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A note on acyclic vertex-colorings
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We prove that the acyclic chromatic number of a graph with max-
imum degree Δ is less than 2.835Δ4/3 + Δ. This improves the
previous upper bound, which was 50Δ4/3. To do so, we draw in-
spiration from works by Alon, McDiarmid & Reed and by Esperet
& Parreau.
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1. Introduction

In 1973, Grünbaum [8] considered proper colorings of graphs with an ad-
ditional constraint: the subgraph induced by every pair of color classes is
required to be acyclic. Such colorings are coined acyclic colorings and the
least integer k such that a graph G admits an acyclic coloring with k colors
is the acyclic chromatic number χa(G) of G.

Three years later, Erdős (see [1]) raised the question of determining
the maximum possible value of χa(G) over all graphs G with maximum
degree Δ. Let χa(Δ) be this value. A first indication is given by the following
observation: for every graph G, any proper coloring of G2 is an acyclic
coloring of G. Therefore, χa(Δ) � Δ2 + 1. However, Erdős conjectured a
stronger statement, namely that χa(Δ) = o

(
Δ2

)
as Δ tends to infinity.

This conjecture was confirmed about a quarter century later, by Alon,
McDiarmid & Reed [2]. Relying on the Lovász Local Lemma [5], they estab-
lished the following upper bound.

Theorem 1 (Alon, McDiarmid & Reed [2]). For every positive integer Δ,

χa(Δ) � 50Δ4/3.

arXiv: 1312.5600
∗This author’s work was partially supported by the French Agence Nationale de

la Recherche under reference anr 10 jcjc 0204 01.
†This author’s work was supported by SNSF grant 200021-149111 and by a grant

of the French Government.
‡Previous affiliation: Mathematics Institute and DIMAP, University of Warwick,

Coventry CV4 7AL, UK.

725

http://www.intlpress.com/JOC/
http://arxiv.org/abs/1312.5600
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For the reader who is unfamiliar with such applications of the Lovász
Local Lemma, let us sketch how to obtain an upper bound of order Δ3/2 =
o
(
Δ2

)
. To this end, we shall apply the asymmetric version of the Lovász

Local Lemma (see for instance the book by Molloy and Reed [13, p. 221]
for a statement of this version). Consider a graph G of maximum degree Δ.
Let {1, . . . , C} be a set of colors where C is greater than c ·Δ3/2 for a large
enough constant c. For each vertex v, let f(v) be a color chosen uniformly
at random in {1, . . . , C}, where the choices are all independent. Now, one
can set the events to avoid as follows:

• for each edge e, let Ae be the event that both endvertices of e are
assigned the same color;

• for each cycle of length 4, let AC be the event that the vertices of C
are colored with (at most) two different colors; and

• for each induced path v1v2v3v4v5 let AP be the event that f(v1) =
f(v3) = f(v5) and f(v2) = f(v4).

If none of these events occurs, then f is an acyclic coloring of G. It now
only remains to check that the conditions of the asymmetric Lovász Local
Lemma (as referenced above) are satisfied, which the interested reader is
invited to do.

One of the obstacles to obtain a better bound is the following situation.
Imagine two non-adjacent vertices having “many” common neighbors: this
creates a large family of cycles of length 4 all sharing two non-adjacent
vertices u and v. If both u and v are assigned the same color, then there is a
fairly large probability that one of these cycles will be colored with (at most)
two colors. To obtain the stronger bound of Theorem 1, Alon, McDiarmid &
Reed cleverly discriminated the pairs of non-adjacent vertices with too many
common neighbors, requiring that such vertices are colored differently. As
it turns out when doing the computations, the strongest bound is obtained
when “too many” common neighbors means at least Δ2/3.

The upper bound given by Theorem 1, more than confirming Erdős’s
conjecture, turns out to be of order very close to that of χa(Δ). Indeed,
Alon, McDiarmid & Reed [2] further proved that

χa(Δ) = Ω

(
Δ4/3

(logΔ)1/3

)
.

Since then, there has been no improvement on the asymptotics of χa(Δ)
and it remains an intriguing open problem whether χa(Δ) = o

(
Δ4/3

)
or

not.
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A few years ago, Ndreca, Procacci & Scoppola [16], still relying on the
Lovász Local Lemma, managed to demonstrate that

χa(Δ) �
⌈
6.59Δ4/3 + 3.3Δ

⌉
.

Our goal is to exploit the recent advances regarding algorithmic versions
of the Local Lemma, inspired by the incompressibility arguments. In 2009
Moser [14] and, in 2010, Moser and Tardos [15] designed strong algorithmic
versions of the Local Lemma. More importantly for our purposes, while
preparing his talk for the Symposium on Theory of Computing, Moser found
a simpler proof of his result from 2009. The technique used in this proof
became known as the “entropy compression” argument; the reader is referred
to Fortnow’s website [7] and Tao’s blog [21] for more details.

Independently, Schweitzer [20] pursued a similar line of research, explain-
ing how to obtain constructive bounds on van der Warden numbers. His work
was subsequently improved by Kulich & Kemeňová [12] to precisely match
the known non-constructive results.

All these ideas inspired new adaptations and more efficient uses of the
essence of the Local Lemma to tackle various combinatorial questions, in
particular graph coloring problems [4, 6, 18, 19] and problems related to
pattern avoidance [9, 10, 17]. We draw inspiration from the original work of
Alon, McDiarmid & Reed [2] and a recent result of Esperet & Parreau [6]
to establish the following upper bound.

χa(Δ) � 9

25/3
·Δ4/3 +Δ < 2.83483 ·Δ4/3 +Δ.

Very recently, under the condition that Δ is at least 24, the bound on
χa(Δ) was further improved by Gonçalves, Montassier & Pinlou [11] to

χa(Δ) < 3
2Δ

4/3 +min
{
5Δ− 14,Δ+ 8Δ4/3

Δ2/3−4 + 1
}
.

2. Proof of the upper bound

We shall use certain standard estimates on the number of Dyck words with
all descent of even lengths. A partial Dyck word is a bit string w such that
no prefix of w contains more ones than zeros. A Dyck word is a partial Dyck
word of length 2t with exactly t zeros. A descent in a partial Dyck word is
a maximal sequence of consecutive ones.

The following lemma is a special case of [6, Lemmas 7 and 8] for Dyck
words with all descents of even length. It follows from a folklore bijection
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between Dyck words and plane trees, and the asymptotic results for counting
such trees; see, e.g., [3, Theorem 5]. More details are found in the work of
Esperet & Parreau [6].

Lemma 2. There exists an absolute constant CDYCK such that the number
of Dyck words of length 2t with all descents of even length is at most

CDYCK ·
(
3
√
3/2

)t
t3/2

.

We also recall a special case of [6, Lemma 6].

Lemma 3. Let r be a non-negative integer. The number of partial Dyck
words with exactly t zeros, exactly (t − r) ones, and all descents of even
length is at most

CDYCK ·
(
3
√
3/2

)t+r

(t+ r)3/2
.

We are now ready to present our main result.

Theorem 4. Fix a positive integer Δ and a real κ such that κ � 2/Δ2/3.
If G is a graph with maximum degree Δ, then the acyclic chromatic number
χa(G) is at most

f(Δ, κ) :=

(
1

κ
+

3

2

√
3κ

2

)
Δ4/3 +Δ− Δ1/3

κ
.

In particular, if Δ � 3 and κ = 25/3

3 , it follows that χa(G) � 9
25/3 ·Δ4/3+Δ <

2.83483 ·Δ4/3 +Δ.

Proof. Fix a graph G with maximum degree Δ. Without loss of generality,
let V (G) = {1, . . . , n}. The main idea of the proof is as follows.

We first consider a randomized procedure that takes as input a partial
acyclic coloring of G using f(Δ, κ) colors and tries to assign a random color
from a specifically restricted subset of f(Δ, κ) colors to the smallest (with
respect to its number) uncolored vertex v. If the partial coloring extended
by the coloring of v is still a partial acyclic coloring of G, then the procedure
ends — and thus this extended partial coloring is kept. On the other hand,
if the coloring of v creates a two-colored cycle, or if v is assigned the same
color as one of its neighbors, then the procedure uncolors a specific subset of
colored vertices (which includes v) and then ends. This procedure is called
EXTEND.
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Next, we set up a procedure LOG that creates a compact record con-
taining enough information to be able to perform the following. Suppose
we have a partial acyclic coloring c of G with f(Δ, κ) colors. We execute
EXTEND and obtain a new partial acyclic coloring c′ of G. Furthermore,
let x be the (randomly chosen) color that EXTEND tried to assign to the
smallest uncolored vertex v in c. The record constructed by LOG shall con-
tain enough information that it is possible to reconstruct both c and x from
the record and c′. Our aim is to create the record in such a way that, in an
amortized sense, its size is smaller than that of the list that EXTEND can
choose the color x from.

Finally, we consider the following randomized coloring algorithm. Start
with an empty coloring, that is, every vertex is uncolored in the initial partial
coloring. Then repeatedly execute the procedures EXTEND and LOG until
all the vertices of G are assigned a color in the current partial coloring. One
execution of EXTEND followed by one execution of LOG is called a step of
the algorithm.

Note that the algorithm might never terminate. However, we show that
the probability that it actually does terminate, after sufficiently many steps,
is positive. This will follow from the fact that after t steps (for a sufficiently
large integer t), the number of ways how to t-times choose a color in the
procedure EXTEND will be (strictly) greater than the number of all possible
records corresponding to the executions that have not terminated in t steps
times the number of all possible precolorings (recall our aim to make the
amortized size of a record small).

Let us now be precise. For a vertex v ∈ V (G), let D(v) be the set
of vertices u ∈ V (G) different from v such that the number of common
neighbors of u and v is at least κ ·Δ2/3. By symmetry, u ∈ D(v) ⇐⇒ v ∈
D(u). A vertex u ∈ D(v) is said to be dangerous for v.

If u and v are dangerous for each other, then there are lots of 4-cycles
containing both u and v, namely Ω

(
Δ4/3

)
. This is why the procedure EX-

TEND is designed in such a way that it never tries to assign to v a color
that is currently assigned to a vertex that is dangerous for v. Similarly, the
procedure shall never try to assign to v a color that is currently assigned
to one of the neighbors of v. Formally, for a partial acyclic coloring c, we
let

• c[N(v)] be the set of colors assigned in c to the neighbors of v;
• c[D(v)] be the set of colors assigned in c to the vertices that are dan-
gerous for v; and

• Lc(v) := {1, 2, . . . , f(Δ, κ)} \
(
c[N(v)] ∪ c[D(v)]

)
.
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Note that |c[N(v)]| � Δ. Moreover, |c[D(v)]| �
(
Δ4/3 −Δ1/3

)
/κ. Indeed,

since the number of edges {w,w′} with w ∈ N(v) and w′ ∈ V (G) \ {v} is at
most Δ(Δ− 1), the size of D(v) is at most

(
Δ4/3 −Δ1/3

)
/κ.

Therefore,

|Lc(v)| � 3

2

√
3κ

2
·Δ4/3.

For the simplicity of our analysis, we shall always assume that |Lc(v)| =
3
2

√
3κ
2 · Δ4/3 (in the case of having a strict inequality for some choice of c

and v, we simply remove |Lc(v)| − 3
2

√
3κ
2 ·Δ4/3 colors from Lc(v) arbitrar-

ily).
Next, for a vertex v and an integer k, we give an upper bound on the

number of 2k-cycles incident with v that could become two-colored at some
step of the execution of the algorithm.

Assertion 1. For a vertex v ∈ V (G) and an integer k � 2, let C2k(v)
be the set of all 2k-cycles W = v, w2, w3, . . . , w2k incident with v such
that no two vertices at distance two on W are dangerous for each other.
Then

|C2k(v)| <
(
Δ4/3 ·

√
κ/2

)2k−2
.

Proof. We actually show that

|C2k(v)| <
κ

2
·Δ2k−4/3.

Since κ � 2/Δ2/3 and k � 2, we have κ
2 ·Δ2k−4/3 �

(
Δ4/3 ·

√
κ/2

)2k−2
and

the statement then follows. First, there are at most
(
Δ
2

)
< Δ2/2 choices of

w2 and w2k. Fix a choice of w2 and w2k. Next, we fix one by one the vertices
w3, w4, . . . , w2k−2; for each of them, there are at most Δ − 1 < Δ choices.
Finally, since w2k−2 and w2k are not dangerous for each other, there are less
than κ ·Δ2/3 choices to choose w2k−1. Combining all estimates together, we
conclude that

|C2k(v)| <
κ

2
·Δ2+2k−4+2/3 =

κ

2
·Δ2k−4/3.

The last bit that we need to describe the procedure EXTEND is to fix
linear orderings on the 2k-cycles in C2k(v) for every v ∈ V (G) and k � 2.
Fix v and k, and consider a 2k-cycle v, w2, w3, . . . , w2k containing v. We de-
fine the identifier of the cycle as follows: if w2 < w2k, then the identifier is
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w2w3 . . . w2k; otherwise, it is w2kw2k−1 . . . w2. The linear ordering O2k(v) of
the elements of C2k(v) is just given by the lexicographical ordering of their
identifiers.

Now we are ready to describe the procedure EXTEND. It takes as input
a partial acyclic coloring c, and outputs a new partial acyclic coloring c′.
The procedure is defined as follows.

• Let v be the smallest uncolored vertex in c.
• Pick a color x uniformly at random from the list Lc(v).
• If the extension of c obtained by assigning the color x to v is a partial
acyclic coloring of G, then we set c′ to be this extension.

• Otherwise, let W be the set of all two-colored cycles in the extension of
c. Let W ∈ W be the 2k-cycle that has the largest length and, subject
to that, the lexicographically smallest identifier w2w3 . . . w2k. We set
c′ to be the restriction of c to the vertices V \ {w4, w5, . . . , w2k}, i.e.,
we uncolor the vertex set of W except the two adjacent vertices w2

and w3.

We continue with the description of the procedure LOG. At the end of
its t-th execution, LOG outputs a record Rt that is based on the previous
record Rt−1 and the coloring and possible uncolorings that happened during
the t-th execution of EXTEND. In order to make the analysis easier, we de-
compose Rt into two parts Rt

1 and Rt
2 and analyse them separately. A record

Rt
1 shall be a bit string that keeps track of all colorings and uncolorings that

have been performed during the first t executions of EXTEND, and a record
Rt

2 shall be an integer that stores the information about the 2k-cycles that
have been uncolored.

We thus define Rt
1 and Rt

2 recursively. For convenience, we let R0
1 be

the empty string and R0
2 := 0. Now assume that t � 1. Let v be the small-

est uncolored vertex after the (t − 1)-th execution of EXTEND, so v = 1
if t = 1. If the t-th execution of EXTEND assigns a color to v and keeps
the extended coloring, then we set Rt

1 to be Rt−1
1 to which we append one

0, and Rt
2 := Rt−1

2 . Otherwise, let W be the 2k-cycle uncolored during
the t-th execution of EXTEND, and let z be the index of W in C2k(v) or-
dered according to O2k(v). Recall that z is always an integer between 1

and max {|C2k(v)| : v ∈ V (G)}, which is at most

⌊(
Δ4/3 ·

√
κ/2

)2k−2
⌋
. We

let Rt
1 be Rt−1

1 to which we append one 0 and (2k − 2) ones, and we
set

Rt
2 := Rt−1

2 ·
⌊(

Δ4/3 ·
√

κ/2
)2k−2

⌋
+ (z − 1).
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Let us realize that the records Rt−1
1 and Rt−1

2 can be reconstructed from
the records Rt

1 and Rt
2. Indeed, let p be the position of the last 0 in Rt

1 and
let q be the number of ones after this 0, noting that q might be equal to zero.
Then Rt−1

1 is equal to the first p− 1 elements of Rt
1 and Rt−1

2 is equal to

⌊
Rt

2

/⌊(
Δ4/3 ·

√
κ/2

)q⌋⌋
.

Our next step is to show that the records Rt
1 and Rt

2 actually also con-
tain enough information to determine the set of uncolored vertices after t
steps of the algorithm.

Assertion 2. For any positive integer t, the records Rt
1 and Rt

2 determine
the set Vt, defined to be the set of uncolored vertices of G after t steps of the
algorithm.

Proof. We prove the statement by induction on the positive integer t. If
t = 1, then necessarily R1

1 is the list containing only one zero, R1
2 = 0, and

Vt = {2, 3, . . . , n}. Suppose now that t > 1. As we observed above, Rt
1 and

Rt
2 determine the records Rt−1

1 and Rt−1
2 . By the induction hypothesis, Rt−1

1

and Rt−1
2 determine Vt−1. Therefore, we can find the smallest vertex v in

Vt−1, which is the vertex that EXTEND attempts to color in the t-th step.
If Rt

1 is equal to Rt−1
1 with one 0 appended, then coloring v has not

created any two-colored cycle and hence Vt = Vt−1 \{v}. On the other hand,
if Rt

1 is equal to Rt−1
1 with one 0 and q ones appended, where q � 1, then we

set z :=
(
Rt

2 mod
⌊(

Δ4/3 ·
√

κ/2
)q⌋)

+ 1 and we let w2w3 . . . wq+2 be the

identifier of the z-th element of Cq+2(v) according to Oq+2(v). Since this was
the (q+2)-cycle that was uncolored during the t-th execution of EXTEND,
we deduce that Vt = Vt−1 \ {w4, w5, . . . , wq+2}.

Finally, we show that the records Rt
1 and Rt

2 together with the partial
coloring after t steps fully determine the partial coloring after t− 1 steps of
the algorithm.

Assertion 3. Fix a positive integer t. Let c be the partial coloring of G
obtained after t−1 steps of the algorithm, c′ the partial coloring after t steps,
and x the color that was used to color the smallest uncolored vertex during
the t-th execution of EXTEND. Then Rt

1, R
t
2 and c′ determine both x and c.

Proof. Again, we prove the assertion by induction on the positive integer t.
If t = 1, then c′ contains exactly one colored vertex. Its color is x and c is
indeed the empty coloring.
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Let t > 1. We first use Rt
1 and Rt

2 to determine the records Rt−1
1 and

Rt−1
2 . Next, we utilize Assertion 2 and, using Rt−1

1 and Rt−1
2 , we determine

the smallest uncolored vertex v after the (t−1)-th step of the algorithm. Now,
as in the proof of Assertion 2, the records Rt−1

1 , Rt−1
2 , Rt

1 and Rt
2 are used to

determine if the coloring of v at the t-th execution of EXTEND has created
a two-colored cycle or not. In the former case, we also determine, again in
the same way as in the proof of Assertion 2, the identifier w2w3 . . . w2k of
the two-colored 2k-cycle incident with v that was uncolored by EXTEND.

If there was no two-colored cycle, then clearly x = c′(v) and c can be
obtained from c′ by uncoloring the vertex v. On the other hand, if EXTEND
uncolored the 2k-cycle with the identifier w2w3 . . . w2k, then we know that
x = c′(w3) and c can be obtained by modifying c′ in the following way:
we color the vertices w4, w6, . . . , w2k with the color c′(w2), and the vertices
w5, w7, . . . , w2k−1 with the color c′(w3).

Before we continue the exposition and present our upper bounds on the
number of possible records that the procedure LOG can create, let us intro-
duce some additional notation. Again, we consider the situation just after t
steps of the algorithm. For an integer i � t, let ui be the number of vertex-
uncolorings that were performed during the i-th execution of EXTEND.
Specifically, if the coloring that was performed at the i-th execution did not
create any two-colored cycle, then ui = 0. On the other hand, if during
this execution EXTEND uncolored a two-colored 2k-cycle, then ui = 2k−2.
Next, let Ui :=

∑t
j=1 uj , that is, Ui is the total number of vertex-uncolorings

that were performed from the beginning of the first step till the end of the
i-th step. Since each execution of EXTEND performs exactly one vertex-
coloring, it follows that Ui � i for every i � t. (In fact, one even sees that
Ui < i.)

We are now ready to present the following two assertions which, assum-
ing that the algorithm has not colored the whole graph after t steps, give
upper bounds on the number of possible records Rt

1 and Rt
2, respectively.

Assertion 4. Let Rt
1 be the set of all possible records Rt

1 that can be ob-
tained by performing t steps of the algorithm that do not result in coloring
the whole graph G. Then there exists an absolute constant C, depending only
on G and not on t, such that

∣∣Rt
1

∣∣ � C ·
(
3
√
3/2

)t
t3/2

.

Proof. Let c be the partial coloring of G obtained after t steps of the algo-
rithm. Assume that c is not an acyclic coloring of the whole graph G.
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By its definition, the record Rt
1 contains exactly t zeros, and for each

i � t, the i-th zero is followed by exactly ui ones. Since Ui � i for all i � t, the
record Rt

1 is a partial Dyck word. Thus the number of 1’s in Rt
1 can be written

as t− r for some non-negative integer r. Further, the difference between the
number of 0’s and the number of 1’s in Rt

1 is equal to the number of colored
vertices in c, hence r � n− 1. Therefore, it follows from Lemma 3 that

∣∣Rt
1

∣∣ �
n−1∑
r=0

CDYCK ·
(
3
√
3/2

)t+r

(t+ r)3/2
�

(
n · CDYCK ·

(
3
√
3/2

)n−1
)
·
(
3
√
3/2

)t
t3/2

.

Assertion 5. For any positive integer t, the record Rt
2 is an integer satis-

fying

0 � Rt
2 �

(
Δ4/3 ·

√
κ/2

)Ut

− 1.

Proof. We prove the statement by induction on Ut. If Ut = 0, then Rt
2 = 0.

Assume now that Ut > 0. Let i be the number of the step where the Ut-th
uncoloring occurs. Thus, during the i-th step, the procedure EXTEND at-
tempts to color a vertex v, which creates a two-colored cycle. Let � be the
length of this cycle and z its index in C2k(v) ordered by O2k(v). Assertion 1

implies that the integer z is at most

⌊(
Δ4/3 ·

√
κ/2

)�−2
⌋
. Moreover, the

induction hypothesis ensures that Ri−1
2 is an integer satisfying

0 � Ri−1
2 �

(
Δ4/3 ·

√
κ/2

)Ut−(�−2)
− 1.

The conclusion follows, since

Rt
2 = Ri−1

2 ·
⌊(

Δ4/3 ·
√

κ/2
)�−2

⌋
+ (z − 1)

�
(
Δ4/3 ·

√
κ/2

)Ut

−
⌊(

Δ4/3 ·
√

κ/2
)�−2

⌋
+ (z − 1)

�
(
Δ4/3 ·

√
κ/2

)Ut

− 1.

Since Rt
2 is always an integer and Ut � t, we immediately deduce the

following.

Corollary 6. For any positive integer t, the record Rt
2 is an integer between

0 and

⌊(
Δ4/3 ·

√
κ/2

)t
⌋
− 1.
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The only thing that remains to do in order to finish the proof of The-
orem 4 is to combine the assertions together. Let CCOL be the number of
all possible partial acyclic colorings of G using f(Δ, κ) colors. So CCOL �
(f(Δ, κ) + 1)n. Therefore, using Assertion 4 and Corollary 6, we infer that
there are at most

CCOL · C ·
((

3
√
3/2

)t
· t−3/2

)
·
(
Δ4/3 ·

√
κ/2

)t
= o(1) ·

(
3

2

√
3κ

2
·Δ4/3

)t

choices for a tuple (c′, Rt
1, R

t
2), where the o(1) term tends to 0 as t tends

to infinity. On the other hand, by repeatedly applying Assertion 3, a tuple
(c′, Rt

1, R
t
2) determines the (randomly chosen) color x at the i-th step for

every i � t. Therefore, assuming that the algorithm has not terminated af-
ter the t-th step — that is, there are still some uncolored vertices — it had

at most o(1) ·
(
3
2

√
3κ
2 ·Δ4/3

)t

possible ways how to choose the colors from

the corresponding lists. Hence, if t is large enough, the algorithm terminates
with a positive probability — in fact, this probability tends to 1 as t tends
to infinity.

We conclude that

χa(G) � f(Δ, κ) =
3

2

√
3κ

2
Δ4/3 +

(
Δ4/3 −Δ1/3

)
/κ+Δ,

which finishes the proof.
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