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In the 90’s a collection of plethystic operators were introduced in
[2], [7] and [8] to solve some representation-theoretical problems
arising from the theory of Macdonald polynomials. This collection
was enriched in the research that led to the results which appeared
in [5], [6] and [9]. However since some of the identities resulting
from these efforts were eventually not needed, this additional work
remained unpublished. As a consequence of very recent publica-
tions [4], [11], [19], [20], [21], a truly remarkable expansion of this
theory has taken place. However most of this work has appeared
in a language that is virtually inaccessible to practitioners of alge-
braic combinatorics. Yet, these developments have led to a variety
of new conjectures in [3] in the combinatorics and symmetric func-
tion theory of Macdonald polynomials. The present work results
from an effort to obtain in an elementary and accessible manner
all the background necessary to construct the symmetric function
side of some of these new conjectures. It turns out that the above
mentioned unpublished results provide precisely the tools needed
to carry out this project to its completion.

0. Introduction

Our main actors in this development are the operators Dk introduced in [8],
whose action on a symmetric function F [X] is defined by setting

(1) DkF [X] = F [X+M
z ]
∑

i≥0(−z)iei[X]
∣∣∣
zk

(with M = (1− t)(1− q)).

These operators generate an algebra A of symmetric function operators with
remarkable properties. To state them we need some preliminary observations
and definitions. Let us denote by Λ the space of symmetric functions in the
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infinite alphabet X = {x1, x2, x3, . . .} and by Λ=d the subspace of homo-
geneous symmetric functions of degree d. It is easy to see from 1 that if
F [X] ∈ Λ=d then DkF [X] ∈ Λ=d+k. Thus A is clearly a graded algebra.
What is surprising is that A is in fact bi-graded by simply assigning the
generators Dk bi-degree (1, k).

To make this more precise consider first D = {D0, D1, D2, D3, . . .} as an
infinite alphabet, and denote by L[D] the linear span of words in D. Now,
given this bi-grading of the letters of D, every element Π ∈ L[D] has a
natural decomposition

Π =
∑
(u,v)

Πu,v

where Πu,v denotes the portion of Π which is a linear combination of words
in D of total bi-degree (u, v). To show that A is bi-graded it is necessary
and sufficient to prove that Π, as an operator, acts by zero on Λ if and only
if all the Πu,v act by zero. This is one of the very first things we will prove
about A.

The connection of A to the above mentioned developments is that it
gives a concrete realization of a proper subspace of the elliptic Hall algebra
studied by Schiffmann and Vasserot in [20], [21] and [19]. In particular it
contains a distinguished family of operators {Qu,v} of bi-degree given by
their index that play a central role in the above mentioned conjectures.
For a co-prime bi-degree their construction is so simple that we need only
illustrate it in a special case.

For instance, to obtainQ3,5 we start by drawing the 3×5
lattice square with its diagonal (the line (0, 0) → (3, 5), as
shown in the adjacent figure), we then look for the lattice
point (a, b) that is closest to and below the diagonal. In this
case (a, b) = (2, 3). This yields the decomposition (3, 5) =
(2, 3) + (1, 2) and we set

(2) Q3,5 =
1
M [Q1,2 , Q2,3] =

1
M

(
Q1,2Q2,3 −Q2,3Q1,2

)
.

We must next work precisely in the same way with the 2×3
rectangle and, as indicated in the adjacent figure, obtain the
decomposition (2, 3) = (1, 1) + (1, 2) and set

(3) Q2,3 = 1
M [Q1,2 , Q1,1] =

1
M

(
Q1,2Q1,1 −Q1,1Q1,2

)
.

Now, in this case, we are done, since it turns out that we may set

(4) Q1,k = Dk.
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In particular by combining 2, 3 and 4 we obtain

Q3,5 =
1

M2

(
D2D2D1 − 2D2D1D2 +D1D2D2

)
.(5)

In the general co-prime case (m,n), the precise definition is based on an
elementary number theoretical lemma that characterizes the closest lattice
point (a, b) below the line (0, 0) → (m,n). We then let (c, d) = (m,n)−(a, b)
and set

Split(m,n) = (a, b) + (c, d).

This given, we recursively define

(6) Qm,n =

⎧⎪⎨⎪⎩
1
M [Qc,d, Qa,b] if m > 1 and Split(m,n) = (a, b) + (c, d)

Dn if m = 1.

Our next task is to define the operators Qu,v for any non co-prime pair
(u, v). It will be convenient here and after to write such a pair in the form
(km, kn) with (m,n) co-prime and k > 1 the gcd of the pair. The problem is
that in this case there are exactly k lattice points, closest to the diagonal of
the rectangle km× kn, as we can clearly see in the following display, where
we illustrate the case (m,n) = (3, 2) and k = 4.

We see that there are 4 ways here to “split” the vector (0, 0) → (4 ×
3, 4× 2) by choosing a closest lattice point below the diagonal. Namely:

(12, 8) = (2, 1) + (10, 7) = (5, 3) + (7, 5) = (8, 5) + (4, 3) = (11, 7) + (1, 1).

This given, which of the following bracketings should we choose to con-
struct Q4×3,4×2?

[Q10,7, Q2,1] , [Q7,5, Q5,3] , [Q4,3, Q8,5] , [Q1,1, Q11,7].

The answer is simple: any one will do, since all four bracketings give the
same operator. This is one of the many identities we need to establish for
the operators Qm,n. In fact all the pairs (a, b) and (c, d) obtained by splitting
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a pair (km, kn), with (a, b) one of the closest lattice points to the segment
(0, 0) → (km, kn), are necessarily co-prime. Our original idea was to prove
first the auxiliary identities needed to construct the operators Q0,n then
obtain all the other needed identities as images of the auxiliary identities,
under the action of the modular group G = SL2[Z] on the operators Qm,n.
In the realization of this plan, the operators Qn,n were more convenient to
work with.

More precisely, for a given element

[
a c
b d

]
we will show that we can set

[
a c
b d

]
Qm,n = Qam+cn,bm+dn.

by proving that two generators of G preserve all the relations satisfied by
the operators Dk.

As we will see, this is made possible by means of a very elementary, but
surprisingly powerful tool, in algebraic combinatorics which has come to be
called the Stanton-Stembridge symmetrization trick (the SSS trick briefly).

By combining the above mentioned auxiliary identities with the action
of G we will also be naturally led to the construction of a variety of new
additional operators. More precisely there is one operator for each sym-
metric function G[X], homogeneous of degree k and each co-prime pair
(m,n). The resulting operator, which will be denoted “Gkm,kn,” turns out
to have a variety of surprising properties. In fact, computer exploration led
to the discovery (in [3]) that in many instances the symmetric polynomial
Gkm,kn(−1)k(n+1) has a conjectured combinatorial interpretation as an enu-
merator of certain families of “rational” parking functions.

One of the most surprising contributions to this branch of algebraic
combinatorics is a recent deep result [17] of Andrei Negut giving a relatively
simple but powerful constant term expression for the action of the operators
Qm,n. The reader is referred to the findings concerning the Negut formula
that are presented in [3] for the reasons we used the word “powerful” in this
context. Here it has been one of our priorities to give a straight-forward proof
of Negut’s formula using only tools developed in the present treatment of the
subject. In our third and final section we present the various results obtained
in this effort. Our main result there is a proof that the validity of the Negut
formula is equivalent to the statement that a certain quite elementary and
completely explicit rational function symmetrizes to zero. It will be seen
that this is but another beautiful consequence of the SSS trick. This leads
to a computer proof of the Negut formula in a variety of cases. Moreover,
our proof makes it quite clear why and how the so-called “shuffle algebra”
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naturally arises in the present context. In fact, it should be straightforward
to extend the machinery used in the proof of the above result to obtain a
proof that, under appropriate definitions, the shuffle algebra is isomorphic
to the algebra generated by the operators Dk. Our presentation terminates
with a proof of the Negut formula under the specialization at t = 1/q.

Acknowledgment

We cannot overemphasize here the importance of the contribution of Eu-
gene Gorsky and Andrei Negut to the present developments. Without their
efforts at translating their results [11], [18], [17] and results of Schiffmann-
Vasserot [20], [21], [19] in a language understandable to us, this writing
would not have been possible.

1. Notation and auxiliary identities

In dealing with symmetric function identities, especially those arising in the
theory of Macdonald polynomials, it is convenient and often indispensable to
use plethystic notation. This device has a straightforward definition which
can be verbatim implemented in MAPLE or MATHEMATICA. We simply
set for any expression E = E(t1, t2, . . .) and any symmetric function F

(7) F [E] = QF (p1, p2, . . .)
∣∣∣
pk → E( tk1, t

k
2, . . .) for all k ≥ 1

where QF is the polynomial yielding the expansion of F in terms of the
power basis. A paradoxical but necessary property of plethystic substitutions
is that 7 requires pk[−E] = −pk[E]. This notwithstanding, we will also need
to carry out ordinary changes of signs. To distinguish the latter from the
“plethystic” minus sign, we will carry out the “ordinary” sign change by
multiplying our expressions by a new variable “ε” which, outside of the
plethystic bracket, is replaced by −1. Thus we have

pk[εE] = εkpk[E] = (−1)kpk[E].

In particular we see that, with this notation, it follows that for any expression
E and any symmetric function F we may write

(8) (ωF )[E] = F [−εE]

where, as customary, “ω” denotes the involution that interchanges the ele-
mentary and homogeneous symmetric function bases.
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It will be also good to remind the reader here that many symmetric func-
tion identities can be considerably simplified by means of the “Ω” notation.
For a general expression E = E(t1, t2, · · · ) we simply set

Ω[E] = exp
(∑

k≥1

pk[E]

k

)
= exp

(∑
k≥1

E(tk1, t
k
2, · · · )
k

)
.

In particular we see that for X = x1 + x2 + · · ·

(9) Ω[zX] =
∑
m≥0

zmhm[X]

and for M = (1− t)(1− q) we have

(10) Ω[−uM ] =
(1− u)(1− qtu)

(1− tu)(1− qu)
.

As in Macdonald’s [16], for each (french) Ferrers diagram of a partition
μ, and a lattice cell c ∈ μ we have four parameters l = lμ(c), l

′ = l′μ(c),
a = aμ(c) and a′ = a′μ(c) called leg, coleg, arm and coarm which give the
number of lattice cells of μ strictly north, south, east and west of c. Denoting
by μ′ the conjugate of μ, the basic ingredients we need to keep in mind here
are

n(μ) =

l(μ)∑
i=1

(i− 1)μi , wμ(q, t) =
∏
c∈μ

(qaμ(c) − tlμ(c)+1)(tlμ(c) − qaμ(c)+1),

Tμ = tn(μ)qn(μ
′) , Bμ(q, t) =

∑
c∈μ

tl
′
μ(c)qa

′
μ(c) , M = (1− t)(1− q).

Let us recall that the Hall scalar product is defined by setting

〈pλ , pμ〉 = zμ χ(λ = μ)1

where zμ gives the order of the stabilizer of a permutation with cycle struc-
ture μ.

The Macdonald polynomials we work with here are the unique [7] sym-
metric function basis

{
H̃μ[X; q, t]

}
μ
which is upper triangularly (in domi-

nance order) related to the modified Schur basis {sλ[ X
t−1 ]}λ and satisfies the

orthogonality condition

1Here and after we let χ(A) = 1 if A is true and χ(A) = 0 if A is false.
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(11)
〈
H̃λ , H̃μ

〉
∗
= χ(λ = μ)wμ(q, t),

where 〈 , 〉∗ denotes a deformation of the Hall scalar product, defined by

setting

(12) 〈pλ , pμ〉∗ = (−1)|μ|−l(μ)
∏
i

(1− tμi)(1− qμi) zμ χ(λ = μ).

We will use here the operator ∇ introduced in [1] by setting

(13) ∇H̃μ[X; q, t] = TμH̃μ[X; q, t].

We also set for any symmetric function F [X]

(14)

D∗
kF [X] = F [X− M̃

z ]
∑

i≥0 z
ihi[X]

∣∣∣
zk

(
with M̃ = (1− 1/t)(1− 1/q)

)
It will be convenient to use the symbol “F” to denote the operator “multi-

plication” by a symmetric function F [X]. These families of operators were

intensively studied in the 90′s (see [2] and [8]) where they gave rise to a

variety of conjectures, some of which are still open.

In particular it is shown in [8] that the operators Dk, D
∗
k, ∇ and the

modified Macdonald polynomials H̃μ[X; q, t] are related by the following

identities.

Proposition 1.1

The operators D0, D
∗
0 and ∇ are all self-adjoint with respect to the ∗-

scalar product. Moreover for k ≥ 1, the operators p
k
, Dk and D∗

k are ∗-scalar
product adjoints to M(−1)k−1p⊥k , (−1)kD−k and (−qt)kD∗

−k respectively.

We also have

(15)

(i) D0 H̃μ = −Dμ(q, t) H̃μ (i)∗ D∗
0 H̃μ = −Dμ(1/q, 1/t) H̃μ

(ii) Dk e− eDk = M Dk+1 (ii)∗ D∗
k e− eD∗

k = −M̃ D∗
k+1

(iii) ∇ e∇−1 = −D1 (iii)∗ ∇D∗
1∇−1 = e

(iv) ∇−1 e⊥1 ∇ = 1
MD−1 (iv)∗ ∇−1D∗

−1∇ = −M̃ e⊥1

with e⊥1 the Hall scalar product adjoint of multiplication by e1, M̃ = (1 −
1/t)(1− 1/q) and

(16) Dμ(q, t) = MBμ(q, t)− 1.
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We should mention that recursive applications of 15 (ii) and (ii)∗ give

a) Dk = 1
Mk

∑k
r=0

(
k
r

)
(−1)rer1D0e

k−r
1

b) D∗
k = 1

M̃k

∑k
r=0

(
k
r

)
(−1)k−rer1D

∗
0e

k−r
1 .

(17)

For future use, it will be convenient to set

a) Φk = ∇Dk∇−1 and

b) Ψk = −(qt)1−k∇D∗
k∇−1.

(18)

This given we have

Theorem 1.1

The operators Φk and Ψk are uniquely determined by the following re-
cursions

(19) a) Φk+1 =
1
M [D1,Φk] and b) Ψk+1 =

1
M [Ψk, D1]

and initial conditions

(20) a) Φ1 =
1
M [D1, D0] and b) Ψ1 = −e1.

Proof

Note first that, using 15 (ii) and (iii), the definition in 18 a) for k = 1
gives

Φ1 =
1
M∇

(
D0e1 − e1D0

)
∇−1 = 1

M

(
D0(−D1)− (−D1)D0

)
which is another way of writing 20 a). The definition in 18 b) and 15 (iii)∗

give 20 b).

Next, conjugating 15 (ii) by ∇ and using 15 (iii) immediately gives

19 a). Finally note that, since M̃ = M/qt it follows that 15 (ii)∗ may be
rewritten as

(qt)1−kD∗
ke1 − e1(qt)

1−kD∗
k = −M(qt)1−k−1D∗

k+1

and 19 b) then follows by conjugating both sides by ∇ and using 15 (iii).

The next identity plays a crucial role in the present development.

Theorem 1.2

For a, b ∈ Z with a+ b > 0 and any symmetric function F [X], we have
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(21) 1
M (DaD

∗
b −D∗

bDa)F [X] = (qt)b

1−qt ha+b

[
X(1/qt− 1)

]
F [X].

A proof of the general identity that includes 21 is given in the Appendix.

As a corollary we obtain.

Theorem 1.3

The operators Φk and Ψk defined in 18 satisfy the following identity,
when a, b are positive integers with sum equal to n:

(22) 1
M [Ψb , Φa] =

qt
1−qt ∇hn

[
X( 1

qt − 1)
]
∇−1

Proof

The identity in 21 essentially says that under the given hypotheses the

operator 1
M (D∗

bDa − DaD
∗
b ) acts as multiplication by the symmetric func-

tion (qt)b

qt−1hn
[
X(1/qt− 1)

]
. Thus with our notational conventions 21 may be

rewritten as

− (qt)1−b

M

(
D∗

bDa −DaD
∗
b

)
= qt

1−qt hn
[
X(1/qt− 1)

]
.

Conjugating both sides by ∇ and using 18 a) and b) gives 22.

Next it is important to keep in mind the following identity which ex-

presses the action of a sequence of Dk operators on a symmetric function
F [X].

Proposition 1.2

Dam
· · ·Da1

F [X] = F [X+
∑m

i=1
M
zi
]

m∏
i=1

Ω[−ziX]
1∏m

i=1 z
ai

i

×
∏

1≤i<j≤m

Ω
[
−Mzi/zj

]∣∣∣
z0
1z

0
2 ···z0

m

(23)

Proof

It suffices to see what happens when we use 7 a) twice:

Da2
Da1

F [X] = Da2
F [X + M

z1
]Ω[−z1X]

∣∣∣
z
a1
1

= F [X + M
z1

+ M
z2
]Ω[−z1(X + M

z2
)]Ω[−z2X]

∣∣∣
z
a1
1 z

a2
2

= F [X + M
z1

+ M
z2
]Ω[−z1X]Ω[−z2X]Ω[−Mz1/z2]

∣∣∣
z
a1
1 z

a2
2
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To give a precise general definition of the Q operators we need the follow-
ing elementary number theoretical fact that characterizes the closest lattice
point (a, b) below the line (0, 0) → (m,n).

Proposition 1.3
For any pair of co-prime integers m,n > 1 there is a unique pair a, b

satisfying the following three conditions

(24) (1) 1 ≤ a ≤ m− 1 , (2) 1 ≤ b ≤ n− 1 , (3) mb+ 1 = na

In particular, setting (c, d) = (m,n)− (a, b) we will write for m,n > 1

(25) Split(m,n) = (a, b) + (c, d)

and otherwise set

a) Split(1, n) = (1, n− 1) + (0, 1)

b) Split(m, 1) = (1, 0) + (m− 1, 1).
(26)

Moreover it follows from our construction that the pairs (a, b) and (c, d) are
also co-prime.

Proof
When m,n > 1 the lattice point that is closest to and strictly below the

diagonal of the m × n lattice rectangle must be the unique element of the
set {

(i, 
i nm�) : 1 ≤ i ≤ m− 1
}

that minimizes the difference

(27) εi = i nm − 
i nm�.

In fact, the co-primality of m,n assures that all these differences are distinct.
So the distance minimizer is clearly unique. Next note that if we set

(28) ki = mεi = i n−m
i nm�

then ki is an integer in the interval

1 ≤ ki ≤ m− 1

Since all the ki must be distinct and there are altogether m − 1 of them,
exactly one of them must be equal to 1. If ka = 1 then the minimizing point
is (a, b) with b = 
a n

m�, and 28 for i = a reduces to
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(29) 1 = an − mb.

This proves (1) and (3) of 24 and (2) is then an immediate consequence of
(1) and b = 
a n

m�. Finally, 26 is simply due to the fact that in either of these
two cases the closest point can be easily identified. The co-primality of (a, b)
is immediate, since if (a, b) = (ka′, kb′) for some k > 1 then (a′, b′) would
be closer to the diagonal (0, 0) → (m,n). The co-primality of (c, d) holds for
the identical reason.

We are now in a position to give the definition of the operators Qm,n

that is more suitable for theoretical purposes.

Definition 1.1
If m,n > 0 are coprime and Split(m,n) = (a, b) + (c, d) we recursively

set

(30) Qm,n = 1
M [Qc,d, Qa,b]

with base cases

(31) a) Q1,0 = D0 and b) Q0,1 = −e1.

It is easy to see from Proposition 1.3 that recursive applications of 30
will eventually lead to an expression for Qm,n as a polynomial in the non
commutative operators D0 and e1.

For computer programming purposes the following alternate recursive
construction is considerably more efficient since, via 23, it gives all these
operators a plethystic form.

Theorem 1.4
For any pair of co-prime m,n we have

(32) Qm,n =

{
1
M [Qc,d, Qa,b] if m > 1 and Split(m,n) = (a, b) + (c, d)

Dn if m = 1.

Proof
Since at each application of the Split operation for m,n > 1 we have

both a ≤ m − 1 and c ≤ n − 1, we will eventually reach the point in the
recursion expressed by 30 where m = 1 or n = 1. In the first case, 26 a)
takes over and the identity in 15 (ii) inductively assures that Q1,n = Dn. In
fact, in the base case we have, (by 15 (ii) for k = 0)

(33) Q1,1 = 1
M [Q0,1, Q1,0] =

1
M [−e1, D0] =

1
M [D0, e1] = D1

In case n = 1 and m > 1 then 26 b) takes over, yielding
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(34) Qm,1 = 1
M [Qm−1,1, Q1,0] =

1
M [Qm−1,1, D0].

Here the base case is reached when m = 2 yielding

Q2,1 = 1
M [Q1,1, Q1,0] =

1
M [D1, D0].

We terminate this section with the following truly surprising and re-
markably basic identity in our development.

Proposition 1.6
For any co-prime pair m,n we have

(35) Qm+n,n = ∇Qm,n∇−1.

Proof
We proceed by induction on the size of min{m,n}. Suppose first that

m,n ≥ 2 and

(36) Split(m,n) = (a, b) + (c, d).

Suppose inductively that we have

(37) Qa+b,b = ∇Qa,b∇−1 and Qc+d,d = ∇Qc,d∇−1.

From 36 and Proposition 1.3 it follows that

(1) 1 ≤ a ≤ m− 1 , (2) 1 ≤ b ≤ n− 1 , (3) bm+ 1 = na

Adding nb to both sides of (3) gives

(3′) b(m+ n) + 1 = n(a+ b),

while from (1) and (2) it follows that

(1′) 1 ≤ a+ b ≤ m+ n− 1 , (2′) 1 ≤ b ≤ n− 1 ,

But (1’),(2’),(3’), by Proposition 1.3, imply that

Split(m+ n, n) = (a+ b, b) + (c+ d, d).

This gives

Qm+n,n = 1
M [Qc+d,d, Qa+b,b]

and from 37 we derive that
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Qm+n,n = ∇Qm,n∇−1

completing the induction.
We are left with checking the equality in the cases where m ≤ 1 or n ≤ 1.

This brings us to the two identities
(38)
a) Split(1, n) = (1, n− 1) + (0, 1) , b) Split(m, 1) = (1, 0) + (m− 1, 1).

The common base case is (1, 1). There we must show that

Q1,1 = ∇Q0,1∇−1.

But by 31 b) and 32 this is

D1 = −∇e1∇−1

which is 15 (iii). We can thus proceed by induction in each case. Now for
case a) we have

Q1,n = 1
M [Q0,1, Q1,n−1].

Assuming that the result is true for n− 1 gives

∇Q1,n∇−1 = 1
M [∇Q0,1∇−1,∇Q1,n−1∇−1] = 1

M [Q1,1, Qn,n−1].

Since Split(n + 1, n) = (n, n − 1) + (1, 1) we see that 1
M [Q1,1, Qn,n−1] =

Qn+1,n. This completes the induction in case a). Proceeding again by induc-
tion in case b) we get

∇Qm,1∇−1 = 1
M [∇Qm−1,1∇−1,∇Q1,0∇−1] = 1

M [Qm,1, Q1,0]

and again 38 b) gives ∇Qm,1∇−1 = Qm+1,1 completing the induction and
our proof.

2. The action of SL2[Z] on the algebra generated by the
operators Dk

To extend the definition of the Q operators to non-coprime pairs of indices
we need to make use of the action of SL2[Z] on the operators Qm,n. More

precisely, for

[
a c
b d

]
∈ SL2[Z] and any co-prime pair (m,n) we want

(39)

[
a c
b d

]
Qm,n = Qam+cn,bn+dn.
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For this it is sufficient to justify setting

(40) NQm,n = Qm+n,n and SQm,n = Qm,n+m

for the generators

N =

[
1 1
0 1

]
and S =

[
1 0
1 1

]
.

Since every operator Qm,n is a polynomial in the operators Dk = Q1,k we
will define this action on the algebra generated by the Dk by setting

(41) N(Dk1
Dk2

· · ·Dkr
) = Q1+k1,k1

Q1+k2,k2
· · ·Q1+kr,kr

and

(42) S(Dk1
Dk2

· · ·Dkr
) = Q1,k1+1Q1,k2+1 · · ·Q1,kr+1

For this action to be well defined it is necessary and sufficient that if any
polynomial in the Dk that acts by zero on symmetric functions, then it has
an image under N and S which also acts by zero. Now it happens that this
fact can be proved by elementary means.

To begin, notice that the identity 35 allows us to rewrite 41 as

(43) N(Dk1
Dk2

· · ·Dkr
) = ∇(Dk1

Dk2
· · ·Dkr

)∇−1.

This implies the desired property for the action of N , since any symmetric
function operator that acts by zero has an image under conjugation by ∇
which also acts by zero.

To prove that S has the desired property we will make use of a sim-
ple observation which has come to be referred to as the Stanton-Stembridge
symmetrization trick. This trick uses symmetrization to prove that certain
constant terms are 0. Stanton, Stembridge, and Zeilberger used these tech-
niques in special cases before Zeilberger formally stated the general trick in
[24]. A partial history of these early uses can be found in [23].

SSS trick
For a Laurent polynomial F (z1, z2, . . . , zm) we have

(44) F (z1, z2, . . . , zm)
∣∣∣
z0
1z

0
2 ···z0

m

= 0

if and only if
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(45) SymmF (z1, z2, . . . , zm)
∣∣∣
z0
1z

0
2 ···z0

m

= 0

where “Symm” is the idempotent that symmetrizes with respect to the vari-
ables z1, z2, . . . , zm.

It is important to notice that consequently this is also valid when F is a
formal power series in other variables with coefficients Laurent polynomials
in z1, z2, . . . , zm. The surprising circumstance is that quite often the identity
in 45 turns out to be a consequence of the more encompassing identity

SymmF (z1, z2, . . . , zm) = 0

which is sometimes easier to prove than 45. A beautiful example of this
type of circumstance is given by the following result which is crucial in our
development.

Here and after it will be convenient to use Zk as an abbreviation for the
alphabet z1, z2, . . . zk.

Theorem 2.1
Suppose that FPk(Zk) (for each 1 ≤ k ≤ m) is formal power series in

other variables with coefficients which are Laurent polynomials in z1, z2, . . . ,
zk. Then, for all symmetric functions F [X] we have
(46)
m∑
k=1

(
F [X+

∑k
i=1

M
zi
]Ω[−ZkX]FPk(Zk)

∏
1≤i<j≤k Ω

[
−Mzi/zj

])∣∣∣
z0
1z

0
2 ···z0

m

=0

if and only if

(47) Symk

(
FPk(Zk)

∏
1≤i<j≤k

Ω
[
−Mzi/zj

])
= 0 (for 1 ≤ k ≤ m).

In particular it follows that the operator V =
∑m

k=1Vk with Vk =∑
a c

(k)
a1,a2,...,akDak

· · ·Da2
Da1

acts by zero on symmetric polynomials if and
only if, setting

(48) ΠVk
(Zk) =

∑
a

ca1,a2,...,ak

1
z
a1
1 z

a2
2 ···zak

k

,

we have

(49) Symk

(
ΠVk

(Zk)
∏

1≤i<j≤k

Ω
[
−Mzi/zj

])
= 0.
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Proof
Notice that since for any variable u we have Ω[−uM ] = 1 +∑

r≥1 u
rhr[−M ] it follows that for any 1 ≤ k ≤ m∏

1≤i<j≤k

Ω
[
−Mzi/zj

]
is a formal power series in q, t with coefficients Laurent polynomials in
z1, z2, . . . , zk. Likewise the expression

(50) F [X +
∑k

i=1
M
zi
]Ω[−ZkX] = F [X +

∑k
i=1

M
zi
]
∏k

i=1Ω[−ziX]

may be viewed as a formal power series in the variables in X and q, t with
coefficients Laurent polynomials in z1, z2, . . . , zk. Thus the SSS trick applies
and we can derive from 46 and the Sk symmetry of the expression in 50 that
we will have 46 if and only if

(51)

m∑
k=1

F [X +
∑k

i=1
M
zi
] Ω[−ZkX] Gk[Zk]

∣∣∣
z0
1z

0
2 ···z0

m

= 0

where for convenience we have set

Gk[Zk] = Symk

(
FPk(Zk)

∏
1≤i<j≤k

Ω
[
−Mzi/zj

])
.

In particular we can immediately see that 47 implies 46. We must next
show that the converse is also true. To carry this out it will be convenient
to set

1
z1

+ 1
z2

+ · · ·+ 1
zk

= Z
(−1)
k .

This given, note that the identity

pa[MZ
(−1)
k ] = pa[X +MZ

(−1)
k ]− pa[X] (for all a ≥ 1)

gives for λ = (λ1, λ2, . . . , λl)

pλ[MZ
(−1)
k ] =

l∏
i=1

(
pλi

[X +MZ
(−1)
k ]− pλi

[X]
)

=
∑

S⊆{1,2,...l}

∏
i∈S

pλi
[X +MZ

(−1)
k ]

∏
i∈{1,2,...l}−S

(
− pλi

[X]
)
.

Using the fact that pλ[MZ
(−1)
k ] = pλ[M ]pλ[Z

(−1)
k ], we may write
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pλ[Z
(−1)
k ] =

∑
μ	λ

pμ
[
X +MZ

(−1)
k

]
cλ,μ[X]

where “�” means that all the parts of μ are parts of λ, and, more impor-
tantly, the coefficients cλ,μ[X] do not depend on k. Thus a multiple use of
51 with F = pμ for all μ � λ gives

m∑
k=1

pλ[Z
(−1)
k ] Ω[−ZkX] Gk[Zk]

∣∣∣
z0
1z

0
2 ···z0

m

= 0.

Since {pλ[X]}λ is a symmetric function basis it follows from this that for all
symmetric functions F [X] we must also have

m∑
k=1

F [Z
(−1)
k ] Ω[−ZkX] Gk[Zk]

∣∣∣
z0
1z

0
2 ···z0

m

= 0.

Now notice that for all k < m we have em[Z
(−1)
k ] = 0. It follows from

this that setting F [X] = elm[X] for any l > 1 but otherwise arbitrary we
must have

Ω[−ZmX] Gm[Zm]
∣∣∣
zl
1z

l
2···zl

m

= 0.

Now the expansion Ω[−ZmX] =
∑

λmλ[Zm]hλ[−X] together with the fact
that (for X an infinite alphabet) the collection {hλ[−X]}λ is a symmetric
function basis (thus independent) allows us to conclude that for arbitrary λ
we must have

(52) mλ[Zm] Gm[Zm]
∣∣∣
zl
1z

l
2···zl

m

= 0.

It follows from our hypotheses that Gm[Zm] is a formal power series in
other variables with coefficients Laurent polynomials in z1, z2, . . . , zm. Thus
if P [Zm] is any one of these coefficients, from 52 we derive that we must also
have

mλ[Zm] P [Zm]
∣∣∣
zl
1z

l
2···zl

m

= 0.

We claim that the arbitrariness of λ and l forces the vanishing of P [Zm].
To see this note that we may make the substitution

mλ[Zm] =
∑

λ(p)=λ

zp1

1 zp2

2 · · · zpm
m
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where “λ(p) = λ” means that the non-zero parts of the weak composition p
rearrange to the parts of λ, and obtain∑

λ(p)=λ

P [Zm]
∣∣∣
z
l−p1
1 z

l−p2
2 ···zl−pm

m

= 0.

Since the symmetry of Gm[Zm] in z1, z2, . . . , zm implies that also P [Zm] is
symmetric in z1, z2, . . . , zm, all the above coefficients must be the same. This
implies that

P [Zm]
∣∣∣
z
l−p1
1 z

l−p2
2 ···zl−pm

m

= 0 (for λ(p) = λ).

But the arbitrariness of l and λ gives that we have

P [Zm]
∣∣∣
z
q1
1 z

q2
2 ···zqm

m

= 0 (for all integral vectors q = (q1, q2, . . . , qn))

Thus P [Zm] must identically vanish as asserted. Since this holds true for
every coefficient of Gm[Zm] we are led to the conclusion that

Gm[Zm] = 0.

This not only proves the special case k = m of 47 but sets us up for an
induction argument on m with base case m = 1 which is also a particular
subcase of the case we have just dealt with. Our proof is thus complete.

As a corollary we obtain

Theorem 2.2
An operator V =

∑m
k=1Vk with

Vk =
∑
a

c(k)a1,a2,...,ak
Dak

· · ·Da2
Da1

acts by zero on symmetric polynomials if and only if each of the operators
SVk acts by zero.

Proof
By Theorem 1.1 V acts by zero if and only if for each 1 ≤ k ≤ m we

have

(53) Symk

(
ΠVk

(z1, z2, . . . , zk)
∏

1≤i<j≤k

Ω
[
−Mzi/zj

])
= 0

and SVk acts by zero if and only if
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(54) Symk

(
ΠSVk

(z1, z2, . . . , zk)
∏

1≤i<j≤k

Ω
[
−Mzi/zj

])
= 0.

But from the definition in 42 it follows that

ΠSVk
(z1, z2, . . . , zk) =

ΠV(z1, z2, . . . , zk)

z1z2 · · · zk
,

so we see that 53 and 54 are equivalent identities.

Combining this with the identity in 43 and Theorem 1.4 we can now
state

Theorem 2.3

The identities in 41 and 42 define an action of the group G on the algebra

generated by the operators Dk, with the property that for all

[
a c
b d

]
∈ G we

have [
a c
b d

]
Qm,n = Qam+cn,bn+dn.

In particular this action preserves all the relations satisfied by the operators
Qm,n for (m,n) co-prime, such as (32) and (35).

We have now all we need to define the operators Qkm,kn. To begin we
have the following basic consequence of Theorem 1.3.

Theorem 2.4

For any k ≥ 1 we have Qk+1,k = Φk and Qk−1,k = Ψk. In particular, for
all pairs a, b of positive integers with sum equal to n it follows that

(55) 1
M [Qb+1,b , Qa−1,a] =

qt
1−qt ∇hn

[
X( 1

qt − 1)
]
∇−1.

Proof

In view of 18 a), the first equality is a special instance of 35. To prove
the second equality, by Theorem 1.3, we only need show that the operators
Qk−1,k satisfy the same recursions and base cases as the Ψk operators. To
begin, note that since Split(k, k + 1) = (1, 1) + (k − 1, k) it follows that

Qk,k+1 = 1
M

[
Qk−1,k, Q1,1

]
= 1

M

[
Qk−1,k, D1

]
,

which is 19 b) for Qk,k+1. Furthermore, the base case is trivial since by
definition Q0,1 = −e1. The identity in 55 is another way of stating 22. This
completes our proof.
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This proposition has an avalanche of consequences. In particular, it plays

a crucial role in justifying the definition of the operators Qkm,kn. The prob-
lem, as we mentioned in the introduction, is that in this case, there are k

distinct points that are closest to the diagonal (0, 0) → (km, kn). inside the

km × kn lattice rectangle. Correspondingly, if Split(m,n) = (a, b) + (c, d),
we have the following k ways to split the vector (0, 0) → (km, kn):(
(u−1)m+a, (u−1)n+ b

)
+
(
(k−u)m+ c, (k−u)n+d

)
(for 1 ≤ u ≤ k).

Theorems 41 and 42 allow us to overcome this problem and at the same

time prove an important property of the Qkm,kn operators.

Theorem 2.5

If Split(m,n) = (a, b) + (c, d) then we may set for k > 1 and any 1 ≤
u ≤ k

(56) Qkm,kn = 1
M

[
Q(k−u)m+c,(k−u)n+d , Q(u−1)m+a,(u−1)n+b

]
.

Moreover, letting Ξ =

[
a c
b d

]
2 we also have

(57) a) Qk,k = qt
1−qt ∇hk

[
X( 1

qt − 1)
]
∇−1 and b) Qkm,kn = ΞQk,k

In particular it follows that for any fixed (m,n) the operators
{
Qkm,kn

}
k≥1

form a commuting family.

Proof

Note first that for (m,n) = (1, 1) we have Split(1, 1) = (1, 0) + (0, 1).
Thus the right hand side of 56 becomes for any 1 ≤ u ≤ k

(58) 1
M

[
Qk−u,k−u+1 , Qu,u−1

]
= qt

1−qt ∇hk
[
X( 1

qt − 1)
]
∇−1

where the last equality is another way of writing 55. We thus immediately

see that all these assertions are valid for the co-prime pair (1, 1), including
57 a). To deal with the case of a general co-prime pair (m,n) we notice that

a simple calculation gives

Ξ
[ k − u

k − u+ 1

]
=
[m(k − u) + c

n(k − u) + d

]
, Ξ

[ u

u− 1

]
=
[m(u− 1) + a

n(u− 1) + b

]
.

2Notice Ξ ∈ SL2[Z] since (3) of 24 gives ad− bc = 1.
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Thus Ξ maps the operators occurring on the left hand side of 58 onto the
operators occurring on the right hand side of 56. Since all these operators
are indexed by co-prime pairs, all the relations they satisfy are preserved
by the action of the group G. In particular the matrix Ξ will map all the
equalities resulting from 58 into the desired equalities of the right hand sides
of 56. Thus 56 well defines the operator Qkm,kn and 57 b) necessarily follows.
The asserted commutativity follows just as well, since 57 a) shows that the
operators

{
Qk,k

}
k≥1

form a commuting family, and the identities expressing
these commutativities are preserved by G. This completes our proof.

An immediate corollary of Theorem 2.5 is a recursive construction of the
action of the operators Qkm,kn on a symmetric function F .

Algorithm

Given a pair (km, kn) with (m,n) co-prime and k ≥ 1:

If km = 1 then output = DnF ,

else

Step 1: Pick the first 1 ≤ a ≤ m such that 1 = na − mb where b =
na/m� − 1.

Step 2: Set (c, d) = (km, kn)− (a, b).

Step 3: output =
(
Qc,dQa,bF − Qa,bQc,dF

)
/M .

Since all these operators lie in the algebra generated by the Dk, it follows
from 23 that their action on a symmetric polynomial may also be given a
completely explicit constant term formula.

More precisely, given any pair (km, kn) we can construct a Laurent poly-
nomial Πkm,kn[z1, . . . , zkm] such that for every symmetric polynomial F [X]
we have

Qkm,kn F [X] = F
[
X +

km∑
i=1

M
zi

] km∏
i=1

Ω[−ziX] Πkm,kn[z1, ..., zkm]

×
∏

1≤i<j≤km

Ω
[
−M zi

zj

]∣∣∣
z0
1z

0
2 ···z0

km

.

(59)

In fact, the above algorithm naturally leads to the following result.

Proposition 2.1

A family of Laurent polynomials Πkm,kn that may be used in 59 can be
recursively constructed as follows:

Given a pair (km, kn) with (m,n) co-prime and k ≥ 1:

If km = 1 then set Π1,n = 1
zn
1
,
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else
Step 1: Pick the first 1 ≤ a ≤ m such that 1 = na − mb where b =

na/m� − 1.
Step 2: let (c, d) = (km, kn)− (a, b).
Step 3: and set

Πkm,kn[Z1,km] = 1
M

(
Πa,b[Z1,a]Πc,d[Za+1,a+c] − Πc,d[Z1,c]Πc,d[Zc+1,c+a]

)
.

where for convenience we have set Zr,s = {zr, zr+1, . . . , zs}.

Proof
It suffices to show how two such operators compose after they succes-

sively act on a symmetric function. To this end suppose that

a) VAF [X] = F
[
X +

a∑
i=1

M
zi

] a∏
i=1

Ω[−ziX]ΠA[Z1,a]
∏

1≤i<j≤a

Ω
[
−M zi

zj

]∣∣∣
z0
1z

0
2 ···z0

a

c) VCF [X] = F
[
X +

c∑
i=1

M
zi

] c∏
i=1

Ω[−ziX]ΠC [Z1,c]
∏

1≤i<j≤c

Ω
[
−M zi

zj

]∣∣∣
z0
1z

0
2 ···z0

c

(60)

Applying VC to both sides of 60 a) and using 60 c) we may write

VCVA F [X] = F
[
X +

a∑
i=1

M
zi

+

c∑
i=1

M
za+i

] a∏
i=1

Ω
[
− zi(X +

c∑
i=1

M
za+i

)
]

×ΠA[Z1,a] ΠC [Za+1,a+c]
∏

1≤i<j≤a

Ω
[
−M zi

zj

]
×

a+c∏
i=a+1

Ω[−ziX]
∏

a+1≤i<j≤a+c

Ω
[
−M zi

zj

] ∣∣∣
z0
1z

0
2 ···z0

a+c

= F
[
X +

a+c∑
i=1

M
zi

] a+c∏
i=1

Ω[−ziX] ΠA[Z1,a] ΠC [Za+1,a+c]

×
∏

1≤i<j≤a+c

Ω
[
−M zi

zj

] ∣∣∣
z0
1z

0
2 ···z0

a+c

which shows that the Laurent polynomial for VCVA may be taken to be
ΠA[Z1,a] ΠC [Za+1,a+c].

It is clear, because of the multiplicity of choices of splitting a vector
(0, 0) → (km, kn), that the Laurent polynomial needed in 59 is not unique.
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However, this non uniqueness goes deeper than it may be suspected, as the
following identity discovered by Negut shows.

Theorem 2.6 [17]
For any co-prime pair (m,n) and symmetric function F [X] we have

Qm,nF [X] = F [X +

m∑
i=1

M
zi
]

m∏
i=1

Ω[−ziX]

m∏
i=1

1

z
ei(m,n)

i

×
m−1∏
i=1

1
(1−qtzi/zi+1)

∏
1≤i<j≤m

Ω[− zi
zj
M ]
∣∣∣
z0
1z

0
2 ···z0

m

(61)

where for convenience we have set

(62) ei(m,n) = 
i nm� − 
(i− 1) n
m�.

Later in this writing we will present our progress towards providing an el-
ementary proof of this remarkable identity. Here it is most appropriate to
present some of the consequences of our experimentation with the right hand
side of 61.

The first surprise is that 61 is false if (m,n) is replaced by a non co-prime
pair. This given, it is best to set for any pair of positive integers (u, v) and
symmetric function F [X]

Nu,vF [X] = F [X +

u∑
i=1

M
zi
]

u∏
i=1

Ω[−ziX]

u∏
i=1

1

z
ei(u,v)

i

×
u−1∏
i=1

1
(1−qtzi/zi+1)

∏
1≤i<j≤u

Ω[− zi
zj
M ]
∣∣∣
z0
1z

0
2 ···z0

u

(63)

and refer to it as the Negut operator.
The next surprise is that computer experimentation led us to formulate

the following remarkable

Conjecture 2.1
For all k ≥ 1 and all F[X] we have

(64) Nk,kF [X] = ∇ek∇−1F [X].

This given, the relation of Negut’sNk,k operator to the Qkm,kn operators
should be given by the following identity.
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Theorem 2.6

(65) Nk,k = (−1)k
∑
λ
k

mλ

[ qt
qt−1

](1−qt
qt

)l(λ)∏l(λ)
i=1 Qλi,λi

Proof
Note first that we may write for any two expressions A,B

hk[AB] =
∑
λ
k

mλ[B]hλ[A].

Letting A = X( 1
qt − 1) and B = qt

qt−1 gives

(−1)kek[X] = hk[−X] =
∑
λ
k

mλ

[ qt
qt−1

]
hλ
[
X( 1

qt − 1)
]
.

Thus conjugating both sides by ∇ gives

∇ek∇−1 = (−1)k
∑
λ
k

mλ

[ qt
qt−1

]
∇hλ

[
X( 1

qt − 1)
]
∇−1.(66)

But using 57 a) we easily derive that

∇hλ
[
X( 1

qt − 1)
]
∇−1 =

(1−qt
qt

)l(λ)∏l(λ)
i=1 Qλi,λi

and we see that, given 64, the identity in 65 is simply another way of writing
66.

Thus it would follow from Conjecture 2.1 that the operators Nk,k are
in the algebra generated by the Dk operators. This fact plus a variety of
reasons, including experimental evidence, suggested that for the matrix Ξ
of Theorem 2.5 we should have ΞNk,k = Nkm,kn. This given, applying Ξ to
both sides of 65 yields the following extension of Conjecture 2.1.

Conjecture 2.2
For all co-prime (m,n) and k ≥ 1 we have

(67) Nkm,kn = (−1)k
∑
λ
k

mλ

[ qt
qt−1

](1−qt
qt

)l(λ)∏l(λ)
i=1 Qλim,λin.

The same sequence of steps carried out in the construction of the oper-
ator in the right hand side of 67, can be used to create an infinite family
of operators in the algebra generated by the Dk operators. In fact we need
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only replace ek by any symmetric function of the same degree in the manip-
ulations carried out in the proof of Theorem 2.6.

To carry this out it is convenient to set for any partition λ = (λ1, λ2, · · · ,
λl)

hλ[X; q, t] = ( qt
1−qt)

l
∏l

i=1 hλi
[X(1/qt− 1)]

and notice that the collection
{
hλ[X; q, t]

}
λ
is a symmetric function basis.

This given, we proceed as follows:

Definition 2.1
Given any symmetric function G that is homogeneous of degree k and

any co-prime pair (m,n):
Step 1: Construct the expansion

(68) G =
∑
λ
k

cλ(q, t)hλ[X; q, t].

Step 2: Set

(69) Gkm,kn =
∑
λ
k

cλ(q, t)

l(λ)∏
i=1

Qmλi,nλi
.

Remark 2.1
It is easily seen that the operator on the right hand side of 67 is simply

Gkm,kn for G = ek. This immediately gives rise to a variety of questions. To
begin, are there ways to modify the definition of the Negut operator Nu,v to
obtain the action of Gkm,kn for some other choices of G. Secondly, we have
Gk,k = ∇G∇−1 whenever G is of degree k. Hence the well-known fact that
∇ek is Schur positive combined with the fact that Nk,k = ∇ek∇−1 makes
us wonder what cases of Schur positivity may occur for other choices of G.
Of course it is experimentally well known that ±∇sλ, with an appropriate
choice of the sign, is Schur positive. We may then ask what bi-graded Sn

modules may have Frobenius characteristics given by the symmetric poly-
nomials resulting from actions of the operators Gkm,kn.

It is also conjectured by Haglund et al. [13] that a refinement of the poly-
nomial ∇ek may also be obtained as an appropriate enumerator of parking
functions. Using this conjecture Y. Kim in a recent thesis [15] shows that for
an infinite variety of 2-row and 2-column partitions the polynomial ±∇sλ
should also be obtained as an enumerator of parking functions. Can other
choices of G lead to similar findings? It develops that these questions have
some truly surprising answers. The reader is referred to a forthcoming arti-
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cle [3] where the Gkm,kn operators, for a variety of choices of the symmetric
function G are shown to be closely connected to the combinatorics of the
rational “Parking Functions” constructed by Hikita in [14].

3. The Negut operators and the SSS trick

Throughout this section, we will use the notations Sk and Symk for the
symmetric group of order k and symmetrization with respect to Zk =
{z1, . . . , zk} respectively. It will also be useful to write Za,b, Sa,b and Syma,b

when restricting to the variables {za, za+1, . . . zb} for some a ≤ b.
The problem we deal with in this section is best understood if we start

with an example. Suppose we want to program on the computer the action
of the operator Q5,3. Now using 59 for k = 1 and (m,n) = (5, 3) we get
(70)

Q5,3F [X] = F
[
X+

5∑
i=1

M
zi

] 5∏
i=1

Ω[−ziX]Π5,3[z1, z2, . . . , z5]
∏

1≤i<j≤5

Ω
[
−M zi

zj

]∣∣∣
z0
1z

0
2 ···z0

5

where the Laurent polynomial Π5,3[z1, z2, . . . , z5] may be obtained by the
recursion in Proposition 2.1. In this case it is simpler to construct it directly
from the binary tree below. By associating the m×n grid with the operator
Qm,n, the successive splitting depicted by this tree immediately gives

Q5,3 =
1
M

[
[D1, [D1, D0]], [D1, D0]

]
= 1

M

((
D1(D1D0 −D0D1)− (D1D0 −D0D1)D1

)
(D1D0 −D0D1)−

− (D1D0 −D0D1)
(
D1(D1D0 −D0D1)− (D1D0 −D0D1)D1

))
Expanding this out we get
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Q5,3 =
1

M4

(
D1D1D0D1D0 − 3D1D0D1D1D0 + 2D0D1D1D1D0

− D1D1D0D0D1 + 4D1D0D1D0D1 − 3D0D1D1D0D1

− D1D0D0D1D1 + D0D1D0D1D1

)
from which we derive that

Π5,3(z1, z2, . . . , z5) =
1

M4

(
1

z2z4z5
− 3

1

z2z3z5
+ 2

1

z2z3z4
− 1

z1z4z5

+ 4
1

z1z3z5
− 3

1

z1z3z4
− 1

z1z2z5
+

1

z1z2z4

)
.

(71)

Now by 63 for u, v = 5, 3, we derive that Negut’s result is

(72) Q5,3F [X] = N5,3F [X] (for all symmetric functions F [X])

with

N5,3F [X] = F [X +

5∑
i=1

M
zi
]

5∏
i=1

Ω[−ziX]

5∏
i=1

1

z
ei(m,n)

i

×
4∏

i=1

1
(1−qtzi/zi+1)

∏
1≤i<j≤5

Ω[− zi
zj
M ]
∣∣∣
z0
1z

0
2 ···z0

5

(73)

To gauge the simplicity of this formula we need only compute the mono-
mial

∏5
i=1

1

z
ei(m,n)

i

.

Note that the definition in 62, giving

ei(m,n) = 
i nm� − 
(i− 1) n
m�,

geometrically simply means finding, for each i, the highest lattice point (i, fi)
on the line x = i that is below the main diagonal of the lattice rectangle
m×n, then setting ei = fi− fi−1. Thus the adjacent display shows that the
monomial in 72 is simply z2z4z5.

Now from Theorem 2.1 we derive that 72 can hold true if and only if
(74)

Sym5

((
Π5,3(z1, . . . , z5)− z2z4z5

4∏
i=1

1

(1− qt zi
zi+1

)

) ∏
1≤i<j≤5

Ω[− zi
zj
M ]

)
= 0,

an identity that should be verifiable by computer.
From this example it is easy to deduce the following general result.
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Theorem 3.1
Let m,n > 0 be coprime. The equality

(75) Qm,nF [X] = Nm,nF [X]

holds true for all symmetric functions F [X] if and only if

Symm

((
Πm,n(z1, z2, . . . , zm) −

m∏
i=1

1

z
�i n

m
�−�(i−1) n

m
�

i

m−1∏
i=1

1

(1− qt zi
zi+1

)

)
×

∏
1≤i<j≤m

Ω[− zi
zj
M ]

)
= 0.

(76)

The identity in 73 actually was not entirely verifiable on a laptop com-
puter. The problem is not carrying out the symmetrization, but recognizing
that the result of symmetrization is actually equal to zero. By setting zi = θi

in 74 then MAPLE is able to recognize that the resulting expression simpli-
fies to zero. On the other hand, for the examples in which m ≤ 4 such as
those depicted below

the Negut equality Qm,n = Nm,n can be verified even on a laptop in a few
seconds. Moreover, as long as m ≤ 4, we can easily obtain a computer proof
of 76. More precisely

Theorem 3.2
For all co-prime pairs (m,n) with m ≤ 4 we have

(77) Qm,n = Nm,n.

Proof
We might suspect that Qm,n −Nm,n = 0 should imply that Qm,n+m −

Nm,n+m = 0 by the action of the matrix S =

[
1 0
1 1

]
. Of course we know that
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SQm,n = Qm,n+m, however at this moment, we have no way to justify acting
by S on Nm,n. Nevertheless, the idea can be salvaged, for more elementary
reason. Simply observe that it follows from 42 that

(78) Πm,n+m(z1, z2, . . . , zm) =
Πm,n(z1, z2, . . . , zm)

z1z2 · · · zm
.

At the same we can also see that

m∏
i=1

1

z
�in+m

m
�−�(i−1)n+m

m
�

i

=
1

z1z2 · · · zm

m∏
i=1

1

z
�i n

m
�−�(i−1) n

m
�

i

and we can immediately conclude that the validity of 76 for a co-prime pair
(m,n) forces the validity of 76 for (m,n+ km) for any k ≥ 1. Thus to prove
77 for all pairs (2, 1 + 2k), (3, 1 + 3k), (3, 2 + 3k), (4, 1 + 4k), (4, 3 + 4k) it
is sufficient to check it by computer for k = 0. This can be readily obtained
in MAPLE or MATHEMATICA. It is conceivable that by clever means we
could succeed in pushing the above computer proof to m = 5, but beyond
that point it is better to proceed by a more powerful theoretical approach.

To this end, a moment’s reflection should make us plainly see how the
“shuffle algebra” arises within the present context. In fact, suppose we define
as the “product” of two symmetric functions F [Za], G[Zb] as the symmetric
function (F ⊗G)[Za+b] defined by setting

(79) F [Za]⊗G[Zb] = Syma+b

(
F [Za]G[Za+1,a+b]Ω

[
−MZaZ

−1
a+1,a+b

])
where for an alphabet Z the symbol “Z−1” denotes the sum of the inverses
of its letters. Note that 79 can also be rewritten as

(80) F [Za]⊗G[Zb] =
a!b!

(a+ b)!

∑
A+B=[a+b]
|A|=a,|B|=b

F [ZA]G[ZB]Ω
[
−MZAZ

−1
B

])
.

This given, let us set

(81) Um,n[Zm] = Symm

(
Πm,n[Zm]

∏
1≤i<j≤m

Ω[−Mzi/zj ]
)
.

Then from Proposition 2.1 and 79 it follows that.

Proposition 3.1
For all co-prime pairs (m,n) with m > n we have
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(82) Um,n[Zm] = 1
M

(
Uc,d[Zc]⊗Ua,b[Za] − Ua,b[Za]⊗Uc,d[Zc]

)
.

Proof

Note first that

Syma+c

(
Πc,d[Zc]Πa,b[Zc+1,c+a]

∏
1≤i<j≤a+b

Ω[−Mzi/zj ]
)

=

=
c!a!

(c+ a)!

∑
τ

τ

(
Symc

(
Πc,d[Zc]

∏
1≤i<j≤c

Ω[−Mzi/zj ]
)

× Symc+1,c+a

(
Πa,b[Zc+1,c+a]

∏
c+1≤i<j≤c+a

Ω[−Mzi/zj ]
)

×
∏

1≤i≤c
c+1≤j≤c+a

Ω[−Mzi/zj ]

)

=
c!a!

(c+ a)!

∑
τ

τ

(
Uc,d[Zc]Ua,b[Zc+1,c+a]

∏
1≤i≤c

c+1≤j≤c+a

Ω[−Mzi/zj ]

)

(by 80 ) = Uc,d[Zc]⊗Ua,b[Za]

where the sum is over the left coset representatives τ of the subgroup Sc ×
Sc+1,c+a ⊆ Sa+c. It should now be quite clear that the second term in 82

can be obtained in an entirely analogous manner. Thus to complete our

argument, we need only to use the recursion

(83) Πm,n[Zm] = 1
M (Πc,d[Zc]Πa,b[Zc+1,c+a] − Πa,b[Za]Πc,d[Za+1,a+c]).

This suggests an inductive approach to the proof of the equality Qm,n =

Nm,n. Start by showing that if Split(m,n) = (a, b) + (c, d) then

(84) Nm,n = 1
M [Nc,d,Na,b].

For convenience let us set

(85) Vm,n[Zm] = Symm

(
Ξm,n[Zm]

∏
1≤i<j≤m

Ω[−Mzi/zj ]
)

with
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Ξm,n[Zm] =

m∏
i=1

1

z
�i nm� − 
(i− 1) n

m�
i

m−1∏
i=1

1

1− qtzi/zi+1

=
1

znm

m−1∏
i=1

(zi/zi+1)
−�i nm�

1− qtzi/zi+1
.

(86)

Note that 63 for (u, v) = (m,n) may be written as

Nm,nF [X] = F [X +
∑m

i=1
M
zi
]
∏m

i=1Ω[−ziX]

Ξm,n[Zm]
∏

1≤i<j≤m

Ω[− zi
zj
M ]
∣∣∣
z0
1z

0
2 ···z0

m

(87)

and since Ξ1,n(Z1) =
1
z1

it follows that N1,n = D1 = Q1,n for all n ≥ 1. Thus
a proof of 84 is all that is needed to prove the Negut equality Qm,n = Nm,n.

As further evidence of the isomorphism between the shuffle algebra and
the algebra generated by the Dk operators, we must point out that from
Theorems 39 and 87 we may easily derive the following.

Proposition 3.2
For a co-prime pair (m,n) with Split(m,n) = (a, b) + (c, d) we have

Nm,n = 1
M [Nc,d,Na,b] ⇐⇒

Vm,n[Zm] = 1
M

(
Vc,d[Zc]⊗Va,b[Za] − Va,b[Za]⊗Vc,d[Zc]

)
.

The following general result enabled us to obtain a computer proof of
Negut’s equality 75 for all m ≤ 7.

Theorem 3.3
If m > n is a co-prime pair with Split(m,n) = (a, b) + (c, d) then the

identity

(88) Nm,n = 1
M [Nc,d,Na,b]

holds true if and only if

Symm

(
Ξm,n[Zm]

za+1zc

(
za+1zc+1 − tza+1zc − qza+1zc + qtzazc

)
×

∏
1≤i<j≤m

Ω[− zi
zj
M ]

)
= 0.

(89)
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In particular the validity of 89 forces the equality

Nm,n = Qm,n.

Proof

From 87 and Theorem 2.1 we derive that 88 holds true if and only if

Symm

((
MΞm,n[Zm]−(Ξa,b[Za] Ξc,d[Za+1,a+c]−Ξc,d[Zc]Ξa,b[Zc+1,c+a])

)
×

∏
1≤i<j≤m

Ω[− zi
zj
M ]
)
= 0.

(90)

To compute the first factor within Symm we need to consider the two cases
a < c and a > c which are schematically depicted in the display below.

Note first that in each case there are no lattice points within the parallel-
ogram formed by the arrows. Thus the set of highest lattice points (i, fi)
below the diagonal (0, 0) → (m,n) is the same as the set of highest lattice
points (i, fi) below the vector sum (a, b)+ (c, d), except for (a, b). This gives


i nm� = 
i ba� (for 1 ≤ i ≤ a) and


i nm� = b+ 
(i− a)dc � (for a+ 1 ≤ i ≤ a+ c = m).

Thus 86 gives

Ξa,b[Za] Ξc,d[Za+1,a+c] =
1

zba

a−1∏
i=1

(zi/zi+1)
−�i ba�

1− qtzi/zi+1

1

zda+c

a+c−1∏
i=a+1

(zi/zi+1)
−�(i−a)

d
c �

1− qtzi/zi+1

=
( za
za+1

)b(
1− qt

za
za+1

) 1
zba

a∏
i=1

(zi/zi+1)
−�i nm�

1− qtzi/zi+1

1

zdm

m−1∏
i=a+1

(zi/zi+1)
b−�i nm�

1− qtzi/zi+1

=
1

zba+1

(
1− qt

za
za+1

)znm
zdm

Ξm,n[Zm](za+1/zm)b =
(
1− qt

za
za+1

)
Ξm,n[Zm].
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For the same reason, in each case the set of highest lattice points (i, fi)
below the diagonal (0, 0) → (m,n) is the same as the set highest lattice
points (i, fi) below the reversed vector sum (c, d) + (a, b), except for (c, d).
This gives


i nm� = 
idc � − χ(i = d) (for 1 ≤ i ≤ c) and


i nm� = d+ 
(i− c) ba� (for c+ 1 ≤ i ≤ c+ a = m)

thus again from 86 we get

Ξc,d[Zc] Ξa,b[Zc+1,c+a] =
1

zdc

c−1∏
i=1

(zi/zi+1)
−�i dc �

1− qtzi/zi+1

1

zbc+a

c+a−1∏
i=c+1

(zi/zi+1)
−�(i−c)

b
a�

1− qtzi/zi+1

=
( zc
zc+1

)d−1(
1− qt

zc
zc+1

) 1
zdc

c∏
i=1

(zi/zi+1)
−�i nm�

1− qtzi/zi+1

1

zbm

m−1∏
i=c+1

(zi/zi+1)
d−�i nm�

1− qtzi/zi+1

=
z−1
c

zd−1
c+1

(
1− qt

zc
zc+1

)znm
zbm

Ξm,n[Zm](zc+1/zm)d

= zc+1z
−1
c

(
1− qt

zc
zc+1

)
Ξm,n[Zm].

Combining these two identities we get(
MΞm,n[Zm] −

(
Ξa,b[Za] Ξc,d[Za+1,a+c] − Ξc,d[Zc]Ξa,b[Zc+1,c+a]

))
=

= Ξm,n[Zm]
(
(1− t)(1− q) −

(
1− qt za

za+1

)
+ zc+1z

−1
c

(
1− qt zc

zc+1

))
=

Ξm,n[Zm]

za+1zc

(
za+1zc(1− t− q + qt)−

(
za+1zc − qtzazc

)
+ za+1zc+1

(
1− qt zc

zc+1

))
=

Ξm,n[Zm]

za+1zc

(
za+1zc(−t− q) + qtzazc + za+1zc+1

)
.

This shows that 90 is equivalent to 89 and completes our proof.
To this date we have not yet been able to prove 89 in full generality.

However, Theorem 3.3 has the following immediate corollary.

Theorem 3.4
For any co-prime pair (m,n) we have

(91) Nm,n

∣∣∣
t=1/q

= Qm,n

∣∣∣
t=1/q

.
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Proof

It is sufficient to verify 89 for t = 1/q. To begin notice that

Ω[−uM ] =
q(1− u)2

(q − u)(1− qu)
.

This gives

∏
1≤i<j≤m

Ω[−Mzi/zj ]
∣∣∣
t=1/q

= q(
m

2 )
∏

1≤i<j≤m

(zi − zj)
2

(qzj − zi)(zj − qzi)

which is easily seen to be a symmetric rational function. Thus we only need

to show that

Symm

(
Ξm,n[Zm]

∣∣∣
t=1/q

(
zc+1/zc − (q + 1/q) + za/za+1

))
= 0

or equivalently that

Asymm

(
Ξm,n[Zm]

∣∣∣
t=1/q

Δ[Zm]
(
zc+1/zc − (q + 1/q) + za/za+1

))
= 0

with Δ[Zm] =
∏

1≤i<j≤m(zj − zi) and “Asymm” denoting Sm antisym-

metrization.

Next notice that since we need only prove 91 for 1 ≤ n ≤ m− 1 we can

assume, here and after, that n
m < 1 and we may write

Ξm,n[Zm]
∣∣∣
t=1/q

Δ[Zm] =

m∏
i=1

1

z
�i nm� − 
(i− 1) n

m�
i

m−1∏
i=1

zi+1

zi+1 − zi
Δ[Zm]

=

m∏
i=2

zi

z
�i nm� − 
(i− 1) n

m�
i

m−2∏
i=1

m∏
j=i+2

(zj − zi).

Thus we are reduced to showing that

Asymm

((zc+1

zc
− (q + 1/q) +

za
za+1

)
×

m∏
i=2

zi

z
�i nm� − 
(i− 1) n

m�
i

m−2∏
i=1

m∏
j=i+2

(zj − zi)

)
= 0.

(92)
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For the pairs (m,n) with 1 ≤ n ≤ m−2 we can prove that the expression
to be anti-symmetrized is actually a homogeneous polynomial of degree less
than

(
m
2

)
, which is the minimum possible degree for which Asymm can yield

something other than zero. For the pair (m,m− 1) we will need to prove 92
by a direct brute force argument.

Notice first that for any 1 ≤ i ≤ m we have

(93) 
i nm� − 
(i− 1) n
m� ≤ 1.

In fact setting 
i nm� = r and letting ε = i nm − r we derive


(i− 1) n
m� = 
r + ε− n

m� =

{
r + 
ε− n

m� = r if ε ≥ n
m

r −  n
m − ε� = r − 1 if ε < n

m .

This proves 93.
Let us now suppose that n ≤ m− 2.
In view of 93 to show that the expression inside Asymm is a polynomial

we need only show that

(94) 1) 
c n
m� − 
(c− 1) n

m� = 0 and 2) 
(a+ 1) n
m� − 
a n

m� = 0

This given, notice that since we clearly have
∑m

i=2(
i nm� − 
(i− 1) n
m�) = n,

the degree of the resulting polynomial must be

m− 1−
m∑
i=2

(

i nm� − 
(i− 1) n

m�
)
+
(
m−1
2

)
= m− 1− n+

(
m−1
2

)
<
(
m
2

)
as desired to show this polynomial to anti-symmetrize to zero.

To prove 94 we note that the equality in 24 (3), namely

(95) na = bm+ 1,

together with (m,n) = (a, b) + (c, d), gives that

nc = md− 1.

Thus since n+1
m < 1


c n
m� − 
(c− 1) n

m� = 
d− 1
m� − 
d− n+1

m � = (d− 1)− (d− 1) = 0.

Likewise 95 gives
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(a+ 1) n
m� − 
a n

m� = 
b+ n+1
m � − 
b+ 1

m� = 0

again since n+1
m < 1, completing our proof of 94.

Finally suppose that n = m − 1. Since in this case Split(m,m − 1) =
(m− 1,m− 2) + (1, 1) and

m∏
i=2

zi

z
�i nm �−�(i−1)

n
m �

i

= 1

then 92 reduces to

(96) Asymm

((z2
z1

− (q + 1/q) +
zm−1

zm

)m−2∏
i=1

m∏
j=i+2

(zj − zi)

)
= 0.

We claim that in this case we separately have

Asymm

(m−2∏
i=1

m∏
j=i+2

(zj − zi)

)
= 0(97)

a) Asymm

(
z2
z1

m−2∏
i=1

m∏
j=i+2

(zj − zi)

)
= 0,

b) Asymm

(
zm−1

zm

m−2∏
i=1

m∏
j=i+2

(zj − zi)

)
= 0.

(98)

Now 97 is immediate since the polynomial that is anti-symmetrized is of
degree

(
m−1
2

)
. We will complete our proof of 91 by showing 98 a). The

identity in 98 b) can be dealt with in an entirely analogous manner.
By collecting terms with respect to z1, we have

m−2∏
i=1

m∏
j=i+2

(zj − zi) = z3 · · · zm
m−2∏
i=2

m∏
j=i+2

(zj − zi) +

m−2∑
k=1

zk1Pk(z2, . . . , zm),

where Pk is a polynomial for each k ≥ 1. It follows that for all k ≥ 1, z2/z1 ·
zk1Pk is a polynomial of degree

(
m−1
2

)
and hence they Sm-antisymmetrizes

to 0. For the only remaining term, we observe that

Asymm

(
z2/z1 · z3 · · · zm

m−2∏
i=2

m∏
j=i+2

(zj − zi)
)
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=Asymm

⎛⎝ 1

z1
z2z3 · · · zmAsym2,m

(m−2∏
i=2

m∏
j=i+2

(zj − zi)
)⎞⎠ = 0.

Since

Asym2,m

(m−2∏
i=2

m∏
j=i+2

(zj − zi)
)

= 0

holds true for the same reason we have 97. This completes our proof.

Remark 3.1
Convincing MAPLE to deliver zero after symmetrization in 89 is not

trivial even when m is as small as 5. We actually succeeded in pushing the
verification of 89 for all co-prime pairs (m,n) with 1 ≤ n ≤ m−1 and m ≤ 7.
This given, it is worth while sketching at least what we did for m = 5. The
cases m = 6, 7 use only more elaborate versions of the same ideas.

The first step is to notice we may write∏
1≤i<j≤m

Ω[− zi
zj
M ] =

∏
1≤i<j≤m

(zj − zi)(zj − qtzi)

(zj − tzi)(zj − qzi)

=
∏

1≤i<j≤m

(zj − zi)(zj − qtzi)(zi − tzj)(zi − qzj)

(zj − tzi)(zj − qzi)(zi − tzj)(zi − qzj)
.

Since the expression∏
1≤i<j≤m

(zj − tzi)(zj − qzi)(zi − tzj)(zi − qzj)

is symmetric in z1, z2, . . . , zm, it may be omitted in 89 and the Negut identity
may be also be established by proving that

Asymm

(
Ξm,n[Zm]

(
zc+1

zc
− (t+ q) + qt za

za+1

)
×

∏
1≤i<j≤m

(zj − qtzi)(zi − tzj)(zi − qzj)

)
= 0.

(99)

Now recall that we may write, for n
m < 1,

Ξm,n[Zm] =

m∏
i=2

zi

z
�i nm �−�(i−1)

n
m �

i

m−1∏
i=1

1

zi+1 − qtzi
.
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Observing that the expression

E =
∏

2≤j≤m

(z1 − tzj)(z1 − qzj)

is symmetric in z2, z3, . . . zm, to prove 99 we may start by anti-symmetrizing,
with respect the symmetric group S2,m, the expression

F =
(
zc+1

zc
− (t+ q) + qt za

za+1

) m∏
i=2

zi

z
�i nm �−�(i−1)

n
m �

i

×
m−2∏
i=1

m∏
j=i+2

(zj − qtzi)(zi − tzj)(zi − qzj).

We now are reduced to checking that

(100) Asymm

(
E Asym2,mF

)
= 0.

However, we can improve on memory usage when computing Asym2,mF .
In fact, noticing that F is a Laurent polynomial we need only rewrite it in
what we shall refer to as a normal form. More precisely this amounts to
replacing Asym2,mF by the Laurent polynomial NFF obtained by remov-
ing from F all the monomials with repeated exponents and then replacing
each of the remaining monomials by the rearrangement that makes the ex-
ponents decrease, multiplied by the sign of the permutation that produces
that rearrangement. Since the S2,m anti-symmetrization of such a normalized
monomial produces the same polynomial yielded by the original monomial,
it follows that there is no loss in replacing Asym2,mF by NFF in 100.

It turns out that the reduction in size caused by the combination of these
simple tricks makes MAPLE recognize that

Asymm

(
EAsym2,mNFF

)
= 0

at least for m = 5. For m = 6, 7 further partial anti-symmetrizations are
necessary but the basic idea is to reduce the size as much as possible within
successive anti-symmetrizations.

Appendix. The computation of DaD
∗
b − D∗

bDa

We should mention that the identity proved here was originally obtained
using the theory of constant terms developed in [19]. What we give here is a
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completely elementary proof worked out for an audience that is unfamiliar
with the above mentioned theory.

We will adopt the following convention. For Ei[t1, t2, . . .] any rational
functions of the variables t1, t2, . . . and P any symmetric polynomial, we set

P (r1,r2,...,rk)[X] = P [X + E1u1 + E2u2 + · · ·+ Ekuk]
∣∣∣
u
r1
1 u

r2
2 ···urk

k

.

The important property is that if

P (s1)[X] = P [X + E1u1]
∣∣∣
u
s1
1

then

(101) P (s1)[X + E2u2]
∣∣∣
u
s2
2

= P [X + E1u1 + E2u2]
∣∣∣
u
s1
1 u

s2
2

.

For P a homogeneous symmetric polynomial of degree d we have

D∗
b P [X] = P

[
X − M̃

z2

]
Ω[ z2X ]

∣∣
zb
2

=

d∑
r2=0

P (r2)[X] ( 1
z2
)r2
∑
u≥0

zu2 hu[X]
∣∣
zb
2
=

d∑
r2=0

P (r2)[X]hr2+b[X].

Thus applying 101 with E1 = M and E2 = −M̃ gives

DaD
∗
b P [X] =

d∑
r1,r2=0

P (r1,r2)[X] ( 1
z1
)r1 hr2+b[X + M

z1
] Ω[−z1X ]

∣∣∣
za
1

=

d∑
r1,r2=0

P (r1,r2)[X] ( 1
z1
)r1

r2+b∑
s=0

hr2+b−s[X] ( 1
z1
)s hs[M ]

×
∑
u≥0

zu1 hu[−X]
∣∣∣
za
1

=

d∑
r1,r2=0

P (r1,r2)[X]

r2+b∑
s=0

hr2+b−s[X]hs[M ]hr1+s+a[−X].(102)

Making the summation parameter change u = r1 + s + a gives s =
u− r1 − a and the range

r1 + a ≤ u ≤ r1 + r2 + a+ b
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so 102 becomes

DaD
∗
bP [X] =

d∑
r1,r2=0

P (r1,r2)[X]

r1+r2+a+b∑
u=r1+a

hr1+r2+a+b−u[X]hu[−X]hu−r1−a[M ].

Similarly

Da P [X] = P
[
X + M

z1

]
Ω[−z1X ]

∣∣∣
za
1

=

d∑
r1=0

P (r1)[X] ( 1
z1
)r1
∑
u≥0

zu1 hu[−X]
∣∣
za
1
=

d∑
r1=0

P (r1)[X]hr1+a[−X].

Thus

D∗
bDa P [X] =

d∑
r1,r2=0

P (r1,r2)[X] ( 1
z2
)r2 hr1+a[−X + M̃

z2
] Ω[ z2X ]

∣∣∣
zb
2

=

d∑
r1,r2=0

P (r1,r2)[X] ( 1
z2
)r2

r1+a∑
s=0

hr1+a−s[−X] ( 1
z2
)s hs[M̃ ]

×
∑
u≥0

zu2 hu[X]
∣∣∣
zb
2

=

d∑
r1,r2=0

P (r1,r2)[X]

r1+a∑
s=0

hr1+a−s[−X]hs[M̃ ]hr2+s+b[X].(103)

Making the summation parameter change u = r1 + a − s gives s =
r1 + a− u and the range

0 ≤ u ≤ r1 + a

so 103 becomes

D∗
bDa P [X] =

d∑
r1,r2=0

P (r1,r2)[X]

r1+a∑
u=0

hu[−X]hr1+r2+a+b−u[X]hr1+a−u[M̃ ].

Now recall that

hm[M ] = M
1−tq (1− (tq)m) and

hm[M̃ ] = M
1−tq

1−(tq)m

(tq)m = − M
1−tq (1− (tq)−m).



Remarkable new operators 711

We thus get

DaD
∗
b P [X] = M

1−tq

d∑
r1,r2=0

P (r1,r2)[X]

×
r1+r2+a+b∑
u=r1+a

hr1+r2+a+b−u[X]hu[−X](1− (tq)u−r1−a)

and

D∗
bDa P [X] = − M

1−tq

d∑
r1,r2=0

P (r1,r2)[X]

×
r1+a∑
u=0

hu[−X]hr1+r2+a+b−u[X](1− (tq)u−r1−a).

Hence

(DaD
∗
b −D∗

bDa)P [X] =

= M
1−tq

d∑
r1,r2=0

P (r1,r2)[X]

r1+r2+a+b∑
u=0

hr1+r2+a+b−u[X]hu[−X](1− (tq)u−r1−a)

= M
1−tq

d∑
r1,r2=0

P (r1,r2)[X]hr1+r2+a+b[X −X]

− M
1−tq

d∑
r1,r2=0

P (r1,r2)[X](tq)−r1−a
r1+r2+a+b∑

u=0

hr1+r2+a+b−u[X]hu[−tqX]

= M
1−tq

d∑
r1,r2=0

P (r1,r2)[X]hr1+r2+a+b[X −X]

− M
1−tq

d∑
r1,r2=0

P (r1,r2)[X](tq)−r1−ahr1+r2+a+b[X(1− tq)].

But now note that we may write

d∑
r1,r2=0

P (r1,r2)[X](tq)−r1−ahr1+r2+a+b[X(1− tq)]
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= 1
(tq)a

∑d
r1,r2=0 P [X +Mu1 − M̃u2]

∣∣∣
u
r1
1 u

r2
2

( 1
tqz )

r1(1z )
r2Ω[zX(1− tq)]

∣∣∣
za+b

= 1
(tq)aP [X + M

qtz − M̃
z ] Ω[zX(1− tq)]

∣∣∣
za+b

= 1
(tq)aP [X] Ω[zX(1− tq)]

∣∣∣
za+b

.

This proves
(104)

(DaD
∗
b −D∗

bDa)P [X] = M
1−tq

⎧⎪⎨⎪⎩
1

(tq)aha+b

[
X(1− tq)

]
P [X] if a+ b > 0,(

1− 1
(tq)a

)
P [X] if a+ b = 0,∑

r1+r2=−(a+b) P
(r1,r2)[X] if a+ b < 0.
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