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In this paper, we investigate the anti-Ramsey (more precisely, anti-
van der Waerden) properties of arithmetic progressions. For posi-
tive integers n and k, the expression aw([n], k) denotes the smallest
number of colors with which the integers {1, . . . , n} can be colored
and still guarantee there is a rainbow arithmetic progression of
length k. We establish that aw([n], 3) = Θ(log n) and aw([n], k) =
n1−o(1) for k ≥ 4.

For positive integers n and k, the expression aw(Zn, k) denotes
the smallest number of colors with which elements of the cyclic
group of order n can be colored and still guarantee there is a rain-
bow arithmetic progression of length k. In this setting, arithmetic
progressions can “wrap around,” and aw(Zn, 3) behaves quite dif-
ferently from aw([n], 3), depending on the divisibility of n. As
shown in [Jungić et al., Combin. Prob. Comput., 2003], aw(Z2m , 3) =
3 for any positive integer m. We establish that aw(Zn, 3) can be
computed from knowledge of aw(Zp, 3) for all of the prime factors
p of n. However, for k ≥ 4, the behavior is similar to the previous
case, that is, aw(Zn, k) = n1−o(1).

Keywords and phrases: Arithmetic progression, rainbow coloring,
anti-Ramsey, Behrend construction.

1. Introduction

Let G be an additive (abelian) group such as the integers or the integers
modulo n, and let S be a finite nonempty subset of G. A k-term arithmetic
progression (k-AP) in S is a set of distinct elements of the form

a, a+ d, a+ 2d, . . . , a+ (k − 1)d
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where d ≥ 1 and k ≥ 2. An r-coloring of S is a function c : S → [r],
where [r] := {1, . . . , r}. We say such a coloring is exact if c is surjective.
Given an r-coloring c of S, the ith color class is Ci := {x ∈ S : c(x) = i}.
An arithmetic progression is called rainbow if the image of the progression
under the r-coloring is injective. Formally, given c : S → [r] we say a k-term
arithmetic progression is rainbow if {c(a + id) : i = 0, 1, . . . , k − 1} has k
distinct values.

The anti-van der Waerden number aw(S, k) is the smallest r such that
every exact r-coloring of S contains a rainbow k-term arithmetic progression.
Note that this tautologically defines aw(S, k) = |S|+1 whenever |S| < k, and
this definition retains the property that there is a coloring with aw(S, k)−1
colors that has no rainbow k-AP. Since aw(S, 2) = 2 for all S, we assume
henceforth that k ≥ 3.

Several important results on the existence of rainbow 3-APs implying in-
formation about aw([n], 3) and aw(Zn, 3) (in our notation) have been estab-
lished by Jungić, et al. [8]. A preliminary study of the anti-van der Waerden
number was done by Uherka in [13]; it should be noted the notation there is
slightly different, with AW (k, n) used to denote our aw([n], k). Other results
on balanced colorings of the integers with no rainbow 3-AP have been ob-
tained by Axenovich and Fon-Der-Flaass [1] and Axenovich and Martin [2].

First, we consider the set S = [n]. The value of aw([n], 3) is logarithmic
in n:

Theorem 1.1. For every integer n ≥ 9,

�log3 n�+ 2 ≤ aw([n], 3) ≤ �log2 n�+ 1.

Moreover, aw([n], 3) = �log3 n�+ 2 for n ∈ {3, 4, 5, 6, 7} and aw([8], 3) = 5.

Theorem 1.1 is proven by Lemmas 2.3 and 2.6 (for n ≥ 9), and Re-
mark 2.1 gives exact values of aw([n], 3) that justify the second statement.
We conjecture that the lower bound is, essentially, correct:

Conjecture 1.2. There exists a constant C such that aw([n], 3) ≤ �log3 n�+
C for all n ≥ 3.

The behavior of aw([n], k) is, however, different for k ≥ 4. Instead of
logarithmic, it is almost linear:

Theorem 1.3. For k ≥ 4,

ne−O(
√
logn) < aw([n], k) ≤ ne− log log logn−ω(1).
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Theorem 1.3 is established by Lemma 2.8 and Corollary 2.14.
Finally, we consider arithmetic progressions in the cyclic group Zn.

Remark 1.4. For positive integers n and k, aw(Zn, k) ≤ aw([n], k), because
every AP in [n] corresponds to an AP in Zn.

However, because progressions in Zn may “wrap around,” there are ad-
ditional APs in Zn, some of which may be rainbow. Thus it is possible that
every coloring of Zn with aw([n], k)−1 colors guarantees a rainbow k-AP, so
strict inequality is possible. As was shown in [8, Theorem 3.5] (and follows
from Theorem 1.6 below), there are infinitely many values of n for which
aw(Zn, 3) = 3, for example, when n is a power of two.

Definition 1.5. Let n ≥ 3 be an integer. Define f2(n) to be 0 if n is odd
and 1 if n is even. Define f3(n) to be the number of odd prime factors p of
n that have aw(Zp, 3) = 3 and f4(n) to be the number of odd prime factors
p of n that have aw(Zp, 3) = 4, both counted according to multiplicity.

Theorem 1.6. For every prime number p, 3 ≤ aw(Zp, 3) ≤ 4. For an integer
n ≥ 2, the value of aw(Zn, 3) is determined by the values of aw(Zp, 3) for
the prime factors p:

aw(Zn, 3) = 2 + f2(n) + f3(n) + 2f4(n).

For an integer n ≥ 2 having every prime factor less than 100, f4(n) is the
number of odd prime factors of n in the set Q4 := {17, 31, 41, 43, 73, 89, 97}
and f3(n) is the number of odd prime factors of n in Q3, where Q3 is the
set of all odd primes less than 100 and not in Q4.

Theorem 1.6 is established by Proposition 3.5, Corollary 3.15 and Propo-
sition 3.17.

For k ≥ 4, the bounds we obtain for aw(Zn, k) are the same as those for
aw([n], k):

Theorem 1.7. For k ≥ 4,

ne−O(
√
logn) < aw(Zn, k) ≤ ne− log log logn−ω(1).

Theorem 1.7 is established by Remark 1.4 and Lemma 3.20.
The structure of the paper is as follows: Section 2 presents results per-

taining to aw([n], k), with Theorem 1.1 proved in Section 2.1 and Theorem
1.3 proved in Section 2.2. Results pertaining to aw(Zn, k) appear in Section
3, with Theorem 1.6 proved in Section 3.1 and Theorem 1.7 proved in Sec-
tion 3.2. Section 4 describes the methods and algorithms used to compute
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values of aw([n], k) and aw(Zn, k), while Section 5 contains conjectures and
open questions for future research.

In the remainder of this section we establish a basic but necessary ob-
servation that aw(S, ·) is monotone in k.

Observation 1.8. Let G be an additive (abelian) group such as the integers
or the integers modulo n, let S be a finite nonempty subset of G, and let
k ≥ 3 be an integer. Then aw(S, k) ≤ aw(S, k + 1).

Observation 1.8 follows immediately from Proposition 1.9 below and was
noted noted by Uherka in [13] for the function aw([n], ·).
Proposition 1.9. Let G be an additive (abelian) group such as the integers
or the integers modulo n, let S be a finite nonempty subset of G, and let
k ≥ 3 be an integer. If there is an exact r-coloring of S that has no rainbow
k-AP, then aw(S, k) ≥ r + 1.

Proof. Let c be an exact r-coloring of S with color set {1, . . . , r} that has
no rainbow k-AP. We proceed by constructing an exact (r − 1)-coloring of
S with no rainbow k-AP. For x ∈ S, define

ĉ(x) =

{
c(x) if c(x) ∈ {1, . . . , r − 2},
r − 1 if c(x) ∈ {r − 1, r}.

Note that ĉ is an exact (r − 1)-coloring of S. Let K be a k-AP in S. Since
there is no rainbow k-AP under c there exists j, � ∈ K such that c(j) = c(�).
It then follows that ĉ(j) = ĉ(�). Hence K is not rainbow under the coloring ĉ.
By the generality of K, ĉ is an exact (r−1)-coloring of S that has no rainbow
k-AP. Repeating this construction we obtain an exact (r − i)-coloring of S
with no rainbow k-AP for i ∈ {1, 2, . . . , r−1}. Therefore aw(S, k) ≥ r+1.

2. aw([n], k)

In this section we establish properties of aw([n], k). Sections 2.1 and 2.2
establish our main results for aw([n], 3) and aw([n], k), k ≥ 4, respectively.
Sections 2.3 and 2.4 contain additional results valid for all k and specific to
k = 3, respectively.

In Table 1 we give our calculated values of aw([n], k) for k ≥ 3. We
have a larger list of known values in the case of k = 3 that is included in
Remark 2.1 below; in Table 1 we include only the values aw([n], 3) for which
we have a value for aw([n], 4) so that we may compare them. We also restrict
n, k ≥ 3, and have stopped with k =

⌈
n
2

⌉
+ 1, because aw([n], k) = n if and

only if k ≥
⌈
n
2

⌉
+ 1 (Proposition 2.16 below).
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The growth rates when k = 3 and when k ≥ 4 appear to be different
based on data given in Table 1. The upper bound of �log2 n� + 1 given in
Proposition 2.6 for k = 3 and the lower bound of n1−o(1) in Lemma 2.8 for
k ≥ 4 confirm that the growth rates are indeed radically different.

Table 1: Values of aw([n], k) for 3 ≤ k ≤ n+3
2

n \ k 3 4 5 6 7 8 9 10 11 12 13 14
3 3
4 4
5 4 5
6 4 6
7 4 6 7
8 5 6 8
9 4 7 8 9
10 5 8 9 10
11 5 8 9 10 11
12 5 8 10 11 12
13 5 8 11 11 12 13
14 5 8 11 12 13 14
15 5 9 11 13 14 14 15
16 5 9 12 13 15 15 16
17 5 9 13 13 15 16 16 17
18 5 10 14 14 16 17 17 18
19 5 10 14 15 17 17 18 18 19
20 5 10 14 16 17 18 19 19 20
21 5 11 14 16 17 19 20 20 20 21
22 6 12 14 17 18 20 21 21 21 22
23 6 12 14 17 19 20 21 22 22 22 23
24 6 12 15 18 20 20 22 23 23 23 24
25 6 12 15 19 21 21 23 23 24 24 24 25

2.1. Main results for aw([n], 3)

Before we address Theorem 1.1, we show a summary of the computed data
for this case in Remark 2.1 below.

Remark 2.1. The exact values of aw([n], 3) are known from computer com-
putations (described in Section 4) for n ≤ 58, and are recorded here.

1. aw([n], 3) = 2 for n ∈ {1}.
2. aw([n], 3) = 3 for n ∈ {2, 3}.
3. aw([n], 3) = 4 for n ∈ {4, . . . , 7} ∪ {9}.
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4. aw([n], 3) = 5 for n ∈ {8} ∪ {10, . . . , 21} ∪ {27}.
5. aw([n], 3) = 6 for n ∈ {22, . . . , 26} ∪ {28, . . . , 58}.

Now we turn to the proof of Theorem 1.1, beginning with the lower
bound.

Proposition 2.2. Let n be a positive integer and let s ∈ {−2,−1, 0, 1, 2}.
Then aw([3n− s], 3) ≥ aw([n], 3) + 1 provided n ≥ s.

Proof. Let r = aw([n], 3) and s ∈ {0, 1, 2}. We construct an exact r-coloring
of [3n− s] that does not contain a rainbow 3-AP. By definition there exists
an exact (r − 1)-coloring, denoted c, of [n] such that there is no rainbow
3-AP in [n]. Color [3n− s] in the following manner: If i+ s is divisible by 3,
then ĉ(i) = c((i+ s)/3), otherwise ĉ(i) = r. Consider a 3-AP, K, in [3n− s].
Then either the three terms in K + s are all divisible by 3 or at least two of
the terms in K + s are not divisible by 3. If all terms in K + s are divisible
by 3, then K is not rainbow under ĉ, since there is no rainbow 3-AP under
c. If two terms of K+ s are not divisible by 3 then those two terms are both
colored r and K is not rainbow. Hence aw([3n−s], 3) ≥ r+1 for s ∈ {0, 1, 2}.

For s ∈ {−2,−1}, use the same coloring as for s = 0.

Using Proposition 2.2, we establish the lower bound in Theorem 1.1.

Lemma 2.3. Let n be a positive integer. Then aw([n], 3) ≥ �log3 n�+ 2.

Proof. The proof is by induction. The cases n = 1, 2, 3 are true by inspection.
Suppose n > 3 and that aw([m], 3) ≥ �log3m� + 2 for all m satisfying 1 ≤
m < n. We show that aw([n], 3) ≥ �log3 n�+ 2. First, we write n = 3m− s,
where s ∈ {0, 1, 2} and 2 ≤ m < n. Then by Proposition 2.2,

aw([n], 3) = aw([3m− s], 3) ≥ aw([m], 3) + 1 ≥ �log3m�+ 2 + 1

= �log3(3m)�+ 2 ≥ �log3 n�+ 2.

Example 2.4. Induction and the proof of Proposition 2.2 produce the fol-
lowing exact (m+1)-coloring of [3m] that does not have a rainbow 3-AP: For
x ∈ [3m] with the prime factorization x = 2e23e35e5 · · · pep , c(x) = m+1−e3.
This attains the value in Lemma 2.3.

To complete the proof of Theorem 1.1, we establish the upper bound.

Lemma 2.5. Let c be an exact r-coloring of [n] that does not have a rainbow
3-AP. For i ∈ [r], define bi ∈ [n] to be the least x such that the induced
coloring on [x] has exactly i colors. Then for all i ∈ [r − 1], bi+1 ≥ 2bi.
Furthermore, for any 1 ≤ i ≤ j ≤ r, we have bj ≥ 2j−ibi.
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Proof. Observe that b1 = 1. Suppose that bi+1 < 2bi for some i ∈ [r − 1].
Then {2bi − bi+1, bi, bi+1} is a rainbow 3-AP. The last statement follows by
induction, since bi ≤ 2−1bi+1 ≤ 2−2bi+2 ≤ · · · ≤ 2−(j−i)bj .

Lemma 2.6. For n ≥ 9, aw([n], 3) ≤ �log2 n�+ 1.

Proof. Suppose r = aw([n], 3)− 1, so there is an r-coloring with no rainbow
3-AP. Lemma 2.5 implies that n ≥ br ≥ 2r−1. Thus aw([n], 3) ≤ 	log2 n
+2,
which establishes the result for n not a power of 2. The case aw([2m], 3) ≤
m+1 follows similarly by using the fact that aw([2m], 3) = m+1 for m = 4
and m = 5 (see Remark 2.1); aw([16], 3) = 5 implies b5 > 16 = 24 for any
rainbow-free coloring with r ≥ 5. Then for m > 5, Lemma 2.5 implies an
r-coloring of 2m has 2m ≥ br ≥ 2r−5b5 > 2r−1, so m ≥ r and m + 1 ≥
aw(2m, 3).

This completes the proof of Theorem 1.1.

2.2. Main results for aw([n], k), k ≥ 4

In this section we specialize to the case k ≥ 4, focusing on lower and upper
bounds that give aw([n], k) = n1−o(1). Lemma 2.8 gives the lower bound and
Corollary 2.14 gives the upper bound.

Let sz(n, k) denote the largest size of a set S ⊆ [n] such that S contains
no k-AP (similar notation was introduced in [5] in honor of Szemerédi [12]).
Determining bounds on sz(n, k) is a fundamental problem in the study of
arithmetic progressions. Behrend [3], Gowers [6], and others [9, 10] have
established various bounds on sz(n, k). Proposition 2.7 provides a strong
link between sz(n, k) and our anti-van der Waerden numbers, allowing us to
use known results on sz(n, k) to bound aw(n, k).

Proposition 2.7. For all n > k ≥ 3,

sz(n, 	k/2
) + 1 ≤ aw([n], k)− 1 ≤ sz(n, k).

Proof. If c is an exact r-coloring of [n] that contains no rainbow k-AP, then
selecting one element of each color class creates a set S that contains no
k-AP; therefore aw([n], k) − 1 ≤ sz(n, k). If S is a set in [n] that contains
no 	k/2
-AP, then color [n] by giving each element in S a distinct color and
the elements of [n] \ S a new color. If a k-AP {a1, a2, . . . , ak} is rainbow in
this coloring, then exactly one such ai is in [n] \S. But this implies that the
entries aj where j �≡ i (mod 2) form an AP in S with at least 	k/2
 terms,
a contradiction.
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2.2.1. Theorem 1.3: proof of lower bound Lemma 2.6 and Behrend’s
results (stated in Theorem 2.10 and Proposition 2.11 below) show that the
upper bound in Proposition 2.7 is not useful for k = 3. Observe that when
k ∈ {4, 5}, the lower bound in Proposition 2.7 is trivial but is in fact useful
in the case of k ≥ 6. We provide a similar lower bound for k ∈ {4, 5} in
Lemma 2.8 by carefully studying Behrend’s original construction [3] of a
relatively large set S ⊂ [n] that contains no 3-AP, thus giving a lower bound
on sz(n, 3).

Let {a1, a2, a3, a4} be a 4-AP with a1 ≤ a2 ≤ a3 ≤ a4. A set A ⊂
{a1, a2, a3, a4} of size |A| = 3 is called a punctured 4-AP. If such a punc-
tured 4-AP A is not a 3-AP, then it is of the form A = {a1, a2, a4} or
A = {a1, a3, a4}. We prove that Behrend’s construction in fact contains no
punctured 4-AP (Proposition 2.9 below). This leads to Lemma 2.8 below.

Lemma 2.8. There exists an absolute constant b > 0 such that for all
n, k ≥ 4,

aw([n], k) > ne−b
√
logn = n1−o(1).

The proof of Lemma 2.8 follows from Proposition 2.9, Theorem 2.10,
Proposition 2.11 and Proposition 2.12, which follow.

Proposition 2.9. Suppose S ⊆ [n] does not contain any punctured 4-APs.
Then aw([n], k) > |S|+ 1 for all n ≥ k ≥ 4.

Proof. Color each member of S a distinct color, and color each integer in
[n]\S with a new color called zero. If there is a rainbow 4-AP in this coloring,
then at most one of the elements in this 4-AP is colored zero. Thus there
must be a punctured 4-AP in the other colors, but S contains no punctured
4-AP.

There is a bijection between vectors x = (x1, . . . , xm)� ∈ Z
m where

xi ∈ {0, 1, . . . , 2d−2} for all i ∈ [m] and elements of {0, 1, . . . , (2d−1)m−1},
by viewing x as a (2d− 1)-ary representation of an integer:

x = (x1, . . . , xm)� ←→ ax =

m∑
i=1

xi(2d− 1)i−1.

Moreover, observe that if x,y ∈ Z
m with xi, yi ∈ {0, . . . , d−1}, i = 1, . . . ,m,

are associated with ax, ay ∈ {0, 1, . . . , (2d− 1)m − 1} by this bijection, then
x + y has xi + yi ∈ {0, . . . , 2d − 1} and x + y is associated with ax+y =
ax + ay ∈ {0, 1, . . . , (2d− 1)m − 1}.

Recall that for a vector x ∈ R
m, ||x||2 =

∑m
i=1 x

2
i . Let m, �, d be positive

integers and define X�(m, d) to be the set of vectors x = (x1, . . . , xm)� such
that
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1. xi ∈ {0, . . . , d− 1} for all i ∈ {1, . . . ,m}, and
2. ||x||2 = �.

The set S�(m, d) of integers associated with the vectors in X�(m, d) via the
map x → ax forms a subset of integers in {0, 1, . . . , (2d−1)m−1}. Behrend [3]
used the pigeonhole principle to prove the following lemma; here we state
the version from [4].

Theorem 2.10. [3, 4] There exist absolute constants b, b′ > 0 such that for
all n and positive integers m = m(n), � = �(n), and d = d(n) such that
S�(m, d) ⊆ [n] the following inequality holds:

|S�(m, d)| ≥ b′n

2
√

8 log2 n(log n)1/4
≥ ne−b

√
logn.

The important property of S�(m, d) is that it avoids non-trivial arith-
metic progressions. We include Behrend’s simple proof of this fact for com-
pleteness.

Proposition 2.11. [3] The set S�(m, d) contains no 3-AP.

Proof. Suppose {ax1
, ax2

, ax3
} is a 3-AP in S�(m, d). Let x1,x2,x3 be the

associated vectors in X�(m, d). Since ax1
+ ax3

= 2ax2
, we also have that

x1 + x3 = 2x2. See Figure 1. However, by the triangle inequality, we have
that

2
√
� = 2||x2|| = ||x1 + x3|| ≤ ||x1||+ ||x3|| = 2

√
�,

and equality can only hold if 0, x1, x3 and 2x2 are collinear. However, since
||x1|| = ||x3||, this would imply x1 = x3 and thus ax1

= ax3
, a contradiction.

Proposition 2.12. The set S�(m, d) contains no punctured 4-AP.

Proof. Let {ax1
, ax2

, ax3
, ax4

} be a 4-AP. Since S�(m, d) contains no 3-AP,
it must be that one of ax2

or ax3
is not in S�(m, d). Assume by symmetry

that ax2
/∈ S�(m, d) and ax1

, ax3
, ax4

∈ S�(m, d). Let x1,x2,x3,x4 be the
associated vectors where x1,x3,x4 ∈ X�(m, d).

Since ax1
+ ax3

= 2ax2
, we have x1 + x3 = 2x2. See Figure 1. However,

as in the proof of Proposition 2.11, this implies that ||x2|| <
√
�. Since

ax2
+ ax4

= 2ax3
, we have x2 + x4 = 2x3. However, this implies that

2
√
� = 2||x3|| = ||x2 + x4|| ≤ ||x2||+ ||x4|| < 2

√
�,

a contradiction.
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Figure 1: Proofs of Propositions 2.11 and 2.12.

Lemma 2.8 now follows by combining Propositions 2.9 and 2.12. It may

be possible that the bound in Lemma 2.8 could be improved by using the

construction of Elkin [4, 7] that avoids 3-APs using bn(log n)1/4

2
√

8 log2 n
elements for

some constant b > 0. Since this construction avoids a 3-AP, we can use

Proposition 2.7 directly in order to obtain a coloring with no 6-AP, giv-

ing aw([n], k) > bn(log n)1/4

2
√

8 log2 n
for all k ≥ 6. Further use of constructions of

Rankin [10] or Laba and Lacey [9] of large sets that avoid k-APs could

slightly improve the asymptotics of aw([n], k), but these bounds are all of

the form n1−o(1).

2.2.2. Theorem 1.3: proof of upper bound A theorem of Gowers,

stated here as Theorem 2.13, provides an upper bound for aw([n], k). How-

ever, n must be very large compared to k for this upper bound to be signif-

icantly different than the näıve upper bound of n itself.

Theorem 2.13. [6, Theorem 1.3] For every positive integer k there is

a constant b = b(k) > 0 such that every subset of [n] of size at least

n(log2 log2 n)
−b contains a k-AP. Moreover, b can be taken to be 2−2k+9

.

Corollary 2.14. Let n and k be positive integers. Then there exists a con-

stant b such that aw([n], k) ≤
⌈
n(log2 log2 n)

−b
⌉
. That is, for a fixed positive

integer k, the function aw([n], k) of n is o( n
log logn).

Proof. Consider an exact t-coloring of [n], where t :=
⌈
n(log2 log2 n)

−b
⌉

and b = 2−2k+9

. Since the coloring is exact, there exists a set A ⊆ [n] of t

differently colored integers. By Theorem 2.13, A contains a k-AP. Therefore

aw([n], k) ≤ t.
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Note that the upper bound in Corollary 2.14 can be expressed as
ne− log log logn−ω(1). Then combining this upper bound on aw([n], k) and the
lower bound from Lemma 2.8, we have that for k ≥ 4

ne−b
√
logn < aw([n], k) ≤ ne− log log logn−ω(1).

This completes the proof of Theorem 1.3.

2.3. Additional results for aw([n], k) valid for all k

In this section we present some additional elementary results for aw([n], k).
The next proposition describes a relationship between aw([n], k) and aw([n−
1], k).

Proposition 2.15. Let n and k be positive integers. Then aw([n], k) ≤
aw([n− 1], k) + 1.

Proof. Let r = aw([n], k). Note that if n < k our result follows from the
definition. Suppose n ≥ k. Then there is some exact (r − 1)-coloring of [n]
that has no rainbow k-AP, and without loss of generality n is colored r− 1.
Consider this coloring restricted to [n− 1]. Then we have two cases:

1. This is an exact (r − 1)-coloring of [n− 1].
2. The only integer in [n] with the color r − 1 is n, so this is an exact

(r − 2)-coloring of [n− 1].

Note that since [n] had no rainbow k-AP in both of our cases we still do
not have a rainbow k-AP. So by Proposition 1.9 we have aw([n − 1], k) ≥
r − 1 = aw([n], k)− 1 and the result follows.

In the next proposition we characterize the values of k for which
aw([n], k) = n.

Proposition 2.16. Let n and k be positive integers with k ≤ n. Then
aw([n], k) = n if and only if k ≥

⌈
n
2

⌉
+ 1.

Proof. Suppose k ≥
⌈
n
2

⌉
+ 1. We show that aw([n], k) > n − 1. Color

⌈
n
2

⌉
and

⌈
n
2

⌉
+1 with the same color and all the remaining integers with unique

colors. This is an exact (n − 1)-coloring. Since k ≥
⌈
n
2

⌉
+ 1, the integers

in any k-AP must be consecutive integers, and the values
⌈
n
2

⌉
and

⌈
n
2

⌉
+ 1

must be contained in any k-AP. Hence no k-AP is rainbow.
For the converse, suppose aw([n], k) = n. Color [n] with n−1 colors such

that there is no rainbow k-AP. Therefore exactly one color class has size two
and the rest have size one. Denote the color class of size two as C = {n1, n2},
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n1 < n2. Then every k-AP contains both n1 and n2, or else we would have a
rainbow k-AP. Suppose that k ≤

⌈
n
2

⌉
. Then {1, 2, . . . , k} and {n−k+1, n−

k+2, . . . , n} are k-APs. Note that {1, 2, . . . , k} ⊆ {1, 2, . . . ,
⌈
n
2

⌉
} and {n−k+

1, n−k+2, . . . , n} ⊆ {
⌊
n
2

⌋
+1, . . . , n}. Then n1, n2 ∈ {1, 2, . . . ,

⌈
n
2

⌉
}∩{

⌊
n
2

⌋
+

1, . . . , n}. This intersection is empty or contains one element depending on
whether n is even or odd. In both cases, this contradicts the fact that n1 �= n2

and n1, n2 ∈ {1, 2, . . . ,
⌈
n
2

⌉
} ∩ {

⌊
n
2

⌋
+ 1, . . . , n}. Therefore k ≥

⌈
n
2

⌉
+ 1.

The following upper bound was proved by Uherka [13]; we include the
brief proof for completeness.

Proposition 2.17. [13] Let n, k, n1, and n2 be positive integers such that
k ≤ n1 ≤ n2 ≤ n and n1 + n2 = n. Then aw([n], k) ≤ aw([n1], k) +
aw([n2], k)− 1.

Proof. Let r = aw([n1], k)+ aw([n2], k)− 1, and consider an arbitrary exact
r-coloring c of [n]. Let r1 = |c([n1])| and r2 = |c({n1 + 1, . . . , n1 + n2})|.
Since n1 + n2 = n, r ≤ r1 + r2. This implies that r1 ≥ aw([n1], k) or
r2 ≥ aw([n2], k). Clearly r1 ≥ aw([n1], k) implies c has a rainbow k-AP. By
translating c({n1 + 1, . . . , n1 + n2}) to a coloring on [n2], we also see that c
has a rainbow k-AP if r2 ≥ aw([n2], k). Thus aw([n], k) ≤ r = aw([n1], k) +
aw([n2], k)− 1.

2.4. Additional results for aw([n], 3)

In this section we establish additional bounds on aw([n], 3) in Propositions
2.18 and 2.19, and use Proposition 2.19 together with Remark 2.1, Propo-
sition 2.2, and Lemma 2.3 to compute (at least) 93 additional exact values
for aw([n], 3).

Proposition 2.18. For n ≥ 2, there exists m ≤ 	n2 
 such that aw([n], 3) ≤
aw ([m], 3) + 1.

Proof. We may assume that n ≥ 3, since the case n = 2 follows by inspec-
tion. Let r = aw([n], 3). Then there exists an (r − 1)-coloring, namely c,
of [n] that has no rainbow 3-AP. Let t be the length of a shortest consec-
utive integer sequence in [n] that contains all r − 1 colors, say the interval
is {s + 1, s + 2, . . . , s + t} for some s. Define ĉ to be an (r − 1)-coloring
of [t] = {1, 2, . . . , t} so that ĉ(j) := c(s + j) for 1 ≤ j ≤ t. Notice that
ĉ(1) and ĉ(t) cannot be the same color and each must be the only element
of its color class, or else we could find a smaller t. Let ĉ(1) = a and de-
fine bi to be the smallest element of [t] such that [bi] has i + 1 colors for
1 ≤ i ≤ r− 2. Note that if bi is odd, i.e., bi = 2x+ 1, then {1, x+ 1, 2x+ 1}
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is a rainbow 3-AP. So the set of even numbers of [t] are colored with exactly
r − 2 colors with no rainbow 3-AP. Define m = 	 t

2
 ≤ 	n2 
 and consider
the coloring c̃ of [m] induced by the coloring ĉ of the even integers in [t].
The coloring c̃ uses at least r − 2 colors and has with no rainbow 3-AP, so
aw([n], 3)− 1 = (r − 2) + 1 ≤ aw ([m], 3).

Proposition 2.19. Let m, n, and � be positive integers. If m < n < 2�(m+
1), then aw([n], 3) ≤ aw([m], 3) + �.

Proof. Suppose not. Then there exists m, � ≥ 1 and n with m < n < 2�(m+
1) such that there is a coloring c on [n] using exactly r = aw([m], 3)+� colors
that does not have a rainbow 3-AP. For i ∈ [r], let bi ∈ [n] be the least x
such that the induced coloring on [x] has exactly i colors. Since r − � =
aw([m], 3), we must have br−� ≥ m+1, since otherwise the induced coloring
on [m] contains at least aw([m], 3) colors, which is impossible. Thus by
Lemma 2.5, n ≥ br ≥ 2�br−� ≥ 2�(m+1), which contradicts our assumption
on n.

Corollary 2.20. aw([n], 3) = 7 for 64 ≤ n ≤ 80.

Proof. Since aw([m], 3) = 6 for 22 ≤ m ≤ 26, and 3 · 22 − 2 = 64 and
3 · 26 + 2 = 80, we see that aw([n], 3) ≥ 7, by Proposition 2.2. Since 27 <
64 ≤ n ≤ 80 < 112 = 4 · 28, we have aw([n], 3) ≤ aw([27], 3) + 2 = 5+ 2 = 7
by Proposition 2.19 and Remark 2.1.

Corollary 2.21. aw([n], 3) = 7 for 82 ≤ n ≤ 111.

Proof. Since 27 < 82 ≤ n ≤ 111 < 112 = 4 · 28, we have aw([n], 3) ≤
aw([27], 3) + 2 = 5 + 2 = 7 by Proposition 2.19 and Remark 2.1. Also,
since 34 = 81 < n ≤ 111 < 243 = 35, we have 4 < log3 n ≤ 5, so that
aw([n], 3) ≥ �log3 n�+ 2 = 5 + 2 = 7 by Lemma 2.3.

Corollary 2.22. aw([n], 3) = 8 for 190 ≤ n ≤ 235.

Proof. Since aw([m], 3) = 7 for 64 ≤ m ≤ 80, and 3 ·64−2 = 190 and 3 ·80+
2 = 242, we see that aw([n], 3) ≥ 8 for 190 ≤ n ≤ 242, by Proposition 2.2.
For 58 < n < 236 = 22 · (58 + 1), we see that aw([n], 3) ≤ aw([58], 3) + 2 =
6 + 2 = 8, by Proposition 2.19 and Remark 2.1.

Finally we combine the upper and lower bounds.

Proposition 2.23. If 3u < n < 2 · 3u + 2, then u + 3 ≤ aw([n], 3) ≤
aw([3u], 3) + 1. If 2 · 3u + 1 < n < 4 · 3u + 4, then u + 3 ≤ aw([n], 3) ≤
aw([3u], 3) + 2.
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Proof. The lower bounds follow immediately from Lemma 2.3, and the first
upper bound follows immediately from Proposition 2.19. For the second,
apply Proposition 2.19 with m = 2 · 3u + 1 and � = 1 to obtain aw([n], 3) ≤
aw([m], 3)+1 and since 3u < m < 2 ·3u+2, aw([m], 3) ≤ aw([3u], 3)+1.

3. aw(Zn, k)

In this section we establish properties of aw(Zn, k). Sections 3.1 and 3.2
establish our main results for aw(Zn, 3) and aw(Zn, k), k ≥ 4, respectively.
Section 3.3 contains additional results.

Please note that for x ∈ Z, we will also use x to denote the equivalence
class {x + in : i ∈ Z} in Zn. Because arithmetic progressions may “wrap
around” in the group Zn, we call attention to the fact that we consider only
k-APs that include k distinct members of Zn. Naturally, one of our first
questions about aw(Zn, k) concerns its relationship with aw([n], k). Theorem
3.3(a) below and Lemma 2.3 show that aw(Zn, k) need not be asymptotic
to aw([n], k) for k = 3 and n = 2m. However, we do have the simple bound
aw(Zn, k) ≤ aw([n], k) (already stated in Remark 1.4).

3.1. Main results for aw(Zn, 3)

When we turn to the special case k = 3, many values of aw(Zn, 3) can be
computed, and new phenomena appear. Our main results in this case are
described by Theorem 1.6, which we establish in this section.

Currently available computational data is given in Table 2; the row label
displays the range of n for which the values of aw(Zn, 3) are reported in that
row, and the column heading is the ones digit within this range. This data
led to the discovery of several results established in this section and is used
to establish the second statement in Theorem 1.6 that concerns integers
having all prime factors less than one hundred.

Many odd primes p have aw(Zp, 3) = 3 (see Table 2 below). However,
there are several examples of odd primes p for which aw(Zp, 3) = 4. In
Example 3.1 below we exhibit an explicit exact coloring that establishes
aw(Z17, 3) ≥ 4.

Example 3.1. Coloring the elements of Z17 in order as

3 1 1 2 1 2 2 2 1 1 2 2 2 1 2 1 1

is an exact 3-coloring that does not contain a rainbow 3-AP. Computations
establish that equality holds and so aw(Z17, 3) = 4.
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Table 2: Computed values of aw(Zn, 3) for n = 3, . . . , 99 (the row label gives
the range of n and the column heading is the ones digit within this range)

0 1 2 3 4 5 6 7 8 9
0–9 3 3 3 4 3 3 4

10–19 4 3 4 3 4 4 3 4 5 3
20–29 4 4 4 3 4 4 4 5 4 3
30–39 5 4 3 4 5 4 5 3 4 4
40–49 4 4 5 4 4 5 4 3 4 4
50–59 5 5 4 3 6 4 4 4 4 3
60–69 5 3 5 5 3 4 5 3 5 4
70–79 5 3 5 4 4 5 4 4 5 3
80–89 4 6 5 3 5 5 5 4 4 4
90–99 6 4 4 5 4 4 4 4 5 5

Definition 3.2. When dealing with a coloring c of Zst, the i
th residue class

modulo s is Ri := {j ∈ Zst : j ≡ i (mod s)} and the ith residue palette
modulo s is Pi := {c(�) : � ∈ Ri}. For a positive integer t, we call the
elements of the two residue classes, R0 and R1, modulo 2 in Z2t the even
numbers and the odd numbers, respectively.

3.1.1. Consequences of results in Jungić et al. In this section we
state two important results of Jungić et al. [8] and derive implications. These
are used in the proof of Theorem 1.6. The next result is an equivalent form
of Theorem 3.5 in that paper.

Theorem 3.3. [8, Theorem 3.5] Let n be a positive integer. Then
aw(Zn, 3) = 3 if and only if one of the following conditions is satisfied:

a) n is a power of 2,
b) n is prime and 2 is a generator of the multiplicative group Z

×
n ,

c) n is prime, n−1
2 is odd, and the order of 2 in Z

×
n is n−1

2 .

Theorem 3.4. [8, Theorem 3.2] Let n be an odd positive integer and q be
the smallest prime factor of n. Then every 3-coloring of Zn in which every
color class has at least n

q + 1 elements contains a rainbow 3-AP.

A coloring c of Zn is an extremal coloring if c is an exact (aw(Zn, 3)−1)-
coloring of Zn with no rainbow 3-AP. A coloring c of Zn is a singleton
coloring if some color is used exactly once.

Proposition 3.5. Let p be a prime positive integer. Then 3 ≤ aw(Zp, 3) ≤
4, and aw(Zp, 3) = 4 implies every extremal coloring of Zp is a singleton
coloring.
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Proof. First we suppose aw(Zp, 3) ≥ 5 and let c be an extremal coloring
with r = aw(Zp, 3)− 1 ≥ 4 colors. That is, c does not have a rainbow 3-AP.
Hence, there is at least one color class with more than one element. We can
define a 3-coloring ĉ by partitioning the color classes of c into three sets and
defining the color classes of ĉ to be the unions of the color classes in the
sets. Clearly ĉ is a 3-coloring of Zp that does not have a rainbow 3-AP. By
Theorem 3.4, there exists a color class of ĉ with < p

p + 1 = 2 elements. This

means that all but one of the color classes has a single element (and r = 4).
Without loss of generality, let the singleton colors be in positions 0, x, and
y, with 0 < x < y < p (when viewed as integers rather than elements of Zp).
In order to avoid the rainbow 3-AP in c consisting of 0, x2 , x, x must odd,

and similarly y must be odd as well. But then x, y−x
2 , y is a a rainbow 3-AP

in c, contradicting aw(Zp, 3) ≥ 5.

Next, suppose that aw(Zp, 3) = 4 and let c be an extremal coloring of
r = 3 colors. Since c has no rainbow 3-AP, Theorem 3.4 gives that there
is a color class with one element. That is, c must be a singleton color-
ing.

Since aw(Zp, 3) = 3 implies Zp has the singleton extremal coloring c(0) =
1 and c(i) = 2 for every i �≡ 0 (mod p), the next corollary is immediate.

Corollary 3.6. Every prime p has a singleton extremal coloring of Zp.

Since aw(Z2m , 3) = 3, there are infinitely many values of n for which
aw(Zn, 3) = 3. As stated in Theorem 1.6, aw(Zn, 3) can be be made arbi-
trarily large and computed from the values of aw(Zp, 3) for the prime factors
p of n. For primes p, aw(Zp, 3) > 3 seems rare from the data in Table 2.
However, it follows from Theorem 3.3 that there are infinitely many primes
p such that aw(Zp, 3) = 4:

Corollary 3.7. If p is a prime and p ≡ 1 (mod 8), then aw(Zp, 3) = 4.
There are infinitely many such primes.

Proof. Since p ≡ 1 (mod 8), p−1
2 is even. Also, 2 must be a square in Z

×
p ,

which implies it is not a generator of Z×
p . So by Theorem 3.3, aw(Zp, 3) �= 3.

Then by Proposition 3.5, aw(Zp, 3) = 4. By Dirichlet’s Theorem there are
infinitely many primes p ≡ 1 (mod 8).

3.1.2. Proof of Theorem 1.6 In this section we present a series of results
that lead to equivalent lower and upper bounds on aw(Zn, 3) in terms of the
prime factorization of n, establishing Theorem 1.6.

The next result gives our main recursive upper bound for aw(Zn, 3).
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Proposition 3.8. Suppose s is odd, and either t is odd or t = 2m. Then

aw(Zst, 3) ≤ aw(Zt, 3) + aw(Zs, 3)− 2.

Proposition 3.8 is established by Propositions 3.10 (t odd) and 3.13
(t = 2m) below, after the proofs of necessary preliminaries.

Proposition 3.9. Let s be an odd positive integer. Suppose c is a coloring of
Zst that does not have a rainbow 3-AP. Let R0, R1, . . . , Rs−1 be the residue
classes modulo s in Zst with associated residue palettes Pi. Let m be an index
such that |Pm| ≥ |Pi| for all i. Then |Pi \ Pm| ≤ 1 for all i.

Proof. For arbitrary nonnegative integers h and j, we show that |Ph+j\Ph| ≥
2 implies Ph = Ph+2j . Assume |Ph+j \Ph| ≥ 2. Suppose first that Ph+2j \Ph

is not empty and z ∈ Ph+2j \ Ph. Since |Ph+j \ Ph| ≥ 2, we can pick some
y ∈ Ph+j \ Ph other than z. Let �y, �z ∈ Zst with �y ∈ Rh+j , �z ∈ Rh+2j

and c(�y) = y, c(�z) = z. Define �x :=2�y − �z ∈ Rh, so x := c(�x) is a color
in Ph. By the choice of y, y �= z; z �= x since z ∈ Ph+2j \ Ph and x ∈ Ph;
x �= y since y ∈ Ph+j \ Ph and x ∈ Ph. Thus �x, �y, �z is a rainbow 3-AP, a
contradiction. Therefore we conclude that Ph+2j ⊆ Ph. With this condition,
we consider the case Ph \ Ph+2j is not empty. Let x ∈ Ph \ Ph+2j . Similarly,
it is possible to pick y ∈ Ph+j \Ph. Let �x, �y ∈ Zst with �x ∈ Rh, �y ∈ Rh+j ,
and c(�x) = x, c(�y) = y. Thus �z :=2�y − �x ∈ Rh+2j and so z := c(�z) is a
color in Ph+2j . Again, x �= y by the choice of y; x �= z since x ∈ Ph \ Ph+2j

and z ∈ Ph+2j ; y �= z since y ∈ Ph+j \ Ph and z ∈ Ph+2j ⊆ Ph. Since we
again have a contradiction, Ph = Ph+2j .

Next we show that |Ph+j\Ph| ≥ 2 implies |Ph\Ph+j | ≤ 1. Suppose |Ph+j\
Ph| ≥ 2 and |Ph \Ph+j | ≥ 2, and then show this leads to a contradiction. By
the result just established, Ph = Ph+2j . Since |Ph+2j\Ph+j | = |Ph\Ph+j | ≥ 2,
Ph+j = Ph+3j . Therefore Ph = Ph+qj whenever q is even and Ph+j = Ph+qj

whenever q is odd. Since s is odd, the order d of j in Zs is also an odd
number. That means Ph = Ph+dj = Ph+j , which is a contradiction.

Finally, since |Pm| is chosen to be maximum, |Pm \ Pj | ≥ 2 whenever
|Pj \ Pm| ≥ 2, which is impossible. Hence |Pj \ Pm| ≤ 1.

Proposition 3.10. Suppose s and t are both odd. Then aw(Zst, 3) ≤
aw(Zs, 3) + aw(Zt, 3)− 2.

Proof. Let c be a coloring of Zst that does not have a rainbow 3-AP. Con-
sider the residue classes and residue palettes modulo s and without loss of
generality assume |P0| ≥ |Pi| for all i. We claim that

(1)

∣∣∣∣∣
s−1⋃
i=0

Pi

∣∣∣∣∣ ≤ (aw(Zs, 3)− 1) + (aw(Zt, 3)− 1)− 1.
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The proof is by contradiction. Assume that (1) is false, i.e., assume

(2)

∣∣∣∣∣
s−1⋃
i=0

Pi

∣∣∣∣∣ ≥ (aw(Zs, 3)− 1) + (aw(Zt, 3)− 1)

and define a coloring ĉ of Zs = {0, 1, . . . , s− 1} in the following way: Let α
be a color not in

⋃s−1
i=1 (Pi \ P0) and define

ĉ(i) =

{
α if Pi ⊆ P0,

the element of Pi \ P0 if Pi �⊆ P0.

Note that Proposition 3.9 implies that the required element in Pi \ P0 is
unique, so this coloring is well-defined. Since c does not have a rainbow
3-AP, we know |P0| ≤ aw(Zt, 3)− 1 so∣∣∣∣∣

s−1⋃
i=1

(Pi \ P0)

∣∣∣∣∣ ≥
∣∣∣∣∣
s−1⋃
i=0

Pi

∣∣∣∣∣− (aw(Zt, 3)− 1)

≥ (aw(Zs, 3)− 1) + (aw(Zt, 3)− 1)− (aw(Zt, 3)− 1)

= aw(Zs, 3)− 1.

Note that every color that is not in P0, together with α, is used in ĉ, so ĉ
uses at least aw(Zs, 3) colors. Thus a rainbow 3-AP exists in ĉ.

We show that a rainbow 3-AP in ĉ implies a rainbow 3-AP in c, providing
a contradiction and establishing that (1) is true. Let x, y, z be a rainbow 3-
AP in Zs using coloring ĉ, with y = x+ d (mod s) and z = x+2d (mod s).
Since x, y, z is rainbow, ĉ(u) �= ĉ(v) for all distinct u, v ∈ {x, y, z}, and so at
most one u ∈ {x, y, z} has ĉ(u) = α. Note that by definition ĉ(u) ∈ Pu or
ĉ(u) = α for u ∈ {x, y, z}.

Case 1: ĉ(z) �= α and ĉ(y) �= α. Then we can find g2 and g3 such that
c(g2s+ y) = ĉ(y) and c(g3s+ z) = ĉ(z). Define d′ := (g3s+ z)− (g2s+ y).
Then

(g3s+ z)− d′ = (g2s+ y) ≡ y (mod s)

(g3s+ z)− 2d′ = 2g2s+ 2y − g3s− z ≡ 2y − z

≡ 2(x+ d)− (x+ 2d) ≡ x (mod s).

With � := (g3s+ z)− 2d′, consider the 3-AP {�, (g3s+ z)− d′, (g3s+ z)}.
We show that this 3-AP is rainbow: Note that ĉ(y) /∈ P0 and ĉ(z) /∈ P0.
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If ĉ(x) = α, then Px ⊆ P0, so � ∈ Rx implies c(�) �= ĉ(y) = c(g2s + y)
and c(�) �= ĉ(z) = c(g3s+ z). If ĉ(x) �= α, then ĉ(x) is the unique element
of Px \ P0 and ĉ(x) �= ĉ(y), ĉ(z), so � ∈ Rx implies c(�) �= ĉ(y) and
c(�) �= ĉ(z). Thus c has a rainbow 3-AP, contradicting our assumption
(2). The case where both ĉ(x) �= α and ĉ(y) �= α is symmetric to Case 1.
So only Case 2 remains.

Case 2: ĉ(y) = α. Then ĉ(x) ∈ Px \ P0 and ĉ(z) ∈ Pz \ P0, so we can find
g1 and g3 such that c(g1s + x) = ĉ(x) and c(g3s + z) = ĉ(z), and define
e := (g3s+ z)− (g1s+ x). Since st is odd, 2 is invertible in Zst and there
exists d′ such that 2d′ ≡ e (mod st), and hence 2d′ ≡ e (mod s). Also,
e ≡ z − x ≡ 2d (mod s). Thus 2d ≡ 2d′ (mod s) and so d ≡ d′ (mod s)
since s is odd. Then

(g1s+ x) + 2d′ ≡ (g1s+ x) + ((g3s+ z)− (g1s+ x))

= g3s+ z ≡ z (mod s)

(g1s+ x) + d′ ≡ x+ d ≡ y (mod s).

With � := (g1s + x) + d′, the 3-AP {(g1s + x), �, (g1s + x) + 2d′} is
rainbow, because � ∈ Ry and Py ⊆ P0, so c(�) �= ĉ(x) = c(g1s + x) and
c(�) �= ĉ(z) = c(g3s+ z).

In all cases, c has a rainbow 3-AP, contradicting our assumption (2).

Next we prove two technical propositions used in the proof of Proposition
3.13, Propositions 3.11 and 3.12.

Proposition 3.11. Let m and s be positive integers with s odd. Suppose c is
a coloring of Z2ms using at least r := aw(Zs, 3)+1 colors that does not have a
rainbow 3-AP. Let R0, R1, . . . , Rs−1 be the residue classes modulo s in Z2ms

with associated residue palettes Pi. Then 1 ≤ |Pi| ≤ 2 for i = 0, . . . , s − 1,
and all palettes Pi of size two share a common color.

Proof. Since Pi is nonempty, 1 ≤ |Pi|. Observe that the coloring c of Ri

induces a coloring on Z2m that uses only the colors in Pi and cannot con-
tain a rainbow 3-AP. Thus |Pi| ≤ 2 by Theorem 3.3, establishing the first
statement.

By Proposition 3.9, each pair of residue palettes of size two must inter-
sect. Suppose the palettes of size two do not all intersect in a common color.
Then there are exactly three colors α, β, γ that are used by all the palettes
of size two, and there are exactly three distinct palettes of size two, each
consisting of two of these three colors. We show this configuration leads to
a contradiction.
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Create a coloring ĉ of Zs by the following method:

ĉ(i) =

⎧⎨
⎩

c(i) if |Pi| = 1,
β if Pi = {α, β},

the unique element of Pi \ {γ} if |Pi| = 2 and γ ∈ Pi.

Observe that ĉ uses r colors if there exists i such that Pi = {γ} and r− 1 =
aw(Zs, 3) colors otherwise, so in either case ĉ must have a rainbow 3-AP.
Suppose that {x, y, z} is a rainbow 3-AP for the coloring ĉ of Zs. Since
ĉ(x), ĉ(y), and ĉ(z) are distinct colors, at least one of the palettes Px, Py, Pz

contains only one color. Consider the sizes of Px, Py, and Pz.

Case 1: |Pz| = 1. Observe that ĉ(i) is always an element in Pi by our
definition of ĉ(i). Pick n1 ∈ Rx and n2 ∈ Ry such that c(n1) = ĉ(x) and
c(n2) = ĉ(y). Thus n3 := 2n2−n1 is an element in Rz and so c(n3) = ĉ(z).
Since ĉ(x), ĉ(y), ĉ(z) are all distinct, {n1, n2, n3} is a rainbow 3-AP. The
case |Px| = 1 is symmetric.

Case 2: |Px| = |Pz| = 2 and |Py| = 1. Since ĉ(x) �= ĉ(z), it must be
that {ĉ(x), ĉ(z)} = {α, β}. Without loss of generality, we assume that
ĉ(x) = β and ĉ(z) = α. By the definition of ĉ, Pz = {α, γ}. Then Px

is one of {α, β} or {β, γ}. If ĉ(y) �∈ Px ∪ Pz, then any 3-AP {n1, n2, n3}
where n1 ∈ Rx and c(n1) = β, n2 ∈ Ry, and n3 ∈ Rz is a rainbow
3-AP in the original coloring. Thus, ĉ(y) ∈ Px ∪ Pz ⊆ {α, β, γ}, but
ĉ(y) /∈ {α, β} = {ĉ(x), ĉ(z)}, so ĉ(y) = γ. Note that this implies ĉ uses all
r colors.
Since this is the final case, and all previous cases led to contradictions,
every rainbow 3-AP in Zs given by the coloring ĉ must be of the form
{x, y, z} where {ĉ(x), ĉ(z)} = {α, β} and ĉ(y) = γ. Create a new coloring

c′ of Zs where c′(i) =

{
c(i) if ĉ(i) �= γ,

β if ĉ(i) = γ.

Now, every 3-AP that was previously non-rainbow in ĉ remains non-
rainbow in c′ and the rainbow 3-APs (which necessarily used the colors
α, β, and γ) are no longer rainbow. Thus, this coloring c′ does not have
a rainbow 3-AP, but c′ uses r − 1 = aw(Zs, 3) colors, a contradiction.

The above cases show that having no common color among the palettes of
size two leads to a contradiction. Therefore, all of the residue palettes of size
two share a common color.

Proposition 3.12. Suppose c is a coloring of Z2t (t ≥ 1) that does not have
a rainbow 3-AP. Let A and B denote the residue palettes modulo 2 in Z2t
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associated with the even and odd numbers, respectively. Then |A \ B| ≤ 1
and |B \A| ≤ 1.

Proof. It suffices to show that |A \B| ≤ 1 for every such coloring c because
if |B \ A| ≥ 2, then the coloring defined by the rotation c′(x) := c(x + 1)
has the roles of A and B reversed. Suppose not, so there exist two colors
α, γ that appear only in A. Let n1 = 2m1 and n3 = 2m3 be even elements
such that c(n1) = α and c(n3) = γ. We can select m1 and m3 such that
0 ≤ m1 < m3 < t. Performing arithmetic in the integers, we can choose
m3 − m1 to be minimum with respect to the fact that the set of colors
{c(2m1), c(2m3)} is {α, γ}. Let n2 = m1 +m3 and observe that {n1, n2, n3}
is a 3-AP and hence is not rainbow. Therefore, n2 must have the color α or γ
and thus is even. However, this implies that n2 = 2m2 and m1 < m2 < m3,
while one of the sets of colors {c(2m1), c(2m2)} or {c(2m2), c(2m3)} is {α, γ},
so one of the pairs (m1,m2), (m2,m3) violates our extremal choice.

Proposition 3.13. Let m and s be positive integers with s odd. Then

aw(Z2ms, 3) ≤ aw(Zs, 3) + 1.

Proof. The result is immediate for s = 1 because Theorem 3.3 gives that
aw(Z2m , 3) = 3 and because aw(Zs, 3) = s + 1 for s < 3, so assume s ≥ 3.
We proceed by induction on m. Suppose c is an exact r-coloring of Z2ms

with r = aw(Zs, 3) + 1 that does not have a rainbow 3-AP. Let A and B
denote the residue palettes of the even and odd numbers, respectively. By
Proposition 3.12, |A\B| ≤ 1 and |B \A| ≤ 1, so |B| ≥ r−1 and |A| ≥ r−1.
The base case m = 1 is then immediate, because the coloring of the even
numbers of Z2s induces a coloring of Zs, so a rainbow 3-AP necessarily exists,
producing a contradiction.

Now consider m > 1. As usual Ri, i = 0, . . . , s−1, are the residue classes
modulo s of Z2ms and Pi, i = 0, . . . , s−1, are the residue palettes. Recall that
by Proposition 3.11, 1 ≤ |Pi| ≤ 2 for all i. For 0 ≤ i ≤ s− 1, let Ai = Pi ∩A
be the colors appearing on the even numbers in Ri, and let Bi = Pi ∩ B
be the colors appearing on the odd numbers in Ri. Thus, Pi = Ai ∪ Bi,
A =

⋃s−1
i=0 Ai, and B =

⋃s−1
i=0 Bi. We claim that |A| = |B| = r − 1. To

see this, observe that the even elements induce a coloring of Z2m−1s, so if
|A| = r, then a rainbow 3-AP necessarily exists, since r ≥ aw(Z2m−1s, 3) by
the induction hypothesis. Thus |A| ≤ r − 1, and so |A| = r − 1. The proof
that |B| = r − 1 is analogous.

Since |A| = |B| = r − 1, there exist colors α, β such that A \ B = {α}
and B \ A = {β}. Assume α ∈ Au and β ∈ Bv. Let j = v − u, hence
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β ∈ Bu+j = Bv. Since there is no rainbow 3-AP, u + 2j must have a color
in palette A, α ∈ Au+2j , which then implies β ∈ Bu+3j = Bv+2j . Iterating
this process gives that α ∈ Au+2�j and β ∈ Bv+2�j for all � ≥ 0. Since s
is odd, we have that for all q ≥ 0, Au+qj is of the form Au+2�j for some
� and similarly, every Bu+qj = Bv+(q−1)j is of the form Bv+2�j for some
�. Therefore, Pu+qj = {α, β} for all q ≥ 0. By Proposition 3.11, there is
a common color for palettes of size two, and thus one of α or β is this
common color. Without loss of generality, assume that α is the common
color for all palettes of size 2. This implies that |Bi| = 1 for all 0 ≤ i ≤ s−1.
Hence, defining ĉ(i) to be the unique color in Bi defines an exact (r − 1)-
coloring of Zs that avoids rainbow 3-APs. However, r − 1 = aw(Zs, 3), a
contradiction.

Proposition 3.8 is now established from Proposition 3.10 and Proposi-
tion 3.13. We now turn our attention to establishing the lower bound.

Proposition 3.14. Suppose s is odd and Zs has a singleton extremal col-
oring. Then for t ≥ 2,

aw(Zst, 3) ≥ aw(Zt, 3) + aw(Zs, 3)− 2.

Proof. Let cs be a singleton extremal coloring of Zs. Note that we can shift
cs so that cs(0) is the color that is used exactly once. Choose a coloring
ct of Zt using aw(Zt, 3) − 1 colors not used by cs that does not have a
rainbow 3-AP. Let R0, R1, . . . , Rs−1 be the residue classes modulo s in Zst.
Define a coloring ĉ of Zst as follows: For i = 1, . . . , s − 1 and � ∈ Ri,
ĉ(�) := cs(i), and for 0 ≤ j ≤ t− 1, ĉ(js) := ct(j). Notice that we now have
an exact aw(Zs, 3)−2+aw(Zt, 3)−1 coloring of Zst because we have removed
color cs(0). Clearly, if a 3-AP is within some residue class it is not rainbow.
Because s is odd, d �≡ 0 (mod s) implies 2d �≡ 0 (mod s) and 2d �≡ d (mod s),
so a 3-AP that is not entirely within one residue class has elements in three
different residue classes. But a rainbow 3-AP with elements in three different
residue classes would imply a rainbow 3-AP in cs, which does not exist. So we
have found a coloring of Zst using aw(Zt, 3)+ aw(Zs, 3)− 3 colors that does
not have a rainbow 3-AP. Thus aw(Zst, 3) ≥ aw(Zt, 3) + aw(Zs, 3)− 2.

Corollary 3.15. For an integer n ≥ 2,

aw(Zn, 3) = 2 + f2(n) + f3(n) + 2f4(n).

Proof. By Proposition 3.5, every odd prime factor p has 3 ≤ aw(Zp, 3) ≤ 4.
Apply Proposition 3.8, removing one odd prime s at a time and observing
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that for aw(Zs, 3) = 3, aw(Zs, 3) − 2 adds one to the total, whereas for
aw(Zs, 3) = 4, aw(Zs, 3) − 2 adds two to the total. Thus aw(Zn, 3) ≤ 2 +
f2(n)+f3(n)+2f4(n). For the reverse inequality, suppose p is an odd prime.
Then every extremal coloring of Zp is a singleton coloring by Proposition 3.5.
So we can apply Proposition 3.14 to remove one odd prime at a time to show
that aw(Zn, 3) = 2 + f2(n) + f3(n) + 2f4(n).

Remark 3.16. The constructive proof of Proposition 3.14 gives a singleton
extremal coloring of Zn from the singleton extremal colorings of the prime
factors of n. Since Z2m has the singleton extremal coloring c(0) = 1 and
c(i) = 2 for every i �≡ 0 (mod 2m), every positive integer has a singleton
extremal coloring.

Proposition 3.17. For all primes p < 100, aw(Zp, 3) = 3 if p /∈ Q4 :=
{17, 31, 41, 43, 73, 89, 97} and aw(Zp, 3) = 4 if p ∈ Q4.

Proof. The statement that for any prime p < 100, aw(Zp, 3) = 3 if p /∈ Q4

and aw(Zn, 3) = 4 if p ∈ Q4 has been verified computationally (see Table
2).

The next example illustrates the use of Corollary 3.15 to compute
aw(Zn, 3) in the case that every prime factor of n is less than 100.

Example 3.18. Let n = 14, 582, 937, 583, 067, 568. Since n = 24 · 3 · 112 ·
13 · 172 · 533 · 672, aw(Zn, 3) = 3 + 9 + 2 · 2 = 16.

3.2. Main results for aw(Zn, k), k ≥ 4

In this section, we specialize to the case where k ≥ 4 and prove Theorem
1.7. Corollary 3.19 below, which follows from Corollary 2.14 and Remark
1.4, gives us ne− log log logn−ω(1) as an upper bound for aw(Zn, k).

Corollary 3.19. For every fixed positive integer k, aw(Zn, k) = o
(

n
log logn

)
.

Our lower bound for aw(Zn, k) when n > 12 is presented in Lemma 3.20.

Lemma 3.20. There exists an absolute constant b > 0 such that for all
c > 3, n

c ≥ 4 and k ≥ 4,

aw(Zn, k) >
(n
c

)
e−b

√
log(n/c) = ne−b

√
log(n/c)−log c = n1−o(1).

Lemma 3.20 is proven using the Behrend construction from Section 2.2
and using Proposition 3.21 below. The Behrend construction in the integers
{1, . . . ,m} has no punctured 4-AP and size me−b

√
logm for some absolute

constant b.
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Proposition 3.21. Let c > 3 be a real number, and let
[
n
c

]
denote the

first 	nc 
 consecutive residues in Zn. Suppose S ⊆
[
n
c

]
does not contain any

punctured 4-APs. Then aw(Zn, k) > |S|+ 1 for all k ≥ 4.

Proof. Color each member of S a distinct color, and color each member of
Zn \ S with a new color called zero. Each i ∈ Zn with n

c < i < n will be
colored zero. If K = {a1, a2, a3, a4} is a rainbow 4-AP in Zn, then at most
one element of K is not in S. Without a loss of generality, assume K is
ordered as a1, a2, a3, a4 and a3, a4 ∈ S. Then there exists d ∈ Z such that
d ≡ a4 − a3 (mod n) and |d| ≤ n

c .
Suppose a2 ∈ S. Because |d| ≤ n

c < n
2 , we must have that a2, a3, a4 is a

3-AP in
[
n
c

]
. This contradicts the fact that S contains no punctured 4-APs,

so we must have a2 �∈ S and a1 ∈ S. However, since 2|d| ≤ 2n
c < (c−1)n

c , we
must have that a1, a3, a4 is a punctured 4-AP in

[
n
c

]
. This is a contradiction,

so a1 �∈ S.
This means that K could not have been rainbow, so we have a (|S|+1)-

coloring of Zn with no rainbow 4-APs.

We use the bound for the Behrend construction in Lemma 2.8 to obtain
the bounds for aw(Zn, k), k ≥ 4:

ne−b
√

log(n/c)−log c < aw(Zn, k) ≤ ne− log log log n−ω(1).

This completes the proof of Theorem 1.7.

3.3. Additional results for aw(Zn, k)

In this section, we present computed data for aw(Zn, k), k ≥ 4, establish the
value of aw(Zn, k) for k = n, n − 1, and n − 2, and present some examples
that show some additional results fail to extend from [n] to Zn. Table 3
below lists the computed values of aw(Zn, k) for k = 4, . . . , n in the row
labeled n.

Next we examine aw(Zn, k) for k close to n.

Proposition 3.22. For positive n and k we have aw(Zn, k) = n if and only
if k = n.

Proof. If k = n the result is obvious. Now suppose that k < n and consider
an exact (n− 1)-coloring of Zn. Then there are two numbers with the same
color and all other numbers are colored distinctly. Suppose x and y are the
the two numbers with the same color. Then {x+1, ..., x+ k} is a k-AP that
does not contain x, and so is rainbow. Therefore aw(Zn, k) ≤ n− 1.
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Table 3: Computed values of aw(Zn, k) for k ≥ 4

n \ k 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
4 4
5 4 5
6 5 5 6
7 4 5 6 7
8 6 6 7 7 8
9 5 6 8 8 8 9
10 6 8 8 8 9 9 10
11 5 6 7 8 9 9 10 11
12 8 9 10 10 11 11 11 11 12
13 5 7 8 9 10 10 11 11 12 13
14 6 8 10 12 12 12 12 12 13 13 14
15 8 11 12 12 12 13 14 14 14 14 14 15
16 8 10 10 11 14 14 14 14 15 15 15 15 16
17 6 8 10 11 12 12 13 14 14 15 15 15 16 17
18 8 10 13 14 14 16 16 16 17 17 17 17 17 17 18
19 6 9 10 12 12 14 14 15 16 16 16 17 17 17 18 19

Corollary 3.23. For positive n, aw(Zn, n− 1) = n− 1.

A pattern can be observed in the values of aw(Zn, n − 2), and this is
established in Proposition 3.24.

Proposition 3.24. For positive n ≥ 5, if n is prime then aw(Zn, n− 2) =
n− 2; otherwise aw(Zn, n− 2) = n− 1.

Proof. We trivially have a lower bound of n− 2 for aw(Zn, n− 2). First we
assume n is prime. We claim that for any two distinct elements x and y there
is an (n − 2)-AP that misses x and y. To see this, simply form the n-AP
with a = x and d = (y − x), this will cover all of Zn and now removing the
first two terms leaves us with an (n − 2)-AP that does not contain x or y.
So suppose we have an exact (n− 2)-coloring. Then either there is one color
that occurs three times or two colors that each occur twice, and in either
case all other colors occur exactly once. In either case we can choose two
numbers to avoid and then the remaining n−2 numbers are rainbow, but as
just noted above the remaining n−2 numbers are an arithmetic progression.
Therefore every (n− 2)-coloring contains a rainbow progression.

When n is not a prime, let p be the smallest prime divisor of n and con-
sider the (n−2)-coloring formed by coloring 0, p and 2p monochromatically,
with the remaining numbers all given distinct colors. This is an (n − 2)-
coloring (since 2p < n by assumption that n ≥ 5). We claim this coloring
has no rainbow (n− 2)-AP (along with the upper bound of n− 1, this claim
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establishes the result). Suppose that K = {a, a + d, . . . , a + (n − 3)d} is a
rainbow (n − 2)-AP, so all the elements of K are distinct and K necessar-
ily misses two of 0, p, 2p. Since Zn cannot have a proper subgroup of order
n − 2, extending K to a n-AP necessarily produces all elements of Zn and
thus {a+(n−2)d, a+(n−1)d} ⊆ {0, p, 2p}. But then we have that p divides
d = ((a+(n−1)d)−(a+(n−2)d)), showing that this arithmetic progression
can have at most n

p < n− 2 terms, which is a contradiction.

Proposition 3.22 shows that the “if” direction of Theorem 2.16 (k ≥
�n2 �+ 1 implies aw([n], k) = n) does not extend to Zn. Example 3.25 below
shows that the extension of Proposition 2.15 to Zn, which would assert that
aw(Zn, k) ≤ aw(Zn−1, k)+1, is not true in general. There are counterexam-
ples in both the cases k = 3 and k ≥ 4.

Example 3.25. By Corollary 3.15, aw(Z30, 3) = 5, and aw(Z29, 3) = 3 (see
Table 2 in Section 3.1). Furthermore, aw(Z8, 4) = 6 and aw(Z7, 4) = 4 (see
Table 3).

Example 3.26 below shows that Theorem 2.17, which bounds the anti-
van der Waerden number of a sum in terms of the anti-van der Waerden
numbers of the summands, does not extend to Zn.

Example 3.26. According to our computed data (see Table 3),

aw(Z12, 4) = 8 > 4 + 4− 1 = aw(Z5, 4) + aw(Z7, 4)− 1.

There are also examples for k = 3, such as aw(Z54, 3) = 6 > 3 + 3 − 1 =
aw(Z47, 3) + aw(Z7, 3)− 1.

4. Computation

Many of the results we have proved in this paper were first conjectured from
examination of data. In this section, we briefly discuss an efficient algorithm
to find an exact r-coloring of [n] or Zn that avoids a rainbow k-AP, if such a
coloring exists. For the sake of brevity, we will focus on the case of coloring
[n] since this case has a few extra properties that the Zn case does not.
Specifically, we have [m] ⊆ [n] for all m ≤ n while Zn contains a copy of Zm

if and only if m divides n.
Fix k, n, and r and assume that all values of aw([m], k) have been

computed for k ≤ m < n. Let c : [n] → [r]∪{∗} be a function called a partial
r-coloring, where every position i has color c(i) ∈ [r] or c(i) = ∗ and i is
uncolored. By starting with all positions uncolored, we recursively attempt
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to extend a partial r-coloring c where the positions in [i] are colored to an
exact r-coloring c′ that avoids rainbow k-APs. We branch at each recursive
call for all possible choices of color for c(i + 1) such that no k-AP within
[i + 1] is colored with k distinct colors. To guarantee that no chosen color
creates a rainbow k-AP, we maintain a list of sets D(j) ⊆ [r] that contain
all of the possible colors for the position j. Specifically, assigning c(j) to be
any color in [r] \D(j) will immediately create a rainbow k-AP. Whenever a
color is assigned to a position i, we consider a k-AP, X, whose second-to-last
element is i. If the set c(X) = {c(i′) : i′ ∈ X−maxX} contains k−1 distinct
colors, we say that X is an almost-rainbow k-AP and the color for maxX
must be one of these k − 1 colors. Therefore, we can update D(maxX) to
be D(maxX) ∩ c(X). For simplicity, we update D(i) to be {c(i)} when i is
assigned the color c(i).

We can also make a few small adjustments to greatly reduce the search
space. First, we assume that the coloring c is lexicographically-minimum:
for two colors a, b ∈ [r] with a < b, we assume that the first position with
color a appears before the first position with color b. Second, the domains
D(j) contain the possible colors for the positions that remain uncolored. If⋃

j∈[n]D(j) �= [r], then c cannot extend to an exact r-coloring. Finally, if
the first i positions are all colored with the color 1, then for any extension
of c to an exact r-coloring of [n], the last n− i+ 1 positions form an exact
r-coloring. Thus, if aw([n − i + 1], k) ≤ r, then it is impossible to extend c
to an exact r-coloring of [n] without creating a rainbow k-AP.

Our recursive algorithm is given as Algorithm 1 and is initialized by
Algorithm 2. Similar algorithms are implemented for the case of r-coloring
Zn. All source code and data are available online1 including computed values
of aw([n], k) and aw(Zn, k), extremal colorings, and reports of computation
time.

5. Conjectures and open questions

We conclude by summarizing some open questions and conjectures, begin-
ning with those related to [n].

Uherka [13] observed that aw([n], 3) is not a monotone function in n, as
there are values of n where aw([n], 3) = aw([n− 1], 3)− 1. Does this happen
infinitely often? Are larger drops possible?

Conjecture 5.1. For positive integers n and k, aw([n], k)≥ aw([n−1], k)−1.

1All source code and data can be found at https://github.com/derrickstolee/
RainbowAPs
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Algorithm 1 FindColorings(k, r, n, aw, c,D, i) – Find exact D-colorings on
[n] that avoid rainbow k-APs and extend the coloring c on [i − 1]. Assume
aw([m], k) is known for all m < n.

if i ≡ n then
output c
return

else if ∪j∈[n]D(j) �= [r] then
return // This coloring cannot extend to an exact r-coloring!

else if i > 2 and ∀j < i, c(j) ≡ 1 and aw([n− i+ 2], k) ≤ r then
return // An exact r-coloring extending c induces an exact r-coloring on
{i− 1, . . . , n}.

end if
M ← max{c(j) : j < i} ∪ {0}
// Attempt all colors in the domain D(i) that are at most M + 1.
for all a ∈ D(i) ∩ [M + 1] do

c(i) ← a, D(i) ← {a}
// Update all domains D′(t) when almost-rainbow k-APs exist.
D′ ← D
for all d ∈ {1, . . . , �i/(k − 2)� − 1} do

A ← ∅

for all � ∈ {0, . . . , k − 2} do
t ← i− � · d
A ← A ∪ {c(t)}

end for
if |A| ≡ k − 1 then

t ← i+ d
D′(t) ← D′(t) ∩A

end if
end for
call FindColorings(k, r, n, aw, c,D′, i+ 1)

end for

Algorithm 2 FindColoring(k, r, n, aw) – Find exact r-colorings on [n] that
avoid rainbow k-APs.
for all i ∈ [n] do

c(i) ← ∗
D(i) ← [r]

end for
call FindColorings(k, r, n, aw, c,D, 1)

Conjecture 1.2 states that the lower bound aw([n], 3) ≥ �log3 n� + 2 is

correct to within an additive constant. We further conjecture that the lower
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bound in Lemma 2.3 is in fact the exact value when n is a power of three.
It is true for the computed data available (see Remark 2.1).

Conjecture 5.2. Let m be a nonnegative integer. Then aw([3m], 3) = m+2.

Question 5.3. Is it true that aw([3n], 3) = aw([n], 3) + 1 for all positive
integers n?

We now turn our attention to Zn.

Question 5.4. Are there infinitely many primes p such that aw(Zp, 3) = 3?

Based on [8, Theorem 3.5] (see also Theorem 3.3), one approach to find-
ing primes p for which aw(Zp, 3) = 3 is to search for primes p such that
the multiplicative group Z

×
p is generated by 2. However, the existence of an

infinite family of such primes is still open.

Conjecture 5.5 (Artin’s Conjecture). [11, p. 217] There are infinitely many
primes p such that 2 is a generator of the multiplicative group Z

×
p .

If Artin’s Conjecture holds, it would give us an infinite family of Zp such
that aw(Zp, 3) = 3. Jungić et al. also established another family of primes p
with aw(Zp, 3) = 3 (see Theorem 3.3), namely those primes p such that p−1

2

is odd and the order of 2 in Z
×
p is p−1

2 .
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