y, v, z} if
y′, v′ �∈ F

(i)
1 , and otherwise, F1

(i)
obtained from F1

(i) by deleting {y, y′} (re-
spectively, {v, v′}) and adding {y1, y2} (respectively, {w, v2}) when y′ ∈ F1

(i)

(respectively, v′ ∈ F1
(i)). Therefore, F (i) is an induced forest in G, show-

ing a(G) ≥ |F (i)
1 | + |F (i)

2 | + |F (i)
3 | + 4 − 3 − (1 − |Ai|) ≥ �(4n + 3)/7�, a

contradiction.

Subcase 6.2.6. (n1, n2, n3)≡ (4, 0, 3) mod 7 (respectively, (1, 0, 6) mod 7).

Let C7 = ∅ and C8 = {c1}. For i = 7, 8, let F
(i)
1 = A((G1 − {x, y, z, v, w,

v2} − Ci)/{z1z2, y1y2}) with z′ (respectively, y′) as the identification of

{z1, z2} (respectively, {y1, y2}), F (i)
2 = A(G2), and F

(i)
3 = A(G3 − {w, v2} −

Ci). Then |F (i)
1 | ≥ �(4(|G1| − 8− |Ci|) + 3)/7�, |F (i)

2 | ≥ �(4|G2|+ 3)/7� and

|F (i)
3 | ≥ �(4(|G3|−2−|Ci|)+3)/7�. Let F (i) := G[F1

(i)∪F
(i)
2 ∪F

(i)
3 − ({c1}∩

(F1
(i)	F

(i)
3 ))−({z1, z2, a1}∩(F1

(i)	F
(i)
2 ))], where F1

(i)
= F1

(i)+{x, y, v, z}
if y′, z′ �∈ F

(i)
1 , and otherwise F1

(i)
obtained from F1

(i) by deleting {y, y′} (re-
spectively, {z, z′}) and adding {y1, y2} (respectively, {z1, z2}) when y′ ∈ F1

(i)

(respectively, z′ ∈ F1
(i)). Therefore, F (i) is an induced forest in G, show-

ing a(G) ≥ |F (i)
1 | + |F (i)

2 | + |F (i)
3 | + 4 − 3 − (1 − |Ci|) ≥ �(4n + 3)/7�, a

contradiction.

Case 7. |N(z1)∩N(z2)| ≤ 2, |N(y1)∩N(y2)| > 2 and |N(w)∩N(v2)| > 2.
There exist b1 ∈ N(y1) ∩ N(y2), c1 ∈ N(w) ∩ N(v2) and subgraphs

G1, G2, G3 of G such that G2 is the maximal subgraph of G contained in
the closed region of the plane bounded by the cycle yy1b1y2y and contain-
ing N(y1) ∩ N(y2) − {y}, G3 is the maximal subgraph of G contained in
the closed region of the plane bounded by the cycle vwc1v2v and contain-
ing N(w) ∩ N(v2) − {v}, and G1 is obtained from G by removing G2 −
{y1, y2, b1} and G3 − {w, c1, v2}. Let Bi = {b1} if i = 1, 2 and Bi = ∅
if i = 3, 4. Let Ci = {c1} if i = 1, 3 and Ci = ∅ if i = 2, 4. For i ∈
[4], let F

(i)
1 = A((G1 − {x, y, z, v, y1, y2, w, v2} − Bi − Ci)/z1z2) with z′ as

the identification of {z1, z2}, F
(i)
2 = A(G2 − {y1, y2} − Bi), and F

(i)
3 =

A(G3 − {w, v2} − Ci). Then |F (i)
1 | ≥ �(4(|G1| − 9 − |Bi| − |Ci|) + 3)/7�,

|F (i)
2 | ≥ �(4(|G2|−2−|Bi|)+3)/7�, and |F (i)

3 | ≥ �(4(|G3|−2−|Ci|)+3)/7�. Let
F = F

(i)
1 ∪F (i)

2 ∪F (i)
3 +{x, y, v, z}−({b1}∩(F (i)

1 	F
(i)
2 ))−({c1}∩(F (i)

1 	F
(i)
3 )).

Now G[F ] (if z′ �∈ F
(i)
1 ) or G[F − {z, z′} + {z1, z2}] (if z′ ∈ F

(i)
1 ) is an in-

duced forest of size |F (i)
1 | + |F (i)

2 | + |F (i)
3 | + 4 − (1 − |Bi|) − (1 − |Ci|). Let
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(n1, n2, n3) := (4(|G1|−9)+3, 4(|G2|−2)+3, 4(|G3|−2)+3). By Lemma 2.2(5)

(with a = |G1| − 9, a1 = |G2| − 2, a2 = |G3| − 2, c = 4), (n1, n2, n3) ≡
(0, 0, 0), (1, 0, 0), (4, 0, 3), (4, 3, 0), (3, 0, 4), (4, 0, 4), (3, 4, 0), (4, 4, 0), (1, 6, 0),

(1, 0, 6), (0, 3, 4), (0, 4, 3), (0, 4, 4), (6, 4, 4), (4, 4, 6), (4, 6, 4) mod 7. Let Bi =

∅ if i = 1, 4, 8 and Bi = {b1} if i = 3, 5, 9.

Subcase 7.1. (n1, n2, n3) ≡ (0, 0, 0), (1, 0, 0) mod 7 (respectively (4, 4, 0)

mod 7).

For i = 1 (respectively, i = 5), let F
(i)
1 = A((G1−{x, y, z, v}−Bi)/{z1z2,

y1y2, wv2}+v′z′) with z′ (respectively, y′, v′) as the identification of {z1, z2}
(respectively, {y1, y2}, {w, v2}) and F

(i)
2 = A(G2 − Bi), and F

(i)
3 = A(G3).

Then |F (i)
1 | ≥ �(4(|G1| − 7− |Bi|) + 3)/7�, |F (i)

2 | ≥ �(4(|G2| − |Bi|) + 3)/7�,
and |F (i)

3 | ≥ �(4|G3|+3)/7�. Let F (i) := G[F1
(i)∪F

(i)
2 ∪F

(i)
3 − ({y1, y2, b1}∩

(F1
(i)	F

(i)
2 ))−({w, v2, c1}∩(F1

(i)	F
(i)
3 ))], where F1

(i)
:= F1

(i)+{x, y, v, z}
if v′, y′, z′ �∈ F

(i)
1 , and otherwise, F1

(i)
obtained from F1

(i) + {x, y, v, z} by

deleting {z, z′} (respectively, {v, v′}, {y, y′}) and adding {z1, z2} (respec-

tively, {v2, w}, {y1, y2}) when z′ ∈ F1
(i) (respectively, v′ ∈ F1

(i), y′ ∈ F1
(i)).

Therefore, F (i) is an induced forest in G, showing a(G) ≥ |F (i)
1 | + |F (i)

2 | +
|F (i)

3 |+ 4− 5− (1− |Bi|) ≥ �(4n+ 3)/7�, a contradiction.

Subcase 7.2. (n1, n2, n3) ≡ (0, 4, 4), (6, 4, 4) mod 7.

Let F
(2)
1 = A(G1−{x, y, w, z1, y2}+y1z), F

(2)
2 = A(G2−y2), and F

(2)
3 =

A(G3−w). Then |F (2)
1 | ≥ �(4(|G1|−5)+3)/7�, |F (2)

2 | ≥ �(4(|G2|−1)+3)/7�,
and |F (2)

3 | ≥ �(4(|G3|−1)+3)/7�. NowG[F
(2)
1 ∪F (2)

2 ∪F (2)
3 +{x, y}−({y1, b1}∩

(F
(2)
1 	F

(2)
2 ))− ({v2, c1} ∩ (F

(2)
1 	F

(2)
3 ))] is an induced forest in G, showing

a(G) ≥ |F (2)
1 |+ |F (2)

2 |+ |F (2)
3 |+ 2− 4 ≥ �(4n+ 3)/7�, a contradiction.

Subcase 7.3. (n1, n2, n3) ≡ (4, 0, 4), (4, 6, 4) mod 7 (respectively, (0, 3, 4)

mod 7).

For i = 3 (respectively, i = 4), let F
(i)
1 = A((G1 − {x, y, z, w, y1, y2} −

Bi)/z1z2) with z′ as the identification of {z1, z2}, F (i)
2 = A(G2 − {y1, y2} −

Bi), and F
(i)
3 = A(G3 − w). Then |F (i)

1 | ≥ �(4(|G1| − 7 − |Bi|) + 3)/7�,
|F (i)

2 | ≥ �(4(|G2| − 2− |Bi|) + 3)/7� and |F (i)
3 | ≥ �(4(|G3| − 1) + 3)/7�. Let

F = F
(i)
1 ∪F (i)

2 ∪F (i)
3 +{x, y, z}−({v2, c1}∩(F (i)

1 	F
(i)
3 ))−({b1}∩(F (i)

1 	F
(i)
2 )).

Now G[F ] (if z′ �∈ F
(i)
1 ) or G[F −{z, z′}+{z1, z2}] (if z′ ∈ F

(i)
1 ) is an induced

forest in G, showing a(G) ≥ |F (i)
1 | + |F (i)

2 | + |F (i)
3 | + 3 − 2 − (1 − |Bi|) ≥

�(4n+ 3)/7�, a contradiction.
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Subcase 7.4. (n1, n2, n3) ≡ (4, 0, 3) mod 7 (respectively, (1, 0, 6) mod 7).

Let C6= ∅ and C7= {c1}. For i = 6, 7, let F
(i)
1 = A((G1−{x, y, z, w, v, v2}

−Ci)/{y1y2, z1z2}) with y′ (respectively, z′) as the identification of {y1, y2}
(respectively, {z1, z2}), F (i)

2 = A(G2), and F
(i)
3 = A(G3−{w, v2}−Ci). Then

|F (i)
1 | ≥ �(4(|G1| − 8 − |Ci|) + 3)/7�, |F (i)

2 | ≥ �(4|G2| + 3)/7�, and |F (i)
3 | ≥

�(4(|G3| − 2− |Ci|) + 3)/7�. Let F (i) := G[F1
(i) ∪F

(i)
2 ∪F

(i)
3 − ({y1, y2, b1} ∩

(F1
(i)	F

(i)
2 )) − ({c1} ∩ (F1

(i)	F
(i)
3 ))], where F1

(i)
:= F1

(i) + {x, y, v, z} if

y′, z′ �∈ F
(i)
1 , and otherwise, F1

(i)
obtained from F1

(i) + {x, y, v, z} by delet-
ing {z, z′} (respectively, {y, y′}) and adding {z1, z2} (respectively, {y1, y2})
when z′ ∈ F1

(i) (respectively, y′ ∈ F1
(i)). Therefore, F (i) is an induced forest

in G, showing a(G) ≥ |F (i)
1 |+ |F (i)

2 |+ |F (i)
3 |+4−3−(1−|Ci|) ≥ �(4n+3)/7�,

a contradiction.

Subcase 7.5. (n1, n2, n3) ≡ (4, 3, 0) mod 7 (respectively, (1, 6, 0) mod 7).

For i = 8 (respectively, i = 9), let F
(i)
1 = A((G1 − {x, y, z, v, y1, y2} −

Bi)/{wv2, z1z2} + v′z′) with v′ (respectively, z′) as the identification of

{w, v2} (respectively, {z1, z2}), F (i)
2 = A(G2 − {y1, y2} − Bi), and F

(i)
3 =

A(G3). Then |F (i)
1 | ≥ �(4(|G1|−8−|Bi|)+3)/7�, |F (i)

2 | ≥ �(4(|G2|−2−|Bi|)+
3)/7� and |F (i)

3 | ≥ �(4|G3|+3)/7�. Let F (i) := G[F1
(i) ∪F

(i)
2 ∪F

(i)
3 − ({b1}∩

(F1
(i)	F

(i)
2 ))−({w, v2, c1}∩(F1

(i)	F
(i)
3 ))], where F1

(i)
:= F1

(i)+{x, y, v, z}
if v′, z′ �∈ F

(i)
1 , and otherwise, F1

(i)
obtained from F1

(i)+{x, y, v, z} by delet-
ing {z, z′} (respectively, {v, v′}) and adding {z1, z2} (respectively, {w, v2})
when z′ ∈ F1

(i) (respectively, v′ ∈ F1
(i)). Therefore, F (i) is an induced forest

in G, showing a(G) ≥ |F (i)
1 |+ |F (i)

2 |+ |F (i)
3 |+4−3−(1−|Bi|) ≥ �(4n+3)/7�,

a contradiction.

Subcase 7.6. (n1, n2, n3) ≡ (3, 0, 4) mod 7.

Let F
(10)
1 = A((G1 − {x, y, z, w})/{y1y2, z1z2}) with y′ (respectively, z′)

as the identification of {y1, y2} (respectively, {z1, z2}), F (10)
2 = A(G2), and

F
(10)
3 = A(G3−w). Then |F (10)

1 | ≥ �(4(|G1|−6)+3)/7�, |F (10)
2 | ≥ �(4|G2|+

3)/7� and |F (10)
3 | ≥ �(4(|G3| − 1) + 3)/7�. Let F (10) := G[F1

(10) ∪ F
(10)
2 ∪

F
(10)
3 − ({y1, y2, b1} ∩ (F1

(10)	F
(10)
2 )) − ({v2, c1} ∩ (F1

(10)	F
(10)
3 ))], where

F1
(10)

:= F1
(10) + {x, y, z} if y′, z′ �∈ F

(10)
1 , and otherwise, F1

(10)
obtained

from F1
(10) + {x, y, z} by deleting {z, z′} (respectively, {y, y′}) and adding

{z1, z2} (respectively, {y1, y2}) when z′ ∈ F1
(10) (respectively, y′ ∈ F1

(10)).

Therefore, F (10) is an induced forest in G, showing a(G) ≥ |F (10)
1 |+ |F (10)

2 |+
|F (10)

3 |+ 3− 5 ≥ �(4n+ 3)/7�, a contradiction.
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Subcase 7.7. (n1, n2, n3) ≡ (4, 4, 6) mod 7.

By Claim 5, wy1 �∈ E(G). Let w′ ∈ N(w) − {v, c1, x, y2}. Let F
(11)
1 =

A(G1 − {x, z, w, v, y2, v1, v2, c1} + w′y), F (11)
2 = A(G2 − y2), and F

(11)
3 =

A(G3−{w, v2, c1}). Then |F (11)
1 | ≥ �(4(|G1|−8)+3)/7�, |F (11)

2 | ≥ �(4(|G2|−
1)+3)/7�, and |F (11)

3 | ≥ �(4(|G3|−3)+3)/7�. Now G[F
(11)
1 ∪F

(11)
2 ∪F

(11)
3 +

{x,w, v} − ({y1, b1} ∩ (F
(11)
1 	F

(11)
2 ))] is an induced forest in G, showing

a(G) ≥ |F (11)
1 |+ |F (11)

2 |+ |F (11)
3 |+ 3− 2 ≥ �(4n+ 3)/7�, a contradiction.

Subcase 7.8. (n1, n2, n3) ≡ (3, 4, 0) mod 7.
We claim that |N(y1)∩N(z1)| ≤ 2. Otherwise, there exist d1 ∈ N(y1)∩

N(z1) and subgraphs G′
1, G

′
2, G

′
3, G

′
4 of G such that G′

2 = G2, G
′
3 = G3,

G′
4 is the maximal subgraph of G contained in the closed region of the

plane bounded by the cycle zy1d1z1z and containing N(y1) ∩ N(z1) − {z},
and G′

1 is obtained from G by removing G′
2 − {y1, y2, b1}, G′

3 − {w, c1, v2}
and G′

4 − {y1, d1, z1}. Let D14 = {d1} and D15 = ∅. For i = 14, 15, let

F
(i)
1 = A(G′

1 − {x, y, z, w, v, y1, y2, v2, c1, z1} −Di), F
(i)
2 = A(G′

2 − {y1, y2}),
F

(i)
3 = A(G′

3 − {w, v2, c1}), and F
(i)
4 = A(G′

4 − {y1, z1}−Di). Then |F (i)
1 | ≥

�(4(|G′
1| − 10 − |Di|) + 3)/7�, |F (i)

2 | ≥ �(4(|G′
2| − 2) + 3)/7� = �(4(|G2| −

2) + 3)/7� = (4(|G2| − 2) + 3)/7 + 3/7, |F (i)
3 | ≥ �(4(|G′

3| − 3) + 3)/7� =

�(4(|G3| − 3) + 3)/7� = (4(|G′
3| − 3) + 3)/7 + 4/7, and |F (i)

4 | ≥ �(4(|G′
4| −

2 − |Di|) + 3)/7�. Note N(w) − {y1, x, v} ⊆ V (G′
3). Now G[F

(i)
1 ∪ F

(i)
2 ∪

F
(i)
3 ∪ F

(i)
4 + {x, y, z, w} − ({b1} ∩ (F

(i)
1 	F

(i)
2 ))− ({d1} ∩ (F

(i)
1 	F

(i)
4 ))] is an

induced forest of size |F (i)
1 |+ |F (i)

2 |+ |F (i)
3 |+ |F (i)

4 |+ 4− 1− (1− |Di|). By
Lemma 2.2(1) (with k = 1, a = |G′

1| − 10, a1 = |G′
4| − 2, L = {1, 2}, b1 =

|G′
2| − 2, b2 = |G′

3| − 3, c = 3), a(G) ≥ �(4n+ 3)/7�, a contradiction.

Let F
(12)
1 = A((G1 − {x, y, z, y2, w, v, v2, c1})/z1y1) with y′ as the iden-

tification of {z1, y1}, F (12)
2 = A(G2 − y2) and F

(12)
3 = A(G3 − {w, v2, c1}).

Then |F (12)
1 | ≥ �(4(|G1| − 9) + 3)/7�, |F (12)

2 | ≥ �(4(|G2| − 1) + 3)/7� and

|F (12)
3 | ≥ �(4(|G3| − 3) + 3)/7�. Note N(w) − {y2, x, v} ⊆ V (G3). Now

G[F
(12)
1 ∪F (12)

2 ∪F (12)
3 +{x, y, w, v}−({y1, b1}∩(F (12)

1 	F
(12)
2 ))] (if y′ �∈ F

(12)
1 )

or G[(F
(12)
1 − y′) ∪ F

(12)
2 ∪ F

(12)
3 + {x, y1, z1, w, v} − ({y1, b1} ∩ ((F

(12)
1 +

y1)	F
(12)
2 ))] (if y′ ∈ F

(12)
1 ) is an induced forest in G, showing a(G) ≥

|F (12)
1 |+ |F (12)

2 |+ |F (12)
3 |+ 4− 2 ≥ �(4n+ 3)/7�, a contradiction.

Subcase 7.9. (n1, n2, n3) ≡ (0, 4, 3) mod 7.
We claim that |N(v1)∩N(v2)| ≤ 2. Otherwise, there exist e1 ∈ N(v1)∩

N(v2) and subgraphs G′
1, G

′
3, G

′
4 such that G′

3 = G3, G
′
4 is the maximal
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subgraph of G contained in the closed region of the plane bounded by the

cycle vv1e1v2v and containing N(v1)∩N(v2)−{v}, and G′
1 is obtained from

G by removing G′
3 − {w, c1, v2} and G′

4 − {v1, e1, v2}. Let E16 = {e1} and

E17 = ∅. For i = 16, 17, let F
(i)
1 = A((G′

1 − {x, z, w, v, v1, v2} − Ei)/z1z2)

with z′ as the identification of {z1, z2}, F (i)
3 = A(G′

3 − {w, v2}), and F
(i)
4 =

A(G′
4 − {v1, v2} − Ei). Then |F (i)

1 | ≥ �(4(|G′
1| − 7 − |Ei|) + 3)/7�, |F (i)

3 | ≥
�(4(|G′

3| − 2) + 3)/7� = �(4(|G3| − 2) + 3)/7� = (4(|G3| − 2) + 3)/7 + 4/7,

and |F (i)
4 | ≥ �(4(|G′

4| − 2 − |Ei|) + 3)/7�. Let F = F
(i)
1 ∪ F

(i)
3 ∪ F

(i)
4 +

{x, z, v} − ({c1} ∩ (F
(i)
1 	F

(i)
3 )) − ({e1} ∩ (F

(i)
1 	F

(i)
4 )). Now G[F ] (if z′ �∈

F
(i)
1 ) or G[F − {z, z′} + {z1, z2}] (if z′ ∈ F

(i)
1 ) is an induced forest in G,

showing a(G) ≥ |F (i)
1 |+ |F (i)

3 |+ |F (i)
4 |+3− 1− (1− |Ei|). By Lemma 2.2(1)

(with k = 1, a = |G′
1| − 7, a1 = |G′

4| − 2, L = {1}, b1 = |G′
3| − 2, c = 2),

a(G) ≥ �(4n+ 3)/7�, a contradiction.

Let F
(13)
1 = A((G1 − {x,w, v, y2, c1})/{yz, v1v2}) with x′ (respectively,

v′) as the identification of {y, z} (respectively, {v1, v2}), F (13)
2 = A(G2 −

y2), and F
(13)
3 = A(G3 − {w, c1}). Then |F (13)

1 | ≥ �(4(|G1| − 7) + 3)/7�,
|F (13)

2 | ≥ �(4(|G2| − 1) + 3)/7� and |F (13)
3 | ≥ �(4(|G3| − 2) + 3)/7�. Let

F (13) := G[F1
(13) ∪ F

(13)
2 ∪ F

(13)
3 − ({y1, b1} ∩ (F1

(13)	F
(13)
2 )) − ({v2} ∩

(F1
(13)	F

(13)
3 ))], where F1

(13)
:= F1

(13)+{x,w, v} if x′, v′ �∈ F
(13)
1 , and F1

(13)

obtained from F1
(13) + {x,w, v} by deleting {x, x′} (respectively, {v, v′})

and adding {y, z} (respectively, {v1, v2}) when x′ ∈ F1
(13) (respectively,

v′ ∈ F1
(13)). Note N(w)−{y2, x, v} ⊆ V (G3). Therefore, F

(13) is an induced

forest in G, showing a(G) ≥ |F (13)
1 |+ |F (13)

2 |+ |F (13)
3 |+3−3 ≥ �(4n+3)/7�,

a contradiction.

6. Another forbidden configuration at a 3-vertex

In this section we prove that for any x ∈ V3, N(x) ∩ Vi = ∅ for some

i ∈ {3, 4, 5}.

Lemma 6.1. Let x ∈ V3. Then N(x) ∩ V3 = ∅, or N(x) ∩ V4 = ∅, or

N(x) ∩ V5 = ∅.

Proof. We begin the proof by assuming that N(x) = {w, y, z} with y ∈ V3,

z ∈ V4 and w ∈ V5. Let N(y) = {y1, x, z1}, N(z) = {x, z1, z2, z3}, and
N(w) = {x, y1, w1, w2, z3} where w1 is co-facial with y1.

Claim 1. N(z1) ∩N(z3) = {z}.
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For, suppose |N(z1) ∩N(z3)| ≥ 2. First, we claim that N(z1) ∩N(z3) ∩
N(w2) = ∅. Otherwise, there exist a1 ∈ N(z1) ∩ N(z3) and subgraphs

G1, G2, G4 of G such that G2 is the maximal subgraph of G contained in

the closed region of the plane bounded by the cycle zz1a1z3z and containing

N(z1) ∩ N(z3) − {z}, G4 is the maximal subgraph of G contained in the

closed region of the plane bounded by the cycle ww2a1z3w, and G1 is ob-

tained from G by removing G2 −{z, z1, a1, z3} and G4 −{w,w2, a1, z3}. Let
F

(1)
1 = A(G1 − {w, x, y, z, y1, z1, z3, a1, w2}), F (1)

2 = A(G2 − {z1, z, z3, a1}),
and F

(1)
4 = A(G4 − {w, z3, a1, w2}). Then |F (1)

1 | ≥ �(4(|G1| − 9) + 3)/7�,
|F (1)

2 | ≥ �(4(|G2| − 4) + 3)/7�, and |F (1)
4 | ≥ �(4(|G4| − 4) + 3)/7�. Now

G[F
(1)
1 ∪ F

(1)
2 ∪ F

(1)
4 + {w, x, y, z}] is an induced forest in G, showing that

a(G) ≥ |F (1)
1 |+ |F (1)

2 |+ |F (1)
4 |+4. By Lemma 2.2(7) (with k = 3, a1 = |G1|−

9, a2 = |G2|−4, a3 = |G4|−4, c = 4), a(G) ≥ �(4n+3)/7� unless (4(|G1|−9)+

3, 4(|G2|−4)+3), 4(|G4|−4)+3) ≡ (0, 0, 0), (0, 6, 0), (0, 0, 6), (6, 0, 0) mod 7.

In first three cases, let F
(2)
1 = A(G1 −{w, x, y, z, z1, z3, a1}), F (2)

2 = A(G2 −
{z1, z, z3, a1}), and F

(2)
4 = A(G4−{w, z3, a1}). Then |F (2)

1 | ≥ �(4(|G1|−7)+

3)/7�, |F (2)
2 | ≥ �(4(|G2|−4)+3)/7�, and |F (2)

4 | ≥ �(4(|G4|−3)+3)/7�. Now

G[F
(2)
1 ∪F (2)

2 ∪F (2)
4 +{x, y, z}−{w2}∩(F (2)

1 	F
(2)
4 )] is an induced forest in G,

showing a(G) ≥ |F (2)
1 |+|F (2)

2 |+|F (2)
4 |+3−1 ≥ �(4n+3)/7�, a contradiction.

Now, assume (4(|G1|−9)+3, 4(|G2|−4)+3), 4(|G4|−4)+3) ≡ (6, 0, 0) mod 7.

If y1a1 �∈ E(G), let F
(3)
1 = A(G1 − {w, x, y, z1, z3} + y1a1), F

(3)
2 = A(G2 −

{z1, z3}), and F
(3)
4 = A(G4 − {w, z3}). Then |F (3)

1 | ≥ �(4(|G1| − 5) + 3)/7�,
|F (3)

2 | ≥ �(4(|G2|−2)+3)/7� and |F (3)
4 | ≥ �(4(|G4|−2)+3)/7�. Now G[F

(3)
1 ∪

F
(3)
2 ∪F (3)

4 +{x, y}−({w2, a1}∩(F (3)
1 	F

(3)
4 ))−({z, a1}∩(F (3)

1 	F
(3)
2 ))] an in-

duced forest inG, showing a(G) ≥ |F (3)
1 |+|F (3)

2 |+|F (3)
4 |+2−4 ≥ �(4n+3)/7�,

a contradiction. So y1a1 ∈ E(G). Then there exist subgraphs G′
1, G

′
2, G

′
4, G

′
5

of G such that G′
2 = G2, G

′
4 = G4, G

′
5 is the maximal subgraph of G con-

tained in the closed region of the plane bounded by the cycle yy1a1z1y, and

G1 is obtained from G by removing G′
2−{z, z1, a1, z3}, G′

4−{w,w2, a1, z3},
and G′

5 − {y, y1, a1, z1}. Let F
(4)
1 = A(G′

1 − {w, x, y, z, y1, z1, z3, w2, a1}),
F

(4)
2 = A(G′

2 − {z1, z, z3, a1}), F (4)
4 = A(G′

4 − {w, z3, a1, w2}) and F
(4)
5 =

A(G′
5−{y1, y, z1, a1}). Then |F (4)

1 | ≥ �(4(|G′
1|−9)+3)/7�, |F (4)

2 | ≥ �(4(|G′
2|−

2)+3)/7�, |F (4)
4 | ≥ �(4(|G′

4|− 2)+3)/7�, and |F (4)
5 | ≥ �(4(|G′

5|− 4)+3)/7�.
Now G[F

(4)
1 ∪ F

(4)
2 ∪ F

(4)
4 ∪ F

(4)
5 + {w, x, y, z}] is an induced forest in G,

showing a(G) ≥ |F (4)
1 | + |F (4)

2 | + |F (4)
4 | + |F (4)

5 | + 4 ≥ �(4n + 3)/7�, a con-

tradiction.
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Secondly, we claim that N(z1)∩N(z3)∩N(y1) = ∅. For otherwise, there
exist a1 ∈ N(z1)∩N(z3) and subgraphs G1, G2, G5 of G such that G2 is the

maximal subgraph of G contained in the closed region of the plane bounded

by the cycle zz1a1z3z and containing N(z1)∩N(z3)−{z}, G5 is the maximal

subgraph of G contained in the closed region of the plane bounded by the

cycle yy1a1z1y, and G1 is obtained from G by removing G2 − {z, z1, a1, z3}
and G5 − {y, y1, a1, z1}. Let F

(1)
1 = A(G1 − {x, y, z, y1, z1, z3, a1}), F (1)

2 =

A(G2 − {z1, z, z3, a1}) and F
(1)
5 = A(G5 − {y1, y, z1, a1}). Then |F (1)

1 | ≥
�(4(|G1| − 7) + 3)/7�, |F (1)

2 | ≥ �(4(|G2| − 4) + 3)/7� and |F (1)
5 | ≥ �(4(|G5| −

4) + 3)/7�. Now G[F
(1)
1 ∪ F

(1)
2 ∪ F

(1)
5 + {x, y, z}] is an induced forest in G,

showing that a(G) ≥ |F (1)
1 |+ |F (1)

2 |+ |F (1)
5 |+3. By Lemma 2.2(6) (with k =

3, a1 = |G1|−7, a2 = |G2|−4, a3 = |G5|−4, c = 3), (4(|G1|−7)+3, 4(|G2|−
4)+3), 4(|G5|−4)+3) ≡ (0, 0, 0) mod 7. Let F

(2)
1 = A(G1−{w, x, y, z, z1}),

F
(2)
2 = A(G2−{z1, z}), and F

(2)
5 = A(G5−{y, z1}). Then |F (2)

1 | ≥ �(4(|G1|−
5)+3)/7�, |F (2)

2 | ≥ �(4(|G2|− 2)+3)/7�, and |F (2)
5 | ≥ �(4(|G5|− 2)+3)/7�.

Now G[F
(2)
1 ∪ F

(2)
2 ∪ F

(2)
5 + {x, y} − ({z3, a1} ∩ (F

(2)
1 	F

(2)
2 )) − ({y1, a1} ∩

(F
(2)
1 	F

(2)
5 ))] is an induced forest in G, showing that a(G) ≥ |F (2)

1 |+|F (2)
2 |+

|F (2)
5 |+ 2− 4 ≥ �(4n+ 3)/7�, a contradiction.

Thirdly, we claim that |N(y1) ∩ N(w1)| ≤ 2. For otherwise, there exist

b1 ∈ N(y1)∩N(w1), a1 ∈ N(z1)∩N(z3) and subgraphs G1, G2, G3 of G such

that G2 is the maximal subgraph of G contained in the closed region of the

plane bounded by the cycle zz1a1z3z and containing N(z1) ∩ N(z3) − {z},
G3 is the maximal subgraph of G contained in the closed region of the plane

bounded by the cycle wy1b1w1w and containing N(y1) ∩N(w1)− {w}, and
G1 is obtained from G by removing G2−{z, z1, a1, z3} and G3−{y1, b1, w1}.
Let B1 = B3 = B2 = B4 = {b1} and B2 = B1 = B4 = B3 = ∅. For
i = 1, 2, let F

(i)
1 = A(G1−{w, x, y, z, y1, z1, z3, a1, w1}−Bi), F

(i)
2 = A(G2−

{z1, z, z3, a1}), and F
(i)
3 = A(G3 − {y1, w1} − Bi). Then |F (i)

1 | ≥ �(4(|G1| −
9− |Bi|) + 3)/7�, |F (i)

2 | ≥ �(4(|G2| − 4) + 3)/7�, and |F (i)
3 | ≥ �(4(|G3| − 2−

|Bi|) + 3)/7�. Now G[F
(i)
1 ∪ F

(i)
2 ∪ F

(i)
3 ∪ {w, x, y, z} − {b1} ∩ (F

(i)
1 	F

(i)
3 )]

is an induced forest in G, showing that a(G) ≥ |F (i)
1 | + |F (i)

2 | + |F (i)
3 | +

4 − |Bi|. For j = 3, 4, let F
(j)
1 = A(G1 − {w, x, y, z, y1, z1, z3, w1} − Bj +

w2a1), F
(j)
2 = A(G2 − {z1, z, z3}), and F

(j)
3 = A(G3 − {y1, w1} −B1). Then

|F (j)
1 | ≥ �(4(|G1| − 8 − |B1|) + 3)/7�, |F (j)

2 | ≥ �(4(|G2| − 3) + 3)/7�, and
|F (j)

3 | ≥ �(4(|G3|−2−|Bj |)+3)/7�. Now G[F
(j)
1 ∪F

(j)
2 ∪F

(j)
3 +{w, x, y, z}−

({b1}∩(F (j)
1 	F

(j)
3 ))−({a1}∩(F (j)

1 	F
(j)
2 ))] is an induced forest inG, showing
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a(G) ≥ |F (j)
1 |+ |F (j)

2 |+ |F (j)
3 |+4− 1− |B1|. By Lemma 2.2(1) (with k = 1),

a(G) ≥ �(4n+ 3)/7�, a contradiction.
Since |N(z1)∩N(z3)| ≥ 2, there exist a1 ∈ N(z1)∩N(z3) and subgraphs

G1, G2 of G such that G2 is the maximal subgraph of G contained in the
closed region of the plane bounded by the cycle zz1a1z3z containing N(z1)∩
N(z3)−{z}, and G1 is obtained from G by removing G2−{z, z1, a1, z3}. Let
F

(1)
1 = A(G1−{w, x, y, z, z1, z3, a1}/w1y1) with w′ as the identification of w1

and y1, and F
(1)
2 = A(G2−{z1, z, z3, a1}). Then |F (1)

1 | ≥ �(4(|G1|−8)+3)/7�,
and |F (1)

2 | ≥ �(4(|G2| − 4) + 3)/7�. Now G[F
(1)
1 ∪ F

(1)
2 + {w, x, y, z}] (if

w′ �∈ F
(1)
1 ) or G[(F

(1)
1 − w′) ∪ F

(1)
2 + {w1, y1, x, y, z}] (if w′ ∈ F

(1)
1 ) is an

induced forest in G, showing a(G) ≥ |F (1)
1 | + |F (1)

2 | + 4. By Lemma 2.2(6)
(with k = 2, a1 = |G1| − 8, a2 = |G2| − 4, c = 4), (4(|G1| − 8) + 3, 4(|G2| −
4) + 3)) ≡ (0, 0) mod 7. Let F

(2)
1 = A(G1 − {w, x, y, z, z1, z3} + y1a1), and

F
(2)
2 = A(G2−{z1, z, z3}). Then |F (2)

1 | ≥ �(4(|G1|− 6)+3)/7�, and |F (2)
2 | ≥

�(4(|G2|−3)+3)/7�. Now G[F
(2)
1 ∪F

(2)
2 +{x, y, z}− ({a1}∩ (F

(2)
1 	F

(2)
2 ))] is

an induced forest in G, showing a(G) ≥ |F (2)
1 |+ |F (2)

2 |+3−1 ≥ �(4n+3)/7�.
This completes the proof of Claim 1.

Claim 2. wz2 �∈ E(G).
Otherwise, wz2 ∈ E(G), there exists a separation (G1, G2) such that

V (G1 ∩G2) = {w, x, z, z2}, y ∈ V (G1), and z3 ∈ V (G2). Let F
(1)
1 = A(G1 −

{w, x, z, z2, y, z1}), and F
(1)
2 = A(G2−{w, x, z, z2}). Then |F (1)

1 | ≥ �(4(|G1|−
6)+ 3)/7�, and |F (1)

2 | ≥ �(4(|G2| − 4)+ 3)/7�. Now G[F
(1)
1 ∪F

(1)
2 ∪{x, y, z}]

is an induced forest in G, showing a(G) ≥ |F (1)
1 |+ |F (1)

2 |+3 ≥ �(4n+3)/7�,
a contradiction. This completes the proof of Claim 2.

Claim 3. wz1 �∈ E(G).
Otherwise, wz1 ∈ E(G), there exists a separation (G1, G2) in G such

that V (G1 ∩ G2) = {w, x, y, z1}, y1 ∈ V (G1), and z ∈ V (G2). For i = 1, 2,

let F
(1)
i = A(Gi − {w, x, y, z1}); so |F (1)

i | ≥ �(4(|Gi| − 4) + 3)/7�. Now

G[F
(1)
1 ∪ F

(1)
2 + {x, y}] is an induced forest in G, showing a(G) ≥ |F (1)

1 | +
|F (1)

2 | + 2 ≥ �(4n + 3)/7�, a contradiction. This completes the proof of
Claim 3.

We now distinguish several cases.

Case 1. |N(y1)∩N(w1)| ≤ 2, |N(z1)∩N(z2)| ≤ 2 and |N(z2)∩N(z3)| ≤ 2.
Let F ′ = A(G−{w, x, y, z}/{y1w1, z1z2z3}) with w′ (respectively, z′) as

identifications of {y1, w1} (respectively, {z1, z2, z3}). Then |F ′| ≥ �(4(n −
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7) + 3)/7�. Let F = F ′ + {w, x, y, z} if w′, z′ �∈ F ′; F = F ′ + {w1, y1, x, y, z}
if z′ �∈ F ′, w′ ∈ F ′; F = F ′ + {x, y, z1, z2, z3} − {z′} if w′ �∈ F ′, z′ ∈ F ′; and
F = F ′ + {w1, y1, x, z1, z2, z3} − {w′, z′} if w′, z′ ∈ F ′. Therefore, G[F ] is an
induced forest in G, giving a(G) ≥ |F ′|+ 4 ≥ �(4n+ 3)/7�, a contradiction.

Case 2. |N(y1)∩N(w1)| ≥ 3, |N(z1)∩N(z2)| ≤ 2 and |N(z2)∩N(z3)| ≤ 2.
There exist b1 ∈ N(y1) ∩ N(w1) and a separation (G1, G2) such that

V (G1 ∩G2) = {w1, y1, b1}, x ∈ V (G1) and N(y1) ∩N(w1)− {w} ⊆ V (G2).

Let B1 = B2 = {b1} and B2 = B1 = ∅. For i = 1, 2, let F
(i)
1 = A((G1 −

{w, x, y, z, y1, w1}−Bi)/{z1z2z3}) with z′ as the identification of {z1, z2, z3},
and F

(i)
2 = A(G2−{y1, w1}−Bi). Then |F (i)

1 | ≥ �(4(|G1|−8−|Bi|)+3)/7�,
and |F (i)

2 | ≥ �(4(|G2| − 2− |Bi|) + 3)/7�. Now G[F
(i)
1 ∪ F

(i)
2 + {w, x, y, z} −

({b1}∩ (F
(i)
1 	F

(i)
2 ))] (if z′ �∈ F

(i)
1 ) or G[(F

(i)
1 − z′)∪F

(i)
2 + {x, y, z1, z2, z3}−

({b1}∩ (F
(i)
1 	F

(i)
2 ))] (if z′ ∈ F

(i)
1 ) is an induced forest in G, showing a(G) ≥

|F (i)
1 |+|F (i)

2 |+4−|Bi|. By Lemma 2.2(2) (with a = |G1|−8, a1 = |G2|−2, c =
4), (4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (4, 0), (0, 4) mod 7.

Subcase 2.1. (4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (4, 0) mod 7.

Let F
(1)
1 = A((G1−{w, x, y, z})/{y1w1, z1z2z3}) with w′ (respectively z′)

as the identification of {y1, w1} (respectively {z1, z2, z3}), and F
(1)
2 = A(G2).

Then |F (1)
1 | ≥ �(4(|G1| − 7) + 3)/7�, and |F (1)

2 | ≥ �(4|G2| + 3)/7�. Let

F (1) := F1
(1) ∪ F

(1)
2 − {y1, w1, b1} ∩ (F1

(1)	F
(1)
2 ) where F1

(1)
= F

(1)
1 +

{w, x, y, z} if w′, z′ �∈ F
(1)
1 ; F1

(1)
= F

(1)
1 + {w1, y1, x, y, z} if z′ �∈ F

(1)
1 , w′ ∈

F
(1)
1 ; F1

(1)
= F

(1)
1 +{x, y, z1, z2, z3}−{z′} if w′ �∈ F

(1)
1 , z′ ∈ F

(1)
1 ; and F1

(1)
=

F
(1)
1 +{w1, y1, x, z1, z2, z3}−{w′, z′} if w′, z′ ∈ F

(1)
1 . Therefore, G[F (1)] is an

induced forest in G, showing a(G) ≥ |F (1)
1 |+ |F (1)

2 |+ 4− 3 ≥ �(4n+ 3)/7�,
a contradiction.

Subcase 2.2. (4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (0, 4) mod 7.

Let F
(2)
1 = A(G1 −{y1, x, y, z}/{z1z2z3}) with z′ as the identification of

{z1, z2, z3}, and F
(2)
2 = A(G2 − y1). Then |F (1)

1 | ≥ �(4(|G1| − 6)+ 3)/7� and

|F (2)
1 | ≥ �(4(|G2| − 1) + 3)/7�. Now G[F

(2)
1 ∪ F

(2)
2 + {x, y, z} − ({w1, b1} ∩

(F
(2)
1 	F

(2)
2 ))] (if z′ �∈ F

(2)
1 ) or G[(F

(2)
1 −z′)∪F (2)

2 +{x, z1, z2, z3}−({w1, b1}∩
(F

(2)
1 	F

(2)
2 ))] (if z′ ∈ F

(2)
1 ) is an induced forest in G, showing a(G) ≥

|F (2)
1 |+ |F (2)

2 |+ 3− 2 ≥ �(4n+ 3)/7�, a contradiction.

Case 3. |N(y1) ∩N(w1)| ≤ 2, |N(z1) ∩N(z2)| > 2, |N(z2) ∩N(z3)| ≤ 2.
There exist a1 ∈ N(z1) ∩ N(z2) and a separation (G1, G2) such that

V (G1 ∩ G2) = {z1, z2, a1}, x ∈ V (G1), and N(z1) ∩ N(z2) − {z} ⊆ V (G2).
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Let A1 = A2 = {a1} and A2 = A1 = ∅. For i = 1, 2, let F
(i)
1 = A((G1 −

{w, x, y, z, z1, z2, z3} − Ai)/y1w1) with w′ as the identification of {y1, w1},
and F

(i)
2 = A(G2−{z1, z2}−Ai). Then |F (i)

1 | ≥ �(4(|G1|−8−|Ai|)+3)/7� and
|F (i)

2 | ≥ �(4(|G2|−2−|Ai|)+3)/7�. Now G[F
(i)
1 ∪F

(i)
2 +{w, x, y, z}−({a1}∩

(F
(i)
1 	F

(i)
2 ))] (if w′ �∈ F

(i)
1 ) or G[(F

(i)
1 −w′)∪F

(i)
2 +{w1, y1, x, y, z}− ({a1}∩

(F
(i)
1 	F

(i)
2 ))] (if w′ ∈ F

(i)
1 ) is an induced forest in G, showing a(G) ≥ |F (i)

1 |+
|F (i)

2 |+ 4− |Ai|. By Lemma 2.2(2) (with a = |G1| − 8, a1 = |G2| − 2, c = 4),
(4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (4, 0), (0, 4) mod 7.

Subcase 3.1. (4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (4, 0) mod 7.

Let F
(3)
1 = A((G1−{w, x, y, z})/{y1w1, z1z2z3}) with w′ (respectively, z′)

as the identification of {y1, w1} (respectively, {z1, z2, z3}), and F
(3)
2 = A(G2).

Then |F (3)
1 | ≥ �(4(|G1| − 7) + 3)/7�, and |F (3)

2 | ≥ �(4|G2| + 3)/7�. Let

F (3) := F1
(3) ∪ F

(3)
2 − ({z1, z2, a1} ∩ (F1

(3)	F
(3)
2 )) where F1

(3)
= F

(3)
1 +

{w, x, y, z} if w′, z′ �∈ F
(3)
1 ; F1

(3)
= F

(3)
1 + {w1, y1, x, y, z} if z′ �∈ F

(3)
1 , w′ ∈

F
(3)
1 ; F1

(3)
= F

(3)
1 +{x, y, z1, z2, z3}−{z′} if w′ �∈ F

(3)
1 , z′ ∈ F

(3)
1 ; and F1

(3)
=

F
(3)
1 +{w1, y1, x, z1, z2, z3}−{w′, z′} if w′, z′ ∈ F

(3)
1 . Therefore, G[F (3)] is an

induced forest in G, showing a(G) ≥ |F (3)
1 |+ |F (3)

2 |+ 4− 3 ≥ �(4n+ 3)/7�,
a contradiction.

Subcase 3.2. (4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (0, 4) mod 7.

Let F
(4)
1 = A((G1−{z1, x, y, z, w})/z2z3) with z′ as the identification of

{z2, z3}, and F
(4)
2 = A(G2 − z1). Then |F (4)

1 | ≥ �(4(|G1| − 6) + 3)/7�, and
|F (4)

2 | ≥ �(4(|G2| − 1) + 3)/7�. Now G[F
(4)
1 ∪ F

(4)
2 + {x, y, z} − ({z2, a1} ∩

(F
(4)
1 	F

(4)
2 ))] (if z′ �∈ F

(2)
1 ) or G[(F

(4)
1 −z′)∪F

(4)
2 +{x, y, z2, z3}−({z2, a1}∩

((F
(4)
1 ∪ {z2})	F

(4)
2 ))] (if z′ ∈ F

(2)
1 ) is an induced forest in G, showing

a(G) ≥ |F (2)
1 |+ |F (2)

2 |+ 3− 2 ≥ �(4n+ 3)/7�, a contradiction.

Case 4. |N(y1) ∩N(w1)| ≤ 2, |N(z1) ∩N(z2)| ≤ 2, |N(z2) ∩N(z3)| > 2.
There exist c1 ∈ N(z2) ∩ N(z3) and a separation (G1, G2) such that

V (G1 ∩ G2) = {z2, z3, c1}, x ∈ V (G1), and N(z2) ∩ N(z3) − {z} ⊆ V (G2).

Let C1 = C2 = {c1} and C2 = C1 = ∅. For i = 1, 2, let F
(i)
1 = A((G1 −

{w, x, y, z, z1, z2, z3} − Ci)/y1w1) with w′ as the identification of {y1, w1},
and F

(i)
2 = A(G2−{z2, z3}−Ci). Then |F (i)

1 | ≥ �(4(|G1| − 8− |Ci|)+ 3)/7�,
and |F (i)

2 | ≥ �(4(|G2| − 2− |Ci|) + 3)/7�. Now G[F
(i)
1 ∪ F

(i)
2 + {w, x, y, z} −

({c1}∩ (F
(i)
1 	F

(i)
2 ))] (if w′ �∈ F

(i)
1 ) or G[(F

(i)
1 −w′)∪F

(i)
2 ∪{w1, y1, x, y, z}−

({c1}∩(F
(i)
1 	F

(i)
2 ))] (if w′ ∈ F

(i)
1 ) is an induced forest in G, showing a(G) ≥
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|F (i)
1 |+ |F (i)

2 |+4−Ci. By Lemma 2.2(2), (4(|G1| − 8)+3, 4(|G2| − 2)+3) ≡
(4, 0), (0, 4) mod 7.

Subcase 4.1. (4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (4, 0) mod 7.

Let F
(3)
1 = A((G1 − {w, x, y, z})/{y1w1, z1z2z3}) with w′ (respectively

z′) as the identification of {y1, w1} (respectively {z1, z2, z3}) and F
(3)
2 =

A(G2). Then |F (3)
1 | ≥ �(4(|G1| − 7) + 3)/7� and |F (3)

2 | ≥ �(4|G2| + 3)/7�.
Let F (3) := F1

(3) ∪ F
(3)
2 − {z2, z3, c1} ∩ (F1

(3)	F
(3)
2 ) where F1

(3)
= F

(3)
1 +

{w, x, y, z} if w′, z′ �∈ F
(3)
1 ; F1

(3)
= F

(3)
1 + {w1, y1, x, y, z} if z′ �∈ F

(3)
1 , w′ ∈

F
(3)
1 ; F1

(3)
= F

(3)
1 +{x, y, z1, z2, z3}−{z′} if w′ �∈ F

(3)
1 , z′ ∈ F

(3)
1 ; and F1

(3)
=

F
(3)
1 +{w1, y1, x, z1, z2, z3}−{w′, z′} if w′, z′ ∈ F

(3)
1 . Therefore, G[F (3)] is an

induced forest in G, showing a(G) ≥ |F (3)
1 |+ |F (3)

2 |+ 4− 3 ≥ �(4n+ 3)/7�,
a contradiction.

Subcase 4.2. (4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (0, 4) mod 7.

Let F
(4)
1 = A((G1−{y1, x, y, z, z3})/z1z2+wz′) with z′ as the identifica-

tion of {z1, z2}, and F
(4)
2 = A(G2− z3). Then |F (4)

1 | ≥ �(4(|G1| − 6)+3)/7�,
and |F (4)

1 | ≥ �(4(|G2|−1)+3)/7�. Now G[F
(4)
1 ∪F

(4)
2 +{x, y, z}− ({z2, c1}∩

(F
(4)
1 	F

(4)
2 ))] (if z′ �∈ F

(4)
1 ) or G[(F

(4)
1 −z′)∪F

(4)
2 +{x, y, z1, z2}−({z2, c1}∩

((F
(4)
1 ∪ {z2})	F

(4)
2 ))] (if z′ ∈ F

(4)
1 ) is an induced forest in G, showing

a(G) ≥ |F (4)
1 |+ |F (4)

2 |+ 3− 2 ≥ �(4n+ 3)/7�, a contradiction.

Case 5. |N(z1) ∩N(z2)| > 2, |N(z2) ∩N(z3)| > 2.

Subcase 5.1. |N(y1) ∩N(w1)| ≤ 2.

There exist a1 ∈ N(z1) ∩ N(z2), c1 ∈ N(z2) ∩ N(z3) and subgraphs
G1, G2, G3 such that G2 is the maximal subgraph of G contained in the
closed region of the plane bounded by the cycle zz1a1z2z and containing
N(z1) ∩ N(z2) − {z}, G3 is the maximal subgraph of G contained in the
closed region of the plane bounded by the cycle zz3c1z2z and containing
N(z3)∩N(z2)−{z}, and G1 is obtained from G by removing G2−{z1, a1, z2}
and G3 − {z3, c1, z2}. Let Ai = {a1} if i = 1, 2 and ∅ if i = 3, 4 and Ai =
{a1} − Ai. Let Ci = {c1} if i = 1, 3 and ∅ if i = 2, 4 and Ci = {c1} − Ci.

For i ∈ [4], let F
(i)
1 = A((G1 − {w, x, y, z, z1, z2, z3} − Ai − Ci)/y1w1) with

w′ as the identification of {y1, w1}, F (i)
2 = A(G2−{z1, z2}−Ai), and F

(i)
3 =

A(G3−{z2, z3}−Ci). Then |F (i)
1 | ≥ �(4(|G1|−8−|Ai|−|Ci|)+3)/7�, |F (i)

2 | ≥
�(4(|G2| − 2− |Ai|) + 3)/7�, and |F (i)

3 | ≥ �(4(|G3| − 2− |Ci|) + 3)/7�. Now

G[F
(i)
1 ∪F

(i)
2 ∪F

(i)
3 +{w, x, y, z}−({a1}∩(F

(i)
1 	F

(i)
2 ))−({c1}∩(F

(i)
1 	F

(i)
3 ))]
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(if w′ �∈ F
(i)
1 ) or G[(F

(i)
1 − w′) ∪ F

(i)
2 ∪ F

(i)
3 + {w1, y1, x, y, z} − ({a1} ∩

(F
(i)
1 	F

(i)
2 ))− ({c1} ∩ (F

(i)
1 	F

(i)
3 ))] (if w′ ∈ F

(i)
1 ) is an induced forest in G,

showing a(G) ≥ |F (i)
1 | + |F (i)

2 | + |F (i)
3 | + 4 − |Ai| − |Ci|. By Lemma 2.2(1)

(with k = 2, a = |G1| − 8, a1 = |G2| − 2, a2 = |G3| − 2, L = ∅, c = 4),
a(G) ≥ �(4n+ 3)/7�, a contradiction.

Subcase 5.2. |N(y1) ∩N(w1)| ≥ 3.
There exist a1 ∈ N(z1)∩N(z2), b1 ∈ N(y1)∩N(w1), c1 ∈ N(z2)∩N(z3)

and subgraphs G1, G2, G3, G4 of G such that G2 is the maximal subgraph of
G contained in the closed region of the plane bounded by the cycle zz1a1z2z
and containing N(z1)∩N(z2)−{z}, G3 is the maximal subgraph of G con-
tained in the closed region of the plane bounded by the cycle zz3c1z2z and
containing N(z3) ∩ N(z2) − {z}, G4 is the maximal subgraph of G con-
tained in the closed region of the plane bounded by the cycle ww1b1y1w
and containing N(y1)∩N(w1)−{w}, and G1 is obtained from G by remov-
ing G2 − {z1, a1, z2}, G3 − {z3, c1, z2} and G4 − {w1, b1, y1}. Let Ai ⊆ {a1}
and Ai = {a1} − Ai. Let Bi ⊆ {b1} and Bi = {b1} − Bi. Let Ci ⊆ {c1}
and Ci = {c1} − Ci. For each choice of Ai, Bi, Ci, let F

(i)
1 = A(G1 −

{w, x, y, z, z1, z2, z3, y1, w1}−Ai−Bi−Ci), F
(i)
2 = A(G2−{z1, z2}−Ai), and

F
(i)
3 = A(G3−{z2, z3}−Ci) and F

(i)
4 = A(G4−{y1, w1}−Bi). Then |F (i)

1 | ≥
�(4(|G1|−9−|Ai|− |Bi|− |Ci|)+3)/7�, |F (i)

2 | ≥ �(4(|G2|−2−|Ai|)+3)/7�,
|F (i)

3 | ≥ �(4(|G3|−2−|Ci|)+3)/7�, and |F (i)
4 | ≥ �(4(|G4|−2−|Bi|)+3)/7�.

Now G[F
(i)
1 ∪F

(i)
2 ∪F

(i)
3 ∪F

(i)
4 + {w, x, y, z}− ({a1}∩ (F

(i)
1 	F

(i)
2 ))− ({c1}∩

(F
(i)
1 	F

(i)
3 )) − ({b1} ∩ (F

(i)
1 	F

(i)
4 ))] is an induced forest in G, showing

|F (i)
1 |+ |F (i)

2 |+ |F (i)
3 |+ |F (i)

4 |+4− |Ai| − |Bi| − |Ci|. By Lemma 2.2(1) (with
k = 3, a = |G1| − 9, a1 = |G2| − 2, a2 = |G3| − 2, a3 = |G4| − 2, L = ∅, c = 4),
a(G) ≥ �(4n+ 3)/7�, a contradiction.

Case 6. |N(z1)∩N(z2)| > 2, |N(z2)∩N(z3)| ≤ 2 and |N(y1)∩N(w1)| > 2.
There exist a1 ∈ N(z1) ∩ N(z2), b1 ∈ N(y1) ∩ N(w1) and subgraphs

G1, G2, G3 of G such that G2 is the maximal subgraph of G contained in
the closed region of the plane bounded by the cycle zz1a1z2z and containing
N(z1) ∩ N(z2) − {z}, G3 is the maximal subgraph of G contained in the
closed region of the plane bounded by the cycle ww1b1y1w and containing
N(y1)∩N(w1)−{w}, andG1 is obtained fromG by removingG2−{z1, a1, z2}
and G3 − {w1, b1, y1}. Let Ai = {a1} if i = 1, 2, 5, 6, 9, 10 and Ai = ∅ if
i = 3, 4, 7, 8, 11, 12. Let Ai = {a1} − Ai. Let Bi = {b1} if i = 1, 3, 5, 7 and

Bi = ∅ if i = 2, 4, 6, 8, and Bi = {b1}−Bi. For i = 1, 2, 3, 4, let F
(i)
1 = A(G1−

{w, x, y, z, z1, z2, z3, y1, w1} − Ai − Bi), F
(i)
2 = A(G2 − {z1, z2} − Ai), and
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F
(i)
3 = A(G3−{y1, w1}−Bi). Note |F (i)

1 | ≥ �(4(|G1|−9−|Ai|−|Bi|)+3)/7�,
|F (i)

2 | ≥ �(4(|G2| − 2 − |Ai|) + 3)/7�, and |F (i)
3 | ≥ �(4(|G3| − 2 − |Bi|) +

3)/7�. Now G[F
(i)
1 ∪F

(i)
2 ∪F

(i)
3 +{w, x, y, z}− ({a1}∩ (F

(i)
1 	F

(i)
2 ))− ({b1}∩

(F
(i)
1 	F

(i)
3 ))] is an induced forest in G, showing a(G) ≥ |F (i)

1 | + |F (i)
2 | +

|F (i)
3 |+4−|Ai|−|Bi|. By Lemma 2.2(5) (with a = |G1|−9, a1 = |G2|−2, a2 =

|G3|−2, c = 4), (n1, n2, n3) := (4(|G1|−9)+3, 4(|G2|−2)+3, 4(|G3|−2)+3) ≡
(0, 0, 0), (1, 0, 0), (4, 0, 3), (4, 3, 0), (3, 0, 4), (4, 0, 4), (3, 4, 0), (4, 4, 0), (1, 6, 0),

(1, 0, 6), (0, 3, 4), (0, 4, 3), (0, 4, 4), (6, 4, 4), (4, 4, 6), (4, 6, 4) mod 7.

We claim that 4(|G3| − 2) + 3 �≡ 4 mod 7. For, suppose that 4(|G3| −
2) + 3 ≡ 4 mod 7. If |N(w2) ∩ N(z3)| ≤ 2, then for i = 5, 7, let F

(i)
1 =

A((G1 − {w, x, y, z, z1, z2, y1} − Ai)/w2z3) with w′ as the identification of

{w2, z3}, F (i)
2 = A(G2−{z1, z2}−Ai), and F

(i)
3 = A(G3−{y1}). Then |F (i)

1 | ≥
�(4(|G1|− 8−|Ai|)+3)/7�, |F (i)

2 | ≥ �(4(|G2|− 2−|Ai|)+3)/7� and |F (i)
3 | ≥

�(4(|G3| − 1)+ 3)/7� = (4(|G3| − 1)+ 3)/7+6/7. Now G[F
(i)
1 ∪F

(i)
2 ∪F

(i)
3 +

{w, x, y, z}−({w1, b1}∩(F
(i)
1 	F

(i)
3 ))−({a1}∩(F

(i)
1 	F

(i)
2 ))] (if w′ �∈ F

(i)
1 ) or

G[(F
(i)
1 −w′)∪F (i)

2 ∪F (i)
3 +{w2, z3, x, y, z}−({w1, b1}∩(F (i)

1 	F
(i)
3 ))−({a1}∩

(F
(i)
1 	F

(i)
2 ))] is an induced forest in G, showing a(G) ≥ |F (i)

1 | + |F (i)
2 | +

|F (i)
3 |+ 4− 2− (1− |Ai|). By Lemma 2.2(1) (with k = 1, a = |G1| − 8, a1 =

|G2|−2, L = {1}, b1 = |G3|−1, c = 2), a(G) ≥ �(4n+3)/7�, a contradiction.

So |N(w2) ∩N(z3)| > 2. Then there exist a1 ∈ N(z1) ∩N(z2), b1 ∈ N(y1) ∩
N(w1), d1 ∈ N(w2) ∩ N(z3) and subgraphs G′

1, G
′
2, G

′
3, G

′
4 of G such that

G′
2 = G2, G

′
3 = G3, G

′
4 is the maximal subgraph of G contained in the closed

region of the plane bounded by the cycle ww2d1z3w containing N(w2) ∩
N(z3) − {w}, and G1 is obtained from G by removing G2 − {z1, a1, z2},
G3 − {w1, b1, y1} and G4 − {w2, d1, z3}. Let Di = {d1} if i = 9, 11 and

Di = ∅ if i = 10, 12, and let Di = {d1} −Di. For i = 9, 10, 11, 12, let F
(i)
1 =

A(G′
1−{w, x, y, z, z1, z2, y1, w2, z3}−Ai−Di), F

(i)
2 = A(G′

2−{z1, z2}−Ai),

F
(i)
3 = A(G′

3 − {y1}), and F
(i)
4 = A(G′

4 − {w2, z3} − Di). Then |F (i)
1 | ≥

�(4(|G′
1| − 9 − |Ai| − |Di|) + 3)/7�, |F (i)

2 | ≥ �(4(|G′
2| − 2 − |Ai|) + 3)/7�,

|F (i)
3 | ≥ �(4(|G′

3| − 1) + 3)/7� = �(4(|G3| − 1) + 3)/7� = (4(|G3| − 1) +

3)/7 + 6/7, and |F (i)
4 | ≥ �(4(|G′

4| − 2 − |Di|) + 3)/7�. Now G[F
(i)
1 ∪ F

(i)
2 ∪

F
(i)
3 ∪ F

(i)
4 + {w, x, y, z} − ({w1, b1} ∩ (F

(i)
1 	F

(i)
3 ))− ({a1} ∩ (F

(i)
1 	F

(i)
2 ))−

({d1} ∩ (F
(i)
1 	F

(i)
4 ))] is an induced forest in G, showing a(G) ≥ |F (i)

1 | +
|F (i)

2 | + |F (i)
3 | + |F (i)

4 | + 4 − 2 − |Ai| − |Di| By Lemma 2.2(1) (with k =

2, a = |G′
1| − 9, a1 = |G′

2| − 2, a2 = |G′
4| − 2, L = {1}, b1 = |G′

3| − 1, c = 2)

a(G) ≥ �(4n+ 3)/7�, a contradiction.



142 Yan Wang et al.

Hence, 4(|G3| − 2) + 3 �≡ 4 mod 7. Therefore, (n1, n2, n3) ≡ (0, 0, 0),
(1, 0, 0), (4, 0, 3), (4, 3, 0), (3, 4, 0), (4, 4, 0), (1, 6, 0), (1, 0, 6), (0, 4, 3), (4, 4, 6)
mod 7.

Subcase 6.1. (n1, n2, n3) ≡ (0, 0, 0), (1, 0, 0) mod 7.

Let F
(1)
1 = A((G1−{w, x, y, z})/{y1w1, z1z2z3}) with w′ (respectively z′)

as the identifications of {y1, w1} (respectively, {z1, z2, z3}), F (1)
2 = A(G2),

and F
(1)
3 = A(G3). Then |F (1)

1 | ≥ �(4(|G1| − 7) + 3)/7�, |F (1)
2 | ≥ �(4|G2| +

3)/7� and |F (1)
3 | ≥ �(4|G3| + 3)/7�. Let F (1) := F1

(1) ∪ F
(1)
2 ∪ F

(1)
3 −

({z1, z2, a1} ∩ (F1
(1)	F

(1)
2 )) − ({y1, w1, b1} ∩ (F1

(1)	F
(1)
3 )) where F1

(1)
=

F
(1)
1 + {w, x, y, z} if w′, z′ �∈ F

(1)
1 ; F1

(1)
= F

(1)
1 + {w1, y1, x, y, z} if z′ �∈

F
(1)
1 , w′ ∈ F

(1)
1 ; F1

(1)
= F

(1)
1 + {x, y, z1, z2, z3} − {z′} if w′ �∈ F

(1)
1 , z′ ∈ F

(1)
1 ;

and F1
(1)

= F
(1)
1 + {w1, y1, x, z1, z2, z3} − {w′, z′} if w′, z′ ∈ F

(1)
1 . Therefore,

G[F (1)] is an induced forest in G, showing a(G) ≥ |F (1)
1 |+ |F (1)

2 |+ 4− 6 ≥
�(4n+ 3)/7�, a contradiction.

Subcase 6.2. (n1, n2, n3) ≡ (4, 3, 0), (4, 4, 0) mod 7 (respectively, (1, 6, 0)
mod 7).

Let A2 = A3 = ∅ and A3 = A2 = {a1}. For i = 2 (respectively, i = 3),

let F
(i)
1 = A((G1 − {w, x, y, z, z1, z2, z3} − Ai)/y1w1) with w′ as the identi-

fication of {y1, w1}, F (i)
2 = A(G2 − {z1, z2} − Ai), and F

(i)
3 = A(G3). Then

|F (i)
1 | ≥ �(4(|G1| − 8 − |Ai|) + 3)/7�, |F (i)

2 | ≥ �(4(|G2| − 2 − |Ai|) + 3)/7�
and |F (i)

3 | ≥ �(4|G3| + 3)/7�. Now G[F
(i)
1 ∪ F

(i)
2 ∪ F

(i)
3 + {w, x, y, z} −

({y1, w1, b1}∩(F
(i)
1 	F

(i)
3 ))−({a1}∩(F

(i)
1 	F

(i)
2 ))] (if w′ �∈ F

(i)
1 ) or G[(F

(i)
1 −

w′)∪F
(i)
2 ∪F

(i)
3 +{w1, y1, x, y, z}− ({y1, w1, b1}∩ ((F

(i)
1 ∪{y1, w1})	F

(i)
3 ))−

({a1} ∩ (F
(i)
1 	F

(i)
2 ))] (if w′ ∈ F

(i)
1 ) is an induced forest in G, showing

a(G) ≥ |F (i)
1 |+ |F (i)

2 |+ |F (i)
3 |+ 4− 3− |Ai| ≥ �(4n+ 3)/7�, a contradiction.

Subcase 6.3. (n1, n2, n3)≡ (0, 4, 3) mod 7 (respectively, (4, 4, 6) mod 7).
Let B4 = B5 = ∅ and B5 = B4 = {b1}. For i = 4 (respectively, i = 5),

let F
(i)
1 = A(G1 − {w, x, y, z1, z3, y1, w1} − Bi + w2z), F

(i)
2 = A(G2 − {z1}),

and F
(i)
3 = A(G3−{y1, w1}−Bi). Then |F (i)

1 | ≥ �(4(|G1|−7−|Bi|)+3)/7�,
|F (i)

2 | ≥ �(4(|G2| − 1)+ 3)/7�, and |F (i)
3 | ≥ �(4(|G3| − 2− |Bi|)+ 3)/7�. Now

G[F
(i)
1 ∪F (i)

2 ∪F (i)
3 +{w, x, y}−({z2, a1}∩(F (i)

1 	F
(i)
2 ))−({b1}∩(F (i)

1 	F
(i)
3 ))]

is an induced forest in G, showing a(G) ≥ |F (i)
1 |+|F (i)

2 |+|F (i)
3 |+3−2−|Bi| ≥

�(4n+ 3)/7�, a contradiction.

Subcase 6.4. (n1, n2, n3)≡ (4, 0, 3) mod 7 (respectively, (1, 0, 6) mod 7).
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Let B6 = B7 = ∅ and B7 = B6 = {b1}. For i = 6 (resp. i = 7),

let F
(i)
1 = A((G1 − {w, x, y, z, y1, w1} − Bi)/{z1z2z3}), F (i)

2 = A(G2), and

F
(i)
3 = A(G3 − {y1, w1} − Bi). Then |F (i)

1 | ≥ �(4(|G1| − 8 − |Bi|) + 3)/7�,
|F (i)

2 | ≥ �(4|G2|+3)/7� and |F (i)
3 | ≥ �(4(|G3|−2−|Bi|)+3)/7�. Now G[F

(i)
1 ∪

F
(i)
2 ∪F

(i)
3 + {w, x, y, z}− ({z1, z2, a1}∩ (F

(i)
1 	F

(i)
2 ))− ({b1}∩ (F

(i)
1 	F

(i)
3 ))]

(if z′ �∈ F
(i)
1 ) or G[(F

(i)
1 − z′) ∪ F

(i)
2 ∪ F

(i)
3 + {x, y, z1, z2, z3} − ({z1, z2, a1} ∩

((F
(i)
1 ∪ {z1, z2})	F

(i)
2 ))− ({b1} ∩ (F

(i)
1 	F

(i)
3 ))] (if z′ ∈ F

(i)
1 ) is an induced

forest in G, showing a(G) ≥ |F (i)
1 |+|F (i)

2 |+|F (i)
3 |+4−3−|Bi| ≥ �(4n+3)/7�,

a contradiction.

Subcase 6.5. (n1, n2, n3) ≡ (3, 4, 0) mod 7.

Let F
(8)
1 = A(G1 − {w, x, y, z1} + zy1), F

(8)
2 = A(G2 − z1) and F

(i)
3 =

A(G3). Then |F (i)
1 | ≥ �(4(|G1| − 4) + 3)/7�, |F (i)

2 | ≥ �(4(|G2| − 1) + 3)/7�
and |F (i)

3 | ≥ �(4|G3|+3)/7�. Now G[F
(8)
1 ∪F

(8)
2 ∪F

(8)
3 + {x, y}− ({z2, a1} ∩

(F
(8)
1 	F

(8)
2 ))−({w1, y1, b1}∩(F (8)

1 	F
(8)
3 ))}] is an induced forest in G, show-

ing a(G) ≥ |F (8)
1 |+ |F (8)

2 |+ |F (8)
3 |+ 2− 5 ≥ �(4n+ 3)/7�, a contradiction.

Case 7. |N(z1)∩N(z2)| ≤ 2, |N(z2)∩N(z3)| > 2 and |N(y1)∩N(w1)| > 2.

There exist c1 ∈ N(z2) ∩ N(z3), b1 ∈ N(y1) ∩ N(w1) and subgraphs
G1, G2, G3 such that G2 is the maximal subgraph of G contained in the
closed region of the plane bounded by the cycle zz2c1z3z and containing
N(z2) ∩ N(z3) − {z}, G3 is the maximal subgraph of G contained in the
closed region of the plane bounded by the cycle ww1b1y1w and containing
N(y1)∩N(w1)−{w}, andG1 is obtained fromG by removingG2−{z2, c1, z3}
and G3−{w1, b1, y1}. Let Bi = {b1} if i = 1, 2 and Bi = ∅ if i = 3, 4 and Bi =
{b1}−Bi. Let Ci = {c1} if i = 1, 3 and Ci = ∅ if i = 2, 4 and Ci = {c1}−Ci.

For i = 1, 2, 3, 4, let F
(i)
1 = A(G1 − {w, x, y, z, z1, z2, z3, y1, w1} − Bi − Ci),

F
(i)
2 = A(G2 − {z2, z3} − Ci), and F

(i)
3 = A(G3 − {y1, w1} − Bi). Then

|F (i)
1 | ≥ �(4(|G1|−9−|Bi|−|Ci|)+3)/7�, |F (i)

2 | ≥ �(4(|G2|−2−|Ci|)+3)/7�
and |F (i)

3 | ≥ �(4(|G3|−2−|Bi|)+3)/7�. Now G[F
(i)
1 ∪F (i)

2 ∪F (i)
3 +{w, x, y, z}−

({c1}∩(F (i)
1 	F

(i)
2 ))−({b1}∩(F (i)

1 	F
(i)
3 ))] is an induced forest in G, showing

a(G) ≥ |F (i)
1 | + |F (i)

2 | + |F (i)
3 | + 4 − |Ci| − |Bi|. By Lemma 2.2(5) (with

a = |G1| − 9, a1 = |G2| − 2, a2 = |G3| − 2, c = 4), (n1, n2, n3) := (4(|G1| −
9) + 3, 4(|G2| − 2) + 3, 4(|G3| − 2) + 3) ≡ (0, 0, 0), (1, 0, 0), (4, 0, 3), (4, 3, 0),
(3, 0, 4), (4, 0, 4), (3, 4, 0), (4, 4, 0), (1, 6, 0), (1, 0, 6), (0, 3, 4), (0, 4, 3), (0, 4, 4),
(6, 4, 4), (4, 4, 6), (4, 6, 4) mod 7.

Subcase 7.1. (n1, n2, n3) ≡ (0, 0, 0), (1, 0, 0) mod 7.
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Let F
(1)
1 = A((G1−{w, x, y, z})/{y1w1, z1z2z3}) with w′ (respectively, z′)

as the identification of {y1, w1} (respectively, {z1, z2, z3}), F (1)
2 = A(G2), and

F
(1)
3 = A(G3). Then |F (1)

1 | ≥ �(4(|G1| − 7)+ 3)/7�, |F (1)
2 | ≥ �(4|G2|+3)/7�,

and |F (1)
3 | ≥ �(4|G3|+ 3)/7�. Let F (1) := F1

(1) ∪ F
(1)
2 ∪ F

(1)
3 − {z3, z2, c1} ∩

(F1
(1)	F

(1)
2 )− {y1, w1, b1} ∩ (F1

(1)	F
(1)
3 ) where F1

(1)
= F

(1)
1 + {w, x, y, z}

if w′, z′ �∈ F
(1)
1 ; F1

(1)
= F

(1)
1 + {w1, y1, x, y, z} if z′ �∈ F

(1)
1 , w′ ∈ F

(1)
1 ;

F1
(1)

= F
(1)
1 + {x, y, z1, z2, z3} − {z′} if w′ �∈ F

(1)
1 , z′ ∈ F

(1)
1 ; and F1

(1)
=

F
(1)
1 +{w1, y1, x, z1, z2, z3}−{w′, z′} if w′, z′ ∈ F

(1)
1 . Therefore, G[F (1)] is an

induced forest in G, showing a(G) ≥ |F (1)
1 |+ |F (1)

2 |+ 4− 6 ≥ �(4n+ 3)/7�,
a contradiction.

Subcase 7.2. (n1, n2, n3) ≡ (4, 4, 0), (3, 4, 0) mod 7.

Let F
(2)
1 = A((G1 − {w, x, y, z1, z3})/y1w1 + {w′z, w2z}) with w′ as

the identification of {y1, w1}, F
(2)
2 = A(G2 − {z3}), and F

(2)
3 = A(G3).

Then |F (2)
1 | ≥ �(4(|G1| − 6) + 3)/7�, |F (2)

2 | ≥ �(4(|G2| − 1) + 3)/7� and

|F (2)
3 | ≥ �(4|G3| + 3)/7�. Now G[F

(2)
1 ∪ F

(2)
2 ∪ F

(2)
3 + {w, x, y} − ({z2, c1} ∩

(F
(2)
1 	F

(2)
2 ))− ({w1, y1, b1}∩ (F

(2)
1 	F

(2)
3 ))] (if w′ �∈ F

(2)
1 ) or G[(F

(2)
1 −w′)∪

F
(2)
2 ∪F

(2)
3 +{w1, y1, x, y}− ({z2, c1}∩ (F

(2)
1 	F

(2)
2 ))− ({w1, y1, b1}∩ ((F

(2)
1 ∪

{w1, y1})	F
(2)
3 ))] is an induced forest in G, showing a(G) ≥ |F (2)

1 |+ |F (2)
2 |+

|F (2)
3 |+ 3− 5 ≥ �(4n+ 3)/7�, a contradiction.

Subcase 7.3. (n1, n2, n3) ≡ (0, 4, 3), (0, 4, 4) mod 7 (respectively, (4, 4, 6)

mod 7).

Let B3 = B4 = ∅ and B4 = B3 = {b1}. For i = 3 (respectively, i = 4),

let F
(i)
1 = A(G1−{w, x, y, z1, z3, y1, w1}−Bi+w2z), F

(i)
2 = A(G2−z3), and

F
(i)
3 = A(G3 − {y1, w1} − Bi). Then |F (i)

1 | ≥ �(4(|G1| − 7 − |Bi|) + 3)/7�,
|F (i)

2 | ≥ �(4(|G2| − 1) + 3)/7� and |F (i)
3 | ≥ �(4(|G3| − 2− |Bi|) + 3)/7�. Now

G[F
(i)
1 ∪F (i)

2 ∪F (i)
3 +{w, x, y}−({b1}∩(F (i)

1 	F
(i)
3 ))−({z2, c1}∩(F (i)

1 	F
(i)
2 ))]

is an induced forest in G, giving a(G) ≥ |F (i)
1 |+ |F (i)

2 |+ |F (i)
3 |+3−2−|Bi| ≥

�(4n+ 3)/7�, a contradiction.

Subcase 7.4. (n1, n2, n3) ≡ (3, 0, 4), (4, 0, 4), (6, 4, 4), (4, 6, 4) mod 7.

Let F
(5)
1 = A(G1 − {x, y, z, z1, z3, y1} + z2w), F

(5)
2 = A(G2 − z3), and

F
(5)
3 = A(G3−{y1}). Then |F (5)

1 | ≥ �(4(|G1|−6)+3)/7�, |F (5)
2 | ≥ �(4(|G2|−

1) + 3)/7� and |F (5)
3 | ≥ �(4(|G3| − 1) + 3)/7�. Now G[F

(5)
1 ∪ F

(5)
2 ∪ F

(5)
3 +

{z, x, y} − ({b1, w1} ∩ (F
(i)
1 	F

(i)
3 ))− ({z2, c1} ∩ (F

(i)
1 	F

(i)
2 ))] is an induced
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forest in G, showing a(G) ≥ |F (5)
1 |+ |F (5)

2 |+ |F (5)
3 |+ 3− 4 ≥ �(4n+ 3)/7�,

a contradiction.

Subcase 7.5. (n1, n2, n3)≡ (4, 3, 0) mod 7 (respectively, (1, 6, 0) mod 7).
Let C6 = C7 = ∅ and C7 = C6 = {c1}. For i = 6 (respectively,

i = 7), let F
(i)
1 = A((G1 − {w, x, y, z, z1, z2, z3} − Ci)/y1w1) with w′ as

the identification of {y1, w1}, F
(i)
2 = A(G2 − {z2, z3} − Ci), and F

(i)
3 =

A(G3). Then |F (i)
1 | ≥ �(4(|G1| − 8 − |Ci|) + 3)/7�, |F (i)

2 | ≥ �(4(|G2| −
2 − |Ci|) + 3)/7� and |F (i)

3 | ≥ �(4|G3| + 3)/7�. Now G[F
(i)
1 ∪ F

(i)
2 ∪ F

(i)
3 +

{w, x, y, z}−({y1, b1, w1}∩(F
(i)
1 	F

(i)
3 ))−({c1}∩(F

(i)
1 	F

(i)
2 ))] (if w′ �∈ F

(i)
1 )

or G[(F
(i)
1 − w′) ∪ F

(i)
2 ∪ F

(i)
3 + {w1, y1, x, y, z} − ({y1, b1, w1} ∩ ((F

(i)
1 ∪

{w1, y1})	F
(i)
3 ))− ({c1} ∩ (F

(i)
1 	F

(i)
2 ))] is an induced forest in G, showing

a(G) ≥ |F (i)
1 |+ |F (i)

2 |+ |F (i)
3 |+ 4− 3− |Ci| ≥ �(4n+ 3)/7�, a contradiction.

Subcase 7.6. (n1, n2, n3) ≡ (4, 0, 3) mod 7 (respectively (1, 0, 6) mod 7).
Let B8 = B9 = ∅ and B9 = B8 = {b1}. For i = 8 (respectively, i = 9), let

F
(i)
1 = A((G1−{w, x, y, z, y1, w1}−Bi)/{z1z2z3}) with z′ as the identification

of {z1, z2, z3}, F (i)
2 = A(G2), and F

(i)
3 = A(G3−{y1, w1}−Bi). Then |F (i)

1 | ≥
�(4(|G1|−8−|Bi|)+3)/7�, |F (i)

2 | ≥ �(4|G2|+3)/7� and |F (i)
3 | ≥ �(4(|G3|−2−

|Bi|)+3)/7�. Now G[F
(i)
1 ∪F

(i)
2 ∪F

(i)
3 + {w, x, y, z}− ({b1}∩ (F

(i)
1 	F

(i)
3 ))−

({z2, z3, c1} ∩ (F
(i)
1 	F

(i)
2 ))] (if z′ �∈ F

(i)
1 ) or G[(F

(i)
1 − z′) ∪ F

(i)
2 ∪ F

(i)
3 +

{x, y, z1, z2, z3}−({b1}∩(F (i)
1 	F

(i)
3 ))−({z2, z3, c1}∩((F (i)

1 ∪{z2, z3})	F
(i)
2 ))]

is an induced forest in G, showing a(G) ≥ |F (i)
1 |+|F (i)

2 |+|F (i)
3 |+4−3−|Bi| ≥

�(4n+ 3)/7�, a contradiction.

Subcase 7.7. (n1, n2, n3) ≡ (0, 3, 4) mod 7.

Let F
(10)
1 = A(G1 − {x, y, z, y1, z1, z2, z3}), F (10)

2 = A(G2 − {z2, z3}),
and F

(10)
3 = A(G3 − {y1}). Then |F (10)

1 | ≥ �(4(|G1| − 7) + 3)/7�, |F (10)
2 | ≥

�(4(|G2| − 2) + 3)/7� and |F (10)
3 | ≥ �(4(|G3| − 1) + 3)/7�. Now F (10) :=

G[F
(10)
1 ∪ F

(10)
2 ∪ F

(10)
3 + {z, x, y} − ({b1, w1} ∩ (F

(i)
1 	F

(i)
3 )) −

({c1} ∩ (F
(i)
1 	F

(i)
2 ))] is an induced forest in G, showing a(G) ≥ |F (10)

1 | +
|F (10)

2 |+ |F (10)
3 |+ 3− 3 ≥ �(4n+ 3)/7�, a contradiction.

7. Configurations around 5-vertices and 6-vertices

First, we define certain configurations around a 5-vertex or 6-vertex.

Definition 7.1. Let x be a 5-vertex in G and x1, x2, x3, x4, x5 be neighbors
of x in cyclic order around x.
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(i) x is of type 5-2-A if {x1, x3} ⊆ V3, {x2, x4, x5} ⊆ V≥4 such that if
N(x1) = {x′1, x′′1, x} and N(x3) = {x′3, x′′3, x}, then for v ∈ {x′1, x′′1},
either v ∈ V≤4 or Rv,{x1} �= ∅; and for u ∈ {x′3, x′′3}, either u ∈ V≤4 or
Ru,{x3} �= ∅;

(ii) x is of type 5-2-B if {x1, x3} ⊆ V3, {x2, x4, x5} ⊆ V≥4 such that if
N(x1) = {x′1, x′′1, x} and N(x3) = {x′3, x′′3, x}, then for v ∈ {x′3, x′′3},
either v ∈ V≤4 or Rv,{x3} �= ∅; and x′1 ∈ V≥5 and Rx′

1,{x1} = ∅;
(iii) x is of type 5-2-C if {x1, x3} ⊆ V3, {x2, x4, x5} ⊆ V≥4 such that if

N(x1) = {x′1, x′′1, x} and N(x3)= {x′3, x′′3, x}, then x′1 ∈ V≥5, Rx′
1,{x1}=

∅, x′3 ∈ V≥5 and Rx′
3,{x3} = ∅;

(iv) x is of type 5-1-A if x1 ∈ V3, {x2, x3, x4, x5} ⊆ V≥4 such that if
N(x1) = {x′1, x′′1, x}, then for v ∈ {x′1, x′′1}, either v ∈ V≤4 or Rv,{x1} �=
∅;

(v) x is of type 5-1-B if x1 ∈ V3, {x2, x3, x4, x5} ⊆ V≥4 such that if
N(x1) = {x′1, x′′1, x}, then x′1 ∈ V≥5 and Rx′

1,{x1} = ∅;
(vi) x is of type 5-0 if {x1, x2, x3, x4, x5} ⊆ V≥4.

Definition 7.2. Let v be a 6-vertex in G and v1, v2, v3, v4, v5, v6 be neighbors
of v in cyclic order around v.

(i) v is of type 6-3 if {v1, v3, v5} ⊆ V3 and {v2, v4, v6} ⊆ V≥4;
(ii) v is of type 6-2-A if {v1, v3} ⊆ V3 and {v2, v4, v5, v6} ⊆ V≥4;
(iii) v is of type 6-2-B if {v1, v4} ⊆ V3 and {v2, v3, v5, v6} ⊆ V≥4;
(iv) v is of type 6-1 if {v1} ⊆ V3 and {v2, v3, v4, v5, v6} ⊆ V≥4;
(v) v is of type 6-0 if {v1, v2, v3, v4, v5, v6} ⊆ V≥4.

Lemma 7.3. The following configuration is impossible in G: x is a 5-vertex
of type 5-2-B with neighbors x1, y, x3, z, x2 in cyclic order around x, {y, z} ⊆
V3, x1 ∈ V4, N(z) = {z1, z2} with {z1x2, z2x3} ⊆ E(G), {z1, z2} ⊆ V4, and
xx2wx1x forms a facial cycle where w ∈ V3.

Proof. Let N(w) = {x1, w1, x2}, N(z1) = {z, x2, s1, s2} and N(z2) =
{z, x3, t, s2}.

First, we claim that |N(x1)∩N(y)| ≤ 2. For otherwise, suppose N(x1)∩
N(y) = {x, p1, p2}. There exists a separation (G1, G2) such that V (G1 ∩
G2) = {p1, p2}, {x, y, x1} ⊆ V (G1), and N(p1) ∩N(p2) − {y, x1} ⊆ V (G2).

Let F
(1)
1 = A(G1 − {x, y, x1, p1, p2}), and F

(1)
2 = A(G2 − p2). Then |F (1)

1 | ≥
�(4(|G1|−5)+3)/7�, and |F (1)

2 | ≥ �(4(|G2|−1)+3)/7�. Now G[F
(1)
1 ∪F

(1)
2 +

{x1, y}] is an induced forest in G, showing a(G) ≥ |F (1)
1 | + |F (1)

2 | + 2 ≥
�(4n+ 3)/7�, a contradiction. Thus, let N(x1) ∩N(y) = {x, y1}.

By Lemma 4.1, z2x2 �∈ E(G) and z1x3 �∈ E(G).
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We also claim that w1z2 �∈ E(G). Otherwise, there exists a separation
(G1, G2) such that V (G1 ∩G2) = {w1, x2, z, z2}, {x, y, w, x1} ⊆ V (G1), and

{z1, s1, s2} ⊆ V (G2). Let F
(3)
1 = A(G1 − {w1, x2, z, z2, w, x, x1, y, y1}), and

F
(3)
2 = A(G2 − {w1, x2, z, z2, z1, s2}). Then |F (3)

1 | ≥ �(4(|G1| − 9) + 3)/7�,
and |F (3)

2 | ≥ �(4(|G2| − 6) + 3)/7�. Now G[F
(3)
1 ∪ F

(3)
2 + {z, z1, z2, w, x1, y}]

is an induced forest in G, showing a(G) ≥ |F (3)
1 |+ |F (3)

2 |+6 ≥ �(4n+3)/7�,
a contradiction.

We further claim that s1z2 �∈ E(G). Otherwise, there exists a sep-
aration (G1, G2) such that V (G1 ∩ G2) = {s1, z1, z2}, {x, y, w, x1, z} ⊆
V (G1), and s2 ∈ V (G2). Let F

(4)
1 = A(G1 − {s1, z1, z2, z}), and F

(4)
2 =

A(G2 − {s1, z1, z2, s2}). Then |F (4)
1 | ≥ �(4(|G1| − 4) + 3)/7�, and |F (4)

2 | ≥
�(4(|G2| − 4) + 3)/7�. Now G[F

(4)
1 ∪ F

(4)
2 + {z1, z2}] is an induced for-

est in G, showing a(G) ≥ |F (4)
1 | + |F (4)

2 | + 2. By Lemma 2.2(8) (with
a = |G1| − 4, a1 = |G2| − 4, c = 2) (4(|G1| − 4) + 3, 4(|G2| − 4) + 3) ≡
(0, 0), (0, 6), (0, 5), (5, 0), (6, 6), (6, 0) mod 7. Let F

(5)
1 = A(G1−{s1, z1, z2, x,

z}), and F
(5)
2 = A(G2 − {s1, z1, z2}). Then |F (5)

1 | ≥ �(4(|G1| − 5) + 3)/7�,
and |F (5)

2 | ≥ �(4(|G2| − 3) + 3)/7�. Define G[F
(5)
1 ∪ F

(5)
2 + {z, z2}] is an

induced forest in G, showing a(G) ≥ |F (5)
1 | + |F (5)

2 | + 2 ≥ �(4n + 3)/7�, a
contradiction.

Note that s1x �∈ E(G). Otherwise, since G is simple, s1 �∈ {x2, z}. s1 �∈
{x1, y} by Lemma 2.3 (G is a quadrangulation). s1 �= x3 by second claim.
Similarly, tx �∈ E(G).

We now distinguish several cases.

Case 1. |N(w1) ∩N(x2)| ≤ 2 and |N(s1) ∩N(s2)| ≤ 2.

Let F ′ = A((G−{w, x, z, z1})/{x1y, w1x2, s1s2}+z2u2) with u1 (respec-
tively, u2, u3) as the identification of {x1, y} (respectively, {w1, x2}, {s1, s2}).
Then |F ′| ≥ �(4(n−7)+3)/7�. Note u1 ∈ F ′ by Lemma 2.3 since |N(u1)| = 3.
Let F = F ′ + {x1, y, z, z1, w} − {u1} if u2, u3 �∈ F ′, and otherwise, F ob-
tained from F ′ + {x1, y, z, z1, w} − {u1} by deleting {u2, w} (respectively,
{u3, z1}) and adding {w1, x2} (respectively, {s1, s2}) when u2 ∈ F ′ (re-
spectively, u3 ∈ F ′). Therefore, G[F ] is an induced forest in G, showing
a(G) ≥ |F ′|+ 4 ≥ �(4n+ 3)/7�, a contradiction.

Case 2. |N(w1) ∩N(x2)| ≤ 2 and |N(s1) ∩N(s2)| > 2.

There exist a1 ∈ N(s1) ∩ N(s2) and a separation (G1, G2) such that
V (G1 ∩ G2) = {s1, s2, a1}, {x, y, w, z, x1, x2, x3} ⊆ V (G1), and N(s1) ∩
N(s2) − {z1} ⊆ V (G2). Let A1 = {a1} and A2 = ∅. For i = 1, 2, let
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F
(i)
1 = A((G1 − {w, x, z, z1, s1, s2} − Ai)/{x1y, w1x2} + u2z2) with u1 (re-

spectively, u2) as the identification of {x1, y} (respectively, {w1, x2}), and
F

(i)
2 = A(G2−{s1, s2}−Ai). Then |F (i)

1 | ≥ �(4(|G1| − 8− |Ai|)+ 3)/7�, and
|F (i)

2 | ≥ �(4(|G2| − 2 − |Ai|) + 3)/7�. Note u1 ∈ F
(i)
1 by Lemma 2.3 since

|N(u1)| = 3. Let F = (F
(i)
1 −u1)∪F (i)

2 +{x1, y, z, z1, w}−({a1}∩(F (i)
1 	F

(i)
2 )).

Now G[F ] (if u2 �∈ F
(i)
1 ) or G[F − {u2, w} + {w1, x2}] (if u2 ∈ F

(i)
1 ) is an

induced forest in G, showing a(G) ≥ |F (i)
1 | + |F (i)

2 | + 4 − (1 − |Ai|). By
Lemma 2.2(2) (with a = |G1| − 8, a1 = |G2| − 2, c = 4), (4(|G1| − 8) +
3, 4(|G2| − 2) + 3) ≡ (4, 0), (0, 4) mod 7.

Subcase 2.1. (4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (4, 0) mod 7.

Let F
(3)
1 = A((G1 − {w, x, z, z1})/{x1y, w1x2, s1s2}+ z2u2) with u1 (re-

spectively, u2, u3) as the identification of {x1, y} (respectively, {w1, x2},
{s1, s2}), and F

(3)
2 = A(G2). Then |F (3)

1 | ≥ �(4(|G1| − 7) + 3)/7� and

|F (3)
2 | ≥ �(4|G2| + 3)/7�. Note u1 ∈ F

(4)
1 by Lemma 2.3 since |N(u1)| =

3. Let F (3) := F1
(3) ∪ F

(3)
2 − ({s1, s2, a1} ∩ (F1

(3)	F
(3)
2 )), where F1

(3)
=

F1
(3) + {x1, y, z, z1, w} − u1 if u2, u3 �∈ F

(3)
1 , and otherwise, F1

(3)
obtained

from F1
(3) + {x1, y, z, z1, w}− u1 by deleting {u2, w} (respectively, {u3, z1})

and adding {w1, x2} (respectively, {s1, s2}) when u2 ∈ F1
(3) (respectively,

u3 ∈ F1
(3)). Therefore, G[F (3)] is an induced forest in G, showing a(G) ≥

|F (3)
1 |+ |F (3)

2 |+ 4− 3 ≥ �(4n+ 3)/7�, a contradiction.

Subcase 2.2. (4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (0, 4) mod 7.

If |N(x3) ∩ N(t)| ≤ 2, let F
(4)
1 = A((G1 − {s2, x2, z, z1, z2})/x3t + s1x)

with u as the identification of {x3, t}, and F
(4)
2 = A(G2−{s2}). Then |F (4)

1 | ≥
�(4(|G1| − 6) + 3)/7�, and |F (4)

2 | ≥ �(4(|G2| − 1) + 3)/7�. Let F = F
(4)
1 ∪

F
(4)
2 + {z, z1, z2} − ({s1, a1} ∩ (F

(4)
1 	F

(4)
2 )). Now G[F ] (if u �∈ F

(4)
1 ) or

G[F − {u, z2} + {x3, t}] (if u ∈ F
(4)
1 ) is an induced forest in G, showing

a(G) ≥ |F (4)
1 |+ |F (4)

2 |+ 3− 2 ≥ �(4n+ 3)/7�, a contradiction.

So, |N(x3) ∩ N(t)| > 2. There exist b1 ∈ N(x3) ∩ N(t) and subgraphs
G′

1, G
′
2, G

′
3 such that G′

2 = G2, G
′
3 is the maximal subgraph of G contained in

the closed region of the plane bounded by the cycle z2x3b1tz2 and containing
N(x3)∩N(t)−{z2}, and G′

1 is obtained from G by removing G′
2−{s1, s2, a1}

and G′
3 − {x3, b1, t}. Let B5 = {b1} or B6 = ∅. For i = 5, 6, let F

(i)
1 =

A(G′
1 − {z, z1, z2, s2, x3, t, x2} −Bi + s1x), F

(i)
2 = A(G′

2 − {s2}), and F
(i)
3 =

A(G′
3 − {x3, t} − Bi). Then |F (i)

1 | ≥ �(4(|G′
1| − 7 − |Bi|) + 3)/7�, |F (i)

2 | ≥
�(4(|G′

2|−1)+3)/7� = �(4(|G2|−1)+3)/7� = (4(|G2|−1)+3)/7+6/7, and
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|F (i)
3 | ≥ �(4(|G′

3| − 2− |Bi|) + 3)/7�. Now G[F
(i)
1 ∪ F

(i)
2 ∪ F

(i)
3 + {z, z1, z2} −

({s1, a1} ∩ (F
(i)
1 	F

(i)
2 )) − ({b1} ∩ (F

(i)
1 	F

(i)
3 ))] is an induced forest in G,

showing a(G) ≥ |F (i)
1 |+ |F (i)

2 |+ |F (i)
3 |+3− 2− (1−|Bi|) ≥ �(4n+3)/7�. By

Lemma 2.2(2) (with a = |G′
1| − 7, a1 = |G′

3| − 2, c = (4(|G2| − 1) + 3)/7 +

6/7+ 1), (4(|G′
1| − 7)+ 3, 4(|G′

2| − 2)+ 3, 4(|G′
3| − 2)+ 3) ≡ (0, 4, 4), (4, 4, 0)

mod 7.

If (4(|G′
1| − 7)+ 3, 4(|G′

2| − 2)+ 3, 4(|G′
3| − 2)+ 3) ≡ (4, 4, 0) mod 7, let

F
(7)
1 = A((G′

1 − {z, z1, z2, s2, x2})/x3t+ s1x) with u as the identification of

{x3, t}, F (7)
2 = A(G′

2 − {s2}), and F
(7)
3 = A(G′

3). Then |F (7)
1 | ≥ �(4(|G′

1| −
6)+3)/7�, |F (7)

2 | ≥ �(4(|G′
2|−1)+3)/7�, and |F3(7)| ≥ �(4|G′

3|+3)/7�. Now

G[F
(7)
1 ∪ F

(7)
2 ∪ F

(7)
3 + {z, z1, z2} − ({s1, a1} ∩ (F

(7)
1 	F

(7)
2 )) − ({t, b1, x3} ∩

(F
(7)
1 	F

(7)
3 ))] (if u �∈ F

(7)
1 ) or G[(F

(7)
1 − u) ∪ F

(7)
2 ∪ F

(7)
3 + {z, z1, x3, t} −

({s1, a1}∩ (F
(7)
1 	F

(7)
2 ))− ({t, b1, x3}∩ ((F

(7)
1 +{x3, t})	F

(7)
3 ))] (if u ∈ F

(7)
1 )

is an induced forest in G, showing a(G) ≥ |F (7)
1 |+ |F (7)

2 |+ |F (7)
3 |+ 3− 5 ≥

�(4n+ 3)/7�, a contradiction.

If (4(|G′
1| − 7)+ 3, 4(|G′

2| − 2)+ 3, 4(|G′
3| − 2)+ 3) ≡ (0, 4, 4) mod 7, let

F
(8)
1 = A((G′

1 − {z, z2, s2, x3})/xz1) with u as the identification of {x, z1},
F

(8)
2 = A(G′

2 − {s2}), and F
(8)
3 = A(G′

3 − {x3}). Then |F (8)
1 | ≥ �(4(|G′

1| −
5)+3)/7�, |F (8)

2 | ≥ �(4(|G′
2|− 1)+3)/7�, and |F (8)

3 | ≥ �(4(|G′
3|− 1)+3)/7�.

Let F = F
(8)
1 ∪ F

(8)
2 ∪ F

(8)
3 + {z, z2} − ({s1, a1} ∩ (F

(8)
1 	F

(8)
2 )) − ({t, b1} ∩

(F
(8)
1 	F

(8)
3 )). Now G[F ] (if u �∈ F

(8)
1 ) or G[F −{u, z}+{x, z1}] (if u ∈ F

(8)
1 )

is an induced forest in G, showing a(G) ≥ |F (8)
1 |+ |F (8)

2 |+ |F (8)
3 |+ 2− 4 ≥

�(4n+ 3)/7�, a contradiction.

Case 3. |N(w1) ∩N(x2)| > 2.

There exist c1 ∈ N(w1) ∩ N(x2) and a separation (G1, G2) such that

V (G1 ∩ G2) = {w1, x2, c1}, {x, y, w, z, x1, x3, z1, z2, s1, s2} ⊆ V (G1), and

N(w1)∩N(x2)−{w} ⊆ V (G2). By the fourth claim, s1z2 �∈ E(G). Let C1 =

{c1} and C2 = ∅. For i = 1, 2, let F
(i)
1 = A((G1 − {w, x,w1, x2, z, z1, s2} −

Ci)/x1y + s1z2) with u as the identification of {x1, y}, and F
(i)
2 = A(G2 −

{w1, x2} − Ci). Then |F (i)
1 | ≥ �(4(|G1| − 8 − |Ci|) + 3)/7�, and |F (i)

2 | ≥
�(4(|G2| − 2− |Ci|) + 3)/7�. Note u ∈ F

(i)
1 by Lemma 2.3 since |N(u)| = 3.

Now G[(F
(i)
1 −u)∪F

(i)
2 +{w, x1, y, z, z1}−({c1}∩(F

(i)
1 	F

(i)
2 ))] is an induced

forest in G, showing a(G) ≥ |F (i)
1 |+ |F (i)

2 |+4− (1− |Ci|). By Lemma 2.2(2)

(with a = |G1| − 8, a1 = |G2| − 2, c = 4), (4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡
(4, 0), (0, 4) mod 7.
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Subcase 3.1. (4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (4, 0) mod 7.

If |N(s1)∩N(s2)| ≤ 2, then let F
(3)
1 = A((G1−{w, x, z, z1})/{x1y, w1x2,

s1s2}+z2u2) with u1 (respectively, u2, u3) as the identification of {x1, y} (re-

spectively, {w1, x2}, {s1, s2}), and F
(3)
2 = A(G2). Then |F (3)

1 | ≥ �(4(|G1| −
7)+3)/7�, and |F (3)

2 | ≥ �(4|G2|+3)/7�. Note u1 ∈ F
(10)
1 by Lemma 2.3 since

|N(u1)| = 3. Let F (3) := F1
(3) ∪ F

(3)
2 − ({w1, x2, c1} ∩ (F1

(3)	F
(3)
2 )), where

F1
(3)

= F1
(3) + {x1, y, z, z1, w} − u1 if u2, u3 �∈ F

(3)
1 , and otherwise, F1

(3)

obtained from F1
(3) + {x1, y, z, z1, w}− u1 by deleting {u2, w} (respectively,

{u3, z1}) and adding {w1, x2} (respectively, {s1, s2}) when u2 ∈ F1
(3) (re-

spectively, u3 ∈ F1
(3)). Therefore, G[F (3)] is an induced forest in G, showing

a(G) ≥ |F (3)
1 |+ |F (3)

2 |+ 4− 3 ≥ �(4n+ 3)/7�, a contradiction.
So |N(s1) ∩N(s2)| > 2. There exist a1 ∈ N(s1) ∩N(s2) and subgraphs

G′
1, G

′
2, G

′
3 such that G′

2 = G2, G
′
3 is the maximal subgraph of G contained

in the closed region of the plane bounded by the cycle z1s1a1s2z1 and con-
taining N(s1) ∩ N(s2) − {z1}, and G′

1 is obtained from G by removing
G′

2 − {w1, x2, w} and G′
3 − {s1, a1, s2}. Let A4 = {a1} and A5 = ∅. For

i = 4, 5, let F
(i)
1 = A((G′

1 − {w, x, z, z1, s1, s2} − Ai)/{x1y, w1x2} + u2z2)

with u1 (respectively, u2) as the identification of {x1, y}, F (i)
2 = A(G′

2), and

F
(i)
3 = A(G′

3 − {s1, s2} − Ai). Then |F (i)
1 | ≥ �(4(|G′

1| − 8 − |Ai|) + 3)/7�,
|F (i)

2 | ≥ �(4|G′
2| + 3)/7� = �(4|G2| + 3)/7� = (4|G2| + 3)/7 + 6/7, and

|F (i)
3 | ≥ �(4(|G′

3| − 2 − |Ai|) + 3)/7�. Note u1 ∈ F
(i)
1 by Lemma 2.3 since

|N(u1)| = 3. Now G[(F
(i)
1 −u1)∪F

(i)
2 ∪F

(i)
3 +{x1, y, z, z1, w}−({w1, x2, c1}∩

(F
(i)
1 	F

(i)
2 ))− ({a1} ∩ (F

(i)
1 	F

(i)
3 ))] (if u2 �∈ F

(i)
1 ) or G[(F

(i)
1 − {u1, u2}) ∪

F
(i)
2 ∪F

(i)
3 + {x1, y, z, z1, w1, x2}− ({w1, x2, c1}∩ ((F

(i)
1 ∪{w1, x2})	F

(i)
2 ))−

({a1} ∩ (F
(i)
1 	F

(i)
3 ))] (if u2 ∈ F

(i)
1 ) is an induced forest in G, showing

a(G) ≥ |F (i)
1 | + |F (i)

2 | + 4 − 3 − (1 − |Ai|). By Lemma 2.2(2) (with a =
|G′

1|−8, a1 = |G′
3|−2, c = (4|G2|+3)/7+6/7+1), (4(|G′

1|−8)+3, 4(|G′
2|−

2) + 3, 4(|G′
3| − 2) + 3) ≡ (4, 0, 0), (0, 0, 4) mod 7.

If (4(|G′
1| − 8) + 3, 4(|G′

2| − 2) + 3, 4(|G′
3| − 2) + 3) ≡ (4, 0, 0) mod 7,

let F
(6)
1 = A((G′

1 − {w, x, z, z1})/{x1y, w1x2, s1s2}+ z2u2) with u1 (respec-
tively, u2, u3) as the identification of {x1, y} (respectively, {w1, x2}, {s1, s2}),
F

(6)
2 = A(G′

2), and F
(6)
3 = A(G′

3). Then |F (6)
1 | ≥ �(4(|G′

1| − 7) + 3)/7�,
|F (6)

2 | ≥ �(4|G′
2| + 3)/7�, and |F (6)

3 | ≥ �(4|G′
3| + 3)/7�. Note u1 ∈ F

(6)
1 by

Lemma 2.3 since |N(u1)| = 3. Let F (6) := F1
(6)∪F

(6)
2 ∪F

(6)
3 −({w1, x2, c1}∩

(F1
(6)	F

(6)
2 ))− ({s1, s2, a1}∩ (F1

(6)	F
(6)
3 )), where F1

(6)
= F1

(6)+ {x1, y, z,
z1, w} − u1 if u2, u3 �∈ F

(6)
1 , and otherwise, F1

(6)
obtained from F1

(6) +
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{x1, y, z, z1, w} − u1 by deleting {u2, w} (respectively, {u3, z1}) and adding
{w1, x2} (respectively, {s1, s2}) when u2 ∈ F1

(6) (respectively, u3 ∈ F1
(6)).

Therefore, F (6) is an induced forest in G, showing |F (6)
1 |+ |F (6)

2 |+ |F (6)
3 |+

4− 6 ≥ �(4n+ 3)/7�, a contradiction.
If (4(|G′

1| − 8) + 3, 4(|G′
2| − 2) + 3, 4(|G′

3| − 2) + 3) ≡ (0, 0, 4) mod 7,

let F
(7)
1 = A((G′

1 − {w1, x2, w, x, z, z1, c1, s2} + s1z2)/x1y) with u1 as the

identification of {x1, y}, F (7)
2 = A(G′

2−{w1, x2, c1}), and F
(7)
3 = A(G′

3−s2).

Then |F (7)
1 | ≥ �(4(|G′

1|−9)+3)/7�, |F (7)
2 | ≥ �(4(|G′

2|−3)+3)/7�, and |F (7)
3 | ≥

�(4(|G′
3| − 1)+ 3)/7�. Note u1 ∈ F

(7)
1 by Lemma 2.3 since |N(u1)| = 3. Now

G[(F
(7)
1 − u1) ∪ F

(7)
2 ∪ F

(7)
3 + {x1, y, z, z1, w} − ({s1, a1} ∩ (F

(7)
1 	F

(7)
2 ))] is

an induced forest in G, showing a(G) ≥ |F (7)
1 | + |F (7)

2 | + |F (7)
3 | + 4 − 2 ≥

�(4n+ 3)/7�, a contradiction.

Subcase 3.2. (4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (0, 4) mod 7.

If |N(x3) ∩ N(t)| ≤ 2, let F
(8)
1 = A((G1 − {z, z1, z2, x2, s2} + xs1)/x3t)

with u as the identification of {x3, t}, and F
(8)
2 = A((G2−x2). Then |F (8)

1 | ≥
�(4(|G1| − 6) + 3)/7�, and |F (8)

2 | ≥ �(4(|G2| − 1) + 3)/7�. Let F = F
(8)
1 ∪

F
(8)
2 + {z, z1, z2} − ({w1, c1} ∩ (F

(8)
1 	F

(8)
2 )). Now G[F ] (if u �∈ F

(8)
1 ) or

G[F − {u, z2} + {x3, t}] (if u ∈ F
(8)
1 ) is an induced forest in G, showing

a(G) ≥ |F (8)
1 |+ |F (8)

2 |+ 3− 2 ≥ �(4n+ 3)/7�, a contradiction.
So |N(x3) ∩ N(t)| > 2. There exist b1 ∈ N(x3) ∩ N(t) and subgraphs

G′
1, G

′
2, G

′
3 such that G′

2 = G2, G
′
3 is the maximal subgraph of G contained in

the closed region of the plane bounded by the cycle z2x3b1tz2 and containing
N(x3)∩N(t)−{z2}, and G′

1 is obtained from G by removing G′
2−{w1, x2, c1}

and G′
3 − {x3, b1, t}. Let B9 = ∅ and B10 = {b1}. For i = 9, 10, let F

(i)
1 =

A(G′
1 − {z, z1, z2, x2, s2, x3, t} −Bi + xs1), F

(i)
2 = A(G′

2 − {x2}), and F
(i)
3 =

A(G′
3 − {x3, t} − Bi). Then |F (i)

1 | ≥ �(4(|G′
1| − 7 − |Bi|) + 3)/7�, |F (i)

2 | ≥
�(4(|G′

2|−1)+3)/7� = �(4(|G2|−1)+3)/7� = (4(|G2|−1)+3)/7+6/7, and

|F (i)
3 | ≥ �(4(|G′

3| − 2− |Bi|) + 3)/7�. Now G[F
(i)
1 ∪ F

(i)
2 ∪ F

(i)
3 + {z, z1, z2} −

({c1, w1} ∩ (F
(i)
1 	F

(i)
2 )) − ({b1} ∩ (F

(i)
1 	F

(i)
3 ))] is an induced forest in G,

showing a(G) ≥ |F (i)
1 |+ |F (i)

2 |+ 3− 2− (1− |Bi|). By Lemma 2.2(2) (with
a = |G′

1| − 7, a1 = |G′
3| − 2, c = (4(|G2| − 1) + 3)/7 + 6/7 + 1 ), (4(|G′

1| −
7) + 3, 4(|G′

2| − 2) + 3, 4(|G′
3| − 2) + 3) ≡ (4, 4, 0), (0, 4, 4) mod 7.

If (4(|G′
1| − 7)+ 3, 4(|G′

2| − 2)+ 3, 4(|G′
3| − 2)+ 3) ≡ (4, 4, 0) mod 7, let

F
(11)
1 = A((G′

1 −{z, z1, z2, x2, s2}+ xs1)/x3t) with u as the identification of

{x3, t}, F (11)
2 = A(G′

2 − x2), and F
(11)
3 = A(G′

3). Then |F (11)
1 | ≥ �(4(|G′

1| −
6)+3)/7�, |F (11)

2 | ≥ �(4(|G′
2|−1)+3)/7�, and |F (11)

3 | ≥ �(4|G′
3|+3)/7�. Now
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G[F
(11)
1 ∪F

(11)
2 ∪F

(11)
3 +{z, z1, z2}−({w1, c1}∩(F

(11)
1 	F

(11)
2 ))−({x3, t, b1}∩

(F
(11)
1 	F

(11)
3 ))] (if u �∈ F

(11)
1 ) or G[(F

(11)
1 −u)∪F

(11)
2 ∪F

(11)
3 +{z, z1, x3, t}−

({w1, c1} ∩ (F
(11)
1 	F

(11)
2 ))− ({x3, t, b1} ∩ ((F

(11)
1 + {x3, t})	F

(11)
3 ))] (if u ∈

F
(11)
1 ) is an induced forest in G, showing a(G) ≥ |F (11)

1 |+ |F (11)
2 |+ |F (11)

3 |+
3− 5 ≥ �(4n+ 3)/7�, a contradiction.

So (4(|G′
1| − 7)+ 3, 4(|G′

2| − 2)+ 3, 4(|G′
3| − 2) + 3) ≡ (0, 4, 4) mod 7. If

|N(x2) ∩N(s1)| ≤ 2, let F
(12)
1 = A((G′

1 ∪G′
2 − {z, z1, z2, s2, x3})/x2s1 + xt)

with u as the identification of {x2, s1}, and F
(12)
2 = A(G′

3 − {x3}). Then
|F (12)

1 | ≥ �(4((n+3− |G′
3|)− 6)+3)/7�, and |F (12)

2 | ≥ �(4(|G′
3| − 1)+3)/7�.

Let F = F
(12)
1 ∪ F

(12)
2 + {z, z1, z2} − ({b1, t} ∩ (F

(12)
1 	F

(12)
2 )). Now G[F ] (if

u �∈ F
(12)
1 ) or G[F − {u, z1}+ {x2, s1}] (if u ∈ F

(12)
1 ) is an induced forest in

G, showing a(G) ≥ |F (12)
1 |+ |F (12)

2 |+ 3− 2 ≥ �(4n+ 3)/7�, a contradiction.
So |N(x2) ∩ N(s1)| > 2. There exist e1 ∈ N(x2) ∩ N(s1) and subgraphs
G′′

1, G
′′
2, G

′′
3, G

′′
4 such that G′′

2 = G′
2, G

′′
3 = G′

3, G
′′
4 is the maximal subgraph of

G contained in the closed region of the plane bounded by the cycle z1x2e1s1z1
and containing N(s1)∩N(x2)−{z1}, and G′′

1 is obtained from G by removing
G′′

2−{w1, x2, c1}, G′′
3−{x3, b1, t} andG′′

4−{s1, x2, e1}. Let E13 = ∅ and E14 =

{e1}. For i = 13, 14, let F
(i)
1 = A(G′′

1 − {z, z1, z2, x2, s1, s2, x3} − Ei + xt),

F
(i)
2 = A(G′′

2−{x2}), F (i)
3 = A(G′′

3−{x3}), and F
(i)
4 = A(G′′

4−{s1, x2}−Ei).

Then |F (i)
1 | ≥ �(4(|G′′

1| − 7− |Ei|) + 3)/7�, |F (i)
2 | ≥ �(4(|G′′

2| − 1) + 3)/7� =
�(4(|G′

2| − 1) + 3)/7� = (4(|G′
2| − 1) + 3)/7 + 6/7, |F (i)

3 | ≥ �(4(|G′′
3| − 1) +

3)/7� = �(4(|G′
3| − 1) + 3)/7� = (4(|G′

3| − 1) + 3)/7 + 6/7, and |F (i)
4 | ≥

�(4(|G′′
4|−2−|Ei|)+3)/7�. Now G[F

(i)
1 ∪F

(i)
2 ∪F

(i)
3 +{z, z1, z2}−({w1, c1}∩

(F
(i)
1 	F

(i)
2 ))− ({b1, t} ∩ (F

(i)
1 	F

(i)
3 ))− ({e1} ∩ (F

(i)
1 	F

(i)
4 ))] is an induced

forest in G, showing a(G) ≥ |F (i)
1 |+ |F (i)

2 |+ |F (i)
3 |+ |F (i)

4 |+3−2− (1−|Ei|).
By Lemma 2.2(1) (with k = 1, a = |G′′

1| − 7, a1 = |G′′
4| − 2, L = {1, 2}, b1 =

|G′′
2| − 1, b2 = |G′′

3| − 1, c = 1), a(G) ≥ �(4n+ 3)/7�, a contradiction.

Lemma 7.4. The following configuration is impossible in G: x is a 5-vertex
of type 5-1-B in G with neighbors y1, y3, y4, y2, y5 in cyclic order around
x. xy1y

′
3y3x, xy4y

′
4y2x, xy1z1y5x, xy2z2y5x are facial cycles. {y1, y2} ⊆

V4, {z1, z2, y′3, y4} ⊆ V3, N(z1) = {y1, y5, w1} and N(z2) = {y2, y5, w2}.
Proof. Let N(y1) = {x, z1, y′3, y′1} and N(y2) = {x, z2, y′4, y′2}.

First, we claim that w1x �∈ E(G). Otherwise w1x ∈ E(G). Since G
is simple, w1 �∈ {y1, y5}. If w1 = y2 and y1y

′
4 �∈ E(G), then let F ′ =

A(G−{z1, z2, x, y5, y2}+y1y
′
4). Then |F ′| ≥ �(4(n−5)+3)/7�. Now G[F ′+

{z1, z2, y2}] is an induced forest in G, showing a(G) ≥ |F ′| + 3 ≥ �(4n +
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3)/7�, a contradiction. If w1 = y2 and y1y
′
4 ∈ E(G), let F ′ = A(G −

{z1, z2, x, y5, y2, y1, y′4}). Then |F ′| ≥ �(4(n−7)+3)/7�. Now G[F ′+{z1, z2,
y2, y1}] is an induced forest in G, showing a(G) ≥ |F ′| + 4 ≥ �(4n + 3)/7�,
a contradiction. If w1 = y3, then since G is plane, there exists a separation

(G1, G2) such that V (G1 ∩ G2) = {z1, y1, y3}, y′1 ∈ V (G1), and {x, y5} ⊆
V (G2). Let F

(1)
1 = A(G1 − {z1, y3}), and F

(1)
2 = A(G2 − {z1, y1, y3, y5}).

Then |F (1)
1 | ≥ �(4(|G1| − 2) + 3)/7�, and |F (1)

2 | ≥ �(4(|G2| − 4) + 3)/7�.
Now G[F

(1)
1 ∪ F

(1)
2 + {z1}] is an induced forest in G, showing a(G) ≥

|F (1)
1 | + |F (1)

2 | + 1. By Lemma 2.2(7) (with k = 2, a1 = |G1| − 2, a2 =

|G2|−4, c = 1), (4(|G1|−2)+3, 4(|G2|−4)+3) ≡ (0, 6), (6, 0), (0, 0) mod 7.

Let F
(2)
i = A(Gi−{z1, y1, y3}) for i = 1, 2. Then |F (2)

i | ≥ �(4(|Gi|−3)+3)/7�.
Now G[F

(2)
1 ∪ F

(2)
2 + {z1}] is an induced forest in G, showing a(G) ≥

|F (2)
1 |+ |F (2)

2 |+1 ≥ �(4n+3)/7�, a contradiction. If w1 = y4, then since G is

plane, there exists a separation (G1, G2) such that V (G1∩G2) = {z1, x, y4},
y1 ∈ V (G1), and {y2, y5} ⊆ V (G2). Let F

(3)
1 = A(G1 − {z1, x, y4, y1}),

and F
(3)
2 = A(G2 − {z1, y4}). Then |F (3)

1 | ≥ �(4(|G1| − 4) + 3)/7�, and

|F (3)
2 | ≥ �(4(|G2| − 2) + 3)/7�. Now G[F

(3)
1 ∪ F

(3)
2 + {z1}] is an induced

forest in G, showing a(G) ≥ |F (3)
1 | + |F (3)

2 | + 1. By Lemma 2.2(7) (with

k = 2, a1 = |G1| − 4, a2 = |G2| − 2, c = 1), (4(|G1| − 4) + 3, 4(|G2| −
2) + 3) ≡ (0, 6), (6, 0), (0, 0) mod 7. Let F

(4)
1 = A(G1 − {z1, x, y4}), and

F
(4)
2 = A(G2−{z1, x, y4}). Then |F (4)

1 | ≥ �(4(|G1|−3)+3)/7�, and |F (4)
2 | ≥

�(4(|G2| − 3) + 3)/7�. Now G[F
(4)
1 ∪ F

(4)
2 + {z1}] is an induced forest in G,

showing a(G) ≥ |F (2)
1 |+ |F (2)

2 |+1 ≥ �(4n+3)/7�, a contradiction. Similarly,

w2x �∈ E(G).

Secondly, we claim that |N(y′1)∩N(y′3)| ≤ 2. Otherwise, there exist a1 ∈
N(y′1)∩N(y′3) and a separation (G1, G2) such that V (G1∩G2) = {y′1, y′3, a1},
{x, y1, y2, y3, y4, y5} ⊆ V (G1), andN(y′1)∩N(y′3)−{y1} ⊆ V (G2). Let F

(1)
1 =

A(G1 − {y′1, y′3, a1, y1, z1, y5}+w1x), and F
(1)
2 = A(G2 − {y′1, y′3, a1}). Then

|F (1)
1 | ≥ �(4(|G1| − 6) + 3)/7�, and |F (1)

2 | ≥ �(4(|G2| − 3) + 3)/7�. Now

G[F
(1)
1 ∪F (1)

2 +{z1, y1, y3}] is an induced forest in G, showing a(G) ≥ |F (1)
1 |+

|F (1)
2 |+ 3 ≥ �(4n+ 3)/7�, a contradiction.

Now we prove the lemma. If |N(y′2) ∩ N(y′4)| ≤ 2, let F ′ = A((G −
{z1, z2, y1, y2, y5})/ {y′1y′3, y′2y′4}+ {w1x,w2x}) with u1 (respectively, u2) as

the identification of {y′1, y′3} (respectively, {y′2, y′4}). Then |F ′| ≥ �(4(n−7)+

3)/7�. Let F = F ′ + {z1, z2, y1, y2} if u1, u2 �∈ F ′, and otherwise F obtained

from F ′ + {z1, z2, y1, y2} by deleting {u1, y1} (respectively, {u2, y2}) and
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adding {y′1, y′3} (respectively, {y′2, y′4}) when u1 ∈ F ′ (respectively, u2 ∈ F ′).
Therefore, G[F ] is an induced forest in G, showing a(G) ≥ |F ′| + 4 ≥
�(4n+ 3)/7�, a contradiction.

So, |N(y′2) ∩ N(y′4)| > 2. Let B1 = {b1} and B2 = ∅. There exist b1 ∈
N(y′2)∩N(y′4) and a separation (G1, G2) such that V (G1∩G2) = {y′2, y′4, b1},
{x, y1, y2, y3, y4, y5} ⊆ V (G1), and N(y′2) ∩N(y′4) − {y2} ⊆ V (G2). For i =

1, 2, let F
(i)
1 = A((G1−{z1, z2, y1, y2, y5, y′2, y′4}−Bi)/y

′
1y

′
3+{w1x,w2x}) with

u as the identification of {y′1, y′3}, and F
(i)
2 = A(G2 − {y′2, y′4} − Bi). Then

|F (i)
1 | ≥ �(4(|G1|−8−|Bi|)+3)/7�, and |F (i)

2 | ≥ �(4(|G2|−2−|Bi|)+3)/7�. Let
F = F

(i)
1 ∪F

(i)
2 + {z1, z2, y1, y2}− ({b1}∩ (F

(i)
1 	F

(i)
2 )). Now G[F ] (u �∈ F

(i)
1 )

or G[F − {u, y1} + {y′1, y′3}] (u ∈ F
(i)
1 ) is an induced forest in G, showing

a(G) ≥ |F (i)
1 |+|F (i)

2 |+4−(1−|Bi|). By Lemma 2.2(2) (with a = |G1|−8, a1 =
|G2| − 2, c = 4), (4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (4, 0), (0, 4) mod 7.

If (4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (4, 0) mod 7, let F
(3)
1 = A((G −

{z1, z2, y1, y2, y5})/ {y′1y′3, y′2y′4}+ {w1x,w2x}) with u1 (respectively, u2) as

the identification of {y′1, y′3} (respectively, {y′2, y′4}), and F
(3)
2 = A(G2). Then

|F (3)
1 | ≥ �(4(|G1| − 7) + 3)/7�, and |F (3)

2 | ≥ �(4|G2| + 3)/7�. Let F (3) =

F1
(3)∪F (3)

2 −({b1, y′4, y′2}∩(F1
(3)	F

(3)
2 )), where F1

(3)
= F1

(3)+{z1, z2, y1, y2}
if u1, u2 �∈ F ′, and let F1

(3)
obtained from F1

(3) + {z1, z2, y1, y2} by deleting
{u1, y1} (respectively, {u2, y2}) and adding {y′1, y′3} (respectively, {y′2, y′4})
when u1 ∈ F ′ (respectively, u2 ∈ F ′). Therefore, G[F (3)] is an induced forest
in G, showing a(G) ≥ |F1

(3)|+ |F2
(3)|+4−3 ≥ �(4n+3)/7�, a contradiction.

So (4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (0, 4) mod 7. If y5y
′
2 �∈ E(G),

let F
(4)
1 = A(G1 − {x, y4, y′4, y2, z2, w2} + y5y

′
2), and F

(4)
2 = A(G2 − {y′4}).

Then |F (4)
1 | ≥ �(4(|G1| − 6)+3)/7�, and |F (4)

2 | ≥ �(4(|G2| − 1)+3)/7�. Now

G[F
(4)
1 ∪F

(4)
2 + {y4, y2, z2}− ({b1, y′2}∩ (F

(4)
1 	F

(4)
2 ))] is an induced forest in

G, showing a(G) ≥ |F (4)
1 |+ |F (4)

2 |+ 3− 2 ≥ �(4n+ 3)/7�, a contradiction.
So, y5y

′
2 ∈ E(G), then there exists a separation (G′

1, G
′
2) such that

V (G′
1 ∩G′

2) = {y′2, y5, z2}, {x, z1, y2, y3, y4} ⊆ V (G′
1), and w2 ∈ V (G′

2). Let

F
(5)
1 = A((G′

1−{y′2, y5, z2, z1, y1})/y′1y′3+w1x) with u as the identification of

{y′1, y′3} and F
(5)
2 = A(G′

2−{y′2, y5, z2}). Then |F (5)
1 | ≥ �(4(|G1|−6)+3)/7�,

and |F (5)
2 | ≥ �(4(|G2| − 3) + 3)/7�. Let F = F

(5)
1 ∪ F

(5)
2 + {z1, z2, y1}. Now

G[F ] (if u �∈ F
(5)
1 ) or G[F − {u, y1} + {y′1, y′3}] (if u ∈ F

(5)
1 ) is an induced

forest of size a(G) ≥ |F (5)
1 |+ |F (5)

2 |+ 3 ≥ �(4n+ 3)/7�, a contradiction.

Lemma 7.5. The following configuration is impossible in G: x is a 5+-vertex
in G with neighbors x1, x2, x3, ..., xm in cyclic order around x. {x1, xk} ⊆
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V3, N(x1) = {x, z1, y1}, N(xk) = {x, z2, y2}, and {y1x2, y2xk−1} ⊆ E(G).

Moreover, for v ∈ {y1, z1}, either v ⊆ V≤4 or Rv,{x1} �= ∅; and for v ∈
{y2, z2}, either v ⊆ V≤4 or Rv,{xk} �= ∅.

Proof. By Lemmas 4.3, 4.4, we may assume that {y1, z1, y2, z2} ⊆ V4. Let

N(z1)= {z′1, x1, xm, w1},N(y1)= {x1, w1, x2, y
′
1},N(z2)= {z′2, xk, xk+1, w2},

and N(y2) = {xk, w2, xk−1, y
′
2}. By Lemma 4.1, z1x2 �∈ E(G), y1xm �∈ E(G),

z2xk−1 �∈ E(G), and y2xk+1 �∈ E(G).

Claim 1. z′1x �∈ E(G), y′1x �∈ E(G), z′2x �∈ E(G) and y′2x �∈ E(G).

For, suppose z′1x ∈ E(G). Then there exists a separation (G1, G2) of

G such that V (G1 ∩ G2) = {x, z1, z′1}, N(x) ∩ N(z1) − {x1} ⊆ V (G1) and

{x1, y1} ⊆ V (G2). If |N(w1) ∩ N(y′1)| ≤ 2, let F1 = A((G1 − {x, z1, z′1, x1,
y1})/w1y

′
1) with u as the identification of w1 and y′1, and F2 = A(G2 −

{x, z1, z′1}). Then |F1| ≥ �(4(|G1|−6)+3)/7�, and |F2| ≥ �(4(|G2|−6)+3)/7�.
Let F = F1 ∪ F2 + {z1, x1, y}. Now, G[F ] (if u �∈ F1) or G[F − {u, y1} +

{w1, y
′
1}] (if u ∈ F1) is an induced forest in G, showing a(G) ≥ |F1|+ |F2|+

3 ≥ �(4n+ 3)/7�, a contradiction.

So |N(w1) ∩ N(y′1)| > 2. Then there exist a1 ∈ N(w1) ∩ N(y′1) and

subgraphsG′
1, G

′
2, G

′
3 ofG such thatG′

2 = G2,G
′
3 is the maximal subgraph of

G contained in the closed region of the plane bounded by the cycle yw1a1y
′
1y

and containingN(y′1)∩N(w1)−{y1}, and G′
1 is obtained from G by removing

G′
2−{z′1, z1, x}, andG′

3−{y′1, a1, w1}. Let A1 = {a1} and A2 = ∅. For i = 1, 2,

let F
(i)
1 = A(G′

1 − {x, z1, z′1, x1, y1, w1, y
′
1} −Ai), F

(i)
2 = A(G′

2 − {x, z1, z′1}),
and F

(i)
3 = A(G′

3−{w1, y
′
1}−Ai). Then, |F (i)

1 | ≥ �(4(|G′
1|−7−|Ai|)+3)/7�,

|F (i)
2 | ≥ �(4(|G′

2|−3)+3)/7�, and |F (i)
3 | ≥ �(4(|G′

3|−2−|Ai|)+3)/7�. Now,

F
(i)
1 ∪F

(i)
2 ∪F

(i)
3 + {z1, x1, y1}− ({a1} ∩ (F

(i)
1 	F

(i)
3 )) is an induced forest in

G, showing a(G) ≥ |F (i)
1 |+ |F (i)

2 |+ |F (i)
3 |+3− (1− |Ai|). Let (n1, n2, n3) :=

(4(|G′
1|−7)+3, 4(|G′

2|−7)+3, 4(|G′
3|−7)+3). By Lemma 2.2(2), (n1, n2, n3) ≡

(4, 0, 0), (0, 0, 4) mod 7. If (n1, n2, n3) ≡ (4, 0, 0) mod 7, let F
(3)
1 = A((G′

1−
{x, z1, z′1, x1, y1})/w1y

′
1) with u as the identification of w1 and y′1, F

(3)
2 =

A(G′
2−{x, z1, z′1}), and F

(3)
3 = A(G′

3). Then, |F
(3)
1 | ≥ �(4(|G′

1| − 6)+3)/7�,
|F (3)

2 | ≥ �(4(|G′
2| − 3) + 3)/7�, and |F (3)

3 | ≥ �(4|G′
3|+ 3)/7�. Now, G[F

(3)
1 ∪

F
(3)
2 ∪ F

(3)
3 + {z1, x1, y1} − ({w1, y

′
1, a1} ∩ (F

(3)
1 	F

(3)
3 ))] (if u �∈ F

(3)
1 ) or

G[F
(3)
1 ∪F (3)

2 ∪F (3)
3 +{z1, x1, w1, y

′
1}−({w1, y

′
1, a1}∩((F

(3)
1 ∪{w1, y

′
1})	F

(3)
3 ))]

(if u ∈ F
(3)
1 ) is an induced forest in G, showing a(G) ≥ |F (3)

1 | + |F (3)
2 | +

|F (3)
3 | + 3 − 3 ≥ �(4n + 3)/7�, a contradiction. If (n1, n2, n3) ≡ (0, 0, 4)

mod 7, let F
(4)
1 = A(G′

1 − {x, z1, z′1, x1, w1}), F (4)
2 = A(G′

2 − {x, z1, z′1}),
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and F
(4)
3 = A(G′

3 − w1). Then, |F (4)
1 | ≥ �(4(|G′

1| − 5) + 3)/7�, |F (4)
2 | ≥

�(4(|G′
2| − 3) + 3)/7�, and |F (4)

3 | ≥ �(4(|G′
3| − 1) + 3)/7�. Now, G[F

(4)
1 ∪

F
(4)
2 ∪ F

(4)
3 + {z1, x1} − ({y′1, a1} ∩ (F

(4)
1 	F

(4)
3 ))] is an induced forest in G,

showing a(G) ≥ |F (4)
1 |+|F (4)

2 |+|F (4)
3 |+2−2 ≥ �(4n+3)/7�, a contradiction.

By symmetry, we have y′1x �∈ E(G), z′2x �∈ E(G) and y′2x �∈ E(G).

Claim 2. If |N(y′1) ∩ N(w1)| > 2, |N(z′1) ∩N(w1)| > 2, and there exist
a1 ∈ N(y′1) ∩ N(w1) and a separation (G1, G2) such that V (G1 ∩ G2) =
{w1, y

′
1, a1}, {x1, y1} ⊆ V (G1), and N(y′1) ∩ N(w1) − {y1} ⊆ V (G2), then

4(|G2| − 2) + 3 �≡ 4 mod 7.
For, suppose 4(|G2| − 2) + 3 ≡ 4 mod 7. There exist a1 ∈ N(y′1) ∩

N(w1), b1 ∈ N(z′1) ∩ N(w1) and subgraphs G′
1, G

′
2, G

′
3 such that G′

2 = G2,
G′

3 is the maximal subgraph of G contained in the closed region of the
plane bounded by the cycle z1z

′
1b1w1z1 and containing N(z′1) ∩ N(w1) −

{z1}, and G′
1 is obtained from G by removing G′

2 − {y′1, a1, w1}, and G′
3 −

{z′1, b1, w1}. Let B1 = {b1} and B2 = ∅. If |N(y′1) ∩N(x2)| ≤ 2, for i = 1, 2,

let F
(i)
1 = A((G′

1 − {x1, y1, z1, w1, xm} − Bi)/y
′
1x2 + z′1x) with u as the

identification of {y′1, x2}, F
(i)
2 = A(G′

2 − w1), and F
(i)
3 = A(G′

3 − w1 − Bi).

Then |F (i)
1 | ≥ �(4(|G′

1| − 6 − |Bi|) + 3)/7�, |F (i)
2 | ≥ �(4(|G′

2| − 1) + 3)/7�,
and |F (i)

3 | ≥ �(4(|G′
3| − 1 − |Bi|) + 3)/7�. Now G[F

(i)
1 ∪ F

(i)
2 ∪ F

(i)
3 ∪ F

(i)
4 +

{x1, z1, y1}− ({y′1, a1}∩ (F
(i)
1 	F

(i)
2 ))− ({z′1, b1}∩ (F

(i)
1 	F

(i)
3 ))] (if u �∈ F

(i)
1 )

or G[(F
(i)
1 − u) ∪ F

(i)
2 ∪ F

(i)
3 ∪ F

(i)
4 + {x1, z1, y′1, x2} − ({y′1, a1} ∩ ((F

(i)
1 +

y′1)	F
(i)
2 )) − ({z′1, b1} ∩ (F

(i)
1 	F

(i)
3 ))] (if u �∈ F

(i)
1 ) is an induced forest in

G, showing a(G) ≥ |F (i)
1 | + |F (i)

2 | + 3 − 3 − (1 − |Bi|). By Lemma 2.2(1)
(with k = 1), a(G) ≥ �(4n+ 3)/7�, a contradiction. Thus, |N(y′1) ∩ x2| > 2.
Similarly, |N(z′1) ∩N(xm)| > 2.

So |N(y′1) ∩ N(x2)| > 2 and |N(z′1) ∩ N(xm)| > 2. There exist c1 ∈
N(y′1) ∩ N(x2), d1 ∈ N(z′1) ∩ N(xm) and subgraphs G′′′

1 , G
′′′
2 , G

′′′
3 , G

′′′
4 , G

′′′
5

of G such that G′′′
2 = G′

2, G
′′′
3 = G′

3, G
′′′
4 is the maximal subgraph of G

contained in the closed region of the plane bounded by the cycle z1z
′
1d1xmz1

and containing N(z′1) ∩ N(xm) − {z1}, G′′′
5 is the maximal subgraph of G

contained in the closed region of the plane bounded by the cycle y1y
′
1c1x2y1

and containing N(y′1)∩N(x2)−{y1}, and G′′
1 is obtained from G by removing

G′′
2−{y′1, a1, w1}, G′′

3−{z′1, b1, w1}, G′′
4−{z′1, d1, xm} andG′′

5−{y′1, c1, x2}. Let
Bi ⊆ {b1}, Ci ⊆ {c1}, andDi ⊆ {d1}. For each choice of Bi, Ci, Di, let F

(i)
1 =

A(G′′′
1 −{x1, y1, z1, w1, z

′
1, y

′
1, x2, xm}−Bi−Ci−Di), F

(i)
2 = A(G′′′

2 −{w1, y
′
1}),

F
(i)
3 = A(G′′′

3 − {w1, z
′
1} − Bi), F

(i)
4 = A(G′′′

4 − {xm, z′1} − Di), and F
(i)
5 =

A(G′′′
5 −{x2, y′1}−Ci). Then |F (i)

1 | ≥ �(4(|G′′′
1 |−8−|Bi|−|Ci|−|Di|)+3)/7�,
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|F (i)
2 | ≥ �(4(|G′′′

2 |−2)+3)/7� = �(4(|G′
2|−2)+3)/7� = (4(|G′

2|−2)+3)/7+

3/7, |F (i)
3 | ≥ �(4(|G′′′

3 |−2−|Bi|)+3)/7�, |F (i)
4 | ≥ �(4(|G′′′

4 |−2−|Di|)+3)/7�,
and |F (i)

5 | ≥ �(4(|G′′′
5 | − 2− |Ci|) + 3)/7�. Now G[F

(i)
1 ∪ F

(i)
2 ∪ F

(i)
3 ∪ F

(i)
4 ∪

F
(i)
5 + {x1, z1, y1} − ({a1} ∩ (F

(i)
1 	F

(i)
2 )) − ({b1} ∩ (F

(i)
1 	F

(i)
3 )) − ({c1} ∩

(F
(i)
1 	F

(i)
4 ))−({d1}∩(F (i)

1 	F
(i)
5 ))] is an induced forest inG, showing a(G) ≥

|F (i)
1 |+|F (i)

2 |+|F (i)
3 |+|F (i)

4 |+|F (i)
5 |+3−1−(1−|Bi|)−(1−|Ci|)−(1−|Di|). By

Lemma 2.2(1) (with k = 3, a = |G′′′
1 | − 8, a2 = |G′′′

3 | − 2, a3 = |G′′′
4 | − 2, a4 =

|G′′′
5 |−2, L = {1}, b1 = |G′′′

2 |−2, c = 2), a(G) ≥ �(4n+3)/7�, a contradiction.

Now we distinguish several cases.

Case 1. Either |N(z′1) ∩N(w1)| ≤ 2 or |N(y′1) ∩N(w1)| ≤ 2; and either
|N(z′2) ∩N(w2)| ≤ 2 or |N(y′2) ∩N(w2)| ≤ 2.

We may assume that |N(y′1) ∩ N(w1)| ≤ 2 and |N(y′2) ∩ N(w2)| ≤ 2.
Let F ′ = A((G− {x1, xk, y1, y2, x})/{y′1w1, y

′
2w2}+ {z1x2, z2xk−1}) with u1

(respectively, u2) as the identification of {y′1, w1} (respectively, {y′2, w2}).
Then |F ′| ≥ �(4(n− 7) + 3)/7�. Let F = F ′ + {x1, xk, y1, y2} if u1, u2 �∈ F ′,
and otherwise F obtained from F ′+ {x1, xk, y1, y2} by deleting {y1, u1} (re-
spectively, {y2, u2}) and adding {y′1, w1} (respectively, {y′2, w2}). Therefore,
F is an induced forest in G, showing a(G) ≥ |F ′| + 4 ≥ �(4n + 3)/7�, a
contradiction.

Then, we have (both |N(z′1) ∩ N(w1)| ≥ 3 and |N(y′1) ∩ N(w1)| ≥ 3)
or (both |N(z′2) ∩N(w2)| ≥ 3 and |N(y′2) ∩N(w2)| ≥ 3). Suppose |N(z′1) ∩
N(w1)| ≥ 3 and |N(y′1) ∩N(w1)| ≥ 3.

Case 2. |N(z′2) ∩N(w2)| ≤ 2 or |N(y′2) ∩N(w2)| ≤ 2.

We may assume |N(y′2)∩N(w2)| ≤ 2. There exist a1 ∈ N(y′1)∩N(w1) and
a separation (G1, G2) ofG such that V (G1∩G2) = {w1, y

′
1, a1}, {x, x1, x2, x3,

z1, z2} ⊆ V (G1), and N(y′1) ∩ N(w1) − {y1} ⊆ V (G2). Let A1 = ∅ and

A2 = {a1}. For i = 1, 2, let F
(i)
1 = A((G1 − {x1, xk, y1, y2, x, y′1, w1} −

Ai)/y
′
2w2 + z2xk−1) with u as the identification of {y′2, w2}, and F

(i)
2 =

A(G2 − {y′1, w1} − Ai). Then |F (i)
1 | ≥ �(4(|G1| − 8 − |Ai|) + 3)/7�, and

|F (i)
2 | ≥ �(4(|G2| − 2− |Ai|) + 3)/7�. Let F = F

(i)
1 ∪ F

(i)
2 + {x1, xk, y1, y2} −

({a1} ∩ (F
(i)
1 	F

(i)
2 )). Now G[F ] (if u �∈ F

(i)
1 ) or G[F − {u, y2} + {y′2, w2}]

(if u ∈ F
(i)
1 ) is an induced forest in G, showing a(G) ≥ |F (i)

1 | + |F (i)
2 | +

4 − (1 − |Ai|). By Lemma 2.2(2) (with a = |G1| − 8, a2 = |G2| − 2, c = 4),
(4(|G1|− 8)+3, 4(|G2|− 2)+3) ≡ (4, 0), (0, 4) mod 7. By Claim 2, we have
(4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (4, 0) mod 7. So assume it’s the case.

Let F
(3)
1 = A((G1 − {x1, xk, y1, y2, x})/{y′1w1, y

′
2w2}+ {z1x2, z2xk−1}) with
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u1 (respectively, u2) as the identification of {y′1, w1} (respectively, {y′2, w2}),
and F

(3)
2 = A(G2). Then |F (3)

1 | ≥ �(4(|G1|−7)+3)/7�, and |F (3)
2 | ≥ �(4|G2|+

3)/7�. Let F (3) = G[F1
(3)∪F (3)

2 −({w1, y
′
1, a1}∩(F1

(3)	F
(3)
2 ))], where F1

(3)
=

F1
(3) + {x1, xk, y1, y2} if u1, u2 �∈ F

(3)
1 , and otherwise, F1

(3)
obtained from

F1
(3)+{x1, xk, y1, y2} by deleting {y1, u1} (respectively, {y2, u2}) and adding

{y′1, w1} (respectively, {y′2, w2}). Therefore, F (3) is an induced forest in G,

showing a(G) ≥ |F (3)
1 |+ |F (3)

2 |+ 4− 3 ≥ �(4n+ 3)/7�, a contradiction.

Case 3. |N(z′2) ∩N(w2)| ≥ 3 and |N(y′2) ∩N(w2)| ≥ 3.
There exist a1 ∈ N(y′1) ∩ N(w1), c1 ∈ N(y′2) ∩ N(w2), b1 ∈ N(z′1) ∩

N(w1), d1 ∈ N(z′2)∩N(w2) and subgraphs G1, G2, G3, G4, G5 such that G2

is the maximal subgraph of G contained in the closed region of the plane
bounded by the cycle y1y

′
1a1w1y1 and containing N(y′1)∩N(w1)−{y1}, G3

is the maximal subgraph of G contained in the closed region of the plane
bounded by the cycle y2y

′
2c1w2y2 and containing N(y′2)∩N(w2)−{y2}, G4

is the maximal subgraph of G contained in the closed region of the plane
bounded by the cycle z1z

′
1b1w1z1 and containing N(z′1) ∩N(w1)− {z1}, G5

is the maximal subgraph of G contained in the closed region of the plane
bounded by the cycle z2z

′
2d1w2z2 and containing N(z′2) ∩ N(w2) − {z2},

and G1 is obtained from G by removing G2−{y′1, a1, w1}, G3−{y′2, c1, w2},
G4−{z′1, b1, w1} and G5−{z′2, d1, w2}. Let Ai ⊆ {a1}, Bi ⊆ {b1}, Ci ⊆ {c1}
and Di ⊆ {d1}. Let G′

1 = G1 ∪ G4 ∪ G5. For each choice of Ai, Ci, let

F
(i)
1 = A(G′

1 − {x1, y1, y′1, w1, x, xk, y
′
2, w2, y2} − Ai − Ci + {z1x2, z2xk−1}),

F
(i)
2 = A(G2 − {w1, y

′
1} − Ai), and F

(i)
3 = A(G3 − {w2, y

′
2} − Ci). Then

|F (i)
1 | ≥ �(4(n+6−|G2|−|G3|−9−|Ai|−|Ci|)+3)/7�, |F (i)

2 | ≥ �(4(|G2|−2−
|Ai|)+3)/7�, and |F (i)

3 | ≥ �(4(|G3|−2−|Ci|)+3)/7�. NowG[F
(i)
1 ∪F (i)

2 ∪F (i)
3 +

{x1, y1, xk, y2} − ({a1} ∩ (F
(i)
1 	F

(i)
2 ))− ({c1} ∩ (F

(i)
1 	F

(i)
3 ))] is an induced

forest in G, showing a(G) ≥ |F (i)
1 |+|F (i)

2 |+|F (i)
3 |+4−(1−|Ai|)−(1−|Ci|). By

Lemma 2.2(5) (with a = n+6−|G2|−|G3|−9, a1 = |G2|−2, a2 = |G3|−2, c =
4), 4(|G2| − 2) + 3 ≡ 0, 3, 4, 6 mod 7 and 4(|G3| − 2) + 3 ≡ 0, 3, 4, 6 mod 7.
By Claim 2 and by symmetry, we have 4(|Gi| − 2) + 3 ≡ 0, 3, 6 mod 7 for
i = 2, 3, 4, 5 and if 4(|G2| − 2) + 3 ≡ 3, 6 mod 7 or 4(|G4| − 2) + 3 ≡ 3, 6
mod 7, then 4(|G3| − 2) + 3 ≡ 4(|G5| − 2) + 3 ≡ 0 mod 7 and vice versa.

If 4(|G2| − 2) + 3 ≡ 3, 6 mod 7, then 4(|G3| − 2) + 3 ≡ 0 mod 7. Let

A1 = {a1} if 4(|G2| − 2) + 3 ≡ 6 mod 7 and A1 = ∅ otherwise. Let F
(1)
1 =

A((G′
1−{x1, y1, y′1, w1, x, xk, y2}−A1)/y

′
2w2+{z1x2, z2xk−1}) with u as the

identification of {y′2, w2}, F (1)
2 = A(G2 − {w1, y

′
1}−A1), and F

(1)
3 = A(G3).

Then |F (1)
1 | ≥ �(4(n+6−|G2|− |G3|− 8−|A1|)+3)/7�, |F (1)

2 | ≥ �(4(|G2|−
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2− |A1|) + 3)/7�, and |F (1)
3 | ≥ �(4|G3|+ 3)/7�. Now G[F

(1)
1 ∪ F

(1)
2 ∪ F

(1)
3 +

{x1, y1, xk, y2}− ({a1} ∩ (F
(1)
1 	F

(1)
2 ))− ({w2, y

′
2, c1} ∩ (F

(1)
1 	F

(1)
3 ))] (if u �∈

F
(1)
1 ) or G[(F

(1)
1 −u)∪F (1)

2 ∪F (1)
3 +{x1, y1, xk, y′2, w2}−({a1}∩(F (1)

1 	F
(1)
2 ))−

({w2, y
′
2, c1}∩ ((F

(1)
1 ∪{y′2, w2})	F

(1)
3 ))] (if u ∈ F

(1)
1 ) is an induced forest in

G, showing a(G) ≥ |F (1)
1 |+ |F (1)

2 |+ |F (1)
3 |+4− (1−|A1|)−3 ≥ �(4n+3)/7�,

a contradiction.

So 4(|G2| − 2) + 3 ≡ 4(|G3| − 2) + 3 ≡ 0 mod 7 by symmetry. Let

F
(2)
1 = A((G′

1−{x1, y1, x, xk, y2})/{y′1w1, y
′
2w2}+{z1x2, z2xk−1}) with u1,u2

as the identification of {y′1, w1}, {y′2, w2} respectively, and F
(2)
2 = A(G2)

and F
(2)
3 = A(G3). Then |F (2)

1 | ≥ �(4(|G1| − 7) + 3)/7�, |F (2)
2 | ≥ �(4|G2| +

3)/7�, and |F (2)
3 | ≥ �(4|G3| + 3)/7�. Let F (2) = G[F1

(2) ∪ F
(2)
2 ∪ F

(2)
3 −

({w1, y
′
1, a1} ∩ (F1

(2)	F
(2)
2 ))− ({w2, y

′
2, c1} ∩ (F1

(2)	F
(2)
3 ))], where F1

(2)
=

F1
(2) + {x1, xk, y1, y2} if u1, u2 �∈ F

(2)
1 , and otherwise, F1

(2)
obtained from

F1
(3)+{x1, xk, y1, y2} by deleting {y1, u1} (respectively, {y2, u2}) and adding

{y′1, w1} (respectively, {y′2, w2}) when u1 ∈ F
(2)
1 (respectively, u2 ∈ F

(2)
1 ).

Therefore, F (2) is an induced forest in G, showing a(G) ≥ |F (2)
1 | + |F (2)

2 | +
|F (2)

3 |+ 4− 6 ≥ �(4n+ 3)/7�, a contradiction.

Lemma 7.6. The following configuration is impossible in G: v is a 5-
vertex of type 5-2-C with neighbors v1, v2, v3, v4, v5 in cyclic order, {v1, v3} ⊆
V3, vv4xv5 is a facial cycle, v4 is a 5-vertex of type 5-2-B with neighbors
x, v, v′3, v

′
4, v

′′
4 in cyclic order, v5 ∈ V4, {x, v′4} ⊆ V3, v4v

′
3yv

′
4v, v4v

′
4zv

′′
4v,

v4v
′′
4x

′xv are facial cycles and x′ ∈ V4.

Proof. Let N(v5) = {x, v, v′5, v′1} where x′v′5 ∈ E(G) and v1v
′
1 ∈ E(G).

Case 1. N(v′′4) ∩N(v′5) = {x′} and |N(z) ∩N(y)| ≤ 2.

Let F ′ = A((G− {x′, x, v5, v′1, v1, v4, v, v′4, v′3, v3})/{v′′4v′5, yz}) with v′, y′

as the identification of {v′′4 , v′5}, {y, z} respectively. Then |F ′| ≥ �(4(n−12)+
3)/7�. Let F = F ′ + {v1, v3, v4, v5, x, x′, v′4} if v′, y′ �∈ F ′, and otherwise, F
obtained from F ′ + {v1, v3, v4, v5, x, x′, v′4} by deleting {y′, v′4} (respectively,
{v′, x′}) and adding {y, z} (respectively, {v′′4 , v′5}) when y′ ∈ F ′ (respectively,
v′ ∈ F ′ ). Therefore, F is an induced forest in G, showing a(G) ≥ |F ′|+7 ≥
�(4n+ 3)/7�, a contradiction.

Case 2. N(v′′4) ∩N(v′5) = {x′} and |N(z) ∩N(y)| > 2.

There exist a1 ∈ N(z) ∩ N(y) and a separation (G1, G2) such that
V (G1 ∩ G2) = {y, z, a1}, {v, v1, v2, v3, v4, v5, x, x′, v4, v′′4 , v′3} ⊆ V (G1), and
N(z) ∩ N(y) − {v′4} ⊆ V (G2). Let A1 = ∅ and A2 = {a1}. For i = 1, 2,
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let F
(i)
1 = A((G1 − {x′, x, v5, v′1, v1, v4, v, v′3, v3, y, z, v′4} − Ai)/v

′′
4v

′
5) with

v′ as the identification of {v′′4 , v′5}, and F
(i)
2 = A(G2 − {y, z} − Ai). Then

|F (i)
1 | ≥ �(4(|G1|−13−|Ai|)+3)/7�, and |F (i)

2 | ≥ �(4(|G2|−2−|Ai|)+3)/7�.
Let F = F

(i)
1 ∪F (i)

2 +{v1, v3, v4, v5, x, x′, v′4}−({a1}∩(F (i)
1 	F

(i)
2 )). Now G[F ]

(if v′ �∈ F
(i)
1 ) or G[F − {v′, x′} + {v′′4 , v′5}] (if v′ ∈ F

(i)
1 ) is an induced forest

in G, showing a(G) ≥ |F (i)
1 |+ |F (i)

2 |+7− (1− |Ai|). By Lemma 2.2(1) (with
k = 1, a = |G1| − 13, a1 = |G2| − 2, L = ∅, c = 7), a(G) ≥ �(4n + 3)/7�, a
contradiction.

Case 3. |N(v′′4) ∩N(v′5)| > 1.

There exist b1 ∈ N(v′′4) ∩ N(v′5) and a separation (G1, G2) such that
V (G1 ∩ G2) = {v′′4 , v5, x′, b1}, {v, v1, v2, v3, v4, v5, x, x′, v4, v′′4 , v′3} ⊆ V (G1),

and N(v′′4)∩N(v′5)−{b1} ⊆ V (G2). Let F
(1)
1 = A(G1−{x′, x, v5, v′1, v1, v4, v,

v′3, v3, v
′′
4 , v

′
5, b1}), and F

(1)
2 = A(G2−{x′, v′′4 , v′5, b1}). Then |F (1)

1 | ≥ �(4(|G1|
−12) + 3)/7�, and |F (1)

2 | ≥ �(4(|G2| − 4) + 3)/7�. Then G[F
(1)
1 ∪ F

(1)
2 +

{v1, v3, v4, v5, x, x′}] is an induced forest in G, showing a(G) ≥ |F (1)
1 | +

|F (1)
2 |+ 6. If v′4b1 �∈ E(G), let F

(2)
1 = A(G1 − {x′, x, v5, v′1, v1, v4, v, v′3, v3, v′′4 ,

v′5} + v′4b1), and F
(2)
2 = A(G2 − {x′, v′′4 , v′5}). Then |F (2)

1 | ≥ �(4(|G1| −
11) + 3)/7�, and |F (2)

2 | ≥ �(4(|G2| − 3) + 3)/7�. Now G[F
(2)
1 ∪ F

(2)
2 +

{v1, v3, v4, v5, x, x′} − ({b1} ∩ (F
(2)
1 	F

(2)
2 ))] is an induced forest in G, show-

ing a(G) ≥ |F (2)
1 |+ |F (2)

2 |+6− 1. By Lemma 2.2(1) (with k = 1, a = |G1| −
11, a1 = |G2| − 3, L = ∅, c = 6), a(G) ≥ �(4n + 3)/7�, a contradiction. So

v′4a1 ∈ E(G). Let F
(3)
1 = A(G1 − {x′, x, v5, v′1, v1, v4, v, v′3, v3, v′′4 , v′5, b1, v′4}),

and F
(3)
2 = A(G2−{x′, v′′4 , v′5, b1}). Then |F (3)

1 | ≥ �(4(|G1|−13)+3)/7�, and
|F (3)

2 | ≥ �(4(|G2| − 4) + 3)/7�. Now G[F
(3)
1 ∪ F

(3)
2 + {v1, v3, v4, v5, x, x′, v′4}]

is an induced forest in G, showing a(G) ≥ |F (3)
1 |+ |F (3)

2 |+7 ≥ �(4n+3)/7�,
a contradiction.

Lemma 7.7. The following configuration is impossible in G: v is a 5-
vertex of type 5-2-C with neighbors v1, v2, v3, v4, v5 in cyclic order, {v1, v3} ⊆
V3; vv4xv5v is a facial cycle. v4 is a 5-vertex of type 5-1-A with neigh-
bors x, v, v′3, v

′
4, v

′′
4 in cyclic order, v5 ∈ V4, x ∈ V3; v4v

′
3yv

′
4v4, v4v

′
4zv

′′
4v4,

v4v
′′
4x

′xv4 are facial cycles, {y, z} ⊆ V3, and x′ ∈ V≤4.

Proof. Let xx′v′5v5, vv5v
′
1v1 bound 4-faces. Let F ′=A(G−{v′5, v′1, x′, v5, x, v1,

v′′4 , v4, v, z, v
′
4, y, v′3, v3}). Then |F ′| ≥ �(4(n − 14) + 3)/7�. Now G[F ′ +

{x′, x, v5, v1, v3, v4, y, z}] is an induced forest in G, showing a(G) ≥ |F ′|+8 ≥
�(4n+ 3)/7�, a contradiction.
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Lemma 7.8. The following configuration is impossible in G: v is a 5-vertex
of type 5-2-B with neighbors v1, v2, v3, v4, v5 in cyclic order, {v1, v3} ⊆ V3,
N(v1) = {v, v′1, v′′1}, N(v3) = {v, v′3, v′′3}, v′′1 ∈ V≥5 and {v′3, v′′3} ⊆ V4;
vv1v

′
1v2v, vv2v

′
3v3v, vv3v

′′
3v4v, vv5v

′′
1v1v are facial cycles. v2 is a 5-vertex

of type 5-2-C with neighbors v, v′1, v
′
2, v

′′
2 , v

′
3 in cyclic order, {v′1, v′′2} ⊆ V3.

Proof. Let t ∈ N(v′′2) ∩ N(v′3) and v2v
′′
2 tv

′
3v2 bound a 4-face. Let N(v′′3) =

{v3, v4, s1, s2} and v3v
′
3s2v

′′
3v3 bound a 4-face. Let w ∈ N(v′′1) ∩ N(v′1) and

v1v
′′
1wv

′
1v1 bound a 4-face.

By Lemma 4.1, v′3v4 �∈ E(G). We claim that v2v
′′
1 �∈ E(G). Since G is

simple, v′′1 �∈ {v, v′1}. Since v′′1 ∈ V≥5, v
′′
1 �∈ {v′3, v′′2}. If v′2 = v′′1 , then since G

is a quadrangulation, v2v
′′
1wv

′
1v2 bound a 4-face and thus N(w) = {v′′1 , v′1}.

But this contradicts Lemma 4.2.
If |N(s1) ∩N(s2)| ≤ 2, then let F ′ = A(G− {v, v1, v′1, v3, v′′3 , w}/s1s2 +

{v′3v4, v2v′′1}) with s′ the identification of {s1, s2}. Then |F ′| ≥ �(4(n− 7) +
3)/7�. Now G[F ′+{v3, v′′3 , v1, v′1}] (if s′ �∈ F ′ ) or G[F ′−s′+{v3, s1, s2, v1, v′1}]
(if s′ ∈ F ′ ) is an induced forest in G, showing a(G) ≥ |F ′|+4 ≥ �(4n+3)/7�,
a contradiction.

So |N(s1)∩N(s2)| > 2. There exist a1 ∈ N(s1)∩N(s2) and a separation
(G1, G2) such that V (G1∩G2) = {s1, s2, a1}, {v, v1, v2, v3, v4, v5, v′1, v′′1 , v′2, v′′2 ,
t, v′3, v

′′
3} ⊆ V (G1), and N(s1) ∩ N(s2) − {v′′3} ⊆ V (G2). Let A1 = ∅ and

A2 = {a1}. For i = 1, 2, let F
(i)
1 = A(G1 − {v, v1, v′1, v3, v′′3 , w, s1, s2} −

Ai + {v′3v4, v2v′′1}) with s′ the identification of {s1, s2}, and F
(i)
2 = A(G2 −

{s1, s2} − Ai). Then |F (i)
1 | ≥ �(4(|G1| − 8 − |Ai|) + 3)/7�, and |F (i)

2 | ≥
�(4(|G2| − 2 − |Ai|) + 3)/7�. Now F

(i)
1 ∪ F

(i)
2 + {v3, v′′3 , v1, v′1} − ({a1} ∩

(F
(i)
1 	F

(i)
2 )) is an induced forest in G, showing a(G) ≥ |F (i)

1 |+ |F (i)
2 |+ 4−

(1− |Ai|). By Lemma 2.2(2) (with a = |G1| − 8, a1 = |G2| − 2, L = ∅, c = 4),
(4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (0, 4), (4, 0) mod 7.

If (4(|G1| − 8) + 3, 4(|G2| − 2) + 3) ≡ (4, 0) mod 7, then let F
(3)
1 =

A(G1 − {v, v1, v′1, v3, v′′3 , w}/s1s2 + {v′3v4, v2v′′1}) with s′ the identification

of {s1, s2}, and F
(3)
2 = A(G2). Then |F (3)

1 | ≥ �(4(|G1| − 7) + 3)/7�, and
|F (3)

2 | ≥ �(4|G2|+3)/7�. Now G[F
(3)
1 ∪F

(3)
2 + {v3, v′′3 , v1, v′1}− ({a1, s1, s2}∩

(F
(3)
1 	F

(3)
2 ))] (if s′ �∈ F

(3)
1 ) or G[F

(3)
1 ∪ F

(3)
2 − s′ + {v3, s1, s2, v1, v′1} −

({a1, s1, s2} ∩ ((F
(3)
1 + {s1, s2})	F

(3)
2 ))] (if s′ ∈ F

(3)
1 ) is an induced forest

in G, showing a(G) ≥ |F (3)
1 |+ |F (3)

2 |+4− 3 ≥ �(4n+3)/7�, a contradiction.
So (4(|G1| − 8)+3, 4(|G2| − 2)+3) ≡ (0, 4) mod 7. First, we claim that

vt �∈ E(G). t �∈ {v2, v3} since G is simple. t �= v4 by Lemma 4.1. t �= v1 since
v′′1 ∈ V≥5 and v′1 ∈ V3. Suppose t = v5. Since G is a quadrangulation, v′′2v5 ∈
E(G). let F4 = A(G− {v3, v′3, v′′3 , s2, v4, v, v2, v′′2 , v1, v′1, v5, w}). Then |F4| ≥
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�(4(n−12)+3)/7�. Now G[F4+{v′′3 , v3, v′3, v, v′′2 , v1, v′1}] is an induced forest
in G, showing a(G) ≥ |F4|+7 ≥ �(4n+3)/7�, a contradiction. Secondly, sup-

pose |N(s1)∩N(v4)| ≤ 2. Then let F
(5)
1 = A(G1 − {v′′3 , s2, v3, v′3, v2}/s1v4 +

{vt}) with s′ the identification of {s1, v4}, and F
(5)
2 = A(G2 − s2). Then

|F (5)
1 | ≥ �(4(|G1| − 6) + 3)/7�, and |F (5)

2 | ≥ �(4(|G2| − 1) + 3)/7�. Now

G[F
(5)
1 ∪ F

(5)
2 + {v3, v′′3 , v′3} − ({a1, s1} ∩ (F

(5)
1 	F

(5)
2 ))] (if s′ �∈ F

(5)
1 ) or

G[F
(5)
1 ∪ F

(5)
2 − s′ + {s1, v4, v3, v′3} − ({a1, s1} ∩ ((F

(5)
1 + s1)	F

(5)
2 ))] (if

s′ ∈ F
(5)
1 ) is an induced forest in G, showing a(G) ≥ |F (5)

1 | + |F (5)
2 | +

3 − 2 ≥ �(4n + 3)/7�, a contradiction. Now, |N(s1) ∩ N(v4)| > 2. There
exist a1 ∈ N(s1) ∩ N(s2), b1 ∈ N(s1) ∩ N(v4) and subgraphs G′

1, G
′
2, G

′
3

such that G′
2 = G2, G

′
3 is the maximal subgraph of G contained in the

closed region of the plane bounded by the cycle v′′3s1b1v4v
′′
3 and containing

N(s1)∩N(v4)−{v′′3}, andG′
1 is obtained fromG by removingG′

2−{s1, a1, s2}
and G′

3 − {s1, b1, v4}. Let B7 = {b1} and B8 = ∅. For i = 7, 8, let F
(i)
1 =

A((G′
1 − {v3, v′′3 , s1, v4} − Bi)/vv

′
3) with v′ as the identification of {v, v′3},

F
(i)
2 = A(G′

2 − {s1}), and F
(i)
3 = A(G′

3 − {s1, v4} − Bi). Then |F (i)
1 | ≥

�(4(|G′
1| − 5− |Bi|) + 3)/7�, |F (i)

2 | ≥ �(4(|G′
2| − 1) + 3)/7� = �(4(|G2| − 1) +

3)/7� = (4(|G2|−1)+3)/7+6/7, and |F (i)
3 | ≥ �(4(|G′

3|−2−|Bi|)+3)/7�. Now

G[F
(i)
1 ∪F

(i)
2 ∪F

(i)
3 +{v3, v′′3}−({a1, s2}∩(F

(i)
1 	F

(i)
2 ))−({b1}∩(F

(i)
1 	F

(i)
3 ))]

(if v′ �∈ F
(i)
1 ) or G[F

(i)
1 ∪F (i)

2 ∪F (i)
3 −v′+{v, v′3, v′′3}−({a1, s2}∩(F (i)

1 	F
(i)
2 ))−

({b1} ∩ (F
(i)
1 	F

(i)
3 ))] (if v′ ∈ F

(i)
1 ) is an induced forest in G, showing

a(G) ≥ |F (i)
1 | + |F (i)

2 | + |F (i)
3 | + 2 − 2 − (1 − |Bi|). By Lemma 2.2(1) (with

k = 1, a = |G′
1| − 5, a1 = |G′

3| − 2, L = {1}, b1 = |G′
2| − 1, c = 0),

a(G) ≥ �(4n+ 3)/7�, a contradiction.

8. Proof of Theorem 1.2

We define the discharging rules as follow: For each v ∈ V (G), let ch(v) :=
|N(v)| − 4. Let F be the set of all the faces of graph G. For each f ∈ F , let
ch(f) := |f | − 4. Then, by Euler’s Formula, the total charge of graph G is

∑

v∈V (G)

ch(v) +
∑

f∈F
ch(f) =

∑

v∈V (G)

(N(v)− 4) +
∑

f∈F
(|f | − 4)

= 4|E(G)| − 4|V (G)| − 4|F|
= −8

Definition 8.1. For v ∈ V (G), suppose |N(v)| ≥ 5. We redistribute the
charges as follow:
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(i) Suppose Rv,U �= ∅ for some U ⊆ V (G). If Rv,U = {{r}}, then v
sends charge |N(v)|−4 to r; If Rv,U = {{r1, r2}}, then v sends charge
(|N(v)| − 4)/2 to both r1 and r2; If Rv,U = {R1, R2}, then v sends
charge |N(v)| − 4 to R1 ∩R2;

(ii) Suppose Rv,{u} = ∅ and vu ∈ E(G) for some u ∈ V3. Let N(u) =
{v, u1, u2}. If for both w ∈ {u1, u2}, either w ∈ V≤4 or Rw,{u} �= ∅,
then v sends charge 1 to u; If u2 ∈ V≥5 and Ru2,{u} = ∅, then v sends
charge 1/2 to u;

(iii) Suppose Rv,{u} = ∅ and xwyvx is a facial cycle such that {x, y} ⊆
N(v), x ∈ V≥5, w ∈ V3 and y ∈ V4. If neither v nor x is of type 5-2-C,
then v sends charge 1/4 to x.

We denote the new charge of v as ch′(v). We remark that if v sends charge
1/4 to x in both faces bounded by xw1y1vx and xw2y2vx by Definition 8.1
(iii), then v sends charge 1/2 to x.

We show that for v ∈ V (G), ch′(v) ≥ 0. If |N(v)| = 2, then by Lemma 3.1
and Definition 8.1 (i), v either receives at least 1 from {v5, v′5} ⊆ V≥5∩N(v)
where Rv5,{v} = Rv′

5,{v} = ∅ or at least 2 from v6 ∈ V≥6 ∩ N(v) where
Rv6,{v} = ∅. Hence, ch′(v) ≥ ch(v) + 2 = 0. Suppose |N(v)| = 3 with
N(v) = {v1, v2, v3}. If Rv3,{v} �= ∅, then by Lemmas 4.3, 4.4, {v1, v2} ⊆ V≥5,
Rv1,{v} = Rv2,{v} = ∅; thus, by Definition 8.1(ii), v receives 1/2 from each
of v1 and v2, and ch′(v) = ch(v) + 1/2 + 1/2 = 0. Now, assume Rvi,{v} = ∅
for i = 1, 2, 3. By Corollary 4.6, there exists v1 ∈ N(v) ∩ V≥5. By Defini-
tion 8.1(ii), v receives at least 1 from N(v) and thus ch′(v) ≥ ch(v)+ 1 = 0.
If |N(v)| = 4, then v does not receive or send charge to other vertices.
Therefore, ch′(v) = ch(v) = 0. If |N(v)| ≥ 5 and Rv,∅ �= ∅, then by Def-
inition 8.1(i) and Lemma 2.5, v sends |N(v)| − 4 to Rv,∅ only. Therefore,
ch′(v) = ch(v)− (|N(v)| − 4) = 0.

Next, assume |N(v)| ≥ 5 and Rv,∅ = ∅. We distinguish the cases by
Definition 7.1:

• v is of type 5-2-A. By Lemma 7.5, v does not exist inG, a contradiction;
• v is of type 5-2-B. LetN(v) = {v1, v2, v3, v4, v5} in order. Let {v1, v3} ⊆
V3, {v2, v4, v5} ⊆ V≥4, N(v1) = {v′1, v′′1 , v}, N(v3) = {v′3, v′′3 , v}, u ∈
V≤4 or Ru,{v3} �= ∅ for u ∈ {v′3, v′′3} and v′1 ∈ V≥5, Rv′

1,{v1} = ∅. By
Definition 8.1(ii), v sends 1/2 to v1, 1 to v3. By Lemma 4.3, 4.4, 6.1,
Ru,{v3} = ∅ and u ∈ V4 for u ∈ {v′3, v′′3}. By Lemma 5.1, {v2, v4} ⊆ V≥5

and Rv2,{v} = Rv4,{v} = ∅. By Lemma 7.6, v4 is not of type 5-2-C. By
Lemma 7.8, v2 is not of type 5-2-C. Hence, v receives 1/4 from each
of v2 and v4 by Definition 8.1(iii). In addition, by Lemma 7.3, v does
not send charge to v4. So ch′(v) = ch(v)− 1− 1/2 + 1/4 + 1/4 = 0;
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• v is of type 5-2-C. LetN(v) = {v1, v2, v3, v4, v5} in order. Let {v1, v3} ⊆
V3, {v2, v4, v5} ⊆ V≥4, N(v1) = {v′1, v′′1 , v}, N(v3) = {v′3, v′′3 , v}, v′1 ∈
V≥5, Rv′

1,{v1} = ∅, v′3 ∈ V≥5, and Rv′
3,{v3} = ∅. By Definition 8.1(ii)(iii),

v sends 1/2 to both v1 and v3. So ch′(v) = ch(v)− 1/2− 1/2 = 0;
• v is of type 5-1-A. Let N(v) = {v1, v2, v3, v4, v5} in order. Let v1 ∈
V3, {v2, v3, v4, v5} ⊆ V≥4,N(v1) = {v′1, v′′1 , v}, and u ∈ V≤4 or Ru,{v1} �=
∅ for u ∈ {v′1, v′′1}. Let vv2v

′
2v3v, vv3v

′
3v4v, vv4v

′
4v5v be facial cycles.

By Lemmas 4.3, 4.4, 6.1, Ru,{v1} = ∅ and u ∈ V4 for u ∈ {v′1, v′′1}. By
Lemma 5.1, {v2, v5} ⊆ V≥5 and Rv2,{v} = Rv5,{v} = ∅. If v2, v5 are not
of type 5-2-C, then by Definition 8.1(iii) v receives 1/4 from each of
v2 and v5. By Definition 8.1(ii)(iii), v sends 1 to v1 and 1/4 to at most
two of {v2, v3, v4, v5}. So ch′(v) ≥ ch(v)−1−1/4×2+1/4+1/4 = 0; If
both v2 and v5 are of type 5-2-C, then {v′2, v′4} ⊆ V3 and by Lemma 7.7
v′3 �∈ V3. By Definition 8.1(ii)(iii), v sends 1 to v1 and no charge to
{v2, v3, v4, v5}. So ch′(v) ≥ ch(v) − 1 = 0; If exactly one of v2 and
v5 is of type 5-2-C, say v2, then by Lemma 7.7, |{v′3, v′4} ∩ V3| ≤ 1.
By Definition 8.1(ii)(iii), v sends 1 to v1 and 1/4 to at most one of
{v3, v4, v5} and v receives 1/4 from v5. So ch′(v) ≥ ch(v) + 1/4− 1−
1/4 = 0;

• v is of type 5-1-B. Let N(v) = {v1, v2, v3, v4, v5} in order. Let v1 ∈
V3, {v2, v3, v4, v5} ⊆ V≥4, N(v1) = {v′1, v′′1 , v}, v′1 ∈ V≥5, and Rv′

1,{v1} =
∅. By Lemma 7.4 and Definition 8.1(ii)(iii), v sends 1/2 to v1 and 1/4
to at most two of {v2, v3, v4, v5}. So ch′(v) ≥ ch(v)−1/2−1/4×2 = 0;

• v is of type 5-0. By Definition 8.1(iii), ch′(v) ≥ ch(v)− 1/4× 4 = 0.

Suppose |N(v)| = 6 and Rv,∅ = ∅. We distinguish the cases by Defini-
tion 7.2:

• v is of type 6-3. By Lemma 7.5 and Definition 8.1(ii), v sends 1 to at
most one of {v1, v3, v5}. By Definition 8.1(iii), v sends no charge to
{v2, v4, v6}. So ch′(v) ≥ ch(v)− 1− 1/2× 2 = 0;

• v is of type 6-2-A. By Lemma 7.5 and Definition 8.1(ii), v sends 1 to at
most one of {v1, v3}. By Definition 8.1(iii), v sends no charge to v2 and
1/4 to at most two of {v4, v5, v6}. So ch′(v) ≥ ch(v)−1−1/2−2×1/4 =
0;

• v is of type 6-2-B. Let N(v1) = {v′1, v′′1 , v} and N(v3) = {v′3, v′′3 , v}. By
Lemma 7.5 and Definition 8.1(ii), v sends 1 to at most one of {v1, v4}.
By Definition 8.1(iii), v sends 1/4 to at most one of {v2, v3} and to at
most one of {v5, v6}. So ch′(v) ≥ ch(v)− 1− 1/2− 2× 1/4 = 0;

• v is of type 6-1. By Definition 8.1(ii), v sends at most 1 to v1. By
Definition 8.1(iii), v sends 1/4 to at most four of {v2, v3, v4, v5, v6}. So
ch′(v) ≥ ch(v)− 1− 4× 1/4 = 0;
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• v is of type 6-0. By Definition 8.1(iii), ch′(v) ≥ ch(v)− 6× 1/4 = 1/2.

Suppose |N(v)| = 7 and Rv,∅ = ∅. Let N(v) := {v1, v2, v3, v4, v5, v6, v7}
in order. If |N(v) ∩ V3| = 3, then we may assume that they are v1, v3, v5.
By Lemma 7.5 and Definition 8.1(ii), v sends 1 to at most one of N(v)∩V3.
So ch′(v) ≥ ch(v) − 1 − 2 × 1/2 − 1/4 > 0. If |N(v) ∩ V3| ≤ 2, then by
Definition 8.1(iii), v sends 1/4 to at most three of N(v). So, ch′(v) ≥ ch(v)−
1− 1− 3× 1/4 > 0. Suppose |N(v)| ≥ 8. We observe that if we amortize the
redistribution of charge to all the faces which v is incident with, then v sends
at most 1/2 in each face. So ch′(v) ≥ ch(v)−1/2×|N(v)| = |N(v)|/2−4 ≥ 0.

Therefore, ch′(v) ≥ 0 for v ∈ V (G). Since G is a quadrangulation by
Lemma 2.3, ch′(f) := ch(f) = 0. Then, the total charge after redistribution
is

∑
v∈V (G) ch

′(v) +
∑

f∈F ch′(f) ≥ 0, which contradicts Euler’s Formula.
To conclude, the minimum counterexample G does not exist. This com-

pletes the proof of Theorem 1.2.
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