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Random subgraphs make identification affordable

Florent Foucaud, Guillem Perarnau, and Oriol Serra
∗

An identifying code of a graph is a dominating set which uniquely
determines all the vertices by their neighborhood within the code.
Whereas graphs with large minimum degree have small domination
number, this is not the case for the identifying code number (the
size of a smallest identifying code), which indeed is not even a
monotone parameter with respect to graph inclusion.

We show that for every large enough Δ, every graph G on n ver-
tices with maximum degree Δ and minimum degree δ ≥ c logΔ,
for some constant c > 0, contains a large spanning subgraph which

admits an identifying code with size O
(

n logΔ
δ

)
. In particular, if

δ = Θ(n), then G has a dense spanning subgraph with identifying
code O (log n), namely, of asymptotically optimal size. The sub-
graph we build is created using a probabilistic approach, and we
use an interplay of various random methods to analyze it. More-
over we show that the result is essentially best possible, both in
terms of the number of deleted edges and the size of the identifying
code.
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1. Introduction

Consider any graph parameter that is not monotone with respect to graph
inclusion. Given a graph G, a natural problem in this context is to study
the minimum value of this parameter over all spanning subgraphs of G. In
particular, how many edge deletions are sufficient in order to obtain from G
a graph with near-optimal value of the parameter? Herein, we use random
methods to study this question with respect to the identifying code number
of a graph, a well-studied non-monotone parameter. An identifying code of
graph G is a set C of vertices which is a dominating set, and such that the
closed neighborhood within C of each vertex v uniquely determines v.
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Identifying codes were introduced in 1998 in [14] and have been studied

extensively in the literature since then (see [17] for an on-line bibliography

and [4, 13, 15, 16, 22] for some of its applications).

Let G be a simple, undirected and finite graph. The open neighborhood

of a vertex v in G is the set of vertices in V (G) that are adjacent to it,

and will be denoted NG(v). The closed neighborhood of a vertex v in G

is defined as NG[v] = NG(v) ∪ {v}. The degree of a vertex u ∈ V (G),

is defined as d(v) = |NG(v)|. Similarly, we define, for a set S ⊆ V (G),

NG(S) =
⋃

v∈S NG(v) and NG[S] =
⋃

v∈S NG[v]. If two distinct vertices u, v

are such that N [u] = N [v], they are called twins. A graph is called twin-free

if there is no pair of twins. The symmetric difference between two sets A

and B is denoted by A⊕B. We use log(x) to denote the natural logarithm

of x.

Given a graph G and a subset C of vertices of G, C is called a dominating

set if each vertex of V (G) \ C has at least one neighbor in C. The set C is

called a separating set of G if for each pair u, v of vertices of G, N [u]∩C �=
N [v] ∩ C (equivalently, (N [u] ⊕N [v]) ∩ C �= ∅). If x ∈ N [u], we say that x

dominates u. If x ∈ N [u]⊕N [v], we say that x separates u, v.

Definition 1.1. A subset of vertices of a graph G which is both a dominat-

ing set and a separating set is called an identifying code of G.

Observe that the notion of separating set is very close to the one of

identifying code. The only difference is that in a separating set there is at

most one vertex which is not dominated, while in an identifying code, every

vertex is dominated. In particular, this implies that the size of a minimum

separating set and the size of a minimum identifying code differ at most by

one. Since all the results of this paper are asymptotic in the order of the

graph, any result stated for identifying codes can be directly translated to

separating sets.

The following observation gives an equivalent condition for a set to be

an identifying code, and follows from the fact that for two vertices u, v at

distance at least 3 from each other, N [u]⊕N [v] = N [u] ∪N [v].

Observation 1.2. For a graph G and a set C ⊆ V (G), if C is dominating

and N [u] ∩ C �= N [v] ∩ C for each pair of vertices u, v at distance at most

two from each other, then C is an identifying code of the graph.

The minimum size of a dominating set of graph G, its domination num-

ber, is denoted by γ(G). Similarly, the minimum size of an identifying code

of G, γID(G), is the identifying code number of G. It is known [6, 12, 14]



Random subgraphs make identification affordable 59

that for every twin-free graph G on n vertices having at least one edge, we
have the following tight bounds:

log2(n+ 1) ≤ γID(G) ≤ n− 1 .

In view of the above lower bound, we say that an identifying code C of
G is asymptotically optimal if

|C| = O(log n) .

The problem we address in this paper is to deal with graphs that have a
large identifying code number, or are not even identifiable. Our approach will
consist in slightly modifying such a graph in order to decrease its identifying
code number and obtain an asymptotically optimal identifying code, unless
its domination number prevents us from doing so.

One of the reasons for a graph to have a large identifying code number is
that it has a large domination number (this one being a monotone parameter
under edge deletion). For instance, we need roughly n/3 vertices to dominate
all the vertices in a path of order n. When this is the case, we cannot expect
to decrease much the size of a minimum identifying code by deleting edges
from G, as the deletion of edges cannot decrease the domination number.

However, there are many graphs with small domination number where
the identifying code number is very large [9, 10]. For instance, consider the
complete graph minus a perfect matching: whilst the domination number is
2, it can be checked that the identifying code number is n − 1. Typically,
this phenomenon appears in graphs having a specific, “rigid”, structure.
Supporting this intuition, Frieze, Martin, Moncel, Ruszinkó and Smyth [11]
have shown that the random graph G(n, p) with p ∈ (0, 1), admits an asymp-
totically optimal identifying code. In particular, they prove in [11] that with
probability 1− o(1), we have

γID(G(n, p)) = (1 + o(1))
2 log n

log (1/q)
,

where q = p2 + (1 − p)2. This suggests that the lack of structure in dense
graphs implies the existence of a small identifying code.

We will use standard asymptotic notation for classes of functions that
depend on n, the order of the graph.

Our results and structure of the paper. In Section 2, we prove our
main result by selecting at random a small set of edges that can be deleted
to “add some randomness” to the graph,
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Theorem 1.3. For every large enough Δ and every graph G on n vertices
with maximum degree Δ and minimum degree δ ≥ 66 logΔ, there exists a
subset of edges F ⊂ E(G) of size

|F | ≤ 83n logΔ ,

such that

γID(G \ F ) ≤ 134
n logΔ

δ
.

Observe that when δ = Θ(n), the upper bound in Theorem 1.3 has the
same order of magnitude as the value obtained in [11] for dense random
graphs.

We then show in Section 3 that our result is asymptotically best possible
in terms of both the number of deleted edges and of the size of the final
identifying code for any graph with Δ = Poly(δ). For smaller values of the
minimum degree, we prove that our result is almost optimal. We also show
that the two assumptions, large enough Δ and δ ≥ c logΔ, for some constant
c > 0, are necessary.

We present some consequences of our result in Section 4. When consid-
ering the case of adding edges to the graph, we get analogous (symmetric)
results, showing that every graph is a large spanning subgraph of some graph
that admits a small identifying code. This result also turns out to be tight.
We also describe an application to the closely related topic of watching sys-
tems.

The paper concludes with some final remarks and open problems.
Our methods. The proofs of our results are based on defining a suit-

able random subgraph of G: we first randomly choose a code C, and then
we randomly delete edges among the edges containing vertices of C. We
then analyze the construction by applying concentration inequalities and
the Lovász Local Lemma.

A similar approach has been used in the literature when considering
random subgraphs of a graph: for every graph G, consider the graph Gp to be
the subgraph of G obtained by keeping each edge from E(G) independently
with probability p. Our random subgraph model is adapted to the analysis
of identifying codes, and can be seen as a weighted version of Gp.

2. Main theorem

In this section, we prove Theorem 1.3. The proof is structured in the follow-
ing steps:
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1. We select a set C at random, where each vertex is selected indepen-
dently with probability p. Let AC be the event that C is small enough.
The probability p is chosen to ensure that AC holds with high proba-
bility. From C, we construct a spanning subgraph G(C, π) of G, to be
defined below, for some suitable function π.

2. We use the Lovász Local Lemma (Lemma 2.4) and Lemma 2.3 to
bound from below the probability that the following events (whose
conjunction we call ALL) hold jointly: (i) in G(C, π), each pair of
vertices that are at distance at most 2 from each other are separated
by C; and (ii) for each such pair and each member of this pair in G,
its degree within C in G is close to its expected value d(v)p. We show
that with nonzero probability, AC and ALL hold jointly.

3. We find a dominating set D of G with |D| = O(|C|); by Observa-
tion 1.2, if ALL holds, then C ∪D is an identifying code.

4. Finally, we show that, conditional on AC and ALL, the expected num-
ber of deleted edges is as small as desired.

2.1. Important tools and lemmas

In this section we include some lemmas we will use for the proof of the main
theorem.

We will repeatedly use the following version of the well-known Cher-
noff’s inequalities for the sum of independent bounded random variables (see
e.g. [2, Corollary A.1.14]):

Lemma 2.1. Let X1, . . . , XN be independent Bernoulli random variable
with probability pi and define X =

∑N
i=1Xi. Then, for all ε > 0,

Pr(|X − E(X)| ≥ εE(X)) < 2e−cεE(X) ,

where

cε = min

{
(1 + ε) log(1 + ε)− ε,

ε2

2

}
.

In what follows, for each any of vertices B ⊆ V (G) and any v ∈ V (G),
we let NB

G (v) = NG(v) ∩ B be the set of neighbors of v in B. Analogously,
NB

G [v] = NG[v] ∩B. We denote by dB(v) = |NB
G (v)|, the degree of v within

set B.

Definition 2.2. Given a graph G and B ⊆ V (G), a function π : V (G) →
[0, 1] is said to be (G,B)–bounded if for each pair u, v of vertices with dB(u) ≥
dB(v), we have π(u) ≤ π(v). Given a (G,B)–bounded function π, we define
the random spanning subgraph G(B, π) of G as follows:
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• G(B, π) contains all edges of the subgraph G[V (G) \ B] induced by
V (G) \B, and

• each edge uv incident with B is independently chosen to be in G(B, π)
with probability 1− puv, where

puv =
1

4
(π(u) + π(v)) .

Observe that, since π(u) ≤ 1 for each vertex u ∈ V (G), we have
puv ≤ 1/2.

The next lemma gives an exponential upper bound on the probability
that two vertices of G(B, π) are not separated by B. This lemma is a crucial
one in our main proof.

Lemma 2.3. Let G be a graph, B ⊆ V (G), and π a (G,B)–bounded func-
tion. In the random subgraph G(B, π), for every pair u, v of distinct vertices
with dB(u) ≥ dB(v), we have

Pr
(
NB

G(B,π)[u] = NB
G(B,π)[v]

)
≤ e−

3π(u)

16
dB(u) .

Proof. Consider the following partition of S = NB
G [u] ∪ NB

G [v] into three
parts: S1, the vertices of B dominating u but not v; S2, the vertices of B
dominating v but not u; and S3, the vertices of B dominating both u and v.

Let D be the random variable which gives the size of the symmetric dif-
ference of NB

G(B,π)[u] and NB
G(B,π)[v]. The statement of the lemma is equiv-

alent to Pr(D = 0) < e−
3π(u)

16
dB(u).

The random variable D = |NB
G(B,π)[u] ⊕ NB

G(B,π)[v]| can be written as
the sum of independent Bernoulli variables

D =
∑
w∈S

Dw ,

where Dw = 1 if and only if w dominates precisely one of the two vertices u
or v in G(B, π). Therefore, for any w /∈ {u, v},

Pr(Dw = 1) =

⎧⎨
⎩

1− puw w ∈ S1

1− pvw w ∈ S2

puw(1− pvw) + pvw(1− puw) w ∈ S3

Since we want to bound from above the probability that D = 0, we can
always assume that u, v /∈ NB

G(B,π)[u] ⊕ NB
G(B,π)[v]. Recall that dB(u) ≥
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dB(v). By the definition of a (G,B)–bounded function, we have that puw ≤
pvw for each w ∈ S3. Since x(1− x) has a unique maximum at x = 1/2 and
puw ≤ 1/2, we also have:

g(u) :=
π(u)

4

(
1− π(u)

4

)
≤ puw(1− puw) ,(1)

for each w ∈ S1 ∪ S3.
For w ∈ S, denote by qw the expected value of the Bernoulli random

variable Dw. Then, using the definition of g(u) in (1) we get

E(D) ≥
∑

w∈NB
G (u)

qw

=
∑
w∈S1

qw +
∑
w∈S3

qw

=
∑
w∈S1

(1− puw) +
∑
w∈S3

(puw(1− pvw) + pvw(1− puw))

≥
∑
w∈S1

puw(1− puw) +
∑
w∈S3

puw(1− puw)

≥ g(u)dB(u)

=
π(u)

4

(
1− π(u)

4

)
dB(u)

≥ 3π(u)

16
dB(u) .(2)

Finally, we conclude the proof of the lemma

Pr(D = 0) =
∏
w∈S

(1− qw) ≤ e−
∑

w∈S qw = e−E(D) ≤ e−
3π(u)

16
dB(u) .

In the proof of our main result, we will use the following version of the
Lovász Local Lemma, which can be found in e.g. [2, Corollary 5.1.2] (the
lower bound on Pr(

⋂M
i=1Ei) can be derived from the general Lovász Local

Lemma, see [2, Lemma 5.1.1], by setting xi = e · pLL).
Lemma 2.4 (Symmetric Local Lemma). Let E = {E1, . . . , EM} be a set
of (typically “bad”) events such that each Ei is mutually independent of
E \ (Di ∪ {Ei}) for some Di ⊆ E. Let dLL = |Di|, and suppose that there
exists a real 0 < pLL < 1 such that, for each 1 ≤ i ≤ M ,

• Pr(Ei) ≤ pLL, and
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• e · pLL · (dLL + 1) ≤ 1.

Then Pr(
⋂M

i=1Ei) ≥ (1− e · pLL)M > 0.

2.2. Proof of the main result

We are now ready to prove the main theorem.

Proof of Theorem 1.3. We will follow the four steps described in the begin-
ning of Section 2.

Step 1. Constructing C and G(C, π)
Let C ⊆ V (G) be a subset of vertices, where each vertex v in G is chosen

to be in C independently with probability p = 66 logΔ
δ . Observe that p ≤ 1

since δ ≥ 66 logΔ.
Consider the random variable |C| and recall that E(|C|) = np. Define

AC to be the event that

|C| ≤ 2np =
132n logΔ

δ
.(AC)

Since the choices of the elements in C are independent, by setting ε = 1 in
Lemma 2.1, we have cε > 1/3 and

Pr(AC) < e−
22n log Δ

δ .(3)

We let π(u) = min
(
66 logΔ
dC(u) , 1

)
. Observe that π is (G,C)–bounded. We con-

struct G(C, π) as the random spanning subgraph of G given in Definition 2.2,
where each edge uv incident to a vertex of C is deleted with probability puv.

Step 2. Applying the Lovász Local Lemma
Let u, v be a pair of vertices at distance at most 2 in G. We define the

following events:

• Auv is the event that there exists a vertex w ∈ {u, v} such that the
degree of w within C is deviating from its expected value d(w)p by

half, i.e. |dC(w)− d(w)p| ≥ d(w)p
2 ;

• Buv is the event that NC
G(C,π)[u] = NC

G(C,π)[v];
• Euv is the event that Auv or Buv occurs;
• ALL is the event that no event Euv occurs.

In order to apply the Lovász Local Lemma, we wish to upper bound the
probability of Euv. We have:

Pr(Euv) ≤ Pr(Auv) + Pr(Buv)
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= Pr(Auv) + Pr(Buv|Auv) · Pr(Auv) + Pr(Buv|Auv) · Pr(Auv) .

Let us upper bound Pr(Auv). We use Lemma 2.1 with ε = 1/2. Observe

that cε >
1
10 , and thus

Pr(Auv) < Pr

(
|dC(u)− d(u)p| ≥ d(u)p

2

)
+ Pr

(
|dC(v)− d(v)p| ≥ d(v)p

2

)
≤ 2e−

1

10
d(u)p + 2e−

1

10
d(v)p

= 2e−
66d(u) log Δ

10δ + 2e−
66d(v) log Δ

10δ

≤ 4e−
33 log Δ

5

≤ 4Δ− 33

5 .

Next, we give an upper bound for Pr(Buv|Auv). For such a purpose, we apply

Lemma 2.3 with B = C and π(u) = min(66 logΔ/dC(u), 1). Observe that π

is (G,C)–bounded. Since Auv does not hold, we know that dC(u) and dC(v)

are large enough, i.e. for w ∈ {u, v}, dC(w) ≥ d(w)p
2 ≥ δp

2 = 33 logΔ; thus

π(w)dC(w) = min(66 logΔ, dC(w)) ≥ 33 logΔ. We have:

Pr(Buv|Auv) ≤ e−
3·33 log Δ

16 ≤ Δ− 99

16 .(4)

The probability that the event Euv holds is

Pr(Euv) ≤Pr(Auv) + Pr(Buv|Auv) · Pr(Auv) + Pr(Buv|Auv) · Pr(Auv)

≤ 4Δ− 33

5 + 1 · 4Δ− 33

5 +Δ− 99

16 · 1
≤ 2Δ− 99

16 = pLL ,

where we used that Δ is large enough. We now note that each event Euv

is mutually independent of all but at most 2Δ6 events Eu′v′ . Indeed, Euv

depends on the random variables determining the existence of the edges

incident to u and v. This is given by probabilities puw and pvw that depend

on dC(w), where w is at distance at most one from either u or v. Thus,

Euv depends only on the vertices at distance at most two from either u or

v belonging to C. In other words, Euv and Eu′v′ are mutually independent

unless there exist a vertex w at distance at most two from both pairs; namely,

d({u, v}, {u′, v′}) ≤ 4. Hence, there are at most 2Δ4 choices for the vertex

among {u′, v′} that is closest from {u, v} (say u′), and at most Δ2 additional

choices for v′, since d(u′, v′) ≤ 2.
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Therefore, we can apply Lemma 2.4 if

e · 2Δ− 99

16 · (2Δ6 + 1) ≤ 1 ,

which holds since Δ is large enough.
Now, by Lemma 2.4 and since there are at most nΔ2

2 events Euv (one for

each pair of vertices at distance at most 2 from each other) and pLL = 2Δ− 99

16 ,

Pr(ALL) ≥ (1− e · pLL)M ≥ e−2e·pLLM ≥ e−2enΔ2− 99
16 ,(5)

where we have used (1− x) = e−x(1−O(x)) ≥ e−2x, if x = o(1).
Step 3. Revealing the identifying code
Let us lower bound the probability that both AC and ALL hold, by using

the inequalities (3) and (5):

Pr(AC ∩ALL) ≥ Pr(ALL)− Pr(AC)

≥ e−2enΔ2− 99
16 − e−

22n log Δ

δ ,

which is strictly positive if

22 logΔ

δ
> 2eΔ2− 99

16 .

The latter inequality holds since δ ≤ Δ and Δ is large enough.
Hence, there exists a set C of size 132n logΔ

δ such that all vertices at
distance 2 from each other are separated by C and such that the degree in
C of each vertex does not deviate much from its degree in G(C, π).

In order to build an identifying code, we must also make sure that all
vertices are dominated. It is well-known that for every graph G, γ(G) ≤
(1 + o(1))n log δ

δ (see e.g. [2, Theorem 1.2.2]). Hence, we select a dominating

set D of G with size (1+ o(1))n log δ
δ . Then, by Observation 1.2, C ∪D is an

identifying code of size at most

(132 + 1 + o(1))
n logΔ

δ
≤ 134

n logΔ

δ
.

Step 4. Estimating the number of deleted edges
Let Y = |E(G) \ E(G(C, π))| be the number of edges we have deleted

from G to obtain G(C, π). Recall that each edge uv ∈ E(G) is deleted
independently from G with probability

puv =
1

4
(π(u) + π(v)) ,
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if one of its endpoints is in C.
Since Pr(AC ∩ALL) > 0, there is a small identifying code of G obtained

by deleting at most E(Y |AC ∩ALL) edges. We next give an upper bound for
E(Y |AC ∩ALL). If both AC and ALL hold, then

puv ≤ 1

4

(
66 logΔ

dC(u)
+

66 logΔ

dC(v)

)
.

The expected number of deleted edges is

E(Y |AC ∩ALL) =
∑

uv∈E(G)
({u,v}∩C) �=∅

puv .

Observe that in order to estimate this quantity, we can split the two additive
terms in each puv and group them depending whether u belongs to C or not:
for every u /∈ C, we sum all the terms 66 logΔ

4dC(u) for all v ∈ C being neighbors

of u; for every u ∈ C, we sum all the terms 66 logΔ
4dC(u) for all v ∈ V (G) being

neighbors of u.

E(Y |AC ∩ALL) ≤
1

4

⎛
⎝∑

u/∈C

∑
v∈NC

G (u)

66 logΔ

dC(u)
+

∑
u∈C

∑
v∈NG(u)

66 logΔ

dC(u)

⎞
⎠

≤ 1

4

(∑
u/∈C

dC(u)
66 logΔ

dC(u)
+

∑
u∈C

d(u)
66 logΔ

dC(u)

)

≤ 1

4

(
|V (G) \ C| · 66 logΔ +

∑
u∈C

2
66 logΔ

p

)

≤ 1

4
(n · 66 logΔ + 2|C|δ)

≤ 66n logΔ + 264n logΔ

4
≤ 83n logΔ ,

where we used the fact (implied by ALL) that for every vertex v, d(v)p
2 ≤

dC(v) at the second line, and that AC implies |C| ≤ 132n logΔ
δ at the fifth

line.
Summarizing, we have shown the existence of a small identifying code

in a spanning subgraph of G obtained by deleting at most 83n logΔ edges
from G, which completes the proof.
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3. Asymptotic optimality of Theorem 1.3

In this section, we discuss the optimality of Theorem 1.3, first with respect
to the size of the constructed code and the number of deleted edges, and
then with respect to the hypothesis that Δ is a sufficiently large constant
and that δ ≥ 66 logΔ.

3.1. On the size of the code and the number of deleted edges

Charon, Honkala, Hudry and Lobstein showed that deleting an edge from G
can decrease by at most 2 the identifying code number of a graph [8]. That
is, for every graph G and any edge uv ∈ E(G),

γID(G) ≤ γID(G \ uv) + 2 .

This directly implies that for every graph with linear identifying code
number, one needs to delete a subset F of at least Ω(n) edges, to get a graph
with γID(G \ F ) = o(n).

We will show that, indeed, one needs to delete at least Ω(n logn) edges
from the complete graph to get a graph with an asymptotically optimal
identifying code. Using this, we will derive a family of graphs with arbitrary
minimum degree δ, that asymptotically attains the bound of Theorem 1.3,
both in number of edges and size of the minimum code, when Δ = Poly(δ).

First of all, we prove that every graph with an asymptotically optimal
identifying code cannot contain too few edges.

Lemma 3.1. For every M ′ ≥ 0, there exists a constant c0 > 0 such that
every graph G with γID(G) ≤ M ′ log n contains at least c0n log n edges.

Proof. Set α0 as the smallest positive root of

f(α) = α log

(
M ′ + α

α
e

)
− 1/2 .(6)

Note that f(α) is well-defined since we have that limα→0 f(α) = −1/2 and
that f(1) = log(M ′ + 1) + 1/2 > 0.

Suppose by contradiction that there exists a graph G containing less
than c0n log n edges, with c0 = α0/4, that admits an identifying code C
of size at most M ′ log n. Let U be the subset of vertices of degree at least
α0 log n. Notice that

|U | ≤ 2|E(G)|
α0 logn

≤ 2c0
α0

n =
n

2
.
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Since |C| ≤ M ′ logn and every v ∈ V (G) \ U has degree smaller than
α0 log n, the number of possible nonempty sets NG[v]∩C for some vertex v
with a small degree, is smaller than

α0 logn∑
i=1

(
|C|
i

)
≤

(
M ′ log n+ α0 log n

α0 log n

)

≤
(
(M ′ + α0)e

α0

)α0 logn

= n
α0 log

(
M′+α0

α0
e
)

=
√
n ,

where we have used that
(
a
b

)
≤

(
ae
b

)b
for the second inequality and the fact

that α0 is a root of (6) for the last inequality.

Since |V (G) \ U | ≥ n/2 there must be at least two vertices v1, v2 ∈
V (G) \ U such that NG[v1] ∩ C = NG[v2] ∩ C, and thus C cannot be an
identifying code, a contradiction.

The following lemma relates the identifying code number of a graph G
to the one of its complement G.

Lemma 3.2. Let G be a twin-free graph. If G is twin-free, then

γID(G) ≤ 2γID(G) + 1 .

Proof. Let C0 be a minimum identifying code of G. We will show that there
exists a set C1 of size at most γID(G) and a special vertex v, such that
C = C0 ∪ C1 ∪ {v} is an identifying code of G.

For the sake of simplicity, we define the following relation. Two vertices
u, v ∈ V (G) are in relation with each other if and only if NG(u) ∩ C0 =
NG(v) ∩ C0 (notice that here we are considering the open neighborhoods)
and u is not adjacent to v (i.e. considering C0 in G, u, v are separated by
one of u, v). This will be denoted as u ≡G v. It can be checked that this is
an equivalence relation.

Claim. Every pair of distinct vertices u �≡G v is separated by C0 in G.

Proof. By the definition of ≡G, either NG(u) ∩ C0 �= NG(v) ∩ C0 or u ∼ v.

If NG(u) ∩ C0 �= NG(v) ∩ C0, there exists w ∈ C0 (and w /∈ {u, v}) such
that w ∈ NG(u)⊕NG(v). Then, w ∈ NG(u)⊕NG(v), hence w still separates
u, v in G.
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If NG(u)∩C0 = NG(v)∩C0, then u ∼ v. If at least one of them belongs
to C0, then this vertex separates u, v in G. Otherwise, u, v /∈ C0 and we
have NG(u) ∩ C0 = NG[u] ∩ C0 and NG[v] ∩ C0 = NG(v) ∩ C0. Hence
NG[u] ∩ C0 = NG[v] ∩ C0. But then C0 does not separate u, v in G, a
contradiction.

In particular, the above claim implies that every vertex in an equivalence
class of size one is separated by C0 from all other vertices in G.

Claim. Every equivalence class contains at most one element that is not in
C0.

Proof. Suppose that u ≡G v and that u, v /∈ C0. Then, NG[u]∩C0 = NG(u)∩
C0 and NG[v] ∩ C0 = NG(v) ∩ C0. Using that they are equivalent, we have
that NG[u]∩C0 = NG[v]∩C0. Since C0 is an identifying code of G, we must
have u = v.

Claim. Let U be an equivalence class of ≡G. Then all the pairs in U can
be separated in G by using |U | − 1 vertices.

Proof. We will prove by induction on s ≥ 2 that every pair in every subset
of U ′ ⊆ U with cardinality s can be separated in G by using s− 1 vertices.
Let u1, u2, . . . , us denote the vertices of U ′.

For s = 2 it holds: sinceG is twin-free, we can select w ∈ NG[u1]⊕NG[u2],
and w separates u and v in G.

For each s > 2, consider the vertices u1, u2 ∈ U ′ and let w ∈ NG[u1] ⊕
NG[u2]. Since U ′ forms a clique in G, w /∈ U ′. Then w splits the set U ′ into
U1, the set of vertices of U ′ adjacent to w in G, and U2, the set of vertices
in U ′ non-adjacent to w in G. Let |U1| = s1 and |U2| = s2. We may assume
u1 ∈ U1 and u2 ∈ U2. Hence, s1, s2 ≥ 1. Clearly s1 + s2 = s, which implies
s1, s2 < s. Now, the pairs of vertices of U ′ with one vertex from U1 and one
vertex from U2 are separated by w. Since U1 and U2 are subsets of U of size
at most s − 1, by induction, the pairs of vertices in U1 can be separated
using s1 − 1 vertices and the ones in U2 using s2 − 1. Thus we need at most
(s1 − 1) + (s2 − 1) + 1 = s − 1 vertices to separate all the pairs of vertices
in U .

From the first claim we deduce that only the pairs belonging to the same
equivalence class need to be separated. From the second one, we know that
in each equivalence class there is at most one vertex that does not belong to
C0. Thus, if there are t different equivalence classes, the number of vertices
in them is at most |C0| + t. Finally, it follows from the last claim, that at
most (|C0|+ t)− t = |C0| vertices suffice to separate all the pairs of vertices
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in the same equivalent class. Thus, there exists a set C1 of size at most
|C0| vertices that separates all the pairs in G that are not separated by
C0.

Eventually, there might be a unique vertex v such that NG[v] ∩ (C0 ∪
C1) = ∅ (if there were two such vertices, they would not be separated by
C0 ∪ C1, a contradiction). Hence, C = C0 ∪ C1 ∪ {v} is an identifying code
of G of size at most 2|C0|+ 1 = 2γID(G) + 1.

Proposition 3.3. For every M ≥ 0, there exists a constant c > 0 such
that, if γID(Kn \ F ) ≤ M log n for some set of edges F ⊂ E(Kn), then
|F | ≥ cn logn.

Proof. Set M ′ = 3M and let c = c0 be the constant given by Lemma 3.1 for
this M ′. Suppose that there exists a set F of edges, |F | < cn logn such that
G = Kn \ F satisfies γID(G) ≤ M log n. By Lemma 3.2, the graph G admits
an identifying code of size at most 2M log n+ 1 ≤ M ′ log n. By Lemma 3.1,
we get a contradiction.

Using the former proposition, for every δ we can provide an example
of a graph with minimum degree δ for which the result of Theorem 1.3 is
asymptotically tight when assuming that Δ = Poly(δ).

Fix δ > 0 and consider the graph Hδ consisting of a disjoint union of
cliques of order δ+1. We may assume that δ+1 divides n for the sake of sim-

plicity. Denote by H
(1)
δ , . . . , H

(s)
δ , s = n

δ+1 , the cliques composing Hδ. Since

H
(i)
δ is a connected component, an asymptotically optimal identifying code

forHδ must also be asymptotically optimal for eachH
(i)
δ . By Proposition 3.3,

we must delete at least Ω(δ log δ) edges from H
(i)
δ to get an identifying code

of size O(log δ). Thus, one must delete at least Ω(sδ log δ) = Ω(n log δ) edges
from Hδ to get an optimal identifying code.

Corollary 3.4. For every large enough δ and every M ≥ 0, there exists
a constant c > 0 such that for every set of edges F ⊂ E(Hδ) satisfying
γID(Hδ \ F ) ≤ M n log δ

δ , we have |F | ≥ cn log δ.

We remark that a connected counterexample can also be constructed
from Hδ by connecting its cliques using few edges, without affecting the
above result.

Corollary 3.4 implies that Theorem 1.3 is asymptotically tight when
Δ = Poly(δ), since in that case logΔ = O(log δ). However, when δ is sub-
polynomial with respect to Δ, we do not know if Theorem 1.3 is asymptot-
ically tight.
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3.2. On the hypothesis on Δ and δ

We conclude this section by discussing the necessity of the hypothesis that
Δ should be sufficiently large and that δ ≥ 66 logΔ in Theorem 1.3.

First note that, if Δ is bounded by a constant, we need at least n
Δ+1 =

Θ(n) vertices to dominate G. Thus, no code of size smaller than Θ(n) can
be obtained by deleting edges of the graph.

On the other hand, the condition δ ≥ c logΔ for some constant c > 0 is
also necessary to prove that there exists a subgraph with small identifying
code number (in the spirit of Theorem 1.3). This can be deduced from the
following proposition that also implies c > (2 log 2)−1.

Proposition 3.5. For arbitrarily large values of Δ, there exists a graph G
with maximum degree Δ and minimum degree δ = log2 Δ

2 such that, for every
spanning subgraph H ⊆ G,

γID(H) = (1− o(1))n .

Proof. Consider the bipartite complete graph G = Kr,s where s = 22r.
Denote by V1 the stable set of size r and by V2 the stable set of size s.
Observe that δ = r = log2 s

2 = log2 Δ
2 .

For every given twin-free spanning subgraph H ⊆ G, let C ⊆ V (G) be
an identifying code of H. Let us show that most of the vertices in V2 must
be in C. Let S ⊆ V2 be the subset of vertices in V2 that are not in the code.
Thus, for every u ∈ S, NC [u] = NC(u). Observe that NC(u) ⊆ V1, and
hence, there are at most 2r possible candidates for such NC(u). Since C is
dominating and separating all the pairs in S, all the subsets NC(u) must be
non empty and different, which implies, |S| < 2r. Hence, we have

|C| ≥ |V2 \ S| ≥ 22r − 2r = (1− o(1))22r = (1− o(1))n .

4. Some consequences of Theorem 1.3

In the previous sections, we have studied how much the identifying code
number can decrease when we delete few edges from the original graph. The
next corollary deals with the symmetric question of how much the addition
of edges can help to decrease this parameter.

The question of how much can a parameter decrease when deleting or
adding edges has been widely studied in the literature for some monotone
parameters. However, if the parameter is monotone, only one of either delet-
ing or adding edges can help to decrease it. One of the interesting facts of
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the identifying code number, which is nonmonotone, is that one can have
similar results for both procedures.

Corollary 4.1. For every graph G on n vertices, with minimum degree δ
such that n− δ is large enough, and maximum degree Δ such that n−Δ ≥
66 log (n− δ), there exists a set of edges F with F ∩ E(G) = ∅ of size

|F | = O (n log (n− δ)) ,

such that

γID(G ∪ F ) = O

(
n logn

n−Δ

)
.

This can be proven by using Lemma 3.2 and by applying Theorem 1.3
to the graph G. Similar arguments than the ones shown before, prove that
this corollary is also asymptotically tight.

Theorem 1.3 also has a direct application to watching systems [3]. In
a watching system, we can place on each vertex v a set of watchers. To
each watcher w placed on v, we assign a nonempty subset Z(w) ⊆ N [v], its
watching zone. We now ask each vertex to belong to a unique and nonempty
set of watching zones; the minimum number of watchers that need to be
placed on the vertices of G to obtain a watching system is the watching
number w(G) of G.

In [3], the authors provide a tight upper bound on the watching number
of graphs with given maximum degree, w(G) ≤ γ(G)�log2(Δ + 2)�. Since
the domination number of a graph with minimum degree δ satisfies γ(G) ≤
(1 + o(1))n log δ

δ , this implies

w(G) ≤ γ(G)�logΔ + 2� = Ω

(
n log2 δ

δ

)
.(7)

Nonetheless, observe that

w(G) ≤ min{γID(H), where H is a spanning subgraph of G} .

Thus, Theorem 1.3 implies that

Corollary 4.2. For every large enough Δ and every graph G on n vertices
with maximum degree Δ and minimum degree δ ≥ 66 logΔ, we have:

w(G) ≤ 134
n logΔ

δ
.

This bound asymptotically improves (7) when the maximum degree is
Δ = Poly(δ).
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5. Concluding remarks and open questions

1. The kind of results we provide in this paper can be connected to the notion
of resilience (see e.g. [21]). Given a graph property P , the global resilience
of G with respect to P is the minimum number of edges one has to delete
to obtain a graph not satisfying P .

Our result can be interpreted in terms of the resilience of the following
(non-monotone) property P : “G has a large identifying code number in
terms of its degree parameters, δ and Δ”. For every large enough Δ and
every graph G on n vertices with maximum degree Δ and minimum degree
δ ≥ 66 logΔ, Theorem 1.3 can be stated as follows: the resilience of G with
respect to P is O(n logΔ). Moreover, Corollary 3.4 shows that there are
graphs that attain this value.

2. In Theorem 1.3, we show the existence of a small identifying code for
a large spanning subgraph of G. However, our proof is not constructive and,
besides, the probability that such pair exists is exponentially small, due to
the use of the Lovász Local Lemma. However, the proof of the theorem can
probably be adapted to explicitly find them by using the algorithmic version
of the Lovász Local Lemma proposed by Moser and Tardos [18].

3. Note that a notion similar to identifying codes, locating-dominating
sets, has also been extensively studied in the literature (see e.g. [17] for many
references). In particular, it follows that every identifying code is a locating-
dominating set, hence Theorem 1.3 also holds for this notion. In fact, the
proof of Corollary 3.4 can be adapted for this case too.

4. Another notion on which we can apply our results is the metric di-
mension of a graph. A resolving set of a connected graph G is a set R of
vertices such that for every pair u, v of vertices of G, there is a vertex x ∈ R
such that the distance between x and u is different from the distance be-
tween x and v. The metric dimension of G is the smallest size of a resolving
set of G. This parameter has been extensively studied since its introduction
in the mid-1970’s (see for example [5, 19, 20] and the references therein).
The metric dimension is also a non-monotone parameter with respect to
graph inclusion and therefore it is natural to study the same problem for it.
It is not difficult to see that any identifying code is a resolving set, there-
fore, Theorem 1.3 also holds if we change the identifying code number for the
metric dimension. However, in this case, we do not expect Theorem 1.3 to be
tight. Note that the metric dimension may be much smaller than Θ(log n),
for example any path has metric dimension 1 [20], and the hypercube with
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n = 2d vertices has metric dimension Θ
(

logn
log logn

)
[19]. The metric dimen-

sion of an Erdős-Rényi random graph, has been recently studied in [7]. It
would be interesting to show how much can the metric dimension decrease,
by randomly perturbing some edges of the graph.

5. As further research, it would be very interesting to close the gap
between the result in Theorem 1.3 and the lower bound given by the example
in Corollary 3.4. Motivated by this example, we ask the following question:

Question 5.1. Is it true that for every graph G with minimum degree δ,
there exists a subset of edges F ⊂ E(G) of size

|F | = O (n log δ) ,

such that

γID(G \ F ) = O

(
n log δ

δ

)
?

It seems to us that the techniques used in this paper will not provide an
answer to the previous question. The main obstacle is the use of the Lovász
Local Lemma, which forces us to take into account the role of the maximum
degree of G.
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