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Adversarial resilience of matchings in bipartite
random graphs
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We study the problem of finding the largest matching in a random
bipartite graph after an adversary deleted some edges. The bipar-
tite graph consists of a partition class A of size n and a partition
class B of size (1 + ε)n. Each vertex in A chooses d neighbours
in B uniformly and independently at random, and an adversary
then deletes, for each vertex v ∈ A, at most r edges incident to v,

for some fixed r ≥ 1. Let εr,d :=
(
r+1
r (log d)/

(
d

r+1

))1/r
. We show

that for each η > 0 and for sufficiently large (but fixed) d, if
ε ≥ (1 + η)εr,d then asymptotically almost surely an adversary
who deletes r edges incident to each vertex in A cannot destroy
all matchings of size n. On the other hand if ε < (1 − η)εr,d,
then asymptotically almost surely such an adversary can destroy
all matchings of size n.

Keywords and phrases: Resilience, bipartite graph, matching, ran-
dom graph.

1. Introduction

We are interested in the problem of finding the largest matching in a random
bipartite graph after an adversary has deleted some edges. More precisely,
we consider a random bipartite graph G = (A ∪ B,E) with |A| = n and
|B| = (1+ε)n. Each vertex in A is adjacent to d neighbours chosen uniformly
and independently at random from B. We allow repetition, so this is a
multigraph. An adversary is then able to remove at most r edges adjacent
to each vertex of A, with the aim of minimising the size of the largest
matching.

Finding matchings in graphs is a well-studied problem and polynomial
time algorithms are known to find maximum matchings, see for example
[6, 13]. Recently in [12], Liu, Slotine, and Barabási used a characterisation by
Lin [11] of structural controllability to show how large matchings in bipartite
graphs play a crucial role to obtain bounds on the number of nodes needed
to control directed networks.
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They also estimated the fraction of edges in a matching drawn randomly
from several classes of graphs in a non-rigorous way using the cavity method.
Rigorous proofs for most of these results can be found in [3] and also in
[14]. In particular the authors determine the size of a maximum matching
in a random bipartite graph with a fixed degree distribution under some
mild assumption on these distributions. The application in controllability
motivated us to look at a model where an adversary is present.

Melsted and Frieze [7] analysed the Karp-Sipser algorithm for the ran-
dom bipartite graph where each vertex in a partition class of size n chooses
d neighbours uniformly at random from a partition class of size ñ = αn for
some α > 0. We consider this model with an added adversary, to analyse
the local resilience of the matchings in this model.

The resilience of a graph property refers to the difficulty in eliminating
it by removing edges from the graph, either randomly or according to some
defined process. Here we consider worst case, or adversarial resilience, in
which we allow an adversary the ability to delete edges at will, with the aim
of disrupting the desired property in the graph. This models both the ability
of an attacker to disrupt a network, and also the worst possible case that
could occur randomly.

In general allowing an adversary entirely free reign in choosing which
edges to destroy provides too much power, and almost any global property
can be disrupted, as for example, isolating a single vertex of low degree must
automatically eliminate the possibility of a complete matching. Limiting the
abilities of an adversary with respect to local conditions in targeting global
properties provides more mathematically interesting results.

In analysing our particular class of bipartite graph, we are interested in a
variant of local resilience, in that we allow the adversary to eliminate at most
r edges incident to each vertex in one of the graph partitions, but we provide
no restriction on the edges removed with respect to the neighbourhoods of
the vertices in the other partition.

An excellent overview of local resilience and various results in this area
can be found in the article “Local Resilience of Graphs” by Sudakov and Vu
[15]. This paper provided a more systematic approach to studying resilience
and ignited interest in the topic, resulting in a large number of recent results
(see [1], [2], [4], [5] and [10] for a range of examples).

We will show the following theorem, where we use the notation asymp-
totically almost surely (a.a.s.) which means with probability tending to 1 as
n tends to infinity.

Theorem 1.1. Let G = (A ∪ B,E) with |A| = n and |B| = (1 + ε)n be a
random bipartite (multi-)graph in which each vertex in A chooses d vertices
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uniformly and independently at random with repetition from B. For each
r ≥ 1 and each η > 0 there exists a d0 = d0(r, η) such that for all d ≥ d0, if

ε > (1 + η)

(
(r + 1) log d

r
(

d
r+1

)
)1/r

,

then asymptotically almost surely an adversary who deletes at most r edges
incident to each vertex in A cannot destroy all matchings of size n. On the
other hand if

ε < (1− η)

(
(r + 1) log d

r
(

d
r+1

)
)1/r

,

then asymptotically almost surely such an adversary can destroy all match-
ings of size n.

For ease of notation, define

εr,d :=

(
(r + 1) log d

r
(

d
r+1

)
)1/r

.

The problem of finding such resilient matchings is closely related to
finding a maximum r-independent set in a random d-uniform hypergraph
Hd

ñ,n on ñ ≥ n vertices and n edges. An r-independent set in a d-uniform
hypergraph is a set of vertices such that each hyperedge contains at most
r vertices of this set, see for example [9]. Here, the partition class B of
the bipartite graph G corresponds to the vertices of the hypergraph and
the neighbourhoods of the vertices of A correspond to the edges. Clearly, an
adversary can isolate all vertices corresponding to an r-independent set, and
hence if the maximum size of an independent set is β then the adversary can
force the size of a maximum matching to be at most ñ − β. We will use a
result by Krivelevich and Sudakov [9] that implies that Hd

ñ,n a.a.s. contains
an independent set of size (1 − η)εr,dn where η can be chosen arbitrarily
small if d is sufficiently large.

As a note on notation, asymptotically, we are interested in the proba-
bilistic results as n → ∞, and so by o(1) we mean a function that tends to 0
as n → ∞. But since we are also considering d → ∞ (and at the same time
ε → 0), we may also require the use of little o notation to denote the size of
terms which do not depend on n, in which case we will label them od(f(d))
to indicate that the asymptotics depend on d rather than n. As an example
ε = od(1), but neither ε nor d depend on n and hence are asymptotically
constant in terms of n.
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2. Upper bounds

We begin by proving the upper bound on the threshold for ε. To prove this

we consider Hall’s theorem.

Theorem 2.1 (Hall [8]). For a bipartite graph G with partitions X and Y ,

a matching in G of size |X| exists if and only if,

(1) ∀X ′ ⊆ X, |Γ(X ′)| ≥ |X ′|,

where Γ(X ′) is the set of neighbours of X ′ in Y .

If there exists a set X ′ ⊆ X that does not satisfy (1), we call X ′ a witness

for violating Hall’s condition.

We aim to give a bound on the probability of the adversary being able

to restrict the size of the maximal matching. We do this by considering

the probability of the existence of a set that, after deletion of edges by the

adversary, could become a witness.

Theorem 2.2. Let G be the random bipartite graph with partition sets A

and B of size n and ñ = (1+ε)n respectively, and each vertex of A chooses d

vertices uniformly and independently at random with repetition from B. An

adversary deletes at most r edges incident to each vertex of A to obtain G′.
For each η > 0 there exists a d0 = d0(r, η) such that for all d ≥ d0 and

ε > (1+η)εr,d, a matching of size n still exists in G′ with probability tending

to 1 as n → ∞.

Proof. Fix η > 0 and assume that ε > (1 + η)εr,d. Suppose that a matching

of size n does not exist in G′. By Hall’s Theorem at least one witness of

Hall’s condition exists. Consider a smallest such witness S, of size s, say. Its

neighbourhood in G′ must be of size s− 1, or we could delete an element of

S and still have a witness of smaller size.

For two sets S ⊆ A and S′ ⊆ B of sizes s and s− 1 respectively, if they

form a witness in G′, then for each vertex of S in G, at most r edges meet

B \ S′ (which the adversary then deletes).

The probability of a given edge incident to a vertex of S also being

incident to a vertex in S′ is p := s−1
ñ . Let q := 1 − p. Then the probability

that the d edges incident to a vertex of S satisfy this condition is

ρ := P(Bin(d, q) ≤ r) =

r∑
i=0

(
d

i

)
pd−iqi.
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Note that

(2) ρ ≤
(
d

r

)
pd−r.

as we can bound ρ by the sum over all subsets of edges of size d− r of the
probability that these edges are incident to the set S.

The expected number es of witnesses of size s is therefore bounded by

(3) es ≤
(
n

s

)(
ñ

s− 1

)
ρs.

(The inequality may be strict as the right hand side counts witnesses with
|Γ(S)| < s−1 with high multiplicity.) We split the analysis into several cases
depending on s, or equivalently p. For s not too large, we use the inequality(
n
r

)
≤

(
en
r

)r
to obtain

(
n

s

)(
ñ

s− 1

)
≤

(en
s

)s
(

eñ

s− 1

)s−1

≤
(

eñ

s− 1

)2s

=

(
e

p

)2s

.

Thus

(4) es ≤
(
e2ρ

p2

)s

≤
(
e2
(
d

r

)
pd−r−2

)s

.

Case s ≤ √
n.

In this case p ≤ 1/
√
n, so for d > r + 2, e2

(
d
r

)
pd−r−2 ≤ c/

√
n for some

constant c independent of n. Hence

√
n∑

s=1

es ≤
c/
√
n

1− c/
√
n
= o(1).

Case s ≥ √
n and q ≥ 2r(log d)/(d− r − 2).

Note that the lower bound on q implies an upper bound on s, say s ≤ s0.
In this case

e2
(
d

r

)
pd−r−2 = e2

(
d

r

)
(1− q)d−r−2 ≤ e2

(
d

r

)
e−q(d−r−2) ≤ e2drd−2r,

which is less than 1/2 for large enough d. Thus

s0∑
s=�√n�

es ≤
∞∑

s=�√n�

1

2s
= 2−�√n�+1 = o(1).
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Case c1/d ≤ q ≤ 2r(log d)/(d − r − 2) for some sufficiently large con-
stant c1 depending only on r.

As before the bounds on q imply bounds on s and we denote the cor-
responding bounds on s by s0 ≤ s ≤ s1. Note that ρ = P(Bin(d, q) ≤ r) is
increasing as q decreases. Thus, by Chebyshev’s inequality,

ρ ≤ P(Bin(d, c1/d) ≤ r) ≤ 1

20

if c1 is sufficiently large compared to r. For sufficiently large d we also have
that q < 0.1, so e2ρ/p2 ≤ 1/2, and so by (4)

s1∑
s=s0

es ≤
s1∑

s=s0

(
e2ρ

p2

)s

≤
∞∑

s=s0

1

2s
= o(1)

as in the previous case.

Case
(
c2(log d)/d

r+1
)1/r ≤ q ≤ c1/d where c2 is a sufficiently large

constant depending on c1 and r.
We denote the corresponding bounds on s by s1 ≤ s ≤ s2. From now on

we will use the fact that

ρ = P(Bin(d, q) ≤ r) ≤ 1−
(

d

r + 1

)
qr+1pd−r−1

≤ exp

(
−
(

d

r + 1

)
qr+1pd−r−1

)
.(5)

Note that s− 1 = pñ = (1− q)ñ and, as s > n/2, in this case
(
n
s

)
≤

(
ñ

s−1

)
=(

ñ
qñ

)
. Thus

es ≤
(
ñ

qñ

)2

exp

(
−
(

d

r + 1

)
qr+1pd−r−1

)s

≤
(
e

q

)2qñ

exp

(
−
(

d

r + 1

)
qr+1pd−r−1s

)

= exp

(
−
(

d

r + 1

)
qr+1pd−r−1s+ 2qñ log(e/q)

)
.

Since s ≥ s− 1 = pñ we deduce that

s2∑
s=s1

es ≤ n exp

(
−
((

d

r + 1

)
qr+1pd−r − 2q log(e/q)

)
ñ

)
.



Adversarial resilience of matchings in bipartite random graphs 85

Thus it suffices to show that
(

d
r+1

)
qr+1pd−r − 2q log(e/q) is bounded away

from 0 independently of n. But this is clear as pd−r ≥ (1 − c1/d)
d ≥ c3

for some constant c3 > 0 depending on c1, log(e/q) ≤ 2 log d, and qr ≥
c2(log d)/d

r+1.

Case q ≤
(
c2(log d)/d

r+1
)1/r

and s ≤ (1 − ed−(r+1)/r)n. In this case we

have that pd−1 = 1− od(1). Note that

n−s
n = 1− s

n ≤ 1− s−1
n = 1− p(1 + ε) = q − pε

so, in particular, q ≥ pε. Also q = 1− p ≥ 1−n/ñ = ε/(1+ ε) ≥ ed−(r+1)/r.

Hence by (3)

es ≤
(

n

n− s

)(
ñ

qñ

)
exp

(
−
(

d

r + 1

)
qr+1pd−r−1

)s

≤
(

en

n− s

)n−s(e

q

)qñ

exp

(
−
(

d

r + 1

)
qr+1pd−r−1s

)

≤
(
d(r+1)/r

)n(q−pε) (
d(r+1)/r

)qñ
exp

(
−
(

d

r + 1

)
qr+1pd−rñ

)

≤ exp

(
−
((

d

r + 1

)
qr+1pd−r − r + 1

r
(2q − pε) log d

)
ñ

)
.

Thus it suffices to show that
(

d
r+1

)
qr+1pd−r − r+1

r (2q − pε) log d is bounded

away from 0 independently of n. But (q− pε)2 ≥ 0, so 2q− pε ≥ q2/pε and,

as we noted above, q ≥ pε, so (q/pε)r−1 ≥ 1. Thus

r + 1

r
(2q − pε) log d ≤ r + 1

r
· q

2

pε
log d

≤ r + 1

r
· q

r+1

prεr
log d

≤
(

d

r + 1

)
qr+1

pr
(1 + η)−r

≤
(

d

r + 1

)
qr+1pd−r

(
1− η

2

)
for sufficiently large d.

Case q ≤
(
c2 log d/d

r+1
)1/r

and s ≥ (1− ed−(r+1)/r)n.

In this case we have
(

n
n−s

)
≤

(
n

end−(r+1)/r

)
. As above we have

es ≤ (d(r+1)/r)end
(r+1)/r

(d(r+1)/r)qñ exp

(
−
(

d

r + 1

)
qr+1pd−rñ

)
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≤ exp

(
−
((

d

r + 1

)
qr+1pd−r − r + 1

r

(
q + ed−(r+1)/r

)
log d

)
ñ

)
.

Now q ≥ ε/(1 + ε) so

r + 1

r

(
q + ed−(r+1)/r

)
log d ≤ r + 1

r
q
(
1 +

η

6

)
log d

while (
d

r + 1

)
qr+1pd−r ≥

(
d

r + 1

)
qεrpd−r

(1 + ε)r
≥ r + 1

r
q
(
1 +

η

3

)
log d.

Thus es ≤ exp(−( r+1
r q log d)ñη/6) = o(1/n) and the proof is complete.

3. Lower bound

Instead of looking at a matching in a bipartite graph we consider the ran-
dom d-uniform hypergraphHd

ñ,n consisting of ñ = (1+ε)n vertices (although
we in fact, prove the required hypergraph result for all ñ ≥ n) and n dis-
tinct hyperedges. The correspondence between these two models is fairly
simple. For each of the vertices of A, its neighbourhood consists of d ver-
tices in B, chosen uniformly and independently at random. If there are no
multiple edges then this results in a uniformly chosen random subset of B
of size d, equivalent to the choice of edges in the random hypergraph Hd

ñ,n.
More generally, for each vertex v ∈ A, choose independently and uniformly
at random a d-set that contains the neighbourhood Γ(v). If there are no
multiple edges incident with v then there is only one choice of such a d-set,
namely Γ(v), but even in general the d-set is uniformly distributed over all
d-sets of B, independently for each vertex v ∈ A. Thus we obtain a hy-
pergraph with the same distribution as Hd

ñ,n. We define the random subset
M ⊆ B as the set of all vertices of B that are incident to at least one
multiple edge.

We aim to find an r-independent set in Hd
ñ,n, that is, a set I of vertices

such that each hyperedge intersects with at most r vertices in I. Clearly,
given an r-independent set I ⊆ B, the adversary can isolate the vertices of
I \ M in the set B. The adversary can go through the vertices of I \ M ,
eliminating their incident edges and never need to remove r edges incident
to a single vertex in A. Hence if the maximum r independent set is of size
bigger than εn+ |M | then the adversary can ensure that a matching of size
n does not exist. We first show that M is small.

Lemma 3.1. E(|M |) ≤
(
d
2

)
, independently of n.
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Proof. The size of M is clearly bounded by the total number of pairs of
parallel edges. Hence

E(|M |) ≤ n

(
d

2

)
1

ñ
≤

(
d

2

)
.

By Markov’s inequality, a.a.s. |M | ≤ √
n, say, as n → ∞. Thus the lower

bound will follow from the following theorem.

Theorem 3.2. For each r ≥ 1 and each η > 0 there exists a d0 = d0(r, η)
such that for all d ≥ d0, there exists an r-independent set in the random
d-uniform hypergraph Hd

ñ,n consisting of ñ ≥ n vertices and n edges, which
asymptotically almost surely is at least of size

(1− η)εr,d n.

Proof. We begin by noting that if we prove the result for ñ = n then the
result holds for all ñ > n. This follows from noting that if ñ > n then we can
arbitrarily discard ñ−n vertices and consider the hypergraph induced on the
remaining n vertices. For any hyperedge entirely contained within these n
vertices, we keep it. For a hyperedge that contained 1 ≤ d′ ≤ d vertices from
the set of discarded vertices, we choose d′ new vertices from the remaining
n vertices, ensuring we do not create any multiple edges or add the same
vertex twice to a single edge. This new hypergraph on n vertices, has n
hyperedges, chosen uniformly at random from all possible sets of size d of
these vertices. This is equivalent to Hd

n,n.
The process that generates this auxiliary hypergraph, can, at worst,

decrease the size of the maximum r-independent set. This is because any
r-independent set in the new auxiliary hypergraph must also be one for the
original Hd

ñ,n hypergraph, as the n vertices used for the auxiliary are only
removed from hyperedges in reverting to the original hypergraph. Therefore,
if we prove the theorem for ñ = n, then this auxiliary hypergraph must
contain an r-independent set of the required size, which we note does not
depend on ñ, and as such the original hypergraph must contain such a set
too.

We actually use a stronger result for the random d-uniform hypergraph
Hd

n,p which has n vertices and each subset of the vertices of size d is a
hyperedge with probability p independently of the presence or absence of all
other hyperedges. Here p is such that the expected number of hyperedges
equals n, that is,

(6)

(
n

d

)
p = n.
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This is indeed a stronger result. For example, suppose the maximum r-
independent set is a.a.s. of size at least k in Hd

n,p. As this hypergraph has at
least n edges with probability bounded away from zero, the maximum size of
an r-independent set is a.a.s. at least k, even conditioned on the hypergraph
having at least n hyperedges. But then a.a.s. there is an r-independent set
of size at least k in the hypergraph obtained from this graph by selecting
at random n hyperedges from this graph, which is distributed precisely as
Hd

n,n.

We use the following result by Krivelevich and Sudakov.

Theorem 3.3 ([9]). For every 1 ≤ r ≤ d−1 there exists a constant γ0 such
that if

γ = γ(n, p) = r

(
d− 1

r

)(
n− 1

d− 1

)
p ≥ γ0

and γ = o(nr) then a.a.s. there exists an r-independent set of size at least

(
γ

(r + 1) log γ

(
1 +

1

log0.1 γ

))− 1

r

n

in a d-uniform hypergraph Hd
n,p.

We have p = n/
(
n
d

)
and hence

γ = r

(
d− 1

r

)
d =

d!

(d− r − 1)!(r − 1)!
=

(
d

r + 1

)
(r + 1)r.

Thus the conditions of the Theorem 3.3 are satisfied and we have for suffi-
ciently large d that (

1 +
1

log0.1 γ

)− 1

r

≥ 1− η

2

and

(
(r + 1) log γ

γ

) 1

r

≥
(

log γ

r
(

d
r+1

)
) 1

r

≥
(
1− η

2

)(
(r + 1) log d

r
(

d
r+1

)
) 1

r

.

4. Conclusions/open problems

Although we have proven a threshold for the lower and upper bounds which
are asymptotically equal as d → ∞, it seems likely, that a threshold should
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exist for each d. In other words, we conjecture that there exists constants
cr,d such that for all 1 ≤ r ≤ d − 2 and η > 0, if ε > cr,d + η then a.a.s. a
matching of size n can be found, while for ε < cr,d−η there is a.a.s. a strategy
for the adversary that reduces the size of the maximal matching below n.
If this conjecture is true then we know that for each fixed r, cr,d = (1 +

od(1))
(
r+1
r (log d)/

(
d

r+1

))1/r
as d tends to infinity. Note that this conjecture

fails for d < r+2. Indeed, the adversary can simply delete a random choice
of d− 1 ≤ r edges from each vertex in A and then in the resulting graph we
a.a.s. have two vertices in A with the same remaining neighbour in B. On
the other hand it is not hard to see that Theorem 2.2 can be strengthened
so as to give a finite bound on ε even for d = r+2. The proof required d to
be large at several points, however, following the strategy of the proof, it is
easy to show that d ≥ r + 2 is enough to get a finite bound. For example,
if ñ ≥ 10

(
d
r

)
n then, recalling that es is the expected number of witnesses of

size s and p := s−1
ñ , we have,

es ≤
(
n

s

)(
ñ

s− 1

)((
d

r

)
pd−r

)s

≤
(en

s

)s
(

eñ

s− 1

)s−1((d
r

)
p2
)s

≤
(

e

10
(
d
r

)
p

)s(
e

p

)s−1((d
r

)
p2
)s

≤ (p/e)(e2/10)s

≤ (s/ne)(e2/10)s.

Noting that
n∑

s=1

(s/ne)(e2/10)s = O

(
1

n

)
,

it is clear that we have
∑

s≥1 es = o(1) as required.
Although we have identified the threshold for which an adversary can

and cannot destroy the complete matching when subject to the restriction
of removing at most r edges incident to each vertex of A, there remains a
number of interesting problems that would arise from allowing the adversary
greater or differing powers in modifying G. The case where the adversary
is able to delete n edges globally allows the adversary to easily isolate a
linear proportion of the vertices, while equally, a matching still exists that
covers a linear proportion of the vertices. In both cases a simple greedy
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algorithm provides fairly simple bounds, but finding the exact size of the
largest remaining matching seems challenging and certainly would require
further insight in tackling.

Another problem to consider would be the case of analysing the size of
the maximum matching for values of r, d and ε for which we have shown
that the adversary can eliminate a matching of size n. The use of our graph
model was motivated by its use in [7] which analysed the size of the maximum
matching in the same model but without an adversary removing edges, for
all values of d, and it would be interesting to know what the behaviour of
the size of the maximum matching becomes for small values of d once an
adversary is introduced.
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