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Moments of matching statistics

Niraj Khare, Rudolph Lorentz, and Catherine H. Yan

We show that for a large family of combinatorial statistics on per-
fect matchings, the moments can be expressed as a linear combi-
nation of double factorials with constant coefficients. This gives a
stronger analogous result of Chern, Diaconis, Kane and Rhoades
on statistics of set partitions, in which case the moments can be
expressed as linear combinations of shifted Bell numbers, but with
polynomial coefficients.
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1. Introduction

Recently Chern, Diaconis, Kane and Rhoades [7] found that for many com-
binatorial statistics on set partitions of [n] = {1, 2, . . . , n}, the moments
(mean, variance and higher moments) have simple closed expressions as lin-
ear combinations of shifted Bell numbers, where the coefficients in the linear
combinations are polynomials in n. This allows one to derive exact formu-
las of the moments based on data for small values of n. In particular, the
method applies to the number of blocks, the dimension index, the number
of crossings, and the number of levels for set partitions. Combining with a
stochastic algorithm of Stam [15] for generating a random set partitions,
Chern et al. [8] established the limiting normality for the numbers of 2-
crossings, dimension index, and the number of levels.

The main goal of the present paper is to study the analogous results of
[7] on the set of perfect matchings on [2m]. A partial matching M on [n] is
a partition in which every block has at most two elements. If every block
has exactly two elements, the matching is called a perfect matching. Denote
by M2m the set of all perfect matchings on [2m]. Then M2m is a subset
of Π(2m), the set of all set partitions of [2m]. Hence the general approach
in [7] applies to M2m. However, perfect matchings are special partitions
with uniform block sizes. This allows us to get stronger characterizations,
simpler formulas and more efficient algorithms. In particular, we will focus
on the simple statistics which count the appearance of patterns in perfect
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Figure 1: The diagram of the matching M = {(1, 4), (2, 9), (3, 5), (6, 7),
(8, 12), (10, 11)}.

matchings and present closed expressions for moments of crossings, nestings,
and their variants.

Let us introduce necessary notations first. We represent a matching
M on [2m] by a diagram on the vertex set [2m] with arcs (i, j) when-
ever i < j and {i, j} is a block of M . For instance, the matching M =
{(1, 4), (2, 9), (3, 5), (6, 7), (8, 12), (10, 11)} is represented by the diagram in
Figure 1.

For a matching M , the set of openers, denoted by O(M), is the set of
left endpoints of the arcs in the diagram of M . Similarly, the set of closers,
denoted by C(M), is the set of right endpoints of the arcs. For the matching
in Figure 1, we have O(M) = {1, 2, 3, 6, 8, 10} and C(M) = {4, 5, 7, 9, 11, 12}.

The following definitions are adapted from the ones defined for set par-
titions in [7].

Definition 1.1. 1. A pattern P of length k is a partial matching P on [k]

with a set of vertex-disjoint pairs A(P ) ⊆
(
[k]
2

)
and a set C(P ) ⊆ [k−1].

Let P := (P,A(P ), C(P )).
2. An occurrence of a pattern P of length k in M ∈ M2m is a tuple

s := (t1, t2, · · · , tk) with ti ∈ [2m] such that

(a) t1 < t2 < · · · < tk.

(b) (ti, tj) is an arc of M if (i, j) ∈ A(P ).

(c) ti+1 = ti + 1 whenever i ∈ C(P ).

Write s ∈P M if s is an occurrence of P in M .

Definition 1.2. A simple statistic is defined by a pattern P of length k
and a valuation polynomial Q ∈ Q[y1, y2, · · · , yk, n]. If M ∈ M2m and s =
(x1, x2, · · · , xk) ∈P M , write Q(s) = Q|yi=xi,n=m. Let

f(M) = fP ,Q(M) :=
∑

s∈PM

Q(s).
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Let the degree of a simple statistic fP,Q, denoted d(f), be the sum of the
length of P and the degree of Q. A statistic is a finite Q-linear combination
of simple statistics. The degree of a statistic is defined to be the minimum
over such representations of the maximum degree of any appearing simple
statistics.

Remarks.

1. In the above definition, C(P ) defines a set of consecutive elements.
2. The field Q can be replaced by any field K of characteristic zero. We

use Q here because it is the case in most combinatorial applications.
3. In [7] a pattern of set partitions also contains specified sets of first and

last elements. This is not necessary for matchings since the set of arcs
of P uniquely determines O(P ) and C(P ).

Examples.

1. Number of arcs of M . For any matching of [2m], the number of arcs
|M | equals m. It is trivial to see that |M | is a simple statistic with
pattern P of length two along with A(P ) = {(1, 2)}, C(P ) = ∅ and
Q(y1, y2, n) = 1.

2. Sum of vertex indices in O(M) or C(M). For a matching M ∈ M2m

let

smin =
∑

i∈O(M)

i and smax =
∑

i∈C(M)

i.

Then both smin and smax are simple statistics with P of length 2
along with A(P ) = {(1, 2)}, C(P ) = ∅, and Qmin(y1, y2, n) = y1,
Qmax(y1, y2, n) = y2.

3. k-crossings, k-nestings, and k-alignments. Let k ≥ 2 be an integer.
A set of k arcs {(it, jt) : 1 ≤ t ≤ k} in the diagram of M forms a
k-crossing if i1 < i2 < · · · < ik < j1 < j2 < · · · < jk. Similarly, it
is a k-nesting if i1 < i2 < · · · < ik < jk < jk−1 < · · · < j1, and a
k-alignment if i1 < j1 < i2 < j2 < · · · < ik < jk.
Let crk, nek and alk be the number of k-crossings, k-nestings, and
k-alignments of M . They are simple statistics with patterns of length
2k and

A(P (crk)) = {(1, k + 1), (2, k + 2), . . . , (k, 2k)}
A(P (nek)) = {(1, 2k), (2, 2k − 1), . . . , (k, k + 1)}
A(P (alk)) = {(1, 2), (3, 4), . . . , (2k − 1, 2k)}.

For all of them, Q = 1 and C(P ) = ∅.
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4. Dimension exponent. The dimension exponent d(λ) of a set partition
λ arose from the study of the character theory of upper-triangular
matrices. See [7, §3.3] and references there. Explicitly,

d(λ) =

l∑
i=1

(Mi −mi + 1)− n,

where l is the number of blocks of λ, Mi and mi are the largest and
smallest elements of the ith block. Specialized to perfect matchings,
the dimension exponent is the statistic obtained by taking a linear
combination of smax and smin, as

d(M) = smax(M)− smin(M)−m.

5. Blocks consisting of consecutive vertices. Another simple statistic is
obtained by counting the number of blocks that consist of consecutive
vertices, i.e., arcs of the form (i, i+1). It is represented by the pattern
P of length 2 with A(P ) = {(1, 2)} and C(P ) = {1}, and the valuation
polynomial Q = 1. Following [7] we denote this statistic by flevel.

Let T2m be the number of matchings on [2m], i.e., T2m = |M2m| =
(2m − 1)(2m − 3) · · · 3 · 1 = (2m − 1)!!, the double factorial of 2m − 1. By
convention, set T0 = 1 and T2i = 0 for i < 0. In the next section we give
closed formulas for the aggregate

∑
M f(M) over M2m. We show that for a

general statistic f , the sum
∑

M f(M) can be expressed as a linear combina-
tion of {T2i : i ≥ 0} with finitely many i and constant coefficients. In Section
3 we present closed expressions of higher moments of statistics. Section 4
deals with simple statistics whose associated pattern is a perfect matching
with empty C(P ), and whose valuation function is a constant. In that case
the coefficients in the expression of higher moment can be obtained by a
linear recurrence. As examples, we present results for k-crossing, k-nesting,
and k-alignment. In the last two sections, we compute higher moments for
statistics associated with crossings/nesting with consecutive left (right) end-
points, and with the dimension exponent.

2. Aggregate of matching statistics

It is proved in [7] that for any statistic f of set partitions, the aggregate∑
λ∈Π(n) f(λ) is a linear combination of the shifted Bell numbers with poly-

nomial coefficients. We show that when restricted to matchings, the Bell
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numbers are replaced with the double factorials, and the coefficients are
constants. Explicitly, for any statistic f , define

M(f, 2m) :=
∑

M∈M2m

f(M).

Clearly the expected value of f for a uniform random matching in M2m is
given by E(f) = M(f, 2m)/T2m.

Our main results are the following two theorems which give two general
expressions for M(f, 2m). One of the techniques used in proving the fol-
lowing results is the left compression of numbers corresponding to the set
C(P ). It is interesting to note that a similar tool is commonly used for graphs
and hypergraphs to modify the set system without changing the matching
number (for instance see [1], [2], [4], [12] and [13]).

Theorem 2.1. Let fP ,Q be a simple statistic of degree N associated with
pattern P and valuation polynomial Q(s). Assume � = |A(P )| and c =
|C(P )|. Then

M(fP ,Q, 2m) = P (m)T2(m−�)(1)

where P (x) is a polynomial of degree no more than N − c. Equivalently for
m ≥ �, M(f, 2m) can be expressed as a linear combination of T2i’s with
constant coefficients, i.e.,

M(fP ,Q, 2m) =

{
0 m < �∑

−�≤i≤N−�−c ciT2(m+i) m ≥ �
(2)

with constants ci ∈ Q.

Proof. Assume that f = fP ,Q where the pattern P = (P,A(P ), C(P )) is of
length k, and the valuation polynomial Q is of degree N − k. Then

M(fP ,Q, 2m) =
∑

M∈M2m

fP ,Q(M) =
∑

M∈M2m

∑
s∈PM

Q(s)

=
∑

s∈([2m]

k )

Q(s)
∑

M∈M2m

s∈PM

1.

Fix an occurrence s = (t1, · · · tk) of P , the k−2� singletons in s can be joint
with vertices in [2m]− s and form arbitrary matchings. So there are T2(m−�)

perfect matchings on [2m] that contain s. Hence s contributes T2(m−�) to the



6 Niraj Khare et al.

inner sum ofM(fP ,Q, 2m) whenever it satisfies the condition (c) of Definition
1. Otherwise it contributes 0. Therefore

M(fP ,Q, 2m) = T2(m−�)

∑
1≤t1<t2<···<tk≤2m
ti+1=ti+1 for i∈C(P )

Q(s).

To deal with the constraints caused by C(P ), we use the standard trick to
compress numbers, as done in [7]. We call i+1 a follower if i ∈ C(P ). If j is
the index of the i-th non-follower then let yi = tj − j + i. Then the values
of (t1, . . . , tk) are determined by (y1, . . . , yk−c), where c = |C(P )| and Q can
be viewed as a polynomial of y1, . . . , yk−c and m. Hence

M(fP ,Q, 2m) = T2(m−�)

∑
1≤y1<y2<···<yk−c≤2m−c

Q̃(y1, . . . , yk−c,m)(3)

for some polynomial Q̃ of the same degree as Q. The summation yields a
polynomial of m of degree at most deg(Q) + k − c = N − c.

To see Equation (2), let gi(m) be a polynomial of m defined by gi(m) =
T2(m−�+i)/T2(m−�). Then gi is of degree i, and hence {gi(m)}∞i=0 form a basis
of Q[m]. It follows that any polynomial of degree k can be written as a linear
combination of g0(m), . . . , gk(m). This implies Equation (2).

From Formula (3) we get the following simple form when Q is a constant.

Corollary 2.2. Let f be a simple statistic with pattern P of length k and
the valuation function Q = q ∈ Q. Then

M(f, 2m) = qT2(m−�)

(
2m− c

k − c

)

where � = |A(P )| and c = |C(P )|.
We refer to Equation (1) as the polynomial form, which is a product of

a polynomial and a T2i for some i. Equation (2) is referred to as the linear
form, which is a linear combination of T2i’s with constant coefficients. For
simple statistics both expresses contain N − c+1 undetermined coefficients.
Consequently, we have a polynomial form and a linear form for M(f, 2m)
for an arbitrary statistic f .

Theorem 2.3. For any statistic f of degree N , there is a positive integer
L ≤ N

2 such that for all m ≥ L,

M(f, 2m) = R(m)T2(m−L),(4)
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where R(x) are polynomials of degree no more than N +L. Equivalently, we
have the linear form

M(f, 2m) =
∑

−L≤i≤N

diT2(m+i) (m ≥ L)(5)

for some constants di ∈ Q.

Proof. Assume that

f =

t∑
i=1

rifP i,Qi

with ri ∈ Q. Then

M(f, 2m) =

t∑
i=1

riM(fP i,Qi
, 2m) =

t∑
i=1

riPi(m)T2(m−�i),

where �i = |A(Pi)| and degree of Pj(m) is no more than deg(fi) − ci ≤ N
with ci = |C(Pi)|. Combining likely terms of T2k yields the equation

M(f, 2m) =

L∑
j=0

Rj(m)T2(m−j),

where Rj(m) is a polynomial of degree no more than N , and L = max(li) ≤
N
2 . Since T2(s+k) = pk(s)T2s (if s ≥ 0) in which pk(s) is a polynomial of
degree k, we get the polynomial form Equation (4) for m ≥ L.

The linear form Equation (5) is obtained by expanding R(m) under the
basis

{1, T2(m−L+1)/T2(m−L), . . . , T2(m+N)/T2(m−L)}.
Theorem 2.3 allows us to compute the closed formula of M(f, 2m) when-

ever we know the exactly values of M(f, 2m) for a set of L +N + 1 values
of m ≥ L. To a specific statistic, usually we would use the combinatorial
structure to get a better bound on the degree of the polynomial R(m) in
(4), or equivalently, the number of terms in (5).

Example 2.1. The statistics smin and smax are simple statistics of degree
3 with � = 1 and c = 0. By Theorem 2.1 and Formula (3),

M(smax, 2m) = T2(m−1)

∑
1≤t1<t2≤2m

t2

=
2m(2m+ 1)(2m− 1)

3
T2(m−1) =

1

3
T2(m+2) − T2(m+1).
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Similarly

M(smin, 2m) = T2(m−1)

∑
1≤t1<t2≤2m

t1

=

(
2m+ 1

3

)
T2(m−1) =

1

6
T2(m+2) −

1

2
T2(m+1)

Example 2.2. Let f be the simple statistic associated to P of length 3 with
A(P ) = {(1, 3)}, and C(P ) = 2. That is, an occurrence of P is an arc on
non-consecutive vertices. Assume Q(t1, t2, t3,m) = t3. Then by (3)

M(f, 2m) = T2(m−1)

∑
1≤t1<t2≤2m−1

(t2 + 1)

= T2(m−1)

(
2

(
2m

3

)
+

(
2m− 1

2

))

=
(2m− 2)(2m− 1)(4m+ 3)

6
T2(m−1)

=
1

3
T2(m+2) −

3

2
T2(m+1) −

1

2
T2m.

3. Higher moments of simple statistics

In order to compute higher moments, it is necessary to consider products of
statistics. The next theorem establishes that Q-linear combination of statis-
tics and product of statistics are in fact statistics. This allows us to compute
the higher moments E(f r), or equivalently, M(f r, 2m) = E(f r)T2m for any
statistic f . Theorem 3.1, Definition 3.1 and Lemma 3.2 are analogues to the
ones in [7], which can be proved in the same way and hence the proofs are
skipped.

Theorem 3.1. Let S be the set of all statistics thought of as functions
f : ∪mM2m → Q. Then S is closed under the operations of pointwise
scaling, addition and multiplication. Thus, if f1, f2 ∈ S and a ∈ Q, then
there exist matching statistics ga, g+ and g∗ so that for all matching M ,

af1(M) = ga(M),

f1(M) + f2(M) = g+(M),

f1(M)f2(M) = g∗(M).

Furthermore, d(ga) ≤ d(f1), d(g+) ≤ max{d(f1), d(f2)} and d(g∗) ≤ d(f1)+
d(f2).
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To use Theorem 3.1 we need a notion of merge of two patterns.

Definition 3.1. Let P 1, P 2 and P 3 be patterns of length k1, k2 and k3
respectively. The pattern P 3 is called a merge of P 1 and P 2 if there are two
strictly increasing functions h1 : [k1] → [k3], h2 : [k2] → [k3] such that

(1) h1[k1] ∪ h2[k2] = [k3],
(2) (i, j) ∈ A(P3) if and only if (i, j) = (h1(i

′), h1(j′)) or (i, j) = (h2(i
′),

h2(j
′)) for some (i′, j′) in A(P1) or A(P2) respectively,

(3) i ∈ C(P3) if and only if there exists either a j ∈ C(P1) with i = h1(j)
and i + 1 = h1(j + 1) or a j′ ∈ C(P2) with i = h2(j

′) and i + 1 =
h2(j

′ + 1).
A merge is denoted as (h1, h2) : P 1, P 2 → P 3. Similarly one defines
the merges (h1, . . . , hr) : P 1, · · · , P r → P for any positive integer
r ≥ 2.

Lemma 3.2. Let P 1, P 2 be patterns. For any matching M there is a one-
to-one correspondence:
(6)
{(s1, s2) : s1 ∈P 1

M, s2 ∈P 2
M}↔{P 3, s3 ∈P 3

M, and (h1, h2) : P 1, P 2→P 3}.

The above results enable us to compute the aggregate for a product of
statistics, as

M(fP 1,Q1
fP 2,Q2

, 2m) =
∑

M∈M2m

∑
P3

∑
s3∈P3

M

∑
(h1,h2)

Q1(h1(s1))Q2(h2(s2)).

=
∑
P3

M(fP 3,Q̃
, 2m)

where

Q̃(s3) =
∑

(h1,h2)

Q1(h1(s1))Q2(h2(s2)).

Consequently, for any statistic f and positive integer r, f r can be written
as a linear combination of simple statistics, and hence M(f r, 2m) can be
expressed as a linear combination of T2k’s with constant coefficients.

Theorem 3.3. For any statistic f of degree N and positive integer r, we
have

M(f r, 2m) =
∑

I≤i≤J

diT2(m+i) whenever m ≥ I(7)

where I and J are constants bounded by I ≥ − rN
2 and J ≤ rN .
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Proof. Assume

f =

t∑
i=1

rifP i,Qi

with ri ∈ Q. Let P̃ be a merge (h1, h2, . . . , hr) : (P i1 , P i2 , . . . , P ir) →
P where each P ij ∈ {P 1, . . . , P t}, and Q̃(s) = Qi1(h1(s1))Qi2(h2(s2)) · · ·
Qir(hr(sr)). Assume P̃ = (P̃ , A(P̃ ), C(P̃ )) is of length k̃ with �̃ arcs and
c̃ = |C(P̃ )|. Let fP̃ ,Q̃ be a simple statistic associated with the pattern P̃ and

polynomial Q̃. Then M(f r, 2m) is a sum of linear multiples of terms of the
form M(fP̃ ,Q̃, 2m). By Theorem 2.3 each such a term can be expressed as
a linear combination of T2(m+i)’s with constant coefficients, where the lower

bound of i is−deg(fP̃ ,Q̃)

2 ≥ − rN
2 , and the upper bound is deg(fP̃ ,Q̃) ≤ rN .

Corollary 3.4. Let fP ,1 be simple statistic for which the pattern P is of
length k with � = |A(P )|, c = |C(P )|, and the unit valuation function. Then
we have

M(f r
P ,1, 2m) =

∑
−r�≤i≤rk−�−c

ciT2(m+i)(8)

for some constants ci ∈ Q and m ≥ r�.

Proof. Since Q = 1, the degree of f is k. Let P̃ be a merge of r copies of P
with length k̃, �̃ arcs and c̃ consecutive pairs. Then k ≤ k̃ ≤ rk, � ≤ �̃ ≤ r�
and c ≤ c̃ ≤ rc. Formula (8) is obtained by applying the linear form (2) to
simple statistic P̃ and summing over all such P̃ .

In addition, there is a summation form for M(f r
P ,1, 2m), which can be

useful when the combinatorial structure is easy to analyze.

Proposition 3.5. Assume the pattern P has length k with � = |A(P )|,
c = |C(P )| and Q = 1. Then

M(f r
P ,1, 2m) =

∑
k̃,�̃,c̃

c
(r)

k̃,�̃,c̃
T2(m−�̃)

(
2m− c̃

k̃ − c̃

)
(9)

with nonnegative integer coefficients c
(r)

k̃,�̃,c̃
, where k ≤ k̃ ≤ kr, � ≤ �̃ ≤ �r,

and c ≤ c̃ ≤ cr. The coefficient c
(r)

k̃,�̃,c̃
counts the number of ways to merge

r copies of P to patterns with k̃ vertices, �̃ arcs and c̃ consecutive pairs of
vertices.
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The advantage of Formula (9) is that the coefficients have clear com-
binatorial meanings. In application, we can use some simple combinatorial
constraints to limit the number of nonzero coefficients, and hence obtain a
tighter bound on the number of undetermined coefficients when we trans-
form the sum M(f r, 2m) to the polynomial form or the linear form. Then
we could find the undetermined coefficients by using data of M(f r, 2m) with
small values of m.

4. Patterns with constant valuation and empty C(P )

For simple statistics with constant valuation, empty C(P ), and k = 2�,
the polynomial form of M(f r, 2m) gives a simple formula whose coefficients
satisfy a linear recurrence. In the following we simply assume Q = 1, since
for the case Q = q ∈ Q, M(f r

P ,q, 2m) = qrM(fP ,1, 2m).

Theorem 4.1. Let f be a simple statistic defined by a pattern P of length
k = 2� with the valuation function Q = 1, � = |A(P )| and C(P ) = ∅. Then
the r-th moment of f can be written as

M(f r, 2m) =

(r−1)�∑
i=0

c
(r)
i

(
2m

2(�+ i)

)
T2(m−�−i),(10)

for some constants c
(r)
i .

Proof. For any merge P̃ of r copies of P , the pattern associated to P̃ would

have length 2�̃ if it has �̃ arcs, and C(P̃ ) = ∅ always. Let c
(r)
i be the number

of such merges with �̃ = i+� arcs. Then they contribute c
(r)
i

(
2m

2(�+i)

)
T2(m−�−i)

to the sum M(f r, 2m). Summing over all i from 0 to (r − 1)�, we get the
formula (10).

Example. We explain Theorem 4.1 by computing the second moment of
cr2, the number 2-crossings in a matching. Since r = 2 and � = 2, by (10)
we obtain

M((cr2(M))2, 2m) = c0

(
2m

4

)
T2(m−2)+ c1

(
2m

6

)
T2(m−3)+ c2

(
2m

8

)
T2(m−4),

where ci is the number of patterns P3 with i+ 2 arcs that can be obtained
as merges of two copies P1 = P2 = P (cr2).

• For i = 0, there is only one possible merge, namely P1 = P2 = P3.
Hence c0 = 1.
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• For i = 1, assume P3 is a pattern of length 6 obtained by merging
P1 and P2. First observe that if P3 has two 2-crossings, then there
are exactly two ways to define h1 and h2. If P3 has three 2-crossings,
then there are 6 ways to define h1 and h2. There are three P3 with
cr2(P3) = 2, namely, {(1, 3), (2, 5), (4, 6)}, {(1, 4), (2, 6), (3, 5)}, and
{(1, 5), (2, 4), (3, 6)}, and one with cr2(P3) = 3, namely, {(1, 4), (2, 5),
(3, 6)}. Putting together we have c1 = 12.

• For i = 2, note that if a merge (h1, h2) : P1, P2 → P3 has 4 arcs, then
h1(P1) and h2(P2) must be disjoint. This gives c2 =

(
8
4

)
= 70.

Combining the above cases, we have

(11) M((cr2(M))2, 2m) =

(
2m

4

)
T2m−4+12

(
2m

6

)
T2m−6+70

(
2m

8

)
T2m−8.

Even for simple statistics as described in Theorem 4.1, getting the co-

efficients c
(r)
i ’s by analyzing combinatorial structures can be tedious and

time consuming. Instead, we could take advantage of the special form of
M(f r, 2m) and the fact that for any positive integers

(
a
b

)
= 0 if b > a (or

by defining T2k = 0 whenever k < 0). Explicitly, for � ≤ m ≤ �r, Equation
(10) becomes

M(f r, 2�) = c
(r)
0 T0

M(f r, 2�+ 2) = c
(r)
0

(
2�+ 2

2�

)
T2 + c

(r)
1 T0,

M(f r, 2�+ 4) = c
(r)
0

(
2�+ 4

2�

)
T4 + c

(r)
1

(
2�+ 4

2�+ 2

)
T2 + c

(r)
2 T0

· · · · · · · · ·

M(f r, 2�r) = c
(r)
0

(
2�r

2�

)
T2(r−1)�

+ c
(r)
1

(
2�r

2�+ 2

)
T2(r−1)�−2 + · · ·+ c

(r)
(r−1)�T0.

This is a triangular system of linear equations on the unknowns c
(r)
0 , . . . ,

c
(r)
(r−1)�, with T0 = 1 on the diagonals. Hence the values of M(f r, 2m) for

� ≤ m ≤ �r determine all the coefficients by the following recurrence of c
(r)
i .

Proposition 4.2. Let fP ,1 be a simple statistic with unit valuation func-
tion. Assume the pattern P has length 2� with � arcs and empty C(P ). If
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M(f r, 2m) is known for � ≤ m ≤ �r, then the coefficients {c(r)i : 0 ≤ i ≤
(r − 1)�} can be obtained by the linear recurrence

c
(r)
0 = M(f r, 2�)

c
(r)
i = M(f r, 2(�+ i))−

i−1∑
j=0

c
(r)
j

(
2(�+ i)

2(�+ j)

)
T2(i−j) for 0 < i ≤ (r − 1)�.

For example, with the aid of a computer program we can easily get
M((cr2(M))2, 4) = 1, M((cr2(M))2, 6) = 27, and M((cr2(M))2, 8) = 616,
which give the coefficients in Equation (11).

Using Proposition 4.2, we provide explicit formulas of the second and
third moments of k-crossings, k-nestings, and k-alignments for some small
values of k. (The first moment is given by Corollary 2.2.) Note that the
statistics cr2(M) and ne2(M) have the same distribution [10] over M2m. In
fact, there is a bijection φ on M2m such that cr2(M) = ne2(φ(M)), e.g., see
[14]. Thus, for any positive r, M((cr2)

r, 2m) = M((ne2)
r, 2m).

The second moment of crk for 2 ≤ k ≤ 5.

M((cr2(M))2, 2m) = M((ne2(M))2, 2m)

=

(
2m

4

)
T2m−4 + 12

(
2m

6

)
T2m−6 + 70

(
2m

8

)
T2m−8.

M((cr3(M))2, 2m) = M((ne3(M))2, 2m)

=

(
2m

6

)
T2m−6 + 20

(
2m

8

)
T2m−8

+ 180

(
2m

10

)
T2m−10 + 924

(
2m

12

)
T2m−12.

M((cr4(M))2, 2m) = M((ne4(M))2, 2m)

=

(
2m

8

)
T2m−8 + 30

(
2m

10

)
T2m−10 + 378

(
2m

12

)
T2m−12

+ 2800

(
2m

14

)
T2m−14 + 12870

(
2m

16

)
T2m−16.

M((cr5(M))2, 2m) = M((ne5(M))2, 2m)

=

(
2m

10

)
T2m−10 + 42

(
2m

12

)
T2m−12 + 700

(
2m

14

)
T2m−14

+ 6864

(
2m

16

)
T2m−16 + 44100

(
2m

18

)
T2m−18
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+ 184756

(
2m

20

)
T2m−20.

The third moment of cr2, cr3 and ne3.

M((cr2(M))3, 2m) = M((ne2(M))3, 2m)

=

(
2m

4

)
T2m−4 + 42

(
2m

6

)
T2m−6 + 762

(
2m

8

)
T2m−8

+ 7560

(
2m

10

)
T2m−10 + 34650

(
2m

12

)
T2m−12.

M((cr3(M))3, 2m) =

(
2m

6

)
T2m−6 + 84

(
2m

8

)
T2m−8 + 2520

(
2m

10

)
T2m−10

+ 45372

(
2m

12

)
T2m−12 + 552636

(
2m

14

)
T2m−14

+ 4324320

(
2m

16

)
T2m−16 + 17153136

(
2m

18

)
T2m−18,

and

M((ne3(M))3, 2m) =

(
2m

6

)
T2m−6 + 84

(
2m

8

)
T2m−8 + 2520

(
2m

10

)
T2m−10

+ 45468

(
2m

12

)
T2m−12 + 552960

(
2m

14

)
T2m−14

+ 4324320

(
2m

16

)
T2m−16 + 17153136

(
2m

18

)
T2m−18.

The small moments of al2, al3.

M((al2(M))2, 2m) =

(
2m

4

)
T2m−4 + 14

(
2m

6

)
T2m−6 + 70

(
2m

8

)
T2m−8.

M((al2(M))3, 2m) =

(
2m

4

)
T2m−4 + 48

(
2m

6

)
T2m−6 + 930

(
2m

8

)
T2m−8

+ 8820

(
2m

10

)
T2m−10 + 34650

(
2m

12

)
T2m−12.

M((al3(M))2, 2m) =

(
2m

6

)
T2m−6 + 24

(
2m

8

)
T2m−8 + 238

(
2m

10

)
T2m−10

+ 924

(
2m

12

)
T2m−12.
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We observe from the above formulas that the third moments of cr3 and
ne3 are different. Hence the numbers of 3-crossings and 3-nestings have
different distributions. On the other hand, the second moments of k-crossings
and k-nestings coincide for 2 ≤ k ≤ 5. The next theorem establishes that
the second moment of k-crossings and k-nestings for matchings in M2m are
always the same.

Theorem 4.3. For any positive integer k ≥ 2, the second moment of k-
crossings equals the second moment of k-nestings over the set M2m.

We need the following two lemmas.

Lemma 4.4. Let m and n be non-negative integers. Let x0, x, y0 and y be
non-negative integers. Then the following identity holds:
(12)∑

x0+x=m
y0+y=n

(
x0 + y0

x0

)(
x+ y

x

)(
x0 + x+ y0 + y

x+ x0

)
= (m+ n+ 1)

(
m+ n

m

)2

.

Proof. We use the identity

(
x+ y

x

)(
m+ n− x− y

m− x

)
=

(x+ y)!(m+ n− x− y)!

x!y!(m− x)!(n− y)!

=

(
m+ n

m

)(
m

x

)(
n

y

)
/

(
m+ n

x+ y

)
.

The left side of Equation (12) equals

(
n+m

m

) m∑
x=0

n∑
y=0

(
x+ y

x

)(
m+ n− x− y

m− x

)

=

(
m+ n

m

)2 m∑
x=0

n∑
y=0

(
m

x

)(
n

y

)
/

(
m+ n

x+ y

)

=

(
m+ n

m

)2 m+n∑
k=0

1(
m+n
k

) ∑
x+y=k

(
m

x

)(
n

y

)

=

(
m+ n

m

)2 m+n∑
k=0

1(
m+n
k

) ·
(
m+ n

k

)

= (m+ n+ 1)

(
m+ n

m

)2

.
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Lemma 4.5. Let m and n be non-negative integers. Let x0, x, y0 and y be
non-negative integers. Then the following identity holds:

∑
x0+x=m
y0+y=n

(
x0 + y0

x0

)2(2x+ 2y

2x

)
= (m+ n+ 1)

(
m+ n

m

)2

.(13)

Proof. The above identity follows immediately from a slightly general iden-
tity, proved by Andrews and Paule in [3, Identity (2.2)] using computer
algebra:

�M/2�∑
i=0

�N/2�∑
j=0

(
i+ j

j

)2(M +N − 2i− 2j

N − 2j

)

=
(
M+N+1

2 �)!(
M+N+2
2 �)!

(
M2 �)!(

M+1
2 �)!(
N2 �)!(


N+1
2 �)!

.

One simply lets M = 2m and N = 2n to get (13).

Proof of Theorem 4.3. By Theorem 4.1 it is sufficient to show that the
number of ways to merge two k-crossings is the same as the number of ways
to merge two k-nestings to matchings with exactly 2k − i arcs. We would
give explicit formulas for such numbers and compare them.

(1) Merging two k-crossings A and B to get matchings with 2k−i arcs. It
means that there are i arcs from A that coincide with i arcs from B. Listing
the arcs by their left endpoints from left to right. Assume that M is the
matching obtained by merging A and B, where the arcs e1 < e2 < · · · < ei
of A coincide with the arcs f1 < f2 < · · · < fi of B, and they correspond
to arcs m1 < m2 < · · · < mi of M . In the k-crossing A, let x0 = e1 − 1,
xj = ej+1 − ej − 1 for j = 1, . . . , i − 1 and xi = k − ei. Then xi ∈ N and
x0+x1+ · · ·+xi = k− i. Similarly define y0, y1, . . . , yi for the k-crossing B.
We have the following observation in M .

1. Before the left endpoint of arc m1, there are x0 + y0 left endpoints,
where x0 coming from A and y0 coming from B.

2. For each j = 1, . . . , i − 1, between the left endpoints of arcs mj and
mj+1 there are xj + yj left-endpoints, where xj coming from A and yj
coming from B.

3. Between the left endpoint of mi and the right endpoint of m1, there
are xi left endpoints and x0 right endpoints coming from A, and yi
left endpoints and y0 right endpoints coming from B.
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4. For each j = 1, . . . , i− 1, between the right endpoints of mj and mj+1

there are xj right endpoints coming from A and yj right endpoints
coming from B.

5. After the right endpoint of mi, there are xi right endpoints coming
from A and yi right endpoints coming from B.

Then the number of ways to merge A and B to matchings with 2k − i
arcs is given by

ccrk,2 =
∑

x0+·+xi=k−i
y0+···+yi=k−i

i−1∏
j=0

(
xj + yj

yj

)
·
(
xi + x0 + yi + y0

xi + x0

)
·

i∏
j=1

(
xi + yi

xi

)(14)

=
∑

x0+·+xi=k−i
y0+···+yi=k−i

i−1∏
j=1

(
xj + yj

xj

)2

·
(
x0 + y0

x0

)(
xi + yi

xi

)(
xi + x0 + yi + y0

xi + x0

)
.

(2) Merging two k-nestings to get matchings with 2k− i arcs. Similar to
the argument above, we have the formula

cnek,2 =
∑

x0+·+xi=k−i
y0+···+yi=k−i

i−1∏
j=0

(
xj + yj

yj

)
·
(
2xi + 2yi

2xi

)
·
i−1∏
j=0

(
xi + yi

xi

)
(15)

=
∑

x0+·+xi=k−i
y0+···+yi=k−i

i−1∏
j=0

(
xj + yj

xj

)2

·
(
2xi + 2yi

2xi

)
.

Comparing formulas (14) and (15), we see that it is sufficient to show
that the following two sums are equal for any nonnegative integers m and n:

∑
x0+xi=m
y0+yi=n

(
x0 + y0

x0

)(
xi + yi

xi

)(
x0 + xi + y0 + yi

xi + x0

)
(16)

=
∑

x0+xi=m
y0+yi=n

(
x0 + y0

x0

)2(2xi + 2yi
2xi

)
.

This equation follows from Lemma 4.4 and Lemma 4.5. Summing over all
possible values of x1, . . . , xi−1, y1, . . . , yi−1, we obtain the equation ccrk,2 =
cnek,2.
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5. Crossings and nesting with neighboring vertices

For simple statistics with Q = 1 but nonempty C(P ), we can use either the
linear form (8) or the polynomial form (9) to compute M(f r, 2m). In general
the linear form is simpler. But in certain cases we can use the combinatorial
properties of the pattern to reduce the number of unknown coefficients in
the polynomial form.

Example 5.1. Consider the level statistic, flevel(M), which counts the num-
ber of blocks of M that consist of two consecutive integers. The pattern P
is given by a matching P of length 2 with A(P ) = (1, 2), C(P ) = {1}, and
Q = 1. Any merge of r copies of P must contain arcs of the form (i, i+ 1)
only. For fixed k lying between 1 and r, there is a unique such pattern with k
arcs, i.e. the alignment of k arcs, and the number of merges can be described
as the number of surjective maps from [r] to [k] and is given by S(r, k)k!,
where S(r, k) is the Stirling number of the second kind and counts the number
of partitions of an n-set into k blocks. Hence

M((flevel(M))r, 2m) =

r∑
k=1

k!S(r, k)

(
2m− k

k

)
T2(m−k).

Our next example is on k-crossings and k-nestings with consecutive left
or right endpoints. Nestings with consecutive left endpoints, called neigh-
boring nestings, were introduced by Stoimenow [17] in the study of regular
linearized chord diagrams, and matchings with no neighboring nestings were
further investigated in [5, 9, 11]. In [6] Chen, Fan, and Zhao presented gen-
erating functions for partial matchings with no neighboring alignments or
neighboring nestings. Here we consider simple statistics that counts the oc-
currences of neighboring crossings/nestings.

Definition 5.1. The pattern left-k-crossing, denoted by P (Lcrk), is the
matching P of length 2k with k arcs, defined by

A(P (Lcrk)) = {(1, k + 1), (2, k + 2), . . . , (k, 2k)},

with C(P (Lcrk)) = {1, 2, . . . , k − 1}. The pattern right-k-crossing,
P (Rcrk), is the matching of length 2k with A(P (Rcrk)) = A(P (Lcrk)) and
C(P (Rcrk)) = {k + 1, k + 2, . . . , 2k − 1}. Similarly, the left-k-nesting and
right-k-nesting are matchings of length 2K with

A(P (Lnek)) = A(P (Rnek)) = {(1, 2k), (2, 2k − 1), . . . , (k, k + 1)}

and C(P (Lnek)) = {1, 2, . . . , k−1}, C(P (Rnek)) = {k+1, k+2, . . . , 2k−1}.
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Let Lcrk, Rcrk, Lnek and Rnek be the simple statistics that count the
numbers of left-k-crossings, right-k-crossings, left-k-nestings, and right-k-
nestings, respectively. In other words, they all have the unit valuation.

Reversing the diagram of a matching (i.e., reflecting through a vertical
mirror placed at the right of the diagram), the left and right endpoints are
exchanged. Hence Lcrk and Rcrk have the same distribution over M2m, so
do Lnek and Rnek.

Proposition 5.1. There is an involution φ on M2m such that Rcrk(M) =
Rnek(φ(M)).

Proof. In [14, Theorem 1.2] it is proved that there is an involution φ : Πn →
Πn exchanging the numbers of 2-crossings and 2-nestings. We will use the
same map φ but restricted to the set M2m. In general this map φ does
not exchange the number of k-crossings to that of k-nestings for k ≥ 3.
However, we show that φ exchanges the numbers of right-k-crossings and
right-k-nestings for all positive integers k ≥ 2. For completeness, we describe
the construction of φ for perfect matchings.

First every matching M in M2m can be uniquely represented as a Dyck
path of length 2m with labeled down steps. To wit, one replaces each i ∈
O(M) with an up step U = (1, 1), and each i ∈ C(P ) with a down step
D = (1,−1). This defines a Dyck path from (0, 0) to (2m, 0). Let C(P ) =
{j1, j2, . . . , jm}<. The height of the k-th down step is hk if it is a step from
(jk − 1, hk) to (jk, hk − 1). Assume that (ik, jk) is an arc of M . Label the
k-th down step by γk if

γk − 1 = |{i ∈ O(M) : i < ik, (i, j) ∈ M, and j > jk}|.

Then 1 ≤ γk ≤ hk for all k. In addition, cr2(M) =
∑m

i=1(hk − γk) and

ne2(M) =
∑k

i=1(γk − 1). For example, for the matching M in Figure 1, the
corresponding Dyck path is given by the sequence UUUDDUDUDUDD
with C(P ) = {4, 5, 7, 9, 11, 12}. The height and γk at each down step is

Down step 4 5 7 9 11 12

height hk 3 2 2 2 2 1

γk 1 2 2 1 2 1

One checks easily that cr2(M) = ne2(M) = 3.
A key observation is that such labeled Dyck paths encode right-k-cross-

ings and right-k-nestings. The arcs (i1, j1), . . . , (ik, jk) of M form a right-k-
crossing if and only if j1 < j2 < · · · < jk are consecutive integers in C(M),
(hence their heights are consecutive integers from large to small), and their
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labels satisfy γ1 ≤ γ2 ≤ · · · ≤ γk. These arcs form a right-k-nesting if and
only if j1 < j2 < · · · < jk are consecutive integers in C(M), and their labels
satisfy γ1 > γ2 > · · · > γk.

The involution φ maps a labeled Dyck path with labels (γi)
m
i=1 to the

same Dyck path with labels (hi − γi + 1)mi=1. Clearly it exchanges right-k-
crossings with right k-nestings.

Corollary 5.2. For any positive integers r, m ≥ 2 and 2 ≤ k ≤ m, following
equations hold:

(17) M(Lcrrk, 2m) = M(Rcrrk, 2m) = M(Rnerk, 2m) = M(Lnerk, 2m)

Our purpose is to compute the r-th moments of Lcrk. We will combine
the polynomial form (9) and the linear form (8). Note that if P̃ is a merge
of r copies of P (Lcrk) with �̃ arcs, then P̃ has length 2�̃. Let c̃ = |C(P̃ )|.
Clearly k − 1 ≤ c̃ ≤ r(k − 1). Hence by Prop. 3.5 M(Lcrrk, 2m) can be
expressed as

M(Lcrrk, 2m) =

rk∑
�̃=k

r(k−1)∑
c̃=k−1

c
(r)

�̃,c̃

(
2m− c̃

2�̃− c̃

)
T2(m−�̃),(18)

for some constants c
(r)

�̃,c̃
.

It is easy to see that when 2m− c ≥ 0,

(
2m− c

2�− c

)
T2(m−�)(19)

= (2(m− �)− 1)!!
(2(m− �) + 1)(2(m− �) + 2) · · · (2m− c)

(2�− c)!

=

{
P (m)T2m−c if c is even
Q(m)T2m−c+1 if c is odd,

where P (x) is a polynomial of degree �− c
2 , andQ(x) is a polynomial of degree

� − c+1
2 . Therefore,

(
2m−c
2�−c

)
T2(m−�) is a linear combination with constant

coefficients of terms T2(m+i), where − c
2 ≤ i ≤ �−c. Combining with Formula

(18), we have

Theorem 5.3. For any positive integer r and m ≥ r(k − 1)/2, there is a
closed formula

M(Lcrrk, 2m) =
∑

I≤i≤J

djT2(m+j),
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where I and J are constants such that I ≥ −r(k−1)/2 and J ≤ (r−1)k+1.

As an example, we compute the 2nd and 3rd moments of the number of
occurrence for the pattern P (Lcr2), which has length 4, � = 2 and c = 1. We
start with the polynomial form (18), and simplify the double summation by
analyzing the combinatorial structures. For example, the following simple
constraints would reduce the number of unknown c�̃,c̃ in (18) by half.

Proposition 5.4. 1. If �̃ = k, then c̃ = k − 1 and c
(r)
k,k−1 = 1.

2. If �̃ = rk, then c̃ = r(k − 1), and c
(r)
rk,r(k−1) =

( r(1+k)
1+k,1+k,...,1+k

)
.

3. c′ ≥ (k−1)�̃
k .

4. c′ ≤ �̃− 1.

Proof. If �̃ = k, then all r copies of P (Lcrk) coincide with P̃ . There is only
one way to get such a merge. If �̃ = rk, then the r copies of P (Lcrk) use
disjoint set of arcs. A merge of r independent copies of P (Lcrk) is obtained
by shuffling the vertices of each copy into a sequence, where for each copy
the first two vertices are consecutive in the shuffling. Using the same trick
as in the proof of Theorem 2.1, we obtain

( r(1+k)
1+k,1+k,...,1+k

)
many merges. For

item 3, note that the arcs of P̃ are unions of the r copies of P (Lcrk). For
any merge s = (h1, h2, . . . , hr) : P (Lcrk)

r → P̃ , the left-endpoints of P̃
are formed by consecutive segments of vertices of length at least k, in each
segment all but the last vertex must be in C(P̃ ). Item (4) is because in any
pattern there is at least one left endpoint that are not in C(P̃ ).

Proposition 5.5. Let m be a positive integer. We have the following two
equivalent formulas for the second moment of Lcr2.

M(Lcr22, 2m) =

(
2m− 1

3

)
T2m−4 + 2

(
2m− 2

4

)
T2m−6(20)

+ 20

(
2m− 2

6

)
T2m−8

and

(21) M((Lcr2)
2, 2m) = −1

6
T2(m−1) +

1

4
T2m − 1

6
T2(m+1) +

1

36
T2(m+2).

The second equation is true when m ≥ 1.

Proof. Here we have k = 2, c = 1, and r = 2. For a merge P̃ of two copies
of Lcr2, the number of arcs �̃ ranges from 2 to 4.
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If �̃ = 2, by item 1 of Proposition 5.4, c̃ = 2 − 1 = 1, and the coefficient

is 1.
If �̃ = 3, by item 3 of Proposition 5.4, c̃ ≥ 3/2. Hence the only possible value

of c̃ is 2.
If �̃ = 4, by item 2 of Proposition 5.4, c̃ = 2 and the coefficient is

(
6
3,3

)
= 20.

Therefore

M(Lcr22, 2m) =

(
2m− 1

3

)
T2m−4(22)

+ c3,2

(
2m− 2

4

)
T2m−6 + 20

(
2m− 2

6

)
T2m−8

for some constants c3,2. Using the data M(Lcr22, 6) = 12 we get formula (20).

Alternatively, any formula of the form (22) is a linear combination of

T2(m−1), T2m, T2(m+1) and T2(m+2). One can find the coefficients by solving a
linear system with M(Lcr22, 2m) = 0, 1, 12, 155 for m = 1, 2, 3, 4. The result

is Formula (21).

Proposition 5.6. Let m be a positive integer. The third moment of left-2-
crossing is

M(Lcr32(M), 2m) =

(
2m− 1

3

)
T2m−4 + 6

(
2m− 2

4

)
T2m−6

+ 60

(
2m− 2

6

)
T2m−8 + 6

(
2m− 3

5

)
T2m−8

+ 210

(
2m− 3

7

)
T2m−10 +

(
9

3, 3, 3

)(
2m− 3

9

)
T2m−12.

Alternatively, we have

M(Lcr32(M), 2m) =
1

4
T2(m−1) −

5

24
T2m

+
11

120
T2(m+1) −

1

24
T2(m+2) +

1

216
T2(m+3),

for m ≥ 2. For m = 1, M(Lcr32(M), 2) = 0.

Proof. Here we have k = 2, c = 1 and r = 3. For a merge P̃ of three copies of

Lcr2, the number of arcs �̃ ranges from 2 to 6. Using Proposition 5.4, we have

that only the following pairs of (�̃, c̃) are possible: (2, 1), (3, 2), (4, 2), (4, 3),
(5, 3) and (6, 3). In addition, c2,1 = 1 and c6,3 =

(
9

3,3,3

)
. Hence
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M(Lcr32(M), 2m) =

(
2m− 1

3

)
T2m−4 + c3,2

(
2m− 2

4

)
T2m−6

(23)

+ c4,2

(
2m− 2

6

)
T2m−8 + c4,3

(
2m− 3

5

)
T2m−8

+ c5,3

(
2m− 3

7

)
T2m−10 +

(
9

3, 3, 3

)(
2m− 3

9

)
T2m−12.

The coefficients c3,2, c4,2, c4,3 and c5,3 can be obtained by counting the num-
ber of corresponding merges. But our purpose is to avoid too much details
on combinatorial structures and rely on the data available. One way to get
the ci,j ’s is to use the value of M(Lcr32(M), 2m) for m = 3, 4, 5, 6 to es-
tablish a system of linear equations. Using a computer programming we
have

m 1 2 3 4 5 6

M(Lcr32(M), 2m) 0 1 16 261 4536 85533

These data yield c3,2 = 6, c4,2 = 60, c4,3 = 6 and c5,3 = 210.
Alternatively, with the equation (23) we could turn to the linear form.

Applying Formula (19) to the above equation, we have that for m ≥ 2,

M(Lcr32(M), 2m) = c−1T2(m−1) + c0T2m

+ c1T2(m+1) + c2T2(m+2) + c3T2(m+3)

for some constants c−1, c0, c1, c2, c3. Using the values of M(Lcr32(M), 2m)
for m = 2, . . . , 6 and Maple, we get

c−1 =
1

4
, c0 = − 5

24
, c1 =

11

120
, c2 = − 1

24
, c3 =

1

216
.

6. The dimension exponent in matchings

We finish this paper by giving a closed formula for the moments of the
dimension exponent d(M). Recall that for M ∈ M2m, d(M) = smax(M) −
smin(M)−m. By definition, d(M) is a linear combination of simple statistics
smax and smin, for both of which Q is not a constant.

First we show that there is a pattern such that d(M) counts the occur-
rence of this pattern.

Proposition 6.1. Let T be a partial matching of length 3 with A(T ) =
{(1, 3)} and C(T ) = ∅. Then for any M ∈ M2m, d(M) = fT ,1.
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Proof. By definition

d(M) =
∑

(i,j)∈M
(j − i+ 1)− 2m =

∑
(i,j)∈M

(j − i− 1).

Hence d(M) counts the number of triples i < t < j where (i, j) is an
arc of M . It is exactly the simple statistic associated to the pattern T =
(T,A(T ), C(T )) and Q = 1.

Now that d(M) can be expressed by a simple statistic with Q = 1, we
can use Proposition 3.5 to compute its higher moments. For any pattern P
that is a merge of r copies of T , if P has length k and � arcs, (C(P ) = ∅),
then 1 ≤ � ≤ r, and 2� ≤ k ≤ 2�+ r. Hence

M(d(M)r, 2m) =

r∑
�=1

r∑
i=0

c
(r)
�,i

(
2m

2�+ i

)
T2(m−�),(24)

where c
(r)
�,i is the number of ways to merge r copies of T to a pattern with �

arcs and total length 2�+ i. Note that for m ≥ �,

(
2m

2�+ i

)
T2(m−�) = (2(m− �)− 1)!!

(2m)(2m− 1) · · · (2m− 2�+ 1)

((2�+ i)!
(25)

· (2m− 2�)(2m− 2�− 1) · · · (2m− 2�− i+ 1)

= T2m ·R(m),

where R(m) is a polynomial of m of degree i+�. Note that R(m) has factors
2m(2m−2) · · · (2m−2�), hence (25) is also true for 0 ≤ m < �. Thus we can
write

(
2m
2�+i

)
T2(m−�) as a linear combination of T2m, T2(m+1), . . . , T2(m+i+�).

Summing over �, i = 1, . . . , r, we get

Theorem 6.2. For any positive m and r,

M(d(M)r, 2m) =

2r∑
j=0

djT2(m+j)

for some constants dj ∈ Q.

For example, when r = 1, using either Corollary 2.3 or the Example 1
in section 2, we have

M(d(M), 2m) =

(
2m

3

)
T2(m−1),
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which can also be expressed as

M(d(M), 2m) =
1

2
T2m − T2(m+1) +

1

6
T2(m+2).

When r = 2, we have

M(d(M)2, 2m) =

(
2m

3

)
T2(m−1) + 2

(
2m

4

)
T2(m−1)

+ 2

(
2m

4

)
T2(m−2) + 16

(
2m

5

)
T2(m−2) + 20

(
2m

6

)
T2(m−2),

which equals

M(d(M)2, 2m) =
1

4
T2m − 8

3
T2(m+1) +

5

2
T2(m+2) −

8

15
T2(m+3) +

1

36
T2(m+4)

for all m ≥ 1.
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Theory Ser. A 120(2013), 1068–1072. MR3033661

[14] A. Kasraoui and J. Zeng, Distribution of crossings, nestings and align-
ments of two edges in matchings and partitions, Electron. J. Combin.
13(2006), Research Paper 33. MR2212506

[15] A.J. Stam. Generation of random partitions of a set by an urn model,
J. Combin. Theory Ser. A 35(1983), 231–240. MR0712107
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