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On the asymptotic distribution of parameters in
random weighted staircase tableaux∗

Pawe�l Hitczenko and Amanda Lohss

In this paper, we study staircase tableaux, a combinatorial object
introduced due to its connections with the asymmetric exclusion
process (ASEP) and Askey-Wilson polynomials. Due to their in-
teresting connections, staircase tableaux have been the object of
study in many recent papers. More specific to this paper, the dis-
tribution of various parameters in random staircase tableaux has
been studied. There have been interesting results on parameters
along the main diagonal, however, no such results have appeared
for other diagonals. It was conjectured that the distribution of the
number of symbols along the kth diagonal is asymptotically Pois-
son as k and the size of the tableau tend to infinity. We partially
prove this conjecture; more specifically we prove it for the second
and the third main diagonal.

1. Introduction

In this paper, we study staircase tableaux, a combinatorial object introduced
(in [10], [11]) due to connections with the asymmetric exclusion process
(ASEP) and Askey-Wilson polynomials. The ASEP can be defined as a
Markov chain with n sites, with at most one particle occupying each site.
Particles may jump to any neighboring empty site with rate u to the right
and rate q to the left. Particles may enter and exit at the first site with rates α
and γ respectively. Similarly, particles may enter and exit the last site with
rates δ and β. The ASEP is an interesting particle model that has been
studied extensively in mathematics and physics. It has also been studied
in many other fields, including computational biology [3], and biochemistry,
specifically as a primitive model for protein synthesis [17]. Staircase tableaux
were introduced per a connection between the steady state distribution of the
ASEP and the generating function for staircase tableaux [11]. See Section 2
for a discussion of the ASEP and its connection with staircase tableaux.
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In addition to interest in its own right, the ASEP has been known to have
interesting connections in combinatorics and analysis. Consequently, stair-
case tableaux have similarly been connected to many combinatorial objects
and a family of polynomials. In fact, the generating function for staircase
tableaux has been used to give a formula for the moments of Askey-Wilson
polynomials [11], [7]. Staircase tableaux have also inherited many interesting
properties from other types of tableaux (see [1], [5], [6], [11], [8], [9], [15],
[18]). We refer to [14, Table 1] for a description of some of the bijections
between the various types of the tableaux.

Due to all these interesting connections, staircase tableaux have been
the object of study in many recent papers. In particular, the asymptotic
distribution of parameters along the main diagonal is known. The number
of α/γ symbols and the number of β/δ symbols along the main diagonal
were proven to be asymptotically normal in [12], and the distribution of
boxes along the main diagonal was given in [14]. However, the distributions
of parameters on the other diagonals have not been studied specifically.

In [14], the distribution of each box in a staircase tableau was given,
and the expected values of the number of symbols on the diagonals were
computed. Based on that it was conjectured that the distribution of the
number of symbols along the kth diagonal is asymptotically Poisson as k
and the size of the tableau tend to infinity. The main results of this paper
is the proof of this in two special cases when k = n− 1 and k = n− 2. That
is, we show that the distribution of the number of symbols along the second
and the third main diagonal is asymptotically Poisson with parameter 1 (see
Theorem 9 and Theorem 15 below). Similarly, we show that the number of
α’s (resp. β’s) along the second and the third main diagonal is asymptotically
Poisson with parameter 1/2 (see Theorem 6, Corollary 7, and Theorem 12).

The paper is organized as follows. We introduce terminology, notation
and provide some background information in the next section. Section 3
concerns the second main diagonal and the last section is devoted to the
third main diagonal. The results for the second main diagonal were discussed
in an extended abstract [16].

2. Notation and preliminaries

Staircase tableaux were first introduced in [10] and [11] as follows:

Definition 1. A staircase tableau of size n is a Young diagram of shape (n,
n-1, ..., 1) such that:

1. The boxes are empty or contain an α, β, γ, or δ.
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2. All boxes in the same column and above an α or γ are empty.

3. All boxes in the same row and to the left of an β or δ are empty.

4. Every box on the diagonal contains a symbol.

The rows and columns in a staircase tableau are numbered from 1

through n, beginning with the box in the NW-corner and continuing south

and east respectively. Each box is numbered (i, j) where i, j ∈ {1, 2, ..., n}.
Note that i + j ≤ n + 1. We refer to the collection of boxes (n − i + 1, i)

such that i = 1, 2, ..., n as the main diagonal, the collection of boxes (n− i, i)

such that i = 1, 2, ..., n − 1 as the second main diagonal, and the collection

of boxes (n− i− 1, i) such that i = 1, 2, ..., n− 2 as the third main diagonal.

Following the conventions of [14], Sn is the set of all staircase tableaux

of size n. For a given S ∈ Sn, the number of α’s, γ’s, β’s and δ’s in S are

denoted by Nα, Nβ, Nγ , and Nδ respectively. The weight of S is the product

of all symbols in S:

wt(S) = αNαβNβγNγδNδ .

It was known (see e.g. [4]) that the generating function Zn(α, β, γ, δ) :=∑
S∈Sn

wt(S) is equal to the product:

(1) Zn(α, β, γ, δ) =

n−1∏
i=0

(α+ β + δ + γ + i(α+ γ)(β + δ)).

Notice that there is an involution on the staircase tableaux of a given size

obtained by interchanging the rows and the columns, α’s and β’s, and γ’s

and δ’s, see further [4]. In particular, the fact that α’s and β’s are identical

up to this involution allows us to extend results for α’s to results for β’s.

The connection between staircase tableaux and the ASEP requires an

extension of this preceding definition. After following the rules from Defini-

tion 1, we then fill all the empty boxes with u’s and q’s, the rates at which

particles in the ASEP jump to the right and left respectively. We do so by

first filling all boxes to the left of a β with a u and to the left of a δ with a

q. Then, we fill the empty boxes with a u if it is above an α or a δ, and q

otherwise. The weight of a staircase tableau filled as such is defined in the

same way, the product of the parameters in each box. Also, the total weight

of all such staircase tableaux, which we denote by S ′

n, is given by:

Zn(α, β, γ, δ, q, u) :=
∑
S∈S′

n

wt(S).
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Figure 1: A staircase tableau of size 7 with weight α2β3δ2γ3. (ii) The exten-
sion of (i) to a staircase tableau of weight α2β3δ2γ3u6q12 and type ••◦•◦◦◦.
(iii) The α/β-staircase tableau obtained from (i) by replacing γ’s with α’s
and δ’s with β’s. It’s weight is α5β5.

Then, each staircase tableau of size n is associated with a state of the ASEP
with n sites (see Figure 1). This is done by aligning the Markov chain with
the diagonal entries of the staircase tableau. A site is filled if the correspond-
ing diagonal entry is an α or a γ and a site is empty if the corresponding
diagonal entry is a β or a δ. Each staircase tableau’s associated state of the
ASEP is called its type.

Using this association, it was shown in [11] that the steady state prob-
ability that the ASEP is in state η is given by:∑

T∈T wt(T )

Zn
,

where T is the set of all staircase tableaux of type η.
For the purposes of this paper, we will consider more simplified staircase

tableaux, namely α/β-staircase tableaux as introduced in [14], which are
staircase tableaux limited to the symbols α and β. The set Sn ⊂ Sn denotes
the set of all such staircase tableaux. Since the symbols α and γ follow the
same rules in the definition, as do β and δ, any S ∈ Sn can be obtained from
an S

′ ∈ Sn by replacing the appropriate α’s with γ’s and β’s with δ’s.
The generating function of α/β-staircase tableaux is:

Zn(α, β) :=
∑
S∈Sn

wt(S) = Zn(α, β, 0, 0)

and it follows from (1) that it is simply:

Zn(α, β) = αnβn(a+ b)n = αnβn(a+ b+ n− 1)n
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where a := α−1 and b := β−1, a notation that will be used frequently
throughout this paper, (x)n is the rising factorial of x, i.e. (x)n = x(x +
1) · · · (x+n− 1), and (x)n = x(x− 1) . . . (x− (n− 1)) is the falling factorial
of x.

We wish to consider random staircase tableaux as was done in [12] but
it suffices to study random α/β-staircase tableaux as was done in [14]. All of
our results for random α/β-staircase tableaux can be extended to random
staircase tableaux with all four parameters, α, γ, β, δ. This is done by ran-
domly replacing each α with γ with probability γ

α+γ and similarly, each β

with δ with probability δ
β+δ independently for each occurrence. Notice that

Zn(α, β, γ, δ) = Zn(α+γ, β+δ). We also allow all parameters to be arbitrary
positive real numbers, i.e. α, β ∈ (0,∞), allowing α = ∞ by fixing β and
taking the limit or vice versa, or α = β = ∞ by taking the limit. Several
such cases were considered in the literature and we refer to [14, Section 3]
for examples and discussion.

The following is a formal definition of a weighted random staircase in-
troduced in [14], although we prefer to use a different notation:

Definition 2. For all n ≥ 1, α, β ∈ [0,∞) with (α, β) 	= (0, 0), we consider
a family of probability measures Pn,α,β on Sn defined by:

Pn,α,β(S) =
wt(S)

Zn(α, β)
=

αNαβNβ

Zn(α, β)
, S ∈ S.

We denote by Sn,α,β the probability space (Sn,Pn,α,β) and we call S ∈ Sn,α,β

a random weighted staircase tableau (with weights α, β). That is, S is an
α/β-staircase tableau in Sn chosen according to the probability distribution
Pn,α,β.

As in [14] α and β are used in two different meanings, as fixed symbols
in the tableaux and as the values of the parameters, but that should not
cause any confusion.

We identify the boxes of a tableau by a row and column number (as in
a matrix) and we write yi,j to indicate that a box (i, j) contains a symbol
y, where y is α, β, or 0. Using the above definition, Hitczenko and Janson
presented the distribution of a given box in a random staircase tableau. If
a box is on the main diagonal, its distribution, in our notation, is (see [14,
Theorem 7.1]):

(2) Pn,α,β(αi,n+1−i) =
n− i+ b

n+ a+ b− 1
, Pn,α,β(βi,n+1−i) =

a+ i− 1

n+ a+ b− 1
.
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Since a box on the main diagonal is never empty, the second formula follows
trivially from the first. This is no longer true for boxes not on the main
diagonal. For such boxes the distribution of non–zero symbols is (see [14,
Theorem 7.2]):

Pn,α,β(αi,j) =
j − 1 + b

(i+ j + a+ b− 1)2
, Pn,α,β(βi,j) =

i− 1 + a

(i+ j + a+ b− 1)2
,(3)

and the remainder is for Pn,α,β(0i,j).
For an arbitrary S ∈ Sn and an arbitrary box (i, j) in S, define S[i, j]

to be the subtableau in Sn−i−j+2 obtained by deleting the first i − 1 rows
and j − 1 columns, see [14]. The following statement was proven in [14,
Theorem 6.1] and is a useful tool in our results: If S ∈ Sn,α,β then S[i, j] ∈
S
n−i−j+2,α̂,β̂

with â = a + i − 1 and b̂ = b + j − 1. This means that if

S̃ ∈ Sn−i−j+2 then

(4) Pn,α,β(S ∈ Sn : S[i, j] = S̃) = P
n−i−j+2,α̂,β̂

(S̃).

To show the convergence to a Poisson random variable we will rely on
the method of (factorial) moments. When the random variables are the sums
of indicators the condition takes the following form

Lemma 1. Let Y =
∑m

j=1 Ij, where (Ij) are indicator random variables.
Then, for r ≥ 1,

E(Y )r = r!

⎛⎝ ∑
1≤j1<...<jr≤m

P(Ij1 ∩ . . . ∩ Ijr)

⎞⎠ ,

where E(X)r = EX(X − 1) . . . (X − (r − 1)) is the rth factorial moment.

Proof. We have

zY = z
∑m

j=1 Ij =

m∏
j=1

zIj =

m∏
j=1

(1 + (z − 1))Ij =

m∏
j=1

(1 + Ij(z − 1))

= 1 +

m∑
r=1

⎛⎝ ∑
1≤j1<...<jr≤m

(
r∏

k=1

Ijk

)⎞⎠ (z − 1)r

= 1 +

m∑
r=1

(z − 1)r

⎛⎝ ∑
1≤j1<...<jr≤m

(
r∏

k=1

Ijk

)⎞⎠ .
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Thus,

E(zY ) = 1 +

m∑
r=1

(z − 1)r

⎛⎝ ∑
1≤j1<...<jr≤m

P(Ij1 ∩ . . . ∩ Ijr)

⎞⎠ .

Hence

E(Y )r =
dr

dzr
(EzY )|z=1 = r!

⎛⎝ ∑
1≤j1<...<jr≤m

P(Ij1 ∩ . . . ∩ Ijr)

⎞⎠ .

Thus, to apply the above lemma we will need to find the joint distribution
of symbols in given boxes on the diagonal of a tableau. We will obtain the
exact formulas for the second main diagonal (see Theorems 4 and 8 in the
next section) and asymptotic for the third main diagonal (see Lemmas 11
and 14 below). It should be noted that the joint distribution of symbols for
the main diagonal was given in [14, Theorem 7.6], but since boxes on the
main diagonal cannot be empty it is a different issue.

3. Distribution of parameters along the second main
diagonal

The following two lemmas consider the probability of an arbitrary staircase
tableau in Sn that is conditioned on having an α or a β in the box (n−1, 1).
The statements follow almost immediately from the definition of a staircase
tableau, but will be used frequently throughout the paper.

Lemma 2. If S ∈ Sn,α,β is conditioned on having α in box (n− 1, 1), then
the subtableau Sn,α,β[1, 3] ∈ Sn−2,α,β. In other words, for S ∈ Sn,α,β

Pn,α,β(S | αn−1,1) = Pn−2,α,β(S[1, 3]).

Proof. If S ∈ Sn is a staircase tableau such that αn−1,1, then βn,1 and αn−1,2

by the rules of a staircase tableau. The first and second column are otherwise
empty by those same rules. The remainder, S[1, 3], is an arbitrary staircase
tableau of size n− 2. Therefore, the lemma follows.

Lemma 3. Let (S)i,j be a subtableau of S with the ith row and the jth
column removed. If S ∈ Sn,α,β is conditioned on having β in box (n− 1, 1),
then the subtableau (S)n−1,2 is random tableau in Sn−1,α,β conditioned on
having a β in the (n− 1, 1) box. In other words

Pn,α,β(S | βn−1,1) = Pn−1,α,β((S)n−1,2 | βn−1,1).
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Proof. If S ∈ Sn is a staircase tableau such that βn−1,1, then αn−1,2 and βn,1
by the rules of a staircase tableau. The second column is otherwise empty
by those same rules. The nth row only has one box, (n, 1), which must be a
β. The remainder is an arbitrary staircase tableau of size n− 1 conditioned
to have a β in box (n− 1, 1). Therefore, the lemma follows.

We are now ready to state and prove the results for the second main
diagonal. We begin with the distribution of the number of α’s and we treat
the number of non–empty boxes in the next subsection.

3.1. The number of α’s on the second main diagonal

As our first result, the following is the distribution of boxes along the second
main diagonal. In order to simplify notation, let αj be the event αn−j,j i.e.
that a box (n− j, j) on the second diagonal and in the jth column contains
an α.

Theorem 4. Let 1 ≤ j1 < ... < jr ≤ n− 1. If

(5) jk ≤ jk+1 − 2, ∀k = 1, 2, ..., r − 1

then

Pn,α,β(αj1 , . . . , αjr) =

r∏
k=1

b+ jr−k+1 − 2r + 2k − 1

(n+ a+ b− 2r + 2k − 1)2
.

(For r = 1, this is (3)). Otherwise,

Pn,α,β(αj1 , . . . , αjr) = 0.

Proof. First note that when (5) fails there exists jk such that jk = jk+1 − 1
and thus there must be two α’s in boxes side by side on the (n−i, i) diagonal.
But this is impossible by the rules of a staircase tableau as no symbol can be
put in the diagonal box (n−jk, jk+1) adjacent to these two boxes. Therefore
the probability is 0.

Suppose now that (5) holds. We proceed by induction on r. Set

(6) β̂−1 = β−1+j1−1, n̂ := n−(j1−1), ĵl := jl−(j1−1), 1 ≤ l ≤ r.

Then by (4)

Pn,α,β(αj1 , . . . , αjr) = P
n̂,α,β̂

(αĵ1
, . . . , αĵr

)

= P
n̂,α,β̂

(αĵ2
, . . . , αĵr

|αĵ1
) · P

n̂,α,β̂
(αĵ1

).
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Since ĵ1 = 1, by Lemma 2 and the induction hypothesis (applied with ñ :=
n̂− 2, j̃l := ĵl+1 − 2, 1 ≤ l ≤ r − 1)

P
n̂,α,β̂

(αĵ2
, . . . , αĵr

| α̂j1) = P
n̂−2,α,β̂

(αĵ2−2, . . . , αĵr−2)

=

r−1∏
k=1

b̂+ j̃(r−1)−k+1 − 2(r − 1) + 2k − 1

(ñ+ a+ b̂− 2(r − 1) + 2k − 1)2

=

r−1∏
k=1

b+ jr−k+1 − 2r + 2k − 1

(n+ a+ b− 2r + 2k − 1)2
,

where, in the last step we used (6). By (3) and (6):

P
n̂,α,β̂

(α1) =
b̂

(n̂+ a+ b̂− 1)2
=

b+ j1 − 1

(n+ a+ b− 1)2
.

Therefore,

Pn,α,β(αj1 , . . . , αjr) =

r∏
k=1

b+ jr−k+1 − 2r + 2k − 1

(n+ a+ b− 2r + 2k − 1)2

which proves the result.

Our second main result of this section is the distribution of the number
of α’s (and β’s) along the second main diagonal. The proof requires a lemma.

Lemma 5. Let

Jr,m := {1 ≤ j1 < ... < jr ≤ m : jk ≤ jk+1 − 2, ∀ k = 1, 2, ..., r − 1}.

Then ∑
Jr,m

(
r∏

k=1

jr−k+1

)
=

(m+ 1)2r
2rr!

.

Proof. By induction on r. When r = 1:

∑
J1,m

(
1∏

k=1

j1−k+1

)
=

m∑
j1=1

j1 =
(m+ 1)m

2
.

Assume the statement holds for r − 1. Then:
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∑
Jr,m

(
r∏

k=1

jr−k+1

)
=

m∑
jr=2r−1

jr

⎛⎝ ∑
Jr−1,jr−2

r∏
k=2

jr−k+1

⎞⎠
=

m∑
jr=2r−1

jr
(jr − 1)2(r−1)

2r−1(r − 1)!

=
1

2r−1(r − 1)!

m∑
jr=2r−1

(jr)2r−1

where the second equality is by the induction hypothesis. Since

m∑
jr=2r−1

(jr)2r−1 =

m∑
jr=0

(jr)2r−1

the lemma will be proved once we verify that

m∑
j=0

(j)t =
(m+ 1)t+1

t+ 1
,

for any non-negative integer t (and apply it with t = 2r − 1). Using the
identity

m∑
j=0

(
j

t

)
=

(
m+ 1

t+ 1

)
(see, e.g. [13, Formula (5.10)]) we see that

m∑
j=0

(j)t =

m∑
j=0

j!

(j − t)!
= t!

m∑
j=0

(
j

t

)
= t!

(
m+ 1

t+ 1

)

= t!
(m+ 1)t+1

(t+ 1)!
=

(m+ 1)t+1

m+ 1
,

as asserted.

Finally, define An and Bn to be the number of α’s and β’s on the sec-
ond main diagonal, i.e. An :=

∑n−1
j=1 Iαj

and Bn :=
∑n−1

j=1 Iβj
, where βj

means βn−j,j . Then, the asymptotic distribution of An and Bn is given in
the following theorem and corollary.
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Theorem 6. Let Pois(λ) be a Poisson random variable with parameter λ.

Then, as n → ∞,

(7) An
d→ Pois

(
1

2

)
.

Proof. By [2, Theorem 20, Chapter 1] it suffices to show that the rth factorial

moment of An satisfies:

(8) E(An)r →
(
1

2

)r

as → ∞.

By Lemma 1, Theorem 4, and Lemma 5

E(An)r = r!
∑
Jr,n−1

(
r∏

k=1

b+ jr−k+1 − 2r + 2k − 1

(n+ a+ b− 2r + 2k − 1)2

)

≈ r!
∑
Jr,n−1

(
r∏

k=1

jr−k+1

n2

)

=
r!

n2r

(n)2r
2rr!

→
(
1

2

)r

, as n → ∞.

Corollary 7. The rth factorial moment of the number Bn of β’s on the

second main diagonal of a random staircase tableau of size n satisfies:

(9) E(Bn)r →
(
1

2

)r

as n → ∞.

Furthermore,

(10) Bn
d→ Pois

(
1

2

)
as n → ∞.

Proof. This follows by symmetry, see Section 1.

Remark 1. Theorem 6 and Corollary 7 hold regardless of the values of α and

β including the cases discussed earlier when α = ∞, β = ∞, or α = β = ∞.

As noted in [14, Examples 3.6 and 3.7] these cases correspond to staircase

tableaux with the maximal number of α’s (or β’s) and the maximal number

of symbols, respectively. The same applies to Theorems 9, 11, and 15 below.
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3.2. Distribution of non-empty boxes on the second main
diagonal

Random variables An and Bn are not independent random variables, and
the second main diagonal may have empty boxes. Therefore, in order to
completely describe the second main diagonal, we must consider both sym-
bols collectively. First, we present the distribution of non-empty boxes along
the second main diagonal. We let xj denote the event that the box (n− j, j)
in the jth column and on the second main diagonal in non–empty.

Theorem 8. Let 1 ≤ j1 < ... < jr ≤ n− 1. If (5) holds then

Pn,α,β(xj1 , . . . , xjr) =

r∏
k=1

1

n+ a+ b− r + k − 1
.

(For r = 1, this is obtained by adding the expressions in (3).) Otherwise,

Pn,α,β(xj1 , . . . , xjr) = 0.

Proof. Suppose (5) holds. We proceed by induction on r. As in the proof of

Theorem 4 by passing to n̂ := n−(j1−1), ĵi := ji−(j1−1), and b̂ := b+j1−1
we may assume that j1 = 1.

By the law of total probability we have

Pn,α,β(x1, . . . , xjr) = Pn,α,β(xj2 , . . . , xjr | x1 = α)Pn,α,β(x1 = α)

+Pn,α,β(xj2 , . . . , xjr | x1 = β)Pn,α,β(x1 = β).

Now consider two cases:
Case 1: x1 = α. By Lemma 2 and the induction hypothesis:

Pn,α,β(xj2 , . . . , xjr | x1 = α) = Pn−2,α,β(xj2−2, . . . , xjr−2)

=

r−1∏
k=1

1

n− 2 + a+ b− (r − 1) + k − 1
=

r−1∏
k=1

1

n+ a+ b− r + k − 2

and by (3),

Pn,α,β(x1 = α) =
b

(n+ a+ b− 1)2
.

Therefore,

Pn,α,β(α1, xj2 , . . . , xjr) =
b

(n+ a+ b− 1)2
·
r−1∏
k=1

1

n+ a+ b− r + k − 2
.
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Case 2: x1 = β. By Lemma 3

Pn,α,β(xj2 , . . . , xjr | xj1 = β) = Pn−1,α,β(xj2−1, . . . , xjr−1 | βn−1,1)

=
Pn−1,α,β(xj2−1, . . . , xjr−1, βn−1,1)

Pn−1,α,β(βn−1,1)
.

The numerator is equal to

Pn−1,α,β(xj2−1, . . . , xjr−1)− Pn−1,α,β(xj2−1, . . . , xjr−1, αn−1,1)

= Pn−1,α,β(xj2−1, . . . , xjr−1)(11)

−Pn−1,α,β(xj2−1, . . . , xjr−1 | αn−1,1)Pn−1,α,β(αn−1,1).

By [14, Lemma 7.5] and the induction hypothesis the conditional probability

above is

(12) Pn−2,α,β(xj2−2, . . . , xjr−2) =

r−1∏
k=1

1

n+ a+ b− r + k − 2
.

By (3), (2), and the induction hypothesis,

Pn,α,β(x1 = β) =
n+ a− 2

(n+ a+ b− 1)2
(13)

1

Pn−1,α,β(βn−1,1)
=

n+ a+ b− 2

n+ a− 2
(14)

Pn−1,α,β(xj2−1, . . . , xjr−1) =

r−1∏
k=1

1

n− 1 + a+ b− r + k
(15)

Pn−1,α,β(αn−1,1) =
b

n+ a+ b− 2
.(16)

Combining (12)–(16):

Pn,α,β(β1, xj2 , . . . , xjr) =
1

n+ a+ b− 1
·
( r−1∏

k=1

1

n− 1 + a+ b− r + k

− b

n+ a+ b− 2

r−1∏
k=1

1

n+ a+ b− r + k − 2

)
.
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Adding Case 1 and Case 2:

Pn,α,β(x1, ..., xjr) =
1

n+ a+ b− 1
·
r−1∏
k=1

1

n+ a+ b− r + k − 1

=

r∏
k=1

1

n+ a+ b− r + k − 1

which proves our assertion when (5) holds.
If there exists jk such that jk = jk+1 − 1, then {xj1 , . . . , xjr} implies

that two boxes side by side on the (n− i, i) diagonal are non-empty, which
is impossible by the rules of a staircase tableau. Therefore the probability
is 0.

As our final result of this section, we consider the number of symbols on
the second main diagonal, which we denote byXn. ThenXn =

∑n−1
j=1 Ixj

and
we clearly have Xn = An +Bn. The asymptotic distribution of the number
of symbols on the second main diagonal is given in the following theorem.
It suggests that, even though An and Bn are not independent, they should
be asymptotically independent, as the limiting law of Xn is the same as the
law of the sum of two independent Pois(1/2) random variables.

Theorem 9. As n → ∞,

(17) Xn
d→ Pois (1) .

Proof. By Theorem 8 and Lemma 1

E(Xn)r = r!|Jr,n−1|
r∏

k=1

1

n+ a+ b− r + k − 1

= r!

((
n− 1

r

)
+O(nr−1)

) r∏
k=1

1

n+ a+ b− r + k − 1

≈ r! · (n− 1)r

r!nr
→ 1 as n → ∞.

The result follows by [2, Theorem 20], as discussed in the proof of Theorem 6.

4. The distribution of parameters on the third main diagonal

For the considerations of the third main diagonal, note that if the box (n−k−
1, k) is non-empty, then by the rules of staircase tableaux, the corresponding
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diagonal boxes (n−k+1, k) and (n−k−1, k+2) are non-empty (in fact, they
contain β and α, respectively). The next lemma shows that the remaining
two boxes (n− k − 1, k + 1) and (n− k, k) are likely to be empty. We write
xi,j to indicate that the (i, j) box of a tableau is non–empty.

Lemma 10. Consider arbitrary S ∈ Sn such that xn−k−1,k. If xn−k−1,k+1

or xn−k,k, then Pn,α,β(S) = O
(

1
(n+a+b)2

)
.

Proof. Note that only one of the boxes (n−k−1, k+1), (n−k, k) of S may
contain a non–zero symbol, and in either case, under the assumptions of the
lemma, the subtableau S[n− k − 1, k] has two α’s, two β’s, one empty box,
and a symbol corresponding to position (n− k − 1, k) in S. By (4),

Pn,α,β(S) = P
3,α̂,β̂

(S[n− k − 1, k]),

with â = a+ n− k − 2 and b̂ = b+ k − 1, and by the above observation

P
3,α̂,β̂

(S[n−k−1, k]) = 2
(α̂+ β̂)(α̂β̂)2

Z3(α̂, β̂)
=

2

(â+ b̂+ 1)2̄
= O

(
1

(n+ a+ b)2

)
.

4.1. The asymptotic distribution of α’s on the third main
diagonal

We begin by deriving the asymptotic probability for the joint distribution

of α’s on the third main diagonal. We let α
(3)
j be the event that there is an

α in the jth column on the third main diagonal (i.e in the box (n− j−1, j),
1 ≤ j ≤ n− 2) but since we will be dealing exclusively with the third main
diagonal through the remainder of this section we will drop the superscript.

We can now give the asymptotic joint distribution of the α’s on the third
main diagonal.

Lemma 11. Let 1 ≤ j1 < ... < jr ≤ n− 2. If

(18) jl ≤ jl+1 − 3, ∀ l = 1, 2, ..., r − 1

then

Pn,α,β(αj1 , ..., αjr) =

r∏
l=1

b+ jr−l+1 − 2r + 2l − 1

(n+ a+ b− 2r + 2l − 1)2
+O

(
1

(n+ a+ b)r+1

)
.



658 Pawe�l Hitczenko and Amanda Lohss

Otherwise,

Pn,α,β(αj1 , ..., αjr) = O

(
1

(n+ a+ b)r

)
.

Proof. The proof is by induction on r. When r = 1,

Pn,α,β(αj1) = Pn,α,β(αj1 , αn−j1−1,j1+1) + Pn,α,β(αj1 , βn−j1,j1)

+Pn,α,β(αn−j1−1,j1 , 0n−j1−1,j1+1, 0n−j1,j1).

By Lemma 10, each of the first two probabilities on the right–hand side
is O(1/n2). By (4) (applied with i = n − j1 − 1 and j = j1 so that â =

a+n− j1 − 2 and b̂ = b+ j1− 1) and a direct computation for the resulting
tableaux of size three, the last probability is

α̂3β̂

Z3(α̂, β̂)
+

α̂2β̂2

Z3(α̂, β̂)
=

α̂2β̂

(α̂β̂)2(â+ b̂+ 1)2
=

b+ j1 − 1

(n+ a+ b− 1)2
,

as required.
Assume the statement holds for integers up to r − 1. As in the earlier

proofs assume without loss that j1 = 1 and consider the following two cases.

Case 1. j2 ≥ j1 + 3 = 4.

Pn,α,β(α1, ..., αjr) = Pn,α,β(αn−2,2, α1, ..., αjr)

+Pn,α,β(βn−1,1, α1, . . . , αjr)(19)

+Pn,α,β(0n−1,1, 0n−2,2, α1, ..., αjr).

The main contribution is the last probability which can be written as follows,

Pn,α,β(αj2 , ..., αjr |α1, 0n−1,1, 0n−2,2)Pn,α,β(α1, 0n−1,1, 0n−2,2).

The conditional probability is equal to Pn−2,α,β(αj2−2, ..., αjr−2) (this is
because the condition forces zeroes in the first and the third column of
S[j1 − 1, 1] above its (n − 2)nd row and the remaining n − 2 columns are
unrestricted and thus form a general tableau of size n − 2). To compute
Pn,α,β(α1, 0n−1,1, 0n−2,2), remove the top n − 3 rows setting â := a + n − 3
and directly calculate that this probability is

(α̂+ β)
α̂2β

Z3(α̂, β)
=

b

(â+ b+ 1)2
=

b

(n+ a+ b− 1)2
.

So then by the induction hypothesis, if jl ≤ jl+1 − 3 for all l = 2, . . . , r − 1
then the last probability in (19) is



Distribution of parameters in staircase tableaux 659

(
r−1∏
k=1

b+ jr−k+1 − 2r + 2k − 1

(n+ a+ b− 2r + 2k − 1)2
+O

(
1

(n+ a+ b)r

))
b

(n+ a+ b− 1)2

=

r∏
k=1

b+ jr−k+1 − 2r + 2k − 1

(n+ a+ b− 2r + 2k − 1)2
+O

(
1

(n+ a+ b)r+1

)
.

(Note that in view of (6) the last equality holds regardless of whether j1 = 1
or j1 > 1.) On the other hand, if for some 2 ≤ l ≤ r − 1, jl > jl+1 − 3 then
by the induction hypothesis again and (6) (which implies that b = O(n))
the same expression is

O

(
1

(n+ a+ b)r−1

)
b

(n+ a+ b− 1)2
= O

(
1

(n+ a+ b)r

)
.

Now, returning to Equation (19), the first two probabilities can be calculated
as follows,

= Pn,α,β(αj2 , ..., αjr |αn−2,2, α1)Pn,α,β(αn−2,2, α1)

+Pn,α,β(αj2 , ..., αjr |βn−1,1, 0n−2,2, α1)Pn,α,β(βn−1,1, 0n−2,2, α1)

= Pn−3,α,β(αj2−3, ..., αjr−3)Pn,α,β(αn−2,2, α1)

+Pn−3,α,β(αj2−3, ..., αjr−3)Pn,α,β(βn−1,1, 0n−2,2, α1).

By the inductive hypothesis

Pn−3,α,β(αj2−3, ..., αjr−3) = O

(
1

(n+ a+ b)r−1

)
= O

(
1

(n+ a+ b)r−1

)
and by Lemma 10, each of the other two probabilities above is

O

(
1

(n+ a+ b)2

)
.

Hence, this probability is

O

(
1

(n+ a+ b)r−1

)
O

(
1

(n+ a+ b)2

)
= O

(
1

(n+ a+ b)r+1

)
.

Case 2. j2 < 4.

The case where j2 = 2 is impossible by the rules of staircase tableaux
and hence has probability zero. For the case where j2 = 3

Pn,α,β(αj1 , ..., αjr) = Pn,α,β(αj3 , ..., αjr)|α1, α2)Pn,α,β(α1, α2)
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= Pn−4,α,β(αj3−4, ..., αjr−4)Pn,α,β(α1, α2).

To compute Pn,α,β(α1, α2), remove the top n− 4 rows setting â := a+n− 4

and directly calculate that

(20) Pn,α,β(α1, α2) =
b2

(â+ b)4
= O

(
b2

(n+ a+ b)4

)
= O

(
1

(n+ a+ b)2

)
.

By the induction hypothesis,

Pn−4,α,β(αj3−4, ..., αjr−4) = O

(
1

(n+ a+ b)r−2

)
= O

(
1

(n+ a+ b)r−2

)
.

Therefore,

Pn,α,β(α1, ..., αjr) = O

(
1

(n+ a+ b)r−2

)
O

(
1

(n+ a+ b)2

)
= O

(
1

(n+ a+ b)r

)
.

Combining Cases 1 and 2, if jl ≤ jl+1 − 3, ∀ l = 1, 2, . . . , r − 1, then

Pn,α,β(αj1 , ..., αjr) =

r∏
l=1

b+ jr−l+1 − 2r + 2l − 1

(n+ a+ b− 2r + 2l − 1)2
+O

(
1

(n+ a+ b)r+1

)
.

Otherwise,

Pn,α,β(αj1 , ..., αjr) = O

(
1

(n+ a+ b)r

)
.

The above lemma gives the following result:

Theorem 12. Let A
(3)
n be the number of α’s on the third main diagonal of

a random weighted staircase tableau. Then, as n → ∞,

A(3)
n

d→ Pois

(
1

2

)
.

Proof. Write∑
1≤j1<...<jr≤n−2

P(αj1 , . . . , αjr) =
∑
J

P(αj1 , . . . , αjr) +
∑
Jc

P(αj1 , . . . , αjr),
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where

J = {1 ≤ j1 < · · · < jr ≤ n− 2 : ∀ l = 1, . . . , r − 1; jl+1 − jl ≥ 3}

and

Jc = {1 ≤ j1 < · · · < jr ≤ n− 2 : ∃ l = 1, . . . , r − 1; jl+1 − jl < 3}.

By Lemma 11,∑
J

P(αj1 , . . . , αjr)

=
∑
J

(
r∏

l=1

b+ jr−l+1 − 2(r − l)− 1

(n+ a+ b− 2(r − l)− 1)2
+O

(
1

(n+ a+ b)r+1

))

≈
∑
J

r∏
l=1

jl
n2

+

(
n− 2

r

)
·O

(
1

nr+1

)

=
∑
Jr,n−2

r∏
l=1

jl
n2

−
∑

Jr,n−2\J

r∏
l=1

jl
n2

+O

(
1

n

)
.

If (j1, . . . , jr) ∈ Jr,n−2 \ J then there exists an l such that jl+1 − jl = 2 and

thus this set has O
((

n−2
r−1

))
elements. Therefore, by Lemma 5 the expression

above is asymptotic to

∑
Jr,n−2

r∏
l=1

jl
n2

+O

((
n− 2

r − 1

)
· nr

n2r

)
+O

(
1

n

)
=

1

2rr!
+O

(
1

n

)
, as n → ∞.

Finally, by Lemma 11,

∑
Jc

P(αj1 , . . . , αjr) = O

((
n− 2

r − 1

)
1

nr

)
= O

(
1

n

)
.

Combining these expressions with Lemma 1 completes the proof.

4.2. The asymptotic distribution of symbols on the third main
diagonal

In this section we prove that the total number of symbols on the third main
diagonal is asymptotically Poisson with parameter 1. To this end we will
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prove an analog of Theorem 8 and Lemma 11. Throughout this section xj =

x
(3)
j indicates the event that the box (n−j−1, j) on the third main diagonal

and in the jth column is non–empty. We need a preparatory observation.

Lemma 13. If j1 ≥ 3, then

Pn,α,β(xj1 , ..., xjr , 0n−1,1, βn,1) = Pn,α,β(xj1 , ..., xjr , βn−1,2).

Proof. Consider

Pn,α,β(xj1 , ..., xjr , 0n−1,1, βn,1) = Pn,α,β(xj1 , ..., xjr , 0n−1,1, βn,1, αn−1,2)

+Pn,α,β(xj1 , ..., xjr , 0n−1,1, βn,1, βn−1,2).

Notice that

Pn,α,β(xj1 , ..., xjr , 0n−1,1, βn,1, αn−1,2) = Pn,α,β(xj1 , ..., xjr , αn,1, βn−1,2)

since the second column is empty above α and thus does not restrict the first
column, except for box (n − 1, 2) which is empty. Therefore if αn−1,2 and
βn,1 are switched, and the first n− 2 boxes in column one are switched with
the first n− 2 boxes in column two, the weight does not change. Therefore,

Pn,α,β(xj1 , ..., xjr , 0n−1,1, βn,1)

= Pn,α,β(xj1 , ..., xjr , αn,1, βn−1,2) + Pn,α,β(xj1 , ..., xjr , βn,1, βn−1,2)

= Pn,α,β(xj1 , ..., xjr , βn−1,2).

The following gives the asymptotic joint distribution of non–zero symbols
on the third main diagonal.

Lemma 14. Let 1 ≤ j1 < ... < jr ≤ n− 2. If

(21) jl ≤ jl+1 − 3, ∀ l = 1, 2, ..., r − 1

then

Pn,α,β(xj1 , ..., xjr) =

r∏
l=1

1

n+ a+ b− r + l − 1
+O

(
1

(n+ a+ b)r+1

)
.

Otherwise,

Pn,α,β(xj1 , ..., xjr) = O

(
1

(n+ a+ b)r

)
.
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Proof. The proof is by induction on r. When r = 1 then by the same argu-
ment as in the beginning of the proof of Lemma 11, we get

Pn,α,β(xj1) 	= 0) =
n+ a+ b− 3

(n+ a+ b− 1)2
+O

(
1

(n+ a+ b)2

)
=

1

n+ a+ b− 1
+O

(
1

(n+ a+ b)2

)
.

Assume the statement holds for integers up to r−1. We may and do assume
that j1 = 1. We again consider two cases.

Case 1. j2 ≥ 4.

As in (19) we split the probability into three pieces according to whether
the boxes (n− 1, 1), (n− 2, 2) are empty or not

Pn,α,β(x1, ..., xjr) = Pn,α,β(0n−1,1, 0n−1−1,2, x1, ..., xjr)

+Pn,α,β(βn−1,1, 0n−2,2, x1, ..., xjr)(22)

+Pn,α,β(αn−2,2, x1, ..., xjr).

The main contribution is the first probability which can be broken up into
two cases.

Case 1.1. x1 = α.

This is the case considered in the proof of Lemma 11 and gives

Pn,α,β(0n−1,1, 0n−2,2, α1, xj2 , ..., xjr)

= Pn−2,α,β(xj2−2, ..., xjr−2)Pn,α,β(0n−1,1, 0n−2,2, α1).

Case 1.2. x1 = β.

Then

Pn,α,β(0n−1,1, 0n−2,2, β1, xj2 , ..., xjr)

= Pn,α,β(xj2 , ..., xjr | 0n−1,1, 0n−2,2, β1)Pn,α,β(0n−1,1, 0n−2,2, β1).

As can be seen by removing the (n − 2)nd row and the third column, the
conditional probability is equal to

Pn−1,α,β(xj2−1, ..., xjr−1 | 0n−2,1, βn−1,1) = Pn−1,α,β(xj2−1, ..., xjr−1 | βn−2,2)

= P
n−2,α,β̃

(xj2−2, ..., xjr−2 | βn−2,1), with b̃ = b+ 1,
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where the first equality above follows by writing the probability of the left

as the ratio and applying Lemma 13 to both numerator and denominator

and the second follows from (4) by observing that at this point no entries of

the first column are involved so that it can be removed.

At this point βn−2,1 is a corner box of staircase tableau of size n−2 and

we can use (11) to get

P
n−2,α,β̃

(xj2−2, ..., xjr−2, βn−2,1)

= P
n−2,α,β̃

(xj2−2, ..., xjr−2)− P
n−3,α,β̃

(xj2−3, . . . , xjr−3)Pn−2,α,β̃
(αn−2,1).

Combining the above expressions and adding Case 1.1 and Case 1.2 we

obtain

Pn,α,β(x1, . . . , xjr) = Pn−2,α,β(xj2−2, ..., xjr−2)Pn,α,β(0n−1,1, 0n−2,2, α1)

+P
n−2,α,β̃

(xj2−2, ..., xjr−2)
Pn,α,β(0n−1,1, 0n−2,2, β1)

P
n−2,α,β̃

(βn−2,1)
(23)

−P
n−3,α,β̃

(xj2−3, ..., xjr−3)
Pn,α,β(0n−1,1, 0n−2,2, β1)Pn−2,α,β̃

(αn−2,1)

P
n−2,α,β̃

(βn−2,1)
.

Note that by (4)

(24) Pn−2,α,β(xj2−2, ..., xjr−2) = P
n−3,α,β̃

(xj2−3, ..., xjr−3).

Now, using (4) with â = n+ a− 3, we calculate directly,

Pn,α,β(0n−1,1, 0n−2,2, α1) = P3,α̂,β(02,1, 01,2, α1)(25)

=
b

(n+ a+ b− 1)2

Pn,α,β(0n−1,1, 0n−2,2, β1) =
n+ a− 3

(n+ a+ b− 1)2
.(26)

Also, by (2)

P
n−2,α,β̃

(αn−2,1) =
b̃

n− 2 + a+ b̃− 1
=

b+ 1

n+ a+ b− 2
,(27)

P
n−2,α,β̃

(βn−2,1) =
n+ a− 3

n+ a+ b− 2
.(28)
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So by substituting Equations (24)–(28) into Equation (23) and simplifying

Pn,α,β(x1, . . . , xjr) = P
n−2,α,β̃

(xj2−2, ..., xjr−2)
1

n+ a+ b− 1

+P
n−3,α,̃b

(xj2−3, ..., xjr−3) ·
(

b

(n+ a+ b− 1)2
− b+ 1

(n+ a+ b− 1)2

)
.

The second summand by the induction hypothesis is

O

(
1

(n+ a+ b)r−1
· 1

(n+ a+ b)2

)
= O

(
1

(n+ a+ b)r+1

)
.

If jl ≤ jl+1 − 3 for all l = 2, . . . , r − 1 then by the induction hypothesis, the
first summand is(

r−1∏
l=1

1

n− 2+ a+ b̃− (r− 1)+ l− 1
+O

(
1

(n− 2 + a+ b̃)r

))
1

n+ a+ b− 1

=

(
r−1∏
l=1

1

n+ a+ b− r + l − 1
+O

(
1

(n+ a+ b− 1)r

))
1

n+ a+ b− 1

=

r∏
l=1

1

n+ a+ b− r + l − 1
+O

(
1

(n+ a+ b− 1)r+1

)
.

On the other hand, if for some 2 ≤ l ≤ r − 1, jl > jl+1 − 3 then by the
induction hypothesis again the same expression is,

O

(
1

(n− 2 + a+ b̃)r−1

)
1

n+ a+ b− 1
= O

(
1

(n+ a+ b− 1)r

)
.

Now, returning to Equation (22), the first two probabilities can be cal-
culated in a similar manner to obtain an equation like Equation (23). For
example, Pn,α,β(αn−2,2, x1, ..., xjr) is

Pn−3,α,β(xj2−3, ..., xjr−3)Pn,α,β(αn−2,2, α1)

+Pn−2,α,β(xj2−2, ..., xjr−2|βn−2,1)Pn,α,β(αn−2,2, β1)

= Pn−3,α,β(xj2−3, ..., xjr−3)Pn,α,β(αn−2,2, α1)

+Pn−2,α,β(xj2−2, ..., xjr−2)
Pn,α,β(αn−2,2, β1)

Pn−2,α,β(βn−2,1)

−Pn−3,α,β(xj2−2, ..., xjr−2)
Pn,α,β(αn−2,2, β1)Pn−2,α,β(αn−2,1)

Pn−2,α,β(βn−2,1)
.
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By (4) and (2)

Pn,α,β(αn−2,2, β1)

Pn−2,α,β(βn−2,1)
=

a+n−3
(n+a+b−1)3

n+a−3
n+a+b−3

= O

(
1

(n+ a+ b)2

)
and

Pn,α,β(αn−2,2, α1)−
Pn,α,β(αn−2,2, β1)Pn−2,α,β(αn−2,1)

Pn−2,α,β(βn−2,1)

=
b

(n+ a+ b− 1)3
−

a+n−3
(n+a+b−1)3

· b
n+a+b−3

n+a−3
n+a+b−3

= 0.

Therefore, by the induction hypothesis,

Pn,α,β(αn−2,2, x1, ..., xjr) = O

(
1

(n+ a+ b)r+1

)
.

In the same way,

Pn,α,β(βn−1,1, 0n−2,2, x1, ..., xjr) = O

(
1

(n+ a+ b)r+1

)
.

Case 2. j2 < 4.

The case where j2 = 3 is impossible by the rules of staircase tableaux
and hence has probability zero. For the case where j2 = 2, by the law of
total probability

Pn,α,β(x1, ..., xjr) = Pn,α,β(xj3 ..., xjr |α1, α2)Pn,α,β(α1, α2)

+ Pn,α,β(xj3 , ..., xjr |α1, β2)Pn,α,β(α1, β2)

+ Pn,α,β(xj3 , ..., xjr |β1, α2)Pn,α,β(β1, α2)(29)

+ Pn,α,β(xj3 , ..., xjr |β1, β2)Pn,α,β(β1, β2).

The first term is handled in Case 2 of Lemma 11 and is O(1/(n+ a+ b)r).
The second, by removing the last three rows of a tableau and its first, third,
and fourth column is

Pn−3,α,β(xj3−3, ..., xjr−3 | βn−3,1)Pn,α,β(α1, β2)

≤ Pn−3,α,β(xj3−3, ..., xjr−3)
Pn,α,β(α1, β2)

Pn−3,α,β(βn−3,1)
.
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By (4) and (2) and remembering that b may depend on n (see (6)),

Pn,α,β(α1, β2)

Pn−3,α,β(βn−3,1)
=

(n+a−4)b

(n+a+b−4)4

n+a−4
n+a+b−4

= O

(
b

(n+ a+ b)3

)
= O

(
1

(n+ a+ b)2

)
so that, by the induction hypothesis, the whole term is

O

(
1

(n+ a+ b)r−2
· 1

(n+ a+ b)2

)
= O

(
1

(n+ a+ b)r

)
.

Finally, consider the sum of the last two terms in (29). By removing the
second and third column along with the (n − 1)st and (n − 2)nd row for
the first probability and the third and forth column and the (n− 2)nd and
(n− 3)rd row for the other they are

Pn−2,α,β(xj3−2, ..., xjr−2 | βn−2,1, αn−3,2)Pn,α,β(β1, α2)

+Pn−2,α,β(xj3−2, ..., xjr−2 | βn−2,1, βn−3,2)Pn,α,β(β1, β2)

= Pn−2,α,β(xj3−2, ..., xjr−2, βn−2,1, αn−3,2)
Pn,α,β(β1, α2)

Pn−2,α,β(βn−2,1, αn−3,2)

+Pn−2,α,β(xj3−2, ..., xjr−2, βn−2,1, βn−3,2)
Pn,α,β(β1, β2)

Pn−2,α,β(βn−2,1, βn−3,2)
.

We now observe that

Pn,α,β(β1, α2)

Pn−2,α,β(βn−2,1, αn−3,2)
=

Pn,α,β(β1, β2)

Pn−2,α,β(βn−2,1, βn−3,2)
=

1

(n+ a+ b− 2)2

as can be seen by applying (4) to each of the four probabilities. Further,
since the box (n− 3, 2) is on the main diagonal of a staircase tableau of size
n− 2, βn−3,2 and αn−3,2 are complements of each other. Therefore, the sum
of the last two terms in (29) is

Pn−2,α,β(xj3−2, ..., xjr−2, βn−2,1)
1

(n+ a+ b− 1)2

≤ Pn−2,α,β(xj3−2, ..., xjr−2)
1

(n+ a+ b− 1)2
= O

(
1

(n+ a+ b)r

)
by the induction hypothesis.

We can now give the asymptotic distribution of the number of symbols on
the third main diagonal.
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Theorem 15. Let X
(3)
n be the number of symbols on the third main diagonal,

i.e. X
(3)
n :=

∑n−2
j=1 Ixj

. Then, as n → ∞,

X(3)
n

d→ Pois (1) .

Proof. As in the proof of Theorem 12 we split the sum∑
1≤j1<...<jr≤n−2

P(xj1 , . . . , xjr) =
∑
J

P(xj1 , . . . , xjr)

+
∑
Jc

P(xj1 , . . . , xjr).(30)

By Lemma 14,∑
J

P(xj1 , . . . , xjr)

=
∑
J

(
r∏

k=1

1

n+ a+ b− r + k − 1
+O

(
1

(n+ a+ b)r+1

))

=

((
n− 2

r

)
+O

(
nr−1

))
×
(

r∏
k=1

1

n+ a+ b− r + k − 1
+O

(
1

(n+ a+ b)r+1

))

=
1

r!
+O

(
1

n

)
, as n → ∞.

Finally, since cardinality of Jc is O
((

n−2
r−1

))
, by Lemma 14,

∑
Jc

P(xj1 , . . . , xjr) = O

((
n− 2

r − 1

)
1

nr

)
= O

(
1

n

)
.

Combining the last two expressions with (30) proves that

E(Xn)r = r!

⎛⎝ ∑
1≤j1<...<jr≤n−2

P(xj1 , . . . , xjr)

⎞⎠ → 1, as n → ∞.
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