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A generalization of the r-Whitney numbers of the
second kind
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In this paper, we consider a (p, ¢)-generalization of the r-Whitney
numbers of the second kind and of the associated r-Dowling poly-
nomials. We obtain generalizations of some earlier results for these
numbers, including recurrence and generating function formulas,
that reduce to them when p = ¢ = 1. Furthermore, some of our
results appear to be new in the case p = ¢ = 1 and thus yield
additional formulas for the m~-Whitney numbers. As a consequence,
some new identities are obtained for the ¢-Stirling and r-Whitney
numbers. In addition, the log-concavity of our generalized Whit-
ney numbers is shown for certain values of the parameters p and
gq. Finally, we introduce (p, ¢)-Whitney matrices of the second kind
and study some of their properties.
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1. Introduction

Given integers r > 0 and m > 1, let W(n,k) = W (n,k;r,m) denote the
connection constants in the polynomial identities

(1.1) (mx +r)" ZWnk‘ (@) ks n >0,

where (z)y = z(x —1)---(z —k+ 1) if £ > 1, with (x)g = 1. The W(n, k)
are known as r- Whitney numbers of the second kind and have recently been
studied [7]. Equivalently, the W (n, k) are determined by the recurrence
(1.2) Wn,k)=W(n—1,k—1)+ (r+mk)W(n—1,k), nk>1,
with the initial values

W(n,0) =r" and W(0,k) = éx0
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for all n,k > 0. Note that W (n, k;0,1) = S(n, k) and W(n,k;1,1) = S(n+
1,k + 1), where S(n, k) is the classical Stirling number of the second kind.
In [7], a combinatorial interpretation for W (n, k) is given in terms of a kind
of finite geometric lattice known as the Dowling lattice [8]. See also [1, 18],
where various properties are proven for the numbers W(n, k; 1, m).

The r-Dowling polynomials, which we will denote here by D(n;z) =
D(n;r,m,x), were defined as

(1.3) D(n;x) = i W (n, k)z*, n >0,
k=0

in [7], where some algebraic properties were found using Riordan matrices.
See also [2, 18], where various properties were determined in the case r = 1.
When m = 1, note that the W(n, k) and D(n;z) reduce to the r-Stirling
numbers and r-Bell polynomials, respectively, see [3, 14].

In this paper, we consider (p, q)-generalizations of the r-Whitney num-
bers and the r-Dowling polynomials, which we denote by W), ,(n, k) and
Dy, 4(n; ), obtained by considering a certain pair of statistics on a class of
colored set partitions enumerated by W (n, k). We thereby obtain, via com-
binatorial arguments, polynomial generalizations of several identities given
in [7] and [18], which were found by various algebraic methods. Thus, our
results not only provide extensions that reduce to these prior identities when
p = q = 1, but one also obtains combinatorial proofs of these identities. Fur-
thermore, our combinatorial model allows one to derive formulas involving
Wy q(n, k) and D) 4(n;x) that are apparently new in the case p = ¢ =1
(see, for example, Theorems 3.7 and 3.8 below). In one instance, addition-
ally taking r = m = 1 yields a recurrence formula for the Stirling numbers
of the second kind which seems to be new (see Corollary 3.9). Moreover, the
Wy q(n, k) are seen to reduce to the ¢g-Stirling numbers of Carlitz (see, e.g.,
[21]) when m = p = 1 and r = 0. See also [10] (which was submitted and
first appeared while the current paper was under review) for a related gen-
eralization of the r-Whitney numbers studied from an algebraic standpoint.

The paper is divided as follows. In Section 2, we define W), 4(n, k) and
D, 4(n;x) and determine the basic recurrence for Dy ,(n,k). In the third
section, we obtain, by combinatorial arguments, recurrence formulas for
D, 4(n, k) and D, 4(n;x) involving different combinations of the variables
n, k, r, and m, as well as explicit expressions in terms of the ¢-Stirling
numbers. In addition, we provide a combinatorial proof of a prior formula
from [17] that relates r-Bell polynomials to Stirling numbers of the first
kind which was obtained using linear algebra techniques. In Section 4, we
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prove, bijectively, certain formulas for D, 4(n, k) and D, 4(n;x) in the case
when r = 1 by defining appropriate sign-changing involutions. In Section 5,
we find some related generating function formulas and obtain as a conse-
quence identities involving the ¢-Stirling and r-Whitney numbers. We also
prove the strict log-concavity (and hence unimodality) of W), 4(n, k) for cer-
tain values of the parameters p and ¢. In the final section, we introduce
the (p,q)-Whitney matrix of the second kind and give some factorizations
involving this matrix.

We will make use of the following notation. If m and n are positive
integers, then let [m,n| = {m,m +1,...,n} if m < n, with [m,n] = 0 if
m > n. We will denote the special case [1,n]| by [n]. Given a positive integer
k and an indeterminate ¢, let [k], = 1+ ¢+ - + ¢*~1, with [0], = 0. Let
[klq! = Hle[i]q, with [0],! = 1, denote the g-factorial. Define the ¢g-binomial
coefficient by [Z]q = m, if 0 < k < n, and putting 0 otherwise.
Throughout, empty sums will assume the value 0, and empty products the
value 1, with 0° = 1.

2. Preliminaries

In this section, we describe a combinatorial interpretation for the numbers
Wh.q(n, k). Before doing so, let us recall some terminology and make a few
definitions. A partition of [m] is a collection of pairwise disjoint subsets,
called blocks, whose union is [m]. The cardinality of the set of partitions
of [m] having exactly k blocks is given by S(m,k), the Stirling number
of the second kind, with B(m) = > /", S(m, k), the m-th Bell number,
enumerating all partitions of [m)].

We now consider the following restricted subset of partitions of a given
size.

Definition 2.1. Given 0 < r < m, by an r-partition of [m|, we will mean
one in which the elements of [r| belong to distinct blocks. If n,k,r > 0, then
let 11, (n, k) denote the set of all r-partitions of [n + r] having k + r blocks
and 11,.(n) = Up_,IL.(n, k).

Note that when r = 0, an r-partition of [m] is the same as an ordinary
partition. The cardinalities of II,(n, k) and II,(n) are given, respectively, by
the 7-Stirling number of the second kind and r-Bell number (see, e.g., [3]
and [12]), which we will denote here by S(n, k;r) and B(n;r).

Within a member of II,.(n, k), we will refer to the blocks containing an
element of [r| as special and the remaining blocks comprised exclusively of
elements of [r + 1,7 + n] as non-special. (The members of [r] themselves
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will also at times be described as special.) Furthermore, we will refer to an
element within a member of II,(n, k) that is the smallest within its block as
minimal, and to all other elements as non-minimal.

We now allow for certain elements within an r-partition to be colored.

Definition 2.2. Given an integer m > 1, let 11, ,,(n, k) denote the set of r-
partitions of [n+r| having k+r blocks wherein within each non-special block,

every non-minimal element is assigned one of m colors, and let II, p,(n) =
Up_olLym(n, k).

Note that I, ,,(n, k)| = W(n, k;r,m) for all relevant values of the pa-
rameters, upon making a comparison of recurrences and initial values. This
interpretation of W(n, k;r,m) is seen to be equivalent to the one given by
Mihoubi and Rahmani [15] in terms of their partial r-Bell polynomials. Al-
ternatively, one may also take m to be an indeterminate marking the total
number of non-minimal elements in non-special blocks, or equivalently, by
subtraction, the number of non-minimal elements in special blocks. Thus,
for example, when r = 1 and |IIy(n,k)] = S(n + 1,k + 1), the number
m"*W (n, k; 1,1/m) may be viewed as the distribution polynomial for the
statistic recording the number of elements in the first block of an ordinary
partition of [n + 1]. For a combinatorial interpretation of W(n, k;r,m) in
terms of Dowling lattices, see [7, Section 2].

We now describe a pair of statistics on the set Il ,,(n, k), which will
extend and refine a statistic originally considered on set partitions by Carlitz
[6] and later studied by Wagner [22].

Definition 2.3. Suppose m € 11, p,(n, k) is represented as
ﬂ-:Al/AQ//Ar/Bl/BQ//Bk7

where A; denotes the special block containing the element i for i € [r] and
non-special blocks are denoted by Bj, with min(B;) < min(B;) < -+ <
min(B,). Define the statistics w1 and wa on Il (n, k) by letting

T

wi(m) =Y (i = (|4~ 1)

=1

and
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We now define (p, q)-generalizations of the r-Whitney numbers and of
the r-Dowling polynomials.

Definition 2.4. Define W, 4(n, k) = Wy, 4(n,k;r,m) as the joint distribu-
tion polynomial for the wy and wy statistics on the set I, (n, k), that is,

WP,Q(n7 k) = Z pwl(ﬂ)qu(W)a n, k Z 07
w€llL, m (n,k)

where p and q are indeterminates. Define D, 4(n;x) = D, q4(n;r,m,x) by
setting

D, 4(n;x) = Z Wp.q(n, k), n > 0.
k=0

Note that W) 4(n, k) reduces to W (n, k) and Dy, ;(n;x) to D(n;z) when
p = ¢ = 1, by definition. The W), 4(n, k) satisfy the following two-term
recurrence.

Proposition 2.5. The array Wy, 4(n, k) for n >k > 0 is determined by the
recurrence

(2.1) Wpe(n, k) =Wy e(n—1,k=1)+([r]p+m[klg) Wpqe(n—1,k), n,k>1,

and the initial conditions Wy 4(n,0) = [r]} and W, 4(0, k) = g0 forn, k > 0.

Proof. The initial condition W), 4(0,k) = & follows from the definitions.
Note that within a member of II, ,,,(n, 0), each element of [r+1, r+n] belongs
to a special block and thus contributes a factor of 1 +p+--- +p" ! = [7]p
towards the total wj-weight, whence Wy, 4(n,0) = [r];. To show (2.1), first
note that the weight of all members of IT = I, ,,(n, k) in which n+r belongs
to its own block is W), 4(n—1,k—1), since in this case neither the w; nor the
wy statistic values are changed by the addition of this element. On the other
hand, if n+r belongs to the i-th left-most special block within a member of
I1, then the weight of all such members is p" W), ,(n — 1,k) for 1 < i < r.
Thus, the total weight of all members of II in which n+1r belongs to a special
block is [r], W, ¢(n—1, k). Similarly, members of IT in which n+1r belongs to
a non-special block contribute weight m[k],W), 4(n, k), since in this case the
element n 41 is also assigned one of m colors. Combining the three previous
cases yields (2.1). O

We will denote the m = p = 1,7 = 0 case of W), 4(n, k;r,m) by Sq(n, k)
since it coincides with the ¢-Stirling number of Carlitz [5].
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3. Generalized r-Whitney identities

In this section, we prove several identities of the generalized r-Whitney num-
bers by combinatorial arguments. We note that the p = ¢ = 1 cases of the
identities in the next four theorems (with the exception of the second iden-
tity in Theorem 3.3 and the first in Theorem 3.5, which we were unable
to find in the literature) occur in [7], where they were proven algebraically
using Riordan matrices. Our first result expresses W), 4(n, k) and D, 4(n; z)
in terms of the generalized Stirling polynomial Sy(n, k).

Theorem 3.1. Ifn,k > 0, then

n

(3.1) Wygln, k) = i (j) 98,5, K)

j=k

and

(3.2) Dpg(niz) =) (;) [P0y " mI T Sy (4,4).
j=0 i=0

Proof. To show (3.1), consider the number, n— j, of elements of [r+1,7+n]
within a member of II that belong to special blocks. Note that there are

(;‘) [r]y 7 ways to choose and arrange these elements and m’/~*S,(j, k) ways
in which to arrange the remaining j elements of [r + 1,r 4+ n] in special
blocks. The factor m?~* accounts for the j — k& non-minimal elements within
these blocks that are each to be colored in one of m ways. Similar reasoning
applies to (3.2) except now the remaining j elements of [r + 1,r + n| can

occupy any number ¢ of blocks. O

Let B(n;r,z) = > p_yS(n,k;r)z* denote the n-th r-Bell polynomial
(see, e.g., [14]) and B(n;z) = Y_p_oS(n,k)z* the n-th Bell polynomial.
Taking m = p = ¢ =1 in (3.2) yields the relation

n

B(n;r,x) = g r”_j<7?>B(j;w), n,r > 0.
y J
J=0

Since it is known (see [17]) that
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where s(r,7) denotes the Stirling number of the first kind, we have the fol-
lowing relation.

Corollary 3.2. Ifn,r > 0, then

(3.3)  a"B(n;r,x) ZT"H‘() (i;2) = s(r,i)B(n +i; ).

1=0

Identity (3.3) was also obtained in [18]. A direct bijective proof of (3.3) is
given at the end of this section.

The first identity in the next result provides a recurrence for the quantity
Wh.q(n, k;r,m) in terms of W (i, k; s,m), where i <n and s <.

Theorem 3.3. Ifn,k >0 and r > s > 0, then

(3.4) W,y q(n, k;mym) = Zpsn ”( >r—s]" W, (i, k; 5,m)
and

W,o(n, ks 7y m)
(35) —Z;E? it () (0 sl S, -

Proof. To show (3.4), we count the members of IT according to the number,
n — i, of elements of [r + 1,7+ n| contained in the final r — s special blocks.
These elements may be selected in (’;‘) ways and arranged in p*(" =) [r — s]g_i
ways, as each element contributes a factor of p*+p* T+ .. +p"=1 = p[r—s],
towards the wi-weight. The remaining ¢ members of [r + 1,7 + n|, together
with the members of [s], then have weight W), (7, k; s,m). Summing over %
gives (3.4).

To show (3.5), we consider instead the number, n — i, of additional
elements found within the first » — s special blocks. These elements may be
chosen and positioned in (’Z) [r — s]g_i ways. Once this has been done, we
then select j of the remaining ¢ members of [r + 1,7 4+ n] to go in the final
s special blocks, which can be done in p("—5) (;)[s]g, ways. The remaining
i — j members of [r + 1,7 + n| are arranged in k (non-special) blocks and
thus have weight m=9=*S,(i — j, k). Summing over i and j gives (3.5). O
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Taking s =7 — 1 in (3.4) gives the recurrence

(3.6) Wpq(n,k;r,m) = Zpr Din— Z<Z>qu(zkr 1,m), r> 1.

Our next formula expresses W, ,(n, k;r,m) in terms of W), ,(j, k;r, 1)
where 7 < n.

Theorem 3.4. Ifn,k > 1, then

Wh.q(n, ks 7,m)

= Y “ D" ImI R ((m = 1)[r], )™ T,
(3.7 = SN =l J(j)wpqw ).

Proof. Let II* =117, (n, k) denote a variant of the set II which differs from
it in the following two ways: (i) non-minimal elements in special blocks are
also colored using one of m colors, and (ii) some subset (possibly empty)
of these elements are circled and those that are circled may be colored us-
ing only the first m — 1 colors. Suppose A € II* has exactly n — j circled
elements among its special blocks. Define the (signed) weight of A\ to be
(—1)"_jp“’1(A)qw2(A), where the wy and ws statistic values are computed as
they would be ordinarily for a member of 11, ,,(n, k). To compute the weight
of all such A, we describe a way in which they may be formed as follows. Note
first that 7 > k since members of II* are to contain k£ non-special blocks.
Since the circled elements of A belong to [r+1,7+n], by definition, there are
(?) choices for these elements and (m — 1)" 7 ways in which to color them.
The remaining j elements of [r + 1,r 4 n], together with the elements of [r]
(which are considered special), then contribute weight mj_kWp,q(j, k;r, 1),
since all non-minimal elements except those that are circled are to be col-
ored in one of m ways (note that there are j +r — (k+r) = j — k non-
minimal elements). Finally, we add the n — j circled elements to the special
blocks of this arrangement, which can be done in [r], 7 ways. Thus, the
weight of the members of II* containing exactly n — j circled elements is
(m—1)""J (?) -mI=*W,, 4 (4, k;r,1) - [r]; 7. Then the right-hand side of (3.7)
gives the sum of the weights of all members of IT*.

To complete the proof, we define a sign-changing, weight-preserving in-
volution of IT*— B, where B is a subset of IT* having weight W), ;(n, k;r, m) all
of whose members have positive sign. Let B denote the set of arrangements
in IT* containing no circled elements and in which non-minimal elements
in special blocks are colored using the m-th color only. Note that members
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of B have positive sign and are synonymous with members of II. Given a
member of IT* — B, denote by y the smallest element of [r 4 1,7 + n| that is
a non-minimal element belonging to a special block and colored using one
of the first m — 1 colors. Either circle or uncircle the element y, keeping its
color the same. This operation defines the desired involution of IT* — B and
completes the proof. O

We have the following additional formulas for W), ;(n, k) and D), 4(n;x)
in terms of generalized Stirling numbers.

Theorem 3.5. Ifn,k > 1, then

Whpa(n+1,k) = [r], W), q(n k)

(33) LY ik () (e

i=k—1j=k—1

and

Dy qg(n+1i2) = [r]pDpg(n;z)

n

(3.9) +) Z im” gt “1( ><j)[ r]5794(4, 0).

=0 j=0 /=

Proof. To show (3.8), consider whether or not the element r 4 1 belongs to
a special block within a member of II, ,,,(n + 1, k). If it does, then there are
[r]pWp q(n, k) possibilities. Otherwise, suppose r + 1 occupies a non-special
block with exactly n—i members of I = [r+2,r+n+1], where k—1 < i < n.
Then there are m™ ¢ (n’lz) possibilities concerning the selection and coloring
of these elements. Suppose further that exactly j of the ¢ remaining elements
of I belong to non-special blocks, where k — 1 < j < 4. Then there are (;)

ways to choose these elements and (mq)/~*+15,(j,k — 1) ways to arrange
(and color) them. The factor ¢/ ~**! arises since each non-minimal element
in an arrangement contributes one more than it would ordinarily towards the
wy statistic value (due to the presence of the block containing r+1 preceding
it). The remaining ¢ — j elements of I are then placed in special blocks,
which contributes a factor of [r], ’ towards the overall weight. Considering
all possible i and j gives (3.8). We reason similarly to show (3.9) except now
the j elements of I not going in a special block or in the block containing
r + 1 can occupy any number ¢ of non-special blocks. O
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Letting p = ¢ = 1 in (3.9), and applying the p = ¢ = 1 case of (3.2)
to the inner two sums, gives the following recurrence for the r-Dowling
polynomials.

Corollary 3.6. If n > 0, then

(3.10) D(n+1;z) =rD(n;z) + me"*i <7Z>D(z,a;)
i=0

Note that (3.10) occurs as [7, Theorem 5.1]. Our next result is inspired
by the Bell number formula of Spivey [19].

Theorem 3.7. Ifa,b,k >0, then

Wy q(a+0b,k)
a b N, A
1) =Y <mq’>’+f—k< ) ([l + mlil)t =W (0 1), (i, k — 1)
i=0 j=0 J
and
Dp,q(a + b; x)

a

b J
312) =350 Y gy () ) W5,

Proof. If a = 0 or b = 0, then both identities are seen to hold, so assume
a,b > 1. To show (3.11), consider the number, i, of non-special blocks that
contain at least one element of [r+1, r+a] within a member of I1, ,,, (a+b, k).
Then there are W), 4(a, ) ways in which to arrange the elements of [r+1, 7+
al, together with the elements of [r]. Suppose further that there are exactly
b — j elements of J = [r 4+ a+ 1,7 + a + b] lying in blocks containing at
least one member of [r + a]. Then there are (g) ([r]p + mli]4)?~7 possibilities
concerning the weight of these elements. The remaining j elements of J are
arranged in k — i non-special blocks in (mgq')"*/=%S,(j,k — i) ways. Note
that the factor ¢?t7=%) arises due to the presence of i non-special blocks
preceding those that contain exclusively members of J (which causes each
of the ¢ + 7 — k non-minimal elements within these blocks to contribute ¢
more than they would ordinarily towards the value of ws). Summing over
all possible ¢ and j then gives (3.11). Identity (3.12) follows similarly except
that there are now x'W,,,(a,i) possibilities for arranging the elements of
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[@ 4+ 7] in their blocks and Zzzo(mqi)j_exéSq(j,ﬁ) possibilities concerning
the positions of the remaining j elements of J. O

There is the following further recurrence for W), ,(n, k).

Theorem 3.8. Ifn,k >0 and r > 1, then

Whp.q(n, kyr,m) — Wy o(n, k;r —1,m)

7171—1 k n—i—1 - n—i—1
313 Y3 Y eyt (M)

i=0 j=0 b—k—j
([r]p + m[j]q)"_i_g_anq(i,j; r—1,m)S,(¢,k — 7).

Proof. We may assume that k£ < n in (3.13), for otherwise the equality is
trivial. Note that the left-hand side of (3.13) gives the total weight of all
members of II in which the block containing r contains at least one other
element, by subtraction. Let us denote this subset of II by II, and we will
show that the right-hand side of (3.13) also gives the weight of II'. To do
so, suppose that m € IT' and that the second smallest element in the block
of m containing r is r + ¢ + 1, where 0 < ¢ < n — 1. Suppose further that
exactly j non-special blocks of 7 contain at least one element of [r+ 1,7 +1],
where 0 < j < min{i, k}. Then there are p" =W, ,(i, j; 7 — 1,m) possibilities
concerning the placement of the members of [r + ¢ + 1] since no member of
[r+1,7414] can go in the block containing r, with the factor of p accounting
for the placement of the element r + i + 1.

Now suppose that there are exactly ¢ elements comprising the remaining
k — j non-special blocks of 7 (i.e., those that do not contain some member
of [r + 1,7 + ¢]). Then there are ("7271) choices for these elements (since
they must belong to [r 4+ i + 2,7 + n]) and their contribution towards the
weight is (mg?)IT¢=*8, (¢, k — 7), where the factor of ¢ arises for the same
reason as previously seen and where the factor of m accounts for the coloring
of the non-minimal elements. Furthermore, there are ([r], + m[j],)" ¢!
possibilities concerning the placement (and coloring) of the remaining n —
i — ¢ — 1 elements of [r 4+ i+ 2,7 4 n] since each may go, independently, in
either a special block or in one of the first j non-special blocks. Considering
all possible 7, j, and /¢ gives the weight of all members of II' and completes
the proof. O

Taking all parameters to be unity in (3.13), and recalling S(n+1,k+1)—
S(n,k) = (k+1)S(n,k+ 1), yields the following Stirling number recurrence
formula, which seems to be new.
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Corollary 3.9. If n,k > 1, then

S(n, k)
1 n—1k—1 n—i—1 n—i—1 .

=220 > ( / >(j+1>”‘Z‘é‘15<z’,j>5(&k—j— ).
i=0 j=0 f=k—j—1

We conclude this section with a bijective proof of identity (3.3).

Combinatorial proof of (3.3). The first equality in (3.3) follows from
specializing the argument given above for (3.2). To show the second equality,
first recall that s(r,i) = (—1)""%c(r,4), where ¢(r,i) denotes the number of
permutations of [r] having exactly ¢ cycles, the set of which we will denote
by C(r,i). Assume that within each cycle the smallest element is written
first. Given 0 < i < r, let C; denote the set of all ordered pairs (y,d) such
that v € C(r,i) and § is a partition of size n + ¢ of the elements of [n],
together with the cycles of v, considered as elements. Define the weight of
(7,6) € C; as (—=1)""*2©®) | where v(§) denotes the number of blocks of 4.
Then the third quantity in (3.3) above gives the sum of the weights of all
members of C = Uj_,C;.

To complete the proof, it is enough to define a sign-changing, weight-
preserving involution of C off of a subset C* of C having weight 2" B(n;r, ).
Let C consist of those members (7y,d) € C such that v is the identity per-
mutation of [r], with the cycles of v belonging to distinct blocks of §. Note
that members of C all have positive sign and are synonymous with the mem-
bers of II,(n) since the r (singleton) cycles of  function as special elements
within a partition of size n 4 r, which implies the weight of C* is as given.

Next observe that if («, ) € C — C*, then at least one block of 8 has
two or more elements of [r| contained within all of the cycles in the block
combined. Identify the smallest element of [r] found within a cycle contained
within such a block of . Let u denote this element, B be the block of £
to which its cycle belongs, and v denote the second smallest element of [r]
contained within a cycle in B. If 4 and v belong to the same cycle in B,
say as (u---v---), then we split this cycle into two cycles (uw---),(v---),
and vice-versa, if the elements u and v belong to distinct cycles in B. This
operation is seen to define the desired involution of C — C*, which completes
the proof. O

4. Identities in the case r =1

Let Wy(n, k;m) = Wi 4(n, k; 1,m). Then we have the following identities.
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Proposition 4.1. Ifn,k,m > 1, then
(4.1)
1 n 4 .
Wl ki +1) = e S0 () (4 19 ks )

k —k
(m + 1)kFm» ‘=

with Wy(n, k; 1) = Z?:k (?)Sq(j, k). If Dy(nym,z) = Y} _o Wy(n, kym)zF,
then

(12) Dq(”;m~|—1,x)=%i(—l)n_j<?>(m+1)jl7q (5m. ).

e m+1

with Dy(n; 1,2) = E;L:o > (?) Sq(d,1)x".

Proof. The formulas for W, (n, k;1) and Dy(n;1,z) follow from the defini-
tions, upon considering the number, n — j, of additional elements belonging
to the block containing 1. To show (4.1), given n > k > 1, let ﬁlym(n,k)
denote the set obtained from II; ,,(n, k) by marking all elements other than
1 in one of m+1 ways; note that ﬁLm(n, k) has weight (m+1)"W,(n, k;m).
If K < j < n, then let A; denote the set of all ordered pairs («, ), where
a is a subset of [2,n + 1] of size n — j and [ is a member of ﬁLm(j, k)
whose elements belong to the set [n+1] —ca. Let A = U?_, A; and define the

(signed) weight of (a, 8) € A by (—1)1*g%>(#) Then the sum of the weights
of all members of A is given by 37, (—1)"7/ (?) (m 4+ 1)W4(4, k;m).

To complete the proof of (4.1), it suffices to define a sign-changing in-
volution of A off of a set having weight (m + 1)*m" ¥W,(n, k;m + 1). Let
A* denote the subset of A, where, in the members of which, all elements of
[2, n+ 1] within the block containing 1 are marked in one of the first m ways
(but not in the (m + 1)-st way). Let (a, 8) € A*; note that a = ). To show
that A* has weight (m + 1)*m™ kW, (n, k;m + 1), first observe that each
non-minimal element within a block of 4 not containing 1 is colored in one
of m ways and marked in one of m + 1 ways, while each element of [2,n + 1]
in the block of 8 containing 1 is marked in one of m ways. Regarding the
m + 1 types of markings in the previous case as colors, it follows that there
are m"~*W,(n, k;m + 1) possibilities in which the minimal elements within
each block of 8 are unmarked to start with (the factor of m"~* accounts
for the ways in which to mark the non-minimal elements in the block con-
taining 1 and to color the non-minimal elements in the remaining blocks).
Since each of the minimal elements in the non-special blocks are also to be
marked in one of m + 1 ways, the formula for the weight of A* follows. Now
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suppose (a, f) € A — A* and let = denote the smallest member of [2,n + 1]
such that (i) = € a, or (ii) = belongs to the block of 8 containing 1 and is
marked in the (m + 1)-st way. If (i) occurs, then move x to the block of
containing 1 and mark it in the (m+1)-st way, and vice-versa, if (ii) occurs.
This operation is seen to define a sign-changing involution of A — A*, as
desired.

Identity (4.2) will follow from suitably modifying the proof of (4.1) as
follows. Let A; now consist of the ordered pairs (a, 5), where « is as before
and (3 is a “marked” member of Iy ,,,(j) (on the remaining elements of [n+1])
wherein the non-minimal elements are each marked in one of m+1 ways and
each minimal element other than 1 is marked in m ways. Define the weight
of (o, B) as (—1)1¢1gw=(B) zv(B)=1 where v(B) denotes the number of blocks
of 8. Then the right-hand side of (4.2) (multiplied by m'™) is seen to give
the weight of all members of A = U?_, A;. Applying the same involution
as before to A, one sees that the set of survivors consists of those ordered
pairs («, 3) where o = () and all non-minimal elements within the block of
B containing 1 are marked in one of the first m ways. Reasoning as before
shows that the sum of the weights of all such ordered pairs is given by
m™Dy(n;m + 1, x), which completes the proof. O

We remark that identities (4.1) and (4.2) in the case ¢ = 1 occur as [18,
Theorems 1 and 2], where generating function proofs were provided. We also
have the following further identity involving Dy(n;m,x), the ¢ = 1 case of
which occurs as [18, Corollary 1].

Proposition 4.2. If n,m > 0, then

(4.3) > kS (n, k) =) (1) 7k <Z> Dy (k;m, ).
k=0

k=0

Proof. Given 0 < k < n, let Dy denote the set of ordered pairs («, f),
where « is a subset of [2,n + 1] of cardinality n — k and 8 € II; ,,,(k) whose
elements belong to the set [n 4+ 1] — o. Let D = U}_D; and define the
weight of (o, 8) € D by (—=1)lelgw2(® A =1 Then the right-hand side of
(4.3) gives the sum of the weights of all members of D. Given («, 3) € D,
we identify the smallest £ € [2,n + 1], if it exists, such that either (i) ¢
belongs to «, or (ii) ¢ belongs to the block of 8 that contains 1. Define an
involution of D by replacing option (i) with (ii), and vice-versa. Note that
this operation reverses the sign since the cardinality of a changes by one. It
is not defined for those members (a, §) € D such that « is empty and the
block of 5 containing 1 is a singleton. Note that the sum of the weights of all
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such members of D is given by the left-hand side of (4.3), upon considering
the number k of non-special blocks, which completes the proof. ]

5. Generating function formulas

In this section, we provide generating function formulas for the array
Wy q(n, k) and some related identities. Let

(k) t):ZWp@(n,k and W, 4(t; ) Zqun x)t
n>k n>0

Theorem 5.1. Let k > 0. We have

tk
(5.1) Wb (t) = , :
e [T_o(1 = t(mljly + [r],))
and
Z i>0 %@J/ﬂ)v ifq=1;
(5:2)  Wpylhz) = &7 VL

—mit)? .
220 Ty -Gty 97 L

where Bj(z) denotes the j-th Bell polynomial.
Proof. Multiplying both sides of (2.1) by t" and summing over n > k gives

= ! (k1)
pR T R

with W(O)( t) = lftl[r . Iterating this last recurrence, and noting the initial

]
condition, gives (5.1). For the ¢ = 1 case of (5.2), first note that by (5.1),
we have

k
)y _ 1 _ ]
Wpilt) = A T2 =)
= 1—t %Snk
where y = = t[ . This implies

W Z(ZW (n, k)z )tnzzka(m

n>0 k>0
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_ _ St Ry
72 1_t an Ky =Y aF>" e
>0 n>k k>0  n>k
mit"
= Z (1—t—”+1 ZS n, k) (z/m)"
n>0
B m"tan(m/m)
2Tt

If ¢ # 1, then multiplying both sides of (2.1) by z*, summing over
0 < k <n, and writing k], = % yields the recurrence

m m
(5.3) Dpg(n;z) = <x +[rlp + 1——q> Dpq(n—1;2)— ﬁDP,q(n_qu)a

with D, 4(0; ) = 1. Multiplying both sides of (5.3) by t", and summing over
n > 1, gives

1 mt/(1 —q)
Wpaltiz) = - W,.o(t; qx).
p,Q( ) 1— (,7; + [’r‘]p)t — % 1— (l‘ + [’l“]p)t _ % P7Q( q )
Iteration of this last equation completes the proof. 0

We note that the p = g = 1 case of formula (5.1) occurs in [7, Section 2].
Reasoning as in the prior proof, and using the generating function formula
(see, e.g., [21])

k

E;S7zk T (L= 2 —z[2]) - (1= 2[k]y)
shows further that
md k¢
WO = i 2 S0 R = 38,0k ft)”l
J>0 J>0
:ZZ j— k(l+j>[ 18 S, k)

i>0 5>0

Comparing coefficients of t" yields

W) =3 mi (" Yl is,Gin, mkz0
7=0
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which was shown earlier by a combinatorial argument. We have the following
(p, q)-identity.

Corollary 5.2. Ifn,k > 0, then

3 ik (j) 98,5, b)

Jj=0

k
(5.4) ,Z i=ig=(2)=i(k=3) m (mljly + [rl)"

7=0
Proof. Suppose that the array {u(n,k)}, x>0 is defined by the recurrence
u(n, k) =uln—1,k—1)+ (an—1 + br)u(n — 1, k), n,k>1,

subject to the boundary conditions u(n,0) = H?:_()l(ai—i—bo) and u(0,k) = 60
for all n,k > 0, where (a;);>0 and (b;);>0 are given sequences with the b;
distinct. By [11, Theorem 1.1], we have the formula

k
(5.5) u(n k) =" % . n k>0

J=0

Taking a; = 0 and b; = [r],+mli], for all i in (5.5), noting [j],—[i]q = ¢'[i—il,
if 7 > 4, and simplifying yields the formula

(56)  Wyq(n.k)

i Y- (G- mqmmw )"

T j=0
which implies (5.2). O

Note that when m = ¢ = 1 and r = 0, equation (5.2) reduces to the
well-known formula
= ()
see, e.g., [20, p. 34].
One can also give an explicit formula for the exponential generating
function of W), 4(n, k) in the case when ¢ = 1. By the ¢ = 1 case of (5.2), we
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have
tn 1 & k
v k _ - _1\k—J (mj+r]p)t k
)OI FES ol P I W R B
k>0 \n>0 k>0 =0

J
mt k
— 3 (€™ =1 & _ em—nz 4],

Corollary 5.3. Ifn >0, then

(5.7) ZWplnk :iom<) |2 B(i).

Proof. By the fact that e ~1 = > n>0 B(n)Z; (see [20, p. 34]), we obtain

n!

" mett i1
5 (S W) = vty

E>0 \n>0 i>0 >0

and comparing coefficients of t" gives (5.7). O

We conclude this section by considering the log-concavity of the array
W, 4(n, k) for various values of its parameters. Recall that a sequence (ar,)n>0
is said to be log-concave if a% > Gp—10n+1 for all n > 1, and strictly log-
concave if the inequality is strict. A sequence (f,(z))n>0 of polynomials
having real coefficients is said to be x-log-concave if f,,(x)? — fr_1(x) frni1(x)
has all non-negative coefficients for each n > 1. Given an array a(n,k),
0<k<mn,let A(n;2) = S} a(n,k)z*. Then a(n, k) is said to be LC-
positive, see [23], if the sequence (A,(n;z)),>r is a-log-concave for each
r > 0.

k

Lemma 5.4. The array a(n,k) := q*(z)*k(”fk) [Z]q is LC-positive for all
qg=>1.

Proof. Dividing both sides of the g-binomial coefficient recurrence
6o
k], k—1], ko1,

by q( )+h(n—k) , and simplifying, implies

a(n, k) =q¢ " Yan—1,k—1)+a(n—1,k)
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for n > 1,k > 0. Thus, we have

Ar(nyx) = Za(n, k)ak = Z(q_("_l)a(n —1L,k—1)+a(n—1,k))z"
k=r k=r
= (1+q¢ " VA n—-12)+¢ " Van—1,7r —1a", n>1,

which gives

Ay (n; x)2 —A.(n—12)A.(n+ 1;2)
— Ao+ D) A~ L) + ¢ Da(n— 1r — 1))
—A(n—1L2)(1+¢ "v)Ar(n;z) + ¢ "a(n,r —1)z")

_7((]71):6 n,x n— LT
= A ) A~ 1)

(5.8) + ;:—n(qa(n —1,r—1)A.(n;z) —a(n,r —1)A(n — 1;2)).

Note that the first quantity on the right-hand side of (5.8) has non-negative
a-coefficients since ¢ > 1. Furthermore, observe that ga(n—1,7—1)a(n, k) >
a(n,r — 1)a(n — 1,k) for all n,k > r and ¢ > 1 since it reduces to the
obvious inequality [n —r+1], > ¢*~"[n — k],. Thus, the z-coefficients of the
polynomial corresponding to the second term in (5.8) are also non-negative,
which implies the result. ]

Theorem 5.5. Ifn > 1, then W, 4(n, k) for 0 < k < n is strictly log-concave
(and hence unimodal) for allp >0 and 1 < ¢ <1+ ﬁ if v > 1 and for all
g>1ifr=0.

Proof. We prove only the first statement, as the second will follow by slightly
modifying our proof. First note that if a sequence (b,)n>0 of positive real
numbers is log-concave, then W is strictly log-concave. Thus, by (5.6),
to show that W), 4(n, k) is strictly log-concave, it suffices to show that the
sequence by = Z?zo(—l)ja(k,j)(m[j]q + [r]p)" is log-concave for each fixed
n > 1, where a(k,j) is as defined in the previous lemma. Since the array
a(k, 7) is LC-positive for ¢ > 1, in order to establish the log-concavity of the
sequence by, it is enough to show that the sequence ¢; = (—1)7 (m/[j],+[r],)"
for j > 0 is log-concave, by [23, Theorem 2.3]. To do so, note that c? >

cj—1¢j+1 if and only if

(mljlg + [T]p)Q — (m[j — g + [rlp)(mlj + g + [r]p)
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=m*([j]2 = [j — Uglj + 1q)
+mlrlp (2[5l — [ — g — [1 +1]g) > 0.

Upon substituting [j—1], = [j];—¢’ ! and [j+1], = [j];+¢’, and simplifying,
the last inequality is equivalent to

m* (¢ (1= q)ljlg + ¢ 1) +mg (1 = @)[r], > 0,

i.e., mg¢/~Y(m + (1 — q)[r],) > 0, which is clearly true for 1 < ¢ <1+ [r]
Thus, the sequence c; is log-concave, which completes the proof. O

We conjecture that W), ,(n, k) is strictly log-concave for all p > 0 and
q > 1, but do not have a complete proof.

6. The (p, q)-Whitney matrix of the second kind

In this section, we introduce the (p,q)-Whitney matrix of the second kind.
Then we find some factorizations of this matrix in analogy with the results
of Mez6 and Ramirez [13]. For the results of this section, we will need the
following.

Theorem 6.1. Ifn > 0, then
n
(6.1) (max + [r Z Whpqe(n M??
k=0

where [a]g = x(z — [1]g)(@ — [2]y) -+ (& — [k = 1]y) and [2]g = 1.

Proof. We proceed by induction on n. The equality clearly holds for n = 0, 1.
Now assume that the claim holds for n, and let us prove it for n + 1:

(ma + [r]p)" "

(mz + [r Z Wy q(n [:L“]%
k=0

= xZWp,qm, K)ymF T 2]E 4+ ], Y Wi (n, kymF 2]k
k=0 k=0

=(z— Z kaerp qo(n, k)[x ]§ (m[k]q + [r]p) Z mkqu(”v ’f)[ﬂ%
k=0 k=0
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=S P HW, o (0, K) &l + (mK]g + [7]p) S m W g(n, k) 2]k

k=0 k=0
n+1 n+1
= Z mkWp’q(n, k— 1)[517]5 + (m[k]q + [r]p) Z mkqu(na k)[l’]g
k=0 k=0
n+1

= Z (Wpq(n, k= 1) + (m[klq + [r]p) Whp,q(n, k)) mk[$]§
k=0

n+1
= z Wpq(n +1,k)m" [:E]g O
k=0

Definition 6.2. The (p, q)- Whitney matriz of the second kind is the n x n
matriz defined by

Whq(n) := W;()Z;’T)(n) 1= [Whp,q(t, s, m)}0§i7j§n—1'

For example,

1 0 0 0
[r]p 1 0 0
Wod=1pp o, 1 0
[rly m®+3m[r], +3[r]; (2+q@m+3[r], 1

In particular, if p = ¢ = 1, we obtain the r-Whitney matrix of the second
kind [13]. If m = p = 1 and r = 0, we obtain the ¢-Stirling matrix of the
second kind S, 1= [Sq(4, 7)]o<i j<n—1; see, e.g., [9, 16].

We need to introduce some auxiliary matrices. The generalized n x n
Pascal matrix P, [z] is defined as follows (see [4]):

Pula] = [wij <;)] 0<ij<n—1

If £ = 1, we obtain the Pascal matrix P, of order n.
From Theorem 3.1, we have the following factorization for any positive
integer n:

(6.2) Wp.q(n) = Po[[r]p]Sqnlml,

where Sy ,[2] := [2"79.S,(4, §)]o<i j<n—1-
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For example,

1 0 0 0 1 0 0 0
[rlp 1 0 0 0 1 0 0
Wod =102 90, 1 0| Xoom 1 0
3 302 3[r, 1 0 m? (¢+2)m 1

Moreover, from relation (3.4), we obtain that if 0 < s < r, then

W) (n) = Pa[p®lr — sl )W) (n).

We need the following factorization of the generalized Pascal matrix
given by Zhang (see [24, Theorem 1]):

(6.3) bola] = Glz]Grla] - Gifz],  n>1,
where G[z] is the n X n matrix defined as

Gilz] = L & Sk[z], 1<k<n-1,
and Gp[z] = Sy[z], where

Splz] == [xi_j]ogjgz‘gn—l

and @ denotes the matrix direct sum.

Having these preliminaries, we obtain the following factorization of
Wp,q(n).

Proposition 6.3. For alln > 2, we have

(6.4)
Wya(n) = Gu[[rlp)Gu-1llrly) - - - Gi[[r)p] Pr1[m] Pn—z[mg] - - - Pr[mg"~?).

Here
Pilz] = Ly ® P[]
Proof. By (6.2), we have
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The matrix P,[[r],] can be factorized by means of (6.3), while the matrix
Sq.nlm| can be factorized by a result of Orug et al. [16] as

Sqn[m] = Pr_1[m|Pp_2[mq] - -- Pi[mg"?.

Therefore, equation (6.4) follows. O

Now we introduce a generalized Vandermonde matrix and find some fac-
torizations of it by using the (p, ¢)-Whitney matrix. Note first that relation
(6.1) can be expressed as

" xr
(6.5) (ma + [1]p)" = > km W, 4(n, k)‘ AR
k=0 q
where
e itk > 1
. .
el = 1, if k=0;

1 0, if k <0,

for any real number z and integer k. Hence, equation (6.5) can be rewritten
as follows:

(6.6) vo(2) = Wyg(n)egn(z), n>1,
where
vp(e) = [Lma -+ [rlp, (ma + ), (ma o+ )"
T
Can(@) = [0 ]2 ] |

and ng(n) =W, 4(n)-diag(0!,1!,. .., (n—1)!). For example, if n = 4, then

1 1 0 0 0
ma+ iy | _ | 1 0 of [m|3],
(ma+ | T [FE w2, 2 of [m2lzf
(ma+ (1) [0 m? 4 3miy 130 22+ m 30, 6] |m?fE]]

Let V' [x] be an n x n p-generalized Vandermonde matrix defined by

Vp(fff”) [x] == Vp(;'f’r)(mx + [rlpymz+m+[rlp,...,mz+ (n—)m+[r]p)
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1 1 1
mzx + [r]p mx +m+ [r]p mz + (n—1)m+ [r]p
(mz+[rlp)?  (mz+m+[r]p)? (mz + (n—1)m + [r]p)?
(ma+ )" (mz+mt )"t e (mat (= Dm+ )t

The matrix equation (6.6) implies the following factorization of V(ZZ’T) [z]:

(6.7) V) (2] = Wy g ()OI [2],

m — i|T+]
where C},[z] := (m 1>t ‘q)ogz‘,jgn—l'
So, for example, if z =1 and n = 4, then

1 1 1 1
m+ [r]p 2m + [r]p 3m+ [r]p dm + [r]p
(m+[rlp)® @Cm+[r]p)® Bm+[r]p)* (4m+[r]p)?
(m+[r1p)?° Cm+[r]p)?® Bm+[r]p)?®  (4m+[r],)?

1 0 0 0
[r]p 1 0 0
G m+2[r]p 2 0
[r]2 m?+3m[r], + 302 22+ q¢m+3[r], 6
1 1 1 1
mlil,  m", w7, w7,

<l wee, e, e |
w5l m N, mP e, m
Define the n x n matrix Ly,[x] by (Lgn(z])i<ij<n = xj_l[i]g;l. We
find a factorization of V;(;?’T) [z] in terms of the (p,q)-Whitney and L, ,[z]

matrices.

Lemma 6.4. The p-Vandermonde matrix Vp(fﬁ”") [1] can be factorized as

V(m’r)[l] = Wp,q(”)ﬁq,n[m]T'

p7n
Proof. From (6.1), we have

i—1

(Wp,q(n)ﬁq,n[m]T)ij = Z Wpqli — 1, k>mk[]]§ = (ym+ [r]p)iil
k=0
= (m+(j = Dm+[l,)" = (Vi 1)y O

Theorem 6.5. The p-Vandermonde matrix Vp(;n’r) [x] can be factorized for

any real number x as V};(ZL’T) [z] = Py[m(x — 1)]W, 4(n)Lyn[m]T.
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Proof. From Lemma 6.4, we have

(Palm(z = D)]Wp,(n) Lanlm]")ij = (Palm(z — DIV, 1)y

,_.

i—

=3 ()t = g

k=0
= (m(z — 1) +mj + [r],)"" = (ma +m(j = 1)+ [r],) " = (Vi [a])i.
O
For example, if n = 4, then
1 1 1 1
mz + [r]p mz +m+ [r]p mz + 2m + [r]p max + 3m + [r]p
(mz+[r)p)? (mx+m+[r]y)? (mz+3m+[r,)? (mz+3m+[r],)?

) I») I»)
(mz +[r],)*  (ma+m+[rlp)*  (ma+3m+[r],)*  (mo+3m+[r]p)°

1 0 0 0
| m(z—-1) 1 0 0
T mifz -1 2m(z—1) 1 0
mi(z—1)* 3m?(z—1)? 3m(z-1) 1
1 0 0 0
[r]p 1 0 0
A me2r ! 0
[rl; m*+3mlrly + 30y 2+ a@)m+3[r], 1
1 1 1 1
<« |™ 2m 3m 4m
0 2m® 6m> 12m?
0 2m3(1—q) 6m3*(2—q) 12m3(3 —q)
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