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A note on the kth tensor product of the defining
representation

Anthony Mendes and Marino Romero

Let D be the defining representation of the symmetric group Sn.
We prove an identity which decomposes the tensor product of D
with itself k times into irreducible components using a sign revers-
ing involution.
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1. Introduction

Let Sn be the symmetric group on n letters and let D be the defining rep-

resentation of Sn; that is, D is the representation which sends permutations

to permutation matrices. We provide a sign reversing involution which gives

a combinatorial algorithm to decompose the tensor product of D with it-

self k times into irreducible components. Our proof relies only on the com-

binatorics of permutations, set partitions, integer partitions, and rim hook

tableaux. In general, decomposing the tensor product of representations into

irreducible components is difficult, and so it is remarkable that this can be

done relatively easily.

Let δ be the character of D and let δk be the character of D ⊗ · · · ⊗D,

the representation of Sn found by taking the tensor product of D with

itself k times. If fxd(σ) denotes the number of fixed points in σ ∈ Sn, then

δ(σ) = fxd(σ) since δ is the trace of a permutation matrix. Results which

can express δk as the sum of irreducible characters of Sn have been found by

Goupil and Chauve [1], but our formulation is simpler, our approach cleaner

and more direct, and our combinatorial proof is noteworthy.

More explicitly, Goupil and Chauve show
〈
(χ(n−1,1))k, χλ

〉
is equal to

(1) fλ
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where 〈·, ·〉 is the usual inner product on characters, χλ is the character of

the irreducible representation of Sn corresponding to the integer partition

λ, λ is the integer partition with largest part removed, fλ is the number

of standard tableaux of shape λ, and p2(k − m1,m2) is the number of set

partitions of k − m1 into exactly m2 sets of size at least 2. This identity

holds only when n ≥ k + λ2 where λ2 is the second largest part in λ.

The defining representation is reducible; specifically, δ = 1 + χ(n−1,1)

where 1 represents the trivial representation. So, in order to find
〈
δk, χλ

〉
,

we can expand (1 + χ(n−1,1))k with the binomial theorem and use (1) on

each term of the form (χ(n−1,1))i. Doing this, we find
〈
δk, χλ

〉
is equal to

k∑
i=0

(
k

i

)
fλ

|λ|∑
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(
m2∣∣λ∣∣−m1

)
p2(i−m1,m2)

⎞
⎟⎠ ,

provided λ �= (n) and n ≥ k + λ2.

In contrast, our identity is that
〈
δk, χλ

〉
is equal to

∑
L(λ)⊆μ⊆λ

fμ S(k, |μ|)

where L(λ) is the integer partition found by removing the bottom row of

the Young diagram of λ and S(k, |μ|) is the number of set partitions of k

into |μ| parts (the Stirling number of the second kind).

We end this introduction by establishing some standard notation. If A

and B are matrix representations of Sn, then the inner product of their

characters χA and χB is

〈
χA, χB

〉
=

1

n!

∑
σ∈Sn

χA(σ)χB(σ).

If B is irreducible, then
〈
χA, χB

〉
is the number of times B appears in A.

Our convention of drawing Young diagrams for the integer partition

λ is drawing the largest part on the bottom row. If μ and λ are integer

partitions such that the Young diagram for μ fits inside the Young diagram

for λ, then we write μ ⊆ λ. Let L(λ) be the partition created by removing

the bottom row from the Young diagram of λ. In the example illustrated

below, L(6, 4, 3, 3, 2) = (4, 3, 3, 2):
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We define the ledge of λ to be the cells in the Young diagram of λ but not in
L(λ). The cells in the ledge of (6, 4, 3, 3, 2) are shaded in the above example.

A rim hook ζ in a partition λ is a sequence of consecutive blocks along
the north east border of the Young diagram of λ such that ζ does not
contain any 2× 2 block of cells and the removal of ζ from λ leaves a Young
diagram for another partition. Let λ \ ζ denote the Young diagram created
by removing ζ from λ. The length of a rim hook ζ is the number of cells in
ζ, and the sign of ζ is defined by

sign(ζ) = (−1)(the number of rows spanned by ζ)−1.

For example, one rim hook of length 5 is shown inside the Young diagram
for (4, 3, 2, 1) below:

Let λ be an integer partition of n and let μ = (μ1, . . . , μ�) be a list of
nonnegative integers which sum to n (a weak composition of n). A rim hook
tableaux of shape λ and type μ is created by placing a rim hook ζ1 in λ of
length μ1 (so that ζ1 is on the north east boundary of λ), placing a rim hook
ζ2 in λ \ ζ1 of length μ2, placing a rim hook ζ3 in λ \ ζ1 \ ζ2 of length μ3,
and so on. As an example, here are all possible rim hook tableau of shape
(4, 3, 2, 1) and type (5, 2, 1, 1, 1):

(2)

1

2

3

45

1

2

4

35 1

2

3

45 1

2

4

35

The numbers below each rim hook indicate the order in which the rim hooks
were placed into the diagram. The rim hook of length 5 was placed first along
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the north east edge of the diagram, followed by the rim hooks of length 2,
1, 1 and 1.

The sign of a rim hook tableaux T , denoted sign(T ), is the product of
the signs of the rim hooks in T . In the example displayed above, the first
two rim hook tableaux have sign −1 while the last two rim hook tableau
have sign +1.

Theorem 1 (The Murnaghan-Nakayama Rule). If λ is a partition of n,
σ ∈ Sn is a permutation with cycle type μ, and χλ is the character of the
irreducible representation of Sn indexed by λ, then

χλ(σ) =
∑

T is a rim hook tableau
of shape λ and type μ

sign(T ).

We define fλ = χλ (ε). This number may be calculated using with either
the Murnaghan-Nakayama rule or the well known hook length formula. More
details about these topics can be found in [2].

2. The combinatorics of δk

Theorem 2. If k is a nonnegative integer, then

〈
δk, χλ

〉
=

∑
L(λ)⊆μ⊆λ

fμ S(k, |μ|).

Using the definition of the inner product, this may be expressed as

(3)
∑
σ∈Sn

fxd(σ)kχλ(σ) = n!
∑

L(λ)⊆μ⊆λ

fμ S(k, |μ|).

It is this formulation of the identity which we prove using a sign reversing
involution.

Proof. Build a set of combinatorial objects by following these steps:

1. Select a permutation σ ∈ Sn with at least one fixed point. Write σ in
cyclic notation.

2. For each i ∈ {1, . . . , k}, choose a fixed point j in σ and write i in a
set above j. The cycles with a set of integers over them (which must
be cycles of length one) will be called covered. Cycles without a set of
integers over them will be called uncovered.
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3. Write the cycles of σ such that each cycle begins with its least element.
Order the cycles in σ by writing the uncovered cycles first in increasing
order according to smallest elements. Then write the covered cycles in
increasing order according to their single element.

4. Select a rim hook tableau of shape λ and type μ = (μ1, . . . , μ�), where
μi is the length of the ith cycle in σ when reading from left to right.

5. Starting from the most north west cell in a rim hook of length μi, write
down the elements in the ith cycle of σ into the successive cells of the
rim hook. If the cycle is covered, write down the set above the cycle
inside of the rim hook tableau as well. Erase the labels 1, . . . , � on the
� rim hooks—they are no longer needed to keep track of the order in
which rim hooks are inserted into the tableau because that order can
be deduced from the smallest element in each cycle.

For example, consider the case of λ = (4, 3, 2, 1) and k = 4. We might select
σ = (1)(2 7 6 8 10)(3 5)(4)(9). We may then choose to place the integers
2 and 3 in a set over (1) and place the integers 1 and 4 in a set over (9).
Following step 3, we reorder the cycles of σ to find

(2 7 6 8 10) (3 5) (4) (1) (9)
{2, 4} {1, 3}

Step 4 asks us to select a rim hook tableau of shape (4, 3, 2, 1) and type
(5, 2, 1, 1, 1). We might choose the rim hook tableau written first in equa-
tion (2). Finally, inserting the cycles and sets into the rim hook tableau as
described in step 5, we arrive at

9
{1, 3}

1
{2, 4}

4

3 5

2

7 6

8 10

Let T be the set of objects created in this manner. Given T ∈ T, define
sign(T ) to be the sign of the underlying rim hook tableau. It follows that

∑
σ∈Sn

fxd(σ)kχλ(σ) =
∑
T∈T

sign(T ).
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Define a cell c in T ∈ T to be a downstep if c is in the same rim hook
as the cell immediately north of c. The cells containing 7 and 8 are both
downsteps in the object displayed above.

We now describe a sign reversing involution on T. Take T ∈ T. Reading
left to right, locate the first uncovered cell c in the bottom row of T that is
either a downstep or is one cell south of the end of a rim hook. If no such
cell c exists on the bottom row of T , locate c by proceeding inductively on
the second row of T . If no such c exists in any row of T then we leave T
fixed. Otherwise, define a sign reversing involution by considering the two
possible cases for c separately.

Case 1: The cell c is a downstep. In this case,

1. Erase the line connecting c and the cell above c.

2. Suppose there is an uncovered rim hook ζ which ends one cell west
of c. If the integer in c is larger than the smallest integer in ζ, then
connect c with ζ.

3. Let ξ be the rim hook which now contains c. Read the integers in
ξ from right to left, looking for the first i in ξ which is smaller
than every integer in ξ on its left. Break ξ into two rim hooks by
erasing the line connecting i and the cell to the left of i. Iterate this
procedure with the remaining portion of ξ. This step ensures that
each rim hook begins with its smallest integer.

As an example, consider this object:

9
{1, 2}

10 2 16 18 1 19 17 13 3

12 15 14 5 7 4 6 11 8

The cell c is the cell containing 14. Following the three steps, we first
erase the line connecting 18 and 14 and then connect the 14 to the
15. The rim hook ξ, which now contains 14, also contains the integers
12, 15, 14, 5, 7, 4, and 6. We need to break ξ up into smaller pieces so that
each rim hook begins with its smallest integer. After doing this, we find:

9
{1, 2}

10 2 16 18 1 19 17 13 3

12 15 14 5 7 4 6 11 8
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Case 2: The cell c is one cell south of the end of a rim hook. In this case,

1. If c is in the same rim hook as the cell to its west, erase the line
connecting these two cells.

2. Connect c with the cell above c.

3. Let ζ be the rim hook which now contains c. Suppose there is a rim
hook ξ which begins one cell east of the end of ζ. If the smallest
integer in ζ is smaller than the smallest integer in ξ, connect ζ and
ξ. Iterate this process until either there is no rim hook ξ that begins
one cell east of the rim hook containing c or the smallest integer in
ζ is larger than the smallest integer in ξ.

As a first example of Case 2, it can be verified that these three steps
change the second object displayed in Case 1 into the first object displayed
in Case 1. As a second example, consider this object:

6
{1, 3}

11 4 10 15 2 9 13

1
{2}

7 8 12 3 14

5

The cell c is the cell containing 8. We first erase the line connecting 7 and
8, and then connect the 15 and 8. The rim hook containing 8, ζ, begins
with 5. The rim hook which begins one cell east of the end of ζ, ξ, begins
with 3. Since 3 < 5, we connect ζ and ξ. After doing this, there is no rim
hook which begins one cell east of the rim hook containing 8. We end up
with this:

6
{1, 3}

11 4 10 15 2 9 13

1
{2}

7 8 12 3 14

5

Let T ′ be the image of T ∈ T after applying either Case 1 or Case 2.
The cell c is the first downstep in or cell below the end of a rim hook in
T if and only if c is the first downstep in or cell below the end of a rim
hook in T ′. By construction, the operations described in Case 1 and Case
2 are inverses. Furthermore, this involution is sign reversing because Case
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1 removes exactly one downstep and Case 2 adds exactly one downstep,

thereby changing the sign by −1.

The fixed objects under this sign reversing involution are those T ∈ T

for which no row of T contains a downstep and no row of T contains an

uncovered cell below the end of a rim hook. Here is an example of one such
fixed object:

9
{10}

5
{7, 9}

4
{2, 8}

2
{6}

1
{5}

7
{4}
3

{1, 3}

8 11 6

10

These fixed objects have the following property that all uncovered cycles
occur in the ledge of λ.

The sign reversing involution pairs each− object with a + object, leaving

us with the fixed objects to count. To complete the proof, we will show that
the number of such fixed objects is equal to the right hand side of (3). Count

the number of fixed objects in this way:

1. Select a partition μ = (μ1, . . . , μ�) to be the partition which contains

the covered cycles in a fixed object T . The partition μ must satisfy
L(λ) ⊆ μ ⊆ λ.

2. Select which integers out of {1, . . . , n} are to be covered. There are(
n
|μ|
)
ways to do this.

3. Select the subsets to cover the integers selected in step 2. The number

of ways to do this is the number of ways to select a set partition of k
into |μ| parts, namely S(k, |μ|).

4. Use the subsets selected in step 3 to cover the integers in step 2. There
are |μ|! ways to do this.

5. Place the covered integers into the Young diagram of μ ⊆ λ. There are
fμ choices here.

6. Select which of the remaining integers after step 2 will go into each of
the rows in the uncovered portions of the ledge of λ. The number of

ways to do this is the multinomial coefficient
( n−|μ|
λ1−μ1,...,λ�−μ�

)
.

7. For each uncovered row in the ledge of λ, select a permutation with

the choice of integers made in step 6. Write this permutation in cyclic

notation, and place it into the row in the ledge as specified by the
elements in T. The number of ways to do this is (λ1−μ1)! · · · (λ�−μ�)!.
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Therefore, the number of fixed points is

∑
L(λ)⊆μ⊆λ

(
n

|μ|

)
S(k, |μ|)|μ|!fμ

(
n− |μ|

λ1 − μ1, . . . , λ� − μ�

)
(λ1 − μ1)! · · · (λ� − μ�)!

Simplifying the above expression gives n!
∑

L(λ)⊆μ⊆λ

fμ S(k, |μ|), as desired.

As an example of the utility of Theorem 2, we find
〈
δ9, χ(3,3,2,2)

〉
. For

each integer partition μ which satisfies L(λ) ⊆ μ ⊆ λ, we can calculate fμ

using the hook length formula and we can find S(9, |μ|) using the identity

S(k, i) = 1
i!

∑i
j=0(−1)i−j

(
i
j

)
jk, say:

μ fμ S(9, |μ|) Product

21 462 9702

42 36 1512

70 36 2520

84 1 84

168 1 168

252 0 0

Total: 13986

Therefore
〈
δ9, χ(3,3,2,2)

〉
= 13986, meaning that there are 13986 copies of

the irreducible representation of S10 corresponding to the integer partition
(3, 3, 2, 2) in the matrix representation of degree 109 found by taking the

tensor product of the defining representation of S10 with itself 9 times.

Corollary 1. The inner product
〈
δk, χλ

〉
is 0 if and only if k < |L(λ)|.
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Proof. If
〈
δk, χλ

〉
= 0, then every term in the sum in Theorem 2 must be

0. In particular, S(k, |μ|) = 0 when μ = L(λ). This can only happen if L(λ)
has more than k cells.

Conversely, any μ which satisfies L(λ) ⊆ μ must have at least as many
cells as L(λ). If the number of cells here is larger than k, then every S(k, |μ|)
term in the sum found in Theorem 2 is equal to 0 since there are no set
partitions of k with more than k parts.
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