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Primitive bound of a 2-structure
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A 2-structure on a set S is given by an equivalence relation on
the set of ordered pairs of distinct elements of S. A subset C of
S, any two elements of which appear the same from the perspec-
tive of each element of the complement of C, is called a clan. The
number of elements that must be added in order to obtain a 2-
structure the only clans of which are trivial is called the primitive
bound of the 2-structure. The primitive bound is determined for
arbitrary 2-structures of any cardinality. This generalizes the clas-
sical results of Erdős et al. and Moon for tournaments, as well as
the result of Brignall et al. for finite graphs, and the precise results
of Boussäıri and Ille for finite graphs, providing new proofs which
avoid extensive use of induction in the finite case.
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1. Introduction1

The notion of a primitive [10, 13] (also called indecomposable [14, 20], prime
[8, 17] or simple [3, 4, 11, 12, 15, 24]) structure has been studied in the
context of graphs, tournaments, more general structures derived from binary
relations, and in general for relational structures by Fräıssé [13, 14]. Key is
the idea of a subset the elements of which look the same from the perspective
of each element of the complement, called autonomous set [16, 22, 23], clan
[10], convex set [11, 12], homogeneous set [8], interval [14, 20, 25], module
[1, 17, 26] or partitive set [28]. An indecomposable structure is one for which
all such subsets are trivial.

Given a structure, it is natural to ask about embedding it into an inde-
composable structure and to seek to mimimize the number of elements one
must add. In the early 70’s this was done by Sumner [27] for finite com-
plete graphs, by Moon [24] for finite tournaments and by Erdős et al. [12]
for arbitrary tournaments. More recently the question was revived by Brig-
nall [3] and Brignall et al. [4] for finite graphs and other finite combinatorial

1A symbol glossary is provided at the end of the paper.
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structures. Boussairi and Ille [2] provided a detailed analysis and identi-
fied the precise parameter to describe the situation for finite graphs. In this
work we yield a unified approach by studying the more general situation
of 2-structures [10]. The techniques introduced permit us to generalize the
parameter obtained by Boussairi and Ille [2] to the arbitrary setting.

Resolution of the problem for tournaments by Erdős et al. [11] employed
a linearization of the tournament and the Bernstein Property. We introduce
the notion of a traverse of an arbitrary 2-structure which respects key clans of
the 2-structure and the notion of a dense bicoloring mirroring the Bernstein
Property. We also introduce the notion of inclusive clans and develop their
structural properties. These tools permit us to provide precise bounds and
to present a new proof of the now classical result of Erdős et al. [12] that
adds structural understanding and does not turn on induction to handle the
finite case.

The notion of traverse plays an important role in the algorithmics for the
finite graphs as well. There a traverse induces a permutation of the vertex
set called a factorizing permutation [5]. Factorizing permutations are used to
find efficient algorithms which compute the clan tree. Given a finite graph,
the first step consists in calculating a factorizing permutation [18] and the
second in determining the clan tree from a factorizing permutation [6].

At present, we formalize our presentation. A 2-structure σ consists of
an infinite or finite vertex set (or domain [10]) V (σ) and of an equivalence
relation ≡σ defined on (V (σ)× V (σ)) \ {(v, v) : v ∈ V (σ)}. An equivalence
class of ≡σ is also called a class of σ. The family of the classes of σ is denoted
by E(σ). Given a 2-structure σ, consider W ⊆ V (σ). The 2-substructure
σ[W ] of σ induced by W is the 2-structure defined on V (σ[W ]) = W such
that ≡σ[W ] coincides with the restriction of ≡σ to (W ×W ) \ {(w,w) : w ∈
W}. Given W ⊆ V (σ), σ[V (σ) \ W ] is denoted by σ − W , and by σ − w
when W = {w}.

With each 2-structure σ associate the 2-structure σ� defined on the same
vertex set by

(u, v) ≡σ� (x, y) if (v, u) ≡σ (y, x)

for distinct u, v ∈ V (σ�) and distinct x, y ∈ V (σ�). A 2-structure σ is re-
versible if σ = σ� and non-reversible otherwise. Let σ be a reversible 2-
structure. For each e ∈ E(σ), e� = {(u, v) : (v, u) ∈ e} ∈ E(σ) and we have
either e = e� or e∩ e� = ∅. In the first instance, e is said to be symmetric. It
is called asymmetric in the second. A reversible 2-structure σ is symmetric
when all the classes of σ are symmetric, it is asymmetric when all its classes
are asymmetric.
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A graph Γ = (V (Γ), E(Γ)) is identified with the symmetric 2-structure
σ(Γ) defined on V (σ(Γ)) = V (Γ) as follows. For distinct u, v ∈ V (Γ) and
distinct x, y ∈ V (Γ), (u, v) ≡σ(Γ) (x, y) if either {u, v}, {x, y} ∈ E(Γ) or

{u, v}, {x, y} �∈ E(Γ). Notice that σ(Γ) = σ(Γ), where Γ = (V (Γ),
(
V (Γ)
2

)
\

E(Γ)) is the complement of Γ. Similarly, a tournament T = (V (T ), A(T )) is
identified with the asymmetric 2-structure σ(T ) defined on V (σ(T )) = V (T )
as follows. For distinct u, v ∈ V (T ) and distinct x, y ∈ V (T ), (u, v) ≡σ(T )

(x, y) if either (u, v), (x, y) ∈ A(T ) or (u, v), (x, y) �∈ A(T ). Notice that
σ(T ) = σ(T �), where T � = (V (T ), A(T )�) is the dual of T .

Let σ be a 2-structure. A subset C of V (σ) is a clan [10] of σ if for any
c, d ∈ C and v ∈ V (σ) \ C, we have

(c, v) ≡σ (d, v) and (v, c) ≡σ (v, d).

For instance, ∅, V (σ) and {v}, for v ∈ V (σ), are clans of σ called trivial clans
of σ. A 2-structure is indecomposable if all its clans are trivial. A 2-structure
σ is primitive [10] if σ is indecomposable with |V (σ)| ≥ 3. Otherwise σ is
said to be imprimitive [10].

Given a set S with |S| ≥ 2, Sumner [27, Theorem 2.45] observed that
the complete graph KS admits a primitive graph extension G such that
|V (G) \ S| = 	log2(|S|+ 1)
. This is extended to any graph in [3, Theorem
3.7] and [4, Theorem 3.2] as follows. A graph G, with |V (G)| ≥ 2, admits a
primitive graph extension H such that |V (H) \V (G)| = 	log2(|V (G)|+1)
.
Definition 1.1. A 2-structure τ is an extension of a 2-structure σ if V (τ) ⊇
V (σ) and τ [V (σ)] = σ. Given a cardinal κ, a κ-extension of a 2-structure σ
is an extension τ of σ such that |V (τ)\V (σ)| = κ. Let τ be an extension of σ.
Consider the function σ ↪→ τ : E(σ) −→ E(τ) satisfying (σ ↪→ τ)(e) ⊇ e for
every e ∈ E(σ). Clearly σ ↪→ τ is injective and we can identify (σ ↪→ τ)(e)
with e for every e ∈ E(σ). We say that τ is a faithful extension of σ if

(1.1) σ ↪→ τ is bijective

and for any e, f ∈ E(σ),

(1.2) (σ ↪→ τ)(e) ∩ ((σ ↪→ τ)(f))� �= ∅ =⇒ e ∩ f� �= ∅.

The necessity of Conditions (1.1) and (1.2) is discussed in Section 8. In
Sumner’s result, the primitive graph extension is not a faithful extension
of the complete graph. A 2-structure σ is complete [10] if |V (σ)| ≤ 1 or
|V (σ)| ≥ 2 and |E(σ)| = 1. Let σ be a 2-structure. Clearly, the subsets
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W of V (σ) such that σ[W ] is complete correspond to cliques and stable
sets in a graph. As already observed in Sumner’s result, to obtain primitive
extensions of a complete 2-structure, we consider symmetric 2-structures σ
with |E(σ)| = 2.

Definition and notation 1.2. Let σ be a 2-structure admitting a primitive
and faithful extension. The primitive bound p(σ) of σ is the smallest cardinal
κ such that σ possesses a primitive and faithful κ-extension.

Brignall et al. [4] obtained that

p(G) ≤ 	log2(|V (G)|+ 1)


for any finite graph G. In his Ph.D. Thesis, Brignall [3] conjectured that

p(G) ≤ 	log2(max(α(G), ω(G)) + 1)
.

Boussäıri and Ille [2] identified the correct parameter

c(G) = max({|C| : C is a clan of G which is a stable set or a clique})

and proved for every finite graph G that

	log2(c(G))
 ≤ p(G) ≤ 	log2(c(G) + 1)
.

Thus p(G) = 	log2(c(G))
 when log2(c(G)) �∈ N. When c(G) = 2k with
k ≥ 1, we have p(G) = k or k + 1, and Boussäıri and Ille [2] showed that
p(G) = k + 1 if and only if G (or G) admits 2k isolated vertices.

Definition 1.3. Consider a reversible 2-structure σ. A vertex v of σ is
isolated if there exists a symmetric class e of σ such that (v, w) ∈ e for every
w ∈ V (σ) \ {v}. Note that if v1 and v2 are distinct isolated vertices, then
the classes e1 and e2 in the definition are equal.

Definition and notation 1.4. For a 2-structure σ, we introduce the clan
completness c(σ) of σ as being the supremum of cardinalities of clans C of
σ such that σ[C] is complete.

The paper is organized as follows. In Section 2, we recall the definition
of the clan tree of a 2-structure, and we state some of its properties (see
Lemmas 2.9, 2.10 and 2.11). In Section 3, we introduce the tree equivalence
associated with a 2-structure (see Definition and notation 3.5), and we char-
acterize its nontrivial equivalence classes (see Theorem 3.7). In Section 4, we
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introduce the notion of a traverse (see Definition 4.1). We establish the ex-
istence of traverses for each 2-structure (see Proposition 4.2), and we study
the intervals of traverses (see Lemma 4.7, and Corollaries 4.8 and 4.9). In
section 5, we describe two ways of constructing faithful extensions (see Lem-
mas 5.3 and 5.4). We also examine the clans of specific faithful extensions
(see Lemma 5.7 and Corollary 5.8). In Section 6, we introduce the notion
of an inclusive clan, and we provide interesting properties of inclusive clans
(for instance, see Propositions 6.5 and 6.6, and Theorem 6.7).

In Section 7, we determine the primitive bounds of reversible 2-structures.
More precisely, we proceed in the following manner. For an infinite or finite
tournament T , Erdős et al. [11] established that p(T ) ≤ 2. Then Moon [24]
proved for a finite tournament T such that |V (T )| ≥ 4 that p(T ) = 2 if
and only if T is an odd linear order. Erdős et al. [12] extended this result
to tournaments of arbitrary cardinality. Using dense bicolorings of traverses
(see Section 4) and inclusive clans (see Section 6), we provide an elegant
proof of [12] (see Theorem 7.1).

Given a reversible 2-structure σ such that 2 ≤ |E(σ)| ≤ c(σ) < ℵ0, we
prove in Corollary 7.5 that

	log|E(σ)|(c(σ))
 ≤ p(σ) ≤ 	log|E(σ)|(c(σ) + 1)
.

Moreover, when c(σ) = |E(σ)|k where k ≥ 1, we show in Theorem 7.8 that

p(σ) = k + 1 if and only if σ admits exactly |E(σ)|k isolated vertices.

The cardinal logarithm is defined as follows. Given cardinals μ and ν,

logμ(ν) = min({κ : μκ ≥ ν}).

If μ and ν are finite, then logμ(ν) = 	logμ(ν)
. Given a reversible 2-structure
σ such that |E(σ)| ≥ 2, we establish in Theorem 7.9 that

log|E(σ)|(c(σ)) ≥ ℵ0 =⇒ p(σ) = log|E(σ)|(c(σ)).

We determine the primitive bounds of the other reversible 2-structures in
Theorem 7.2. In particular, we obtain the following result for a reversible
2-structure σ such that c(σ) = 1. If σ has at least three classes or if σ is
symmetric and has two classes, then p(σ) ≤ 1.

In Section 8, we determine the primitive bounds of non-reversible 2-
structures. We proceed as follows. With 2-structures σ and τ such that
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V (σ) = V (τ) associate the 2-structure σ ∧ τ defined on the same vertex set
by

E(σ ∧ τ) = {e ∩ f : e ∈ E(σ), f ∈ E(τ) and e ∩ f �= ∅}.
For an arbitrary 2-structure σ, σ ∧ σ� is reversible, and we prove in Theo-
rem 8.5 that p(σ) = p(σ ∧ σ�).

2. Clan tree

Notation 2.1. Let σ be a 2-structure. For distinct u, v ∈ V (σ), the class of σ
containing (u, v) is denoted by (u, v)σ. For W,W ′ ⊆ V (σ), with W ∩W ′ = ∅,
W ←→σ W ′ signifies that (v, v′)σ = (w,w′)σ and (v′, v)σ = (w′, w)σ for any
v, w ∈ W and v′, w′ ∈ W ′. Given v ∈ V (σ) andW ⊆ V (σ)\{v}, {v} ←→σ W
is also denoted by v ←→σ W . The negation is denoted by v �←→σ W . Let
W,W ′ ⊆ V (σ) such that W ∩ W ′ = ∅ and W ←→σ W ′. The class of σ
containing (w,w′), where w ∈ W and w′ ∈ W ′, is denoted by (W,W ′)σ.
Given W � V (σ) and v ∈ V (σ) \W such that v ←→σ W , ({v},W )σ is also
denoted by (v,W )σ.

Let σ be a 2-structure. Using Notation 2.1, a subset C of V (σ) is a clan
of σ if and only if for each v ∈ V (σ) \ C, we have v ←→σ C.

Notation 2.2. The set of clans of a 2-structure σ is denoted by Clans(σ).
Given a 2-structure σ, a partition F of V (σ) is a factorization [10] of σ

if all the elements of F are clans of σ. Let F be a factorization of σ. Given
distinct X,Y ∈ F, we have X ←→σ Y because X ∩ Y = ∅. Thus there is
e ∈ E(σ) such that (X,Y )σ = e. This justifies the following definition. The
quotient of σ by F is the 2-structure σ/F defined on V (σ/F) = F as follows.
For distinct X,Y ∈ F and distinct X ′, Y ′ ∈ F,

(X,Y ) ≡σ/F (X ′, Y ′) if (X,Y )σ = (X ′, Y ′)σ.

Hence, for distinct X,Y ∈ F and distinct X ′, Y ′ ∈ F, (X,Y ) ≡σ/F (X ′, Y ′)
if and only if (x, y) ≡σ (x′, y′), where x ∈ X, y ∈ Y , x′ ∈ X ′ and y′ ∈ Y ′.

The following strengthening of the notion of clan is useful to present the
clan decomposition theorem. Given a 2-structure σ, a clan C of σ is said to
be strong provided that for every clan D of σ, we have:

if C ∩D �= ∅, then C ⊆ D or D ⊆ C.

Notation 2.3. The set of strong clans of a 2-structure σ is denoted by
Strong(σ).
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Notation 2.4. We associate with a 2-structure σ the Gallai family Gallai(σ)
of the maximal elements under inclusion of Strong(σ) \ {∅, V (σ)}.

The clan decomposition theorem is stated as follows. It is attributable to
Gallai [16, 23] for finite graphs (see [10, Theorem 5.5] for finite 2-structures,
and [19, Theorem 4.2] for infinite ones).

Recall that an asymmetric 2-structure σ, with |V (σ)| ≥ 2, is linear [10]
if there is e ∈ E(σ) such that (V (σ), e) is a linear order.

Theorem 2.5. For a 2-structure σ such that Gallai(σ) �= ∅, the family
Gallai(σ) realizes a factorization of σ. Moreover, the corresponding quotient
σ/Gallai(σ) is complete, linear or primitive.

Notation 2.6. Given a 2-structure σ, consider a subset W of V (σ) such
that Gallai(σ[W ]) �= ∅. The quotient σ[W ]/Gallai(σ[W ]) is denoted by

Quotientσ(W ).

Let σ be a 2-structure. Given a strong clan C of σ, note that all the
strong clans of σ[C] are strong clans of σ. A strong clan C of σ is a limit of
σ if Gallai(σ[C]) = ∅.
Notation 2.7. Let σ be a 2-structure. We associate with σ the subset
Tree(σ) of Strong(σ) defined as follows. Given a strong clan C of σ, C ∈
Tree(σ) if one of the next two assertions holds

• C is not a limit of σ;
• there exists a strong clan D of σ, which is not a limit of σ, such that
C ∈ Gallai(σ[D]).

Sometimes, the singletons are added to Tree(σ) when V (σ) is infinite. As
a direct consequence of the definition of a strong clan, we obtain that the
family Tree(σ), endowed with inclusion, is a tree called the clan tree of σ.
For clan trees of finite digraphs, see [7]. For infinite digraphs, see [9]. Lastly,
for infinite 2-structures or more generally for weakly partitive families on
infinite sets, see [21]. When V (σ) is finite, we have

Tree(σ) = Strong(σ) \ {∅}.

Notation 2.8. Let σ be a 2-structure. Given a subset W of V (σ) such that
W �= ∅, the intersection of all the strong clans C of σ such that C ⊇ W is
a strong clan of σ. It is denoted by W̃ . Similarly, given a subset W of V (σ)
such that W �= ∅ and W �= V (σ), the intersection of all the strong clans C

of σ such that C � W is a strong clan of σ. It is denoted by Ŵ .
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Since the proofs of the next three lemmas are easy, we omit them. The

first two are closely related to similar results in [21] (see [21, Lemma 4.1] for
the first one, and see [21, Theorem 3.9] for the second one).

Lemma 2.9. Let σ be a 2-structure. For distinct v, w ∈ V (σ), {̃v, w} is
a strong clan of σ which is not a limit of σ, and there exist Xv, Xw ∈
Gallai(σ[{̃v, w}]) such that Xv �= Xw, v ∈ Xv and w ∈ Xw.

Lemma 2.10. Let σ be a 2-structure. For C ⊆ V (σ), C is a clan of σ which
is not a strong clan of σ if and only if C̃ is not a limit of σ, and there exists

a nontrivial clan C of Quotientσ(C̃) such that C =
⋃

X∈C X.

Lemma 2.11. Given a 2-structure σ, consider a strong clan C of σ such
that C �= ∅.

1. C = Ĉ if and only if for each X ∈ Strong(σ), with X � C, and for

every x ∈ X \C, there is a strong clan Z of σ, which is not a limit of

σ, such that C � Z ⊆ X \ {x}.
2. C � Ĉ if and only if Ĉ is not a limit of σ, and C ∈ Quotientσ(Ĉ).

3. Clan completness and tree equivalence

Let σ be an imprimitive and reversible 2-structure. Suppose that σ is finite.

To build a primitive extension of σ, we have to destroy all the nontrivial clans

of σ by external elements. In fact, it is sufficient to destroy the minimal
nontrivial clans of σ. It follows from Theorem 2.5 that if C is a minimal

nontrivial clan of σ, then σ[C] is complete, linear or primitive. If σ[C] is

complete or linear, then it follows from the minimality of C that |C| = 2.
This leads us to consider the following three families.

Notation 3.1. Let σ be a 2-structure.

• Complete(σ) denotes the family of the maximal clans of σ under inclu-
sion among the clans C of σ such that |C| ≥ 2 and σ[C] is complete;

• Linear(σ) denotes the family of the maximal clans of σ under inclusion

among the clans L of σ such that |L| ≥ 2 and σ[L] is linear;
• Primitive(σ) denotes the family of the clans P of σ such that σ[P ] is

primitive.

When Complete(σ) �= ∅, the clan completness c(σ) of σ satisfies

c(σ) = sup({|C| : C ∈ Complete(σ)}).
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Let σ be a 2-structure. We characterize the elements of Complete(σ) ∪
Linear(σ) ∪ Primitive(σ). This characterization leads us to introduce from
the clan tree of σ an equivalence relation, the nontrivial equivalence classes
of which are exactly the elements of Complete(σ)∪Linear(σ)∪Primitive(σ).
We omit the proofs because they are somewhat technical, sometimes long
and they do not present a major interest in our topics.

Lemma 3.2. Given a 2-structure σ, consider a clan C of σ such that |C| ≥
2.

1. If σ[C] is complete, then there exists C ′ ∈ Complete(σ) such that C ′ ⊇
C.

2. If σ[C] is linear, then there exists L ∈ Linear(σ) such that L ⊇ C.

We characterize the elements of Complete(σ)∪Linear(σ)∪Primitive(σ)
in terms of the clan tree of σ.

Proposition 3.3. For a 2-structure σ, the following three equivalences hold.

1. Given C ⊆ V (σ) with |C| ≥ 2, C ∈ Complete(σ) if and only if C̃ is a
strong clan of σ, which is not a limit of σ, such that

• Quotientσ(C̃) is complete;

• C = {c ∈ C̃ : {c} ∈ Gallai(σ[C̃])}.
2. Given L ⊆ V (σ) with |L| ≥ 2, L ∈ Linear(σ) if and only if L̃ is a

strong clan of σ, which is not a limit of σ, such that

• Quotientσ(L̃) is linear;

• for each l ∈ L, {l} ∈ Gallai(σ[L̃]);
• L is a maximal clan of σ(L̃) under inclusion among the clans M
of σ(L̃) such that {m} ∈ Gallai(σ[L̃]) for every m ∈ M .

3. Given P ⊆ V (σ), P ∈ Primitive(σ) if and only if P is a strong clan
of σ, which is not a limit of σ, such that

• Quotientσ(P ) is primitive;

• for every X ∈ Gallai(σ[L̃]), |X| = 1.

The next result follows from Lemma 3.2 and Proposition 3.3.

Corollary 3.4. Let σ be a 2-structure. Given distinct v, w ∈ V (σ), the
following two assertions are equivalent

• there exists X ∈ Complete(σ) ∪ Linear(σ) ∪ Primitive(σ) such that
v, w ∈ X;
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• {̂v} = {̂w} and there exists a clan F of Quotientσ({̂v}) such that

{v}, {w} ∈ F and F ⊆ {X ∈ Gallai(σ[{̂v}]) : |X| = 1}.

Corollary 3.4 leads us to introduce the following equivalence relation.

Definition and notation 3.5. Let σ be a 2-structure. Given distinct v, w ∈
V (σ), v �σ w if {̂v} = {̂w} and if there exists a clan F of Quotientσ({̂v})
such that {v}, {w} ∈ F and F ⊆ {X ∈ Gallai(σ[{̃v}]) : |X| = 1}. The
equivalence relation �σ is called the tree equivalence of σ.

Notation 3.6. Given a 2-structure σ, the set of the equivalence classes of
�σ is denoted by V (σ)/�σ.

The next result is an immediate consequence of Corollary 3.4.

Theorem 3.7. For a 2-structure σ,

{D ∈ (V (σ)/�σ) : |D| ≥ 2} = Complete(σ) ∪ Linear(σ) ∪ Primitive(σ).

Notation 3.8. Given a 2-structure σ, set

V1(σ) = {v ∈ V (σ) : {v} ∈ (V (σ)/�σ)},

and consider

V↓(σ) = {v ∈ V1(σ) : {̂v} = {v}}.
Remark 3.9. There exist reversible 2-structures σ such that V (σ) = V↓(σ).
Precisely, we can construct graphs, that is, symmetric 2-structures σ such
that |E(σ)| = 2 and V (σ) = V↓(σ). The existence of such 2-structures con-
stitutes the main difference with the finite case (see Boussairi and Ille [2]).
For such 2-structures σ, it follows from Theorem 3.7 that Complete(σ) = ∅.
Hence c(σ) = 1. By Theorem 7.2, we have p(σ) = 1. The proof of Theo-
rem 7.2 uses properties of traverses and inclusive clans introduced in Sec-
tions 4 and 6.

4. Traverses of a 2-structure

Let σ be a reversible 2-structure such that Linear(σ) �= ∅. Recall that σ[L]
is linear for every L ∈ Linear(σ). Let L ∈ Linear(σ). To build a primi-
tive extension of σ, we have to destroy all the nontrivial clans of σ[L] by
external elements. Using the Axiom of Choice, we can associate with each
L ∈ Linear(σ) a linear order λL defined on L such that the arc set of λL

is one of the two classes of σ[L]. Let L ∈ Linear(σ). Clearly, the clans of
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σ[L] are exactly the intervals of λL. Hence, to build a primitive extension
of σ, we have to destroy all the nontrivial intervals of λL, which is possible
by using one or two external elements (see Corollary 4.14). This leads us to
look for a linear order defined on V (σ) which is a common extension of λL

when L ∈ Linear(σ). Therefore, we introduce the following notion.

Definition 4.1. Given a 2-structure σ, a linear order L defined on V (σ) is
a traverse of σ if the following two assertions hold.

(A1) For each strong clan X of σ, X is an interval of L.
(A2) Let X be a strong clan of σ, which is not a limit of σ, such that

Quotientσ(X) is linear.

By Assertion A1, Gallai(σ[X]) is a factorization of L[X]. We require
that the arc set of the linear order L[X]/Gallai(σ[X]) is one of the two
classes of Quotientσ(X).

Proposition 4.2 (Axiom of Choice). Any 2-structure admits a traverse.

Proof. Consider a 2-structure σ. Using the Axiom of Choice, we associate
with each strong clan X of σ, which is not a limit of σ, a linear order
LX defined on Gallai(σ[X]). Moreover, whenever Quotientσ(X) is linear, we
require that the arc set of LX is one of the two classes of Quotientσ(X).

Now consider the digraph T defined on V (σ) as follows. Consider distinct

v, w ∈ V (σ). By Lemma 2.9, {̃v, w} is a strong clan of σ, which is not a limit

of σ, and there exist distinct Xv, Xw ∈ Gallai(σ[{̃v, w}]) such that v ∈ Xv

and w ∈ Xw. Set

(v, w) ∈ A(T ) if Xv < Xw mod L{̃v,w}.

It is not difficult to verify that T is a linear order which satisfies Asser-
tions A1 and A2.

In the next remark, we describe an important property of a traverse,
which is often used.

Remark 4.3. Let σ be a 2-structure. As in the proof of Proposition 4.2, we
associate with each strong clanX of σ, which is not a limit of σ, a linear order
LX defined on Gallai(σ[X]). Moreover, whenever Quotientσ(X) is linear, we
require that the arc set of LX is one of the two classes of Quotientσ(X).

Notation 4.4. In the sequel, T denotes a traverse of σ defined as in the
proof of Proposition 4.2.
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Now, consider a strong clan X of σ, which is not a limit of σ, such that
Quotientσ(X) is linear. By Assertion A1, Gallai(σ[X]) is a factorization of
T [X]. Furthermore, it follows from the construction of T that

T [X]/Gallai(σ[X]) = LX .

By Assertion A2, the arc set of LX is a class of Quotientσ(X).

Notation 4.5. It follows from the definition of a quotient that there exists
a class eX of σ satisfying the following. Consider any Y, Z ∈ Gallai(σ[X])
such that (Y, Z) ∈ A(LX). For y ∈ Y and z ∈ Z, we have (y, z) ∈ eX .

Therefore, for distinct Y, Z ∈ Gallai(σ[X]), and for y ∈ Y and z ∈ Z,
the following assertions are equivalent.

• y < z mod T ;
• Y < Z mod T [X]/Gallai(σ[X]);
• Y < Z mod LX ;
• (y, z) ∈ eX .

Notation 4.6. In the sequel, the linear order T [X]/Gallai(σ[X]) (i.e. LX)
is denoted by TX .

The next result follows from Remark 4.3.

Lemma 4.7. Let σ be a 2-structure. Consider a strong clan X of σ such
that X is not a limit of σ, and Quotientσ(X) is linear. The following two
assertions hold.

1. For each F ⊆ Gallai(σ[X]), F is an interval of TX if and only if F is
a clan of Quotientσ(X).

2. Given W ⊆ X such that W ⊇ Y for some Y ∈ Gallai(σ[X]), W is an
interval of T if and only if W is a clan of σ.

Proof. For the first assertion, recall that TX = LX by Notation 4.6. By
Assertion A2 (see Definition 4.1), the arc set of LX is one of the two
classes of Quotientσ(X). Thus, the intervals of LX are exactly the clans
of Quotientσ(X). Therefore, the first assertion holds.

For the second assertion, consider W ⊆ X such that W ⊇ Y for some
Y ∈ Gallai(σ[X]). Set

W = {Z ∈ Gallai(σ[X]) : Z ∩W �= ∅}.

First, suppose that W is an interval of T . Thus W is an interval of T [X].
By Assertion A1, Gallai(σ[X]) is a factorization of T [X]. Since there exists
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Y ∈ Gallai(σ[X]) such that Y ⊆ W , we obtain W =
⋃

Z∈W Z, and W is an
interval of T [X]/Gallai(σ[X]), that is, TX . By the first assertion, W is a clan
of Quotientσ(X). Hence W is a clan of σ[X] because W =

⋃
Z∈W Z. Since

X is a clan of σ, W is a clan of σ.

Second, suppose that W is a clan of σ. Thus W is a clan of σ[X]. Since
there exists Y ∈ Gallai(σ[X]) such that Y ⊆ W , we obtain W =

⋃
Z∈W Z,

and W is a clan of Quotientσ(X). By the first assertion, W is an interval
of TX , that is, T [X]/Gallai(σ[X]). Since Gallai(σ[X]) is a factorization of
T [X],

⋃
Z∈W Z, that is, W is an interval of T [X]. Hence W is an interval of

T because X is an interval of T by Assertion A1.

The next result follows from Lemma 4.7 by using Proposition 3.3.

Corollary 4.8. Given a 2-structure σ, consider L ∈ Linear(σ). For every
C ⊆ L, C is an interval of T if and only if C is a clan of σ.

The following is a simple consequence of Lemma 4.7. It generalizes [11,
Theorem 2].

Corollary 4.9. Let σ be an asymmetric 2-structure. All the clans of σ are
intervals of T .

Remark 4.10. In general, the opposite direction in Corollary 4.9 does not
hold. For instance, consider the 2-structure σ defined on {0, 1, 2} by

E(σ) = {{(0, 1), (0, 2)}, {(1, 0), (2, 0)}, {(1, 2)}, {(2, 1)}}.

Clearly {1, 2} is the only nontrivial clan of σ. Thus {1, 2} is the only non-
trivial strong clan of σ. By Assertion A1 (see Definition 4.1), {1, 2} is an
interval of each traverse of σ. Therefore 0 < 1 < 2, 2 < 1 < 0, 0 < 2 < 1
and 1 < 2 < 0 are the only traverses of σ. For 0 < 1 < 2 and 2 < 1 < 0,
{0, 1} is an interval of the traverse which is not a clan of σ. For 0 < 2 < 1
and 1 < 2 < 0, {0, 2} is an interval of the traverse which is not a clan of σ.

The following notion of density is fundamental.

Definition 4.11. Let L be a linear order. Recall that a subset W of V (L)
is dense if W intersects each interval I of L such that |I| ≥ 2. A bicoloring
β : V (L) −→ {0, 1} is dense if β−1({0}) and β−1({1}) are dense subsets.

Given a set S, consider F ⊆ 2S . The family F satisfies the Bernstein
property [11] if there is B ⊆ S such that for every X ∈ F , X intersects B
and S \B. Clearly a linear order L admits a dense bicoloring if and only if
the family of the intervals of L has the Bernstein property.
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Let σ be a reversible 2-structure such that Linear(σ) �= ∅. Consider
L ∈ Linear(σ). To build a primitive extension of σ, we have to destroy
all the nontrivial clans of σ[L] by external elements. By Corollary 4.8, all
the clans of σ[L] are intervals of T . By the following proposition (see [11,
Theorem 3]), T admits a dense bicoloring, which allows us to destroy the
nontrivial intervals of T .

Proposition 4.12 (Axiom of Choice). Every linear order admits a dense
bicoloring.

In the next proposition, it is easy to verify that the second assertion
implies the first. For the converse, see [12, Lemma 9].

Proposition 4.13. The following two assertions are equivalent:

1. every linear order admits a dense bicoloring;
2. every infinite linear order admits a primitive and faithful 1-extension,

that is, a primitive 1-extension which is a tournament.

We complete the section with the following three results on primitive
bounds. The first two follow from Propositions 4.12 and 4.13, and the deriva-
tion is omitted.

Corollary 4.14 (Erdős et al. [12]). For a linear order L, we have p(L) = 1
or 2. Moreover, p(L) = 2 if and only if L is a finite linear order such that
|V (L)| is odd.

The next corollary is used in the proof of Theorem 7.2.

Corollary 4.15. Consider a reversible 2-structure σ such that |E(σ)| ≥ 3.
Let a �∈ V (σ). For each L ∈ Linear(σ), there is faithful extension τ of σ
defined on V (σ) ∪ {a} such that τ [L ∪ {a}] is primitive.

The next theorem is used in the proof of Theorem 7.1.

Theorem 4.16. Let σ be an asymmetric 2-structure. Suppose that V (σ) is
not a limit of σ, and Quotientσ(V (σ)) is linear. If there exists X ∈ Gallai(σ)
such that |X| ≥ 2, then p(σ) = 1.

Proof. Let T be a traverse of σ (see Notation 4.4). Consider the smallest
interval I of T containing all the elements of Y of Gallai(σ) such that |Y | ≥ 2.
Consider also the intervals⎧⎪⎨

⎪⎩
I− = {v ∈ V (σ) : v < i mod T for every i ∈ I}
and

I+ = {v ∈ V (σ) : i < v mod T for every i ∈ I}.
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of T . It follows from the second assertion of Lemma 4.7 that I, I− and I+ are
clans of σ. By Proposition 4.12, T admits a dense bicoloring β. We consider
a bicoloration β− of T [I−] satisfying β− = β�I− or (1− β)�I− and, when T
admits a smallest element i− such that i− ∈ I−, we require that

(4.1) β−(i−) = 1.

Similarly, we consider a bicoloration β+ of T [I+] satisfying β+ = β�I+ or
(1 − β)�I+ and, when T admits a largest element i+ such that i+ ∈ I+, we
require that β+(i+) = 0. Now consider the bicoloring β′ of T defined as
follows. For every v ∈ V (σ),

β′(v) =

⎧⎪⎨
⎪⎩
β−(v) if v ∈ I−

β(v) if v ∈ I

β+(v) if v ∈ I+.

In general, β′ may not be a dense bicoloring of T . But, for J = I−, I or I+,
we have

(4.2) (β′)�J is a dense bicoloring of T [J ].

We also have: for each clan C of σ, with |C| ≥ 2,

(4.3) there exist c, d ∈ C such that β′(c) �= β′(d).

Indeed, consider a clan C of σ such that |C| ≥ 2. For a contradiction, suppose
that

|C ∩ I−| ≤ 1, |C ∩ I| ≤ 1 and |C ∩ I+| ≤ 1.

By Corollary 4.9, C is an interval of T . Thus, if C ∩ I− �= ∅ and C ∩ I+ �= ∅,
then we have I ⊆ C so that X ⊆ C, where X ∈ Gallai(σ) such that |X| ≥ 2,
which contradicts |C∩I| ≤ 1. For instance, we may assume that C∩I+ = ∅.
Since |C| ≥ 2, we obtain |C ∩ I−| = 1 and |C ∩ I| = 1. Therefore C \ I �= ∅
and hence I \C is an interval of T . Suppose that there exists Y ∈ Gallai(σ)
such that |Y | ≥ 2 and Y �⊆ I \ C. Since Y ⊆ I, we have Y ∩ C �= ∅. Since
Y is a strong clan of σ, we obtain Y ⊆ C or C ⊆ Y . We cannot have
Y ⊆ C because Y ⊆ I and |C ∩ I| = 1. Furthermore, we cannot have C ⊆ Y
because C ∩ I− �= ∅ and Y ⊆ I. It follows that for every Y ∈ Gallai(σ) such
that |Y | ≥ 2, we have Y ⊆ I \ C, which contradicts the minimality of I.
Consequently, there exists J = I−, I or I+ such that |C ∩ J | ≥ 2. It follows
from (4.2) that (4.3) holds.



558 Abderrahim Boussäıri et al.

Set e0 = eV (σ) (see Notation 4.5) and e1 = (e0)
�. Let a �∈ V (σ). We

consider the faithful extension τ of σ defined on V (σ) ∪ {a} by

(v, a)τ = eβ′(v) for every v ∈ V (σ).

We prove that τ is primitive. Let D be a clan of τ such that |D| ≥ 2. We
have to show that D = V (τ). It follows from (4.3) that a ∈ D, and

(4.4) for each clan C of σ such that |C| ≥ 2, C ∩ (D \ {a}) �= ∅.

Set

D = {Y ∈ Gallai(σ) : Y ∩ (D \ {a}) �= ∅}.
By (4.4),

(4.5) {Y ∈ Gallai(σ) : |Y | ≥ 2} ⊆ D .

Thus (D\{a})\I− �= ∅. Since I− is a clan of σ by Lemma 4.7, I− \(D\{a})
is a clan of σ. For a contradiction, suppose that

(4.6) I− \ (D \ {a}) �= ∅.

By (4.4), |I− \ (D \ {a})| = 1. Denote by i− the unique element of I− \
(D \ {a}). Since D \ {a} is an interval of T by Corollary 4.9, i− is the
smallest element of T . Let X ∈ Gallai(σ) such that |X| ≥ 2. By (4.4),
X∩(D\{a}) �= ∅. Consider x ∈ X∩(D\{a}). Since X ⊆ I, x ∈ I and hence
i− < x mod T . By Remark 4.3, (i−, x)σ = eV (σ), that is, (i−, x)σ = e0.
Since (i−, x)τ = (i−, x)σ, we get (i−, x)τ = e0. Since D is a clan of τ , we
have (i−, x)τ = (i−, a)τ . It follows that (i−, a)τ = e0. Therefore β′(i−) = 0
and hence β−(i−) = 0, which contradicts (4.1). Consequently, (4.6) does not
hold, that is, I− ⊆ D \ {a}. Similarly, we have I+ ⊆ D \ {a}.

Lastly, suppose for a contradiction that

(4.7) there exists Z ∈ Gallai(σ) such that D \ {a} � Z.

We get D = {Z}. Since {Y ∈ Gallai(σ) : |Y | ≥ 2} �= ∅, it follows from
(4.5) that {Y ∈ Gallai(σ) : |Y | ≥ 2} = {Z}. Since Z is an interval of T
by Corollary 4.9, we obtain I = Z. Furthermore, since I− ⊆ D \ {a} and
I+ ⊆ D \ {a}, we get I− = ∅ and I+ = ∅. It follows that Z = V (σ),
which is impossible because Z ∈ Gallai(σ). Therefore, (4.7) does not hold.
Consequently

D \ {a} =
⋃
Y ∈D

Y.
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By (4.5), D \ {a} ⊇ Y for every Y ∈ Gallai(σ) such that |Y | ≥ 2. Since
D \ {a} is an interval of T by Corollary 4.9, it follows from the minimality
of I that I ⊆ D \ {a}. Finally, since I− ⊆ D \ {a} and I+ ⊆ D \ {a}, we get
D \ {a} = V (σ). Hence D = V (τ).

As a conclusion, τ is primitive. Thus p(σ) ≤ 1. Since {Y ∈ Gallai(σ) :
|Y | ≥ 2} �= ∅, σ is imprimitive. Therefore p(σ) ≥ 1, so p(σ) = 1.

5. Setting the stage

In this section, as outlined in the overview (see page 547), we lay out some
preliminary results on the construction of primitive faithful extensions.

Let σ be an imprimitive and reversible 2-structure. To construct a prim-
itive faithful extension of σ, we proceed as follows. First, we destroy locally
the elements of Complete(σ) by using Lemmas 5.3 and 5.4 below. Second,
we consider a suitable F ⊆ Linear(σ) ∪ Primitive(σ). To destroy the el-
ements of F ∩ Linear(σ), we use Corollary 4.15. To destroy the elements
of F ∩ Primitive(σ), we use Lemma 5.5 below. Third, to destroy the other
nontrivial clans of σ, we use dense bicolorations of a traverse of σ.

A remark on the construction of faithful extensions of reversible 2-
structures follows.

Remark 5.1. Consider reversible 2-structures σ and σ′ such that V (σ) ∩
V (σ′) = ∅ with |{e′ ∈ E(σ′) : e′ asymmetric}| ≤ |{e ∈ E(σ) : e asymmetric}|
and |{e′ ∈ E(σ′) : e′ symmetric}| ≤ |{e ∈ E(σ) : e symmetric}|. There exists
an injection ι : E(σ′) −→ E(σ) such that ι(e�) = ι(e)� for each e ∈ E(σ′).
The function ι allows us to identify a class e of σ′ with the class ι(e) of σ.
We have ι({e′ ∈ E(σ′) : e′ asymmetric}) ⊆ {e ∈ E(σ) : e asymmetric} and
ι({e′ ∈ E(σ′) : e′ symmetric}) ⊆ {e ∈ E(σ) : e symmetric}. Consider also a
function ϕ : V (σ)×V (σ′) −→ E(σ). It is easy to verify that there is a unique
extension τ of σ and σ′ defined on V (σ)∪V (σ′) which is a faithful extension
of σ such that σ′ ↪→ τ = (σ ↪→ τ) ◦ ι and (v, v′)τ = ((σ ↪→ τ) ◦ ϕ)(v, v′) for
every (v, v′) ∈ V (σ)× V (σ′).

Notation 5.2. Let σ be a 2-structure. We define the function −→σ as follows.
For each v ∈ V (σ),

−→σ (v) : V (σ) \ {v} −→ E(σ)
w �−→ (v, w)σ.

The next lemma is used in the proof of Theorem 7.9 when we consider
a reversible 2-structure σ such that |E(σ)| ≥ 2 and log|E(σ)|(c(σ)) ≥ ℵ0.
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Lemma 5.3. Let σ be a reversible 2-structure such that |E(σ)| ≥ 2. Con-

sider a primitive, reversible and infinite 2-structure σ′ such that

• V (σ) ∩ V (σ′) = ∅;
• |{e′ ∈ E(σ′) : e′ asymmetric}| ≤ |{e ∈ E(σ) : e asymmetric}|;
• |{e′ ∈ E(σ′) : e′ symmetric}| ≤ |{e ∈ E(σ) : e symmetric}|;
• |E(σ)| < |E(σ)||V (σ′)|.

For each S ⊆ V (σ) such that |S| ≤ |E(σ)||V (σ′)|, there exists an extension

τ of σ and σ′ to V (σ) ∪ V (σ′) such that τ is a faithful extension of σ and

τ [S ∪ V (σ′)] is primitive.

Proof. Since |{e′ ∈ E(σ′) : e′ asymmetric}| ≤ |{e ∈ E(σ) : e asymmetric}|
and |{e′ ∈ E(σ′) : e′ symmetric}| ≤ |{e ∈ E(σ) : e symmetric}|, there exists

an injection ι : E(σ′) −→ E(σ) such that ι(e�) = ι(e)� for every e ∈ E(σ
′).

Thus ι({e′ ∈ E(σ′) : e′ asymmetric}) ⊆ {e ∈ E(σ) : e asymmetric} and

ι({e′ ∈ E(σ′) : e′ symmetric}) ⊆ {e ∈ E(σ) : e symmetric}. In what follows,

we identify e′ ∈ E(σ′) with ι(e′) ∈ E(σ).

Let v′ ∈ V (σ′). We have
−→
σ′(v′) : V (σ′) \ {v′} −→ E(σ). Denote by

Fv′ the family of the extensions of
−→
σ′(v′) to V (σ′). For each v′ ∈ V (σ′),

we have |Fv′ | = |E(σ)|. Also, for each e ∈ E(σ), consider the function

e : V (σ′) −→ {e} defined by e(v′) = e for every v′ ∈ V (σ′). We obtain

|(
⋃

v′∈V (σ′)

Fv′) ∪ {e : e ∈ E(σ)}| ≤ |V (σ′)| × |E(σ)|+ |E(σ)|

= max(|E(σ)|, |V (σ′)|).

Since |E(σ)| ≥ 2, |E(σ)||V (σ′)| > |V (σ′)|. Furthermore, since |E(σ)||V (σ′)| >
|E(σ)|, we get |E(σ)||V (σ′)| > max(|E(σ)|, |V (σ′)|). Therefore

|E(σ)V (σ′) \ ((
⋃

v′∈V (σ′)

Fv′) ∪ {e : e ∈ E(σ)})| = |E(σ)||V (σ′)|.

Since |S| ≤ |E(σ)||V (σ′)|, there exists an injection

A : S −→ E(σ)V (σ′) \ ((
⋃

v′∈V (σ′)

Fv′) ∪ {e : e ∈ E(σ)}).

Now, consider the faithful extension τ of σ defined on V (σ)∪V (σ′) as follows.
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Let e ∈ E(σ). Given distinct u, v ∈ V (σ) ∪ V (σ′),

(u, v)τ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(u, v)σ if u, v ∈ V (σ),

(u, v)σ′ if u, v ∈ V (σ′),

A(u)(v) if u ∈ S and v ∈ V (σ′),

e if u ∈ V (σ) \ S and v ∈ V (σ′).

It is not difficult to verify that τ [S ∪ V (σ′)] is primitive.

The next lemma is used in the proof of Theorem 7.4 when we consider
a reversible 2-structure σ such that 2 ≤ |E(σ)| ≤ c(σ) < ℵ0.

Lemma 5.4. Let σ be a reversible 2-structure such that |E(σ)| ≥ 2. Con-
sider S ⊆ V (σ) such that 2 ≤ |E(σ)| ≤ |S| < ℵ0, and σ[S] is complete. Let
e be the symmetric class of σ such that (s, t) ∈ e for distinct s, t ∈ S. Let S′

be a set such that S′ ∩ V (σ) = ∅ and |S′| = 	log|E(σ)|(|S|+1)
. There exists
a faithful extension τ of σ defined on V (σ) ∪ S′ satisfying

1. for every s′ ∈ S′, there is s ∈ S such that (−→τ (s))−1({e}) ∩ S′ = {s′};
2. τ [S ∪ S′] is primitive.

Proof. Since S is finite, S′ is also and

|E(σ)||S′|−1 ≤ |S| < |E(σ)||S′|.

Furthermore, since |S|+ 1 > |E(σ)| and |S′| = 	log|E(σ)|(|S|+ 1)
, we have

|S′| ≥ 2. Therefore |E(σ)||S′|−1 ≥ |S′|, and hence |S′| ≤ |S|. Thus there exists
an injection ϕ : S′ −→ S. Since |E(σ)| ≥ 2, there exists f ∈ E(σ) \ {e}.
Consider A : ϕ(S′) −→ E(σ)S

′
defined as follows. For each s′ ∈ S′,

A(ϕ(s′)) : S′ −→ E(σ)
s′ �−→ e

t′ ∈ S′ \ {s′} �−→ f.

Consider the function e : S′ −→ {e} defined by e(s′) = e for every s′ ∈ S′.
Since |S′| ≥ 2, we have A : ϕ(S′) −→ E(σ)S

′ \ {e}. Therefore the function
A is injective. Since |S|+ 1 ≤ |E(σ)||S′|, there exists an injection B : S −→
E(σ)S

′ \ {e} such that B�ϕ(S′) = A. We consider a faithful extension τ of σ
defined on V (σ) ∪ S′ satisfying

• (s′, t′)τ = f or f� for distinct s′, t′ ∈ S′,
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• −→τ (s)�S′ = B(s) for each s ∈ S.

For every s′ ∈ S′, (−→τ (ϕ(s′)))−1({e}) ∩ S′ = {s′}, and it is simple to verify
that τ [S ∪ S′] is primitive.

Let σ be a reversible 2-structure such that Primitive(σ) �= ∅. Consider
F ⊆ Primitive(σ). When σ is asymmetric and |E(σ)| = 2, that is, σ is a
tournament, we require that for everyX ∈ F , |X| ≥ 5. By using Theorem 3.7
and the next lemma, we can construct a faithful extension τ of σ to V (σ)∪
{a} (where a �∈ V (σ)) such that τ [P ∪ {a}] is primitive for every P ∈ F .
Indeed, consider P ∈ F . By the following lemma, there exists a faithful
extension τP of σ[P ] to P ∪ {a} which is primitive. Furthermore, it follows
from Theorem 3.7 that the elements of F are pairwise disjoint. Therefore,
there exists a faithful extension τ of σ to V (σ)∪{a} such that τ [P∪{a}] = τP
for every P ∈ F .

Lemma 5.5. Consider a primitive and reversible 2-structure σ. Let a �∈
V (σ). If V (σ) is finite, then σ admits |E(σ)||V (σ)|−|E(σ)|× |V (σ)|− |E(σ)|
primitive and faithful extensions of σ to V (σ)∪{a}. If V (σ) is infinite, then
σ admits |E(σ)||V (σ)| such extensions.

Proof. Consider a faithful extension τ of σ to V (σ)∪ {a}. Assume that τ is
imprimitive, and consider a nontrivial clan C of τ . Since σ is primitive, we
have |C ∩ V (σ)| ≤ 1 or C ∩ V (σ) = V (σ). Since C is a nontrivial clan of
τ , |C| ≥ 2 and hence |C ∩ V (σ)| ≥ 1. By the same, C � V (τ). Therefore,
we obtain that either there is v ∈ V (σ) such that C = {a, v} or C =
V (σ). In the second instance, −→τ (a) is constant. In the first, −→τ (a)�V (σ)\{v} =−→σ (v). Conversely, if −→τ (a) is constant, then V (σ) is a nontrivial clan of τ .
Furthermore, if there is v ∈ V (σ) such that −→τ (a)�V (σ)\{v} = −→σ (v), then
{a, v} is a nontrivial clan of τ .

Consequently, we obtain the following. Given a faithful extension τ of σ
to V (σ)∪{a}, τ is imprimitive if and only if either −→τ (a) is constant or there
is v ∈ V (σ) such that −→τ (a)�V (σ)\{v} = −→σ (v). Therefore σ admits |E(σ)| ×
|V (σ)|+ |E(σ)| imprimitive and faithful extensions to V (σ)∪{a}. If V (σ) is
finite, then |E(σ)| is also and σ admits |E(σ)||V (σ)|−|E(σ)|×|V (σ)|−|E(σ)|
primitive and faithful extensions of σ to V (σ) ∪ {a}. Suppose that V (σ) is
infinite. We get |E(σ)| ≤ |V (σ)| and hence |E(σ)|×|V (σ)|+|E(σ)| = |V (σ)|.
Since σ is primitive, |E(σ)| ≥ 2. Thus |V (σ)| < |E(σ)||V (σ)|. Consequently, σ
admits |E(σ)||V (σ)| primitive and faithful extensions of σ to V (σ)∪{a}.

The rather technical appearing conditions of the following two results
permit their use in different ways throughout Section 7. The usefulness of
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dense bicolorings of traverses appears in the first one. We use the following
notation.

Notation 5.6. Let σ be a 2-structure. For convenience, set

• C(σ) =
⋃

C∈Complete(σ)C,

• L(σ) =
⋃

L∈Linear(σ) L,
• P (σ) =

⋃
P∈Primitive(σ) P .

Lemma 5.7. Let σ be a reversible 2-structure such that |E(σ)| ≥ 2. Con-
sider a traverse T of σ and a dense bicoloring β of T . Let S′ be a set such
that S′ �= ∅ and S′ ∩ V (σ) = ∅. Consider distinct A0, A1 ∈ E(σ)S

′
. Also

let F ⊆ Linear(σ) ∪ Primitive(σ). Consider a faithful extension τ of σ to
V (σ) ∪ S′ satisfying

for each C ∈ Complete(σ),(5.1a)

{D ∈ Clans(σ[C]) : |D| ≥ 2} ∩ Clans(τ) = ∅;
for each X ∈ F , τ [X ∪ S′] is primitive;(5.1b)

for each v ∈ V (σ) \ (C(σ) ∪ (
⋃
X∈F

X)),−→τ (v)�S′ = Aβ(v).(5.1c)

Then, we have

{C ∈ Clans(σ) : |C| ≥ 2} ∩ Clans(τ) = ∅.

Proof. To begin, given C ∈ Complete(σ)∪Linear(σ)∪Primitive(σ), we prove
that

(5.2) {D ∈ Clans(σ[C]) : |D| ≥ 2} ∩ Clans(τ) = ∅.

Clearly (5.2) follows from (5.1a) when C ∈ Complete(σ). Suppose that C ∈
Linear(σ) ∪ Primitive(σ), and consider a clan D of σ[C] such that |D| ≥ 2.
We have to prove that D is not a clan of τ . If C ∈ F , then τ [C ∪ S′] is
primitive by (5.1b). Thus D is not a clan of τ [C ∪ S′], and hence D is not a
clan of τ . Suppose that C ∈ (Linear(σ)∪Primitive(σ))\F . We show that D
is an interval of T . By Corollary 4.8, if C ∈ Linear(σ), then D is an interval
of T . If C ∈ Primitive(σ), then D = C, and C is a strong clan of σ because
σ[C] is primitive. By Assertion A1 (see Definition 4.1), D is an interval of T .
By (5.1c), since D ⊆ V (σ)\(C(σ)∪(

⋃
X∈F X)), we have −→τ (v)�S′ = Aβ(v) for

every v ∈ D. Since β is a dense bicoloring of T , there exist distinct u, v ∈ D
such that β(u) �= β(v). Therefore Aβ(u) �= Aβ(v) and

−→τ (u)�S′ �= −→τ (v)�S′ by
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(5.1c). Consequently there is s′ ∈ S′ such that (u, s′)τ �= (v, s′)τ so that D
is not a clan of τ . It follows that (5.2) holds.

To continue we show that

(5.3) {X ∈ Strong(σ) : |X| ≥ 2} ∩ Clans(τ) = ∅.

Given a strong clan X of σ such that |X| ≥ 2, we distinguish the following
two cases to show that X is not a clan of τ .

1. Suppose that there exists C ∈ Complete(σ)∪Linear(σ)∪Primitive(σ)
such that X ∩C �= ∅. Since X is a strong clan of σ, X ⊆ C or C ⊆ X.
Thus X ∩ C = X or C and hence X ∩ C is a clan of σ[C] such that
|X ∩ C| ≥ 2. It follows from (5.2) that there is s′ ∈ S′ such that
s′ �←→τ X ∩ C. Therefore s′ �←→τ X and X is not a clan of τ .

2. Suppose that X ∩ (C(σ) ∪ L(σ) ∪ P (σ)) = ∅. By Assertion A1 (see
Definition 4.1), X is an interval of T . Since β is a dense bicoloring of T ,
there exist distinct x, y ∈ X such that β(x) �= β(y). ThusAβ(x) �= Aβ(y)

and −→τ (x)�S′ �= −→τ (y)�S′ by (5.1c). Consequently there is s′ ∈ S′ such
that (x, s′)τ �= (y, s′)τ so that X is not a clan of τ .

It follows that (5.3) holds.
To conclude, consider a clan C of σ such that |C| ≥ 2. We must show

that C is not a clan of τ . By (5.3), we can suppose that C is not a strong
clan of σ. By Lemma 2.10, C̃ is a strong clan of σ which is not a limit of
σ, and C =

⋃
X∈C X, where C is a nontrivial clan of Quotientσ(C̃). We

distinguish the following two cases. First, suppose that there exists X ∈ C
such that |X| ≥ 2. Since X is a strong clan of σ, X is not a clan of τ by
(5.3). Since X ⊆ C, C is not a clan of τ . Second, suppose that |X| = 1 for
each X ∈ C . Hence {v} ∈ Quotientσ(C̃) for every v ∈ C. By maximality of

elements of Quotientσ(C̃), {̂v} = C̃ for every v ∈ C. We obtain that v �σ w
for any v, w ∈ C. Thus there is D ∈ (V (σ)/ �σ) such that |D| ≥ 2 and
D ⊇ C. By Theorem 3.7, D ∈ Complete(σ) ∪ Linear(σ) ∪ Primitive(σ). By
(5.2), C is not a clan of τ .

The following result is a simple consequence of Lemma 5.7 when only
1-extensions are considered.

Corollary 5.8. Let σ be a reversible 2-structure such that |E(σ)| ≥ 2.
Consider a traverse T of σ and a dense bicoloring β of T . Let a �∈ V (σ).
Consider distinct e0, e1 ∈ E(σ). Also let F ⊆ Linear(σ) ∪ Primitive(σ).
Consider a faithful extension τ of σ to V (σ) ∪ {a} satisfying

• for each C ∈ Complete(σ), {D ∈ Clans(σ[C]) : |D| ≥ 2}∩Clans(τ) = ∅;
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• for each X ∈ F , τ [X ∪ {a}] is primitive;
• for each v ∈ V (σ) \ (C(σ) ∪ (

⋃
X∈F X)), (v, a)τ = eβ(v).

Then, for each clan Dτ of τ such that |Dτ | ≥ 2, the following assertions
hold

1. a ∈ Dτ ;
2. for every clan C of σ such that |C| ≥ 2, we have C ∩ (Dτ \ {a}) �= ∅;
3. for every clan C of σ such that |C| ≥ 2 and τ [C ∪ {a}] is primitive,

we have C ⊆ Dτ \ {a}; in particular C ⊆ Dτ \ {a} for each C ∈ F .

6. Inclusive clans of a 2-structure

Consider reversible 2-structures σ and τ as in Corollary 5.8. Consider also
F ⊆ Linear(σ) ∪ Primitive(σ). Suppose that τ is imprimitive, and consider
a nontrivial clan Dτ of τ . Clearly Dτ \ {a} is a clan of σ. By Corollary 5.8,
C ∩ (Dτ \ {a}) �= ∅ for every clan C of σ such that |C| ≥ 2. Moreover,
C ⊆ Dτ \ {a} for each C ∈ F . This leads us to introduce the following
notion.

Definition 6.1. Given a 2-structure σ, a clan C of σ is inclusive if C(σ) ∪
L(σ) ∪ P (σ) ⊆ C, and C ∩ X �= ∅ for each strong clan X of σ such that
|X| ≥ 2.

Let σ be a 2-structure. Obviously, V (σ) is an inclusive clan of σ, and
J �= ∅ for every inclusive clan J of σ. Furthermore, given an inclusive clan
J of σ, and a clan C of σ, we have

(6.1) if J ⊆ C, then C is an inclusive clan of σ.

We begin with three lemmas.

Lemma 6.2. Let σ be a 2-structure. For each inclusive clan J of σ, V↓(σ) ⊆
J .

Proof. Let v ∈ V↓(σ). We show that v ∈ J . Set

Fv = {X ∈ Strong(σ) : v ∈ X, |X| ≥ 2}.

Since v ∈ V↓(σ), we have ⋂
X∈Fv

X = {v}.

Since J is an inclusive clan of σ, J∩X �= ∅ for every X ∈ Fv. Thus, for every
X ∈ Fv, we have X ⊆ J or J ⊆ X. If there exists X ∈ Fv such that X ⊆ J ,
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then v ∈ J . Therefore, suppose that J ⊆ X for every X ∈ Fv. It follows
that J ⊆ {v}. Since J is an inclusive clan of σ, J �= ∅. Hence v ∈ J .

Lemma 6.3. Let σ be a 2-structure. If there exists v ∈ V (σ) such that {v}
is an inclusive clan of σ, then (V (σ)/�σ) = V1(σ), V↓(σ) = {v}, and {v} is
the smallest inclusive clan of σ under inclusion.

Proof. By Theorem 3.7, {D ∈ (V (σ)/ �σ) : |D| ≥ 2} = Complete(σ) ∪
Linear(σ) ∪ Primitive(σ). Since C(σ) ∪ L(σ) ∪ P (σ) ⊆ {v}, we obtain

(6.2) (V (σ)/�σ) = V1(σ).

Now, we prove that v ∈ V↓(σ). Suppose for a contradiction that |{̂v}| ≥ 2. By

Lemma 2.11, {̂v} is not a limit of σ, and {v} ∈ Quotientσ({̂v}). Moreover,

since {v} ∩ X �= ∅ for each X ∈ Quotientσ({̂v}) such that |X| ≥ 2, we

obtain Quotientσ({̂v}) = {{w} : w ∈ {̂v}}. It follows from Proposition 3.3

that {̂v} ∈ Complete(σ)∪Linear(σ)∪Primitive(σ). By Theorem 3.7, {̂v} ∈
{D ∈ (V (σ)/ �σ) : |D| ≥ 2}, contradicts (6.2). Consequently {̂v} = {v},
that is, v ∈ V↓(σ). It follows from Lemma 6.2 that V↓(σ) = {v}. Moreover,
by Lemma 6.2, V↓(σ) ⊆ J for each inclusive clan J of σ. Therefore, {v} is
the smallest inclusive clan of σ under inclusion.

Lemma 6.4. Let σ be a 2-structure. Given an inclusive clan J of σ, we
have J ∩ C �= ∅ for every clan C of σ such that |C| ≥ 2.

Proof. By definition of an inclusive clan, we can consider a non-strong clan C
of σ such that |C| ≥ 2. By Lemma 2.10, C̃ is not a limit of σ, and there exists
a nontrivial clan C of Quotientσ(C̃) such that C =

⋃
X∈C X. If there exists

X ∈ C ∩Quotientσ(C̃) such that |X| ≥ 2, then J∩X �= ∅, and hence J∩C �=
∅. Thus, suppose that |X| = 1 for every X ∈ C . We obtain that v �σ w
for any v, w ∈ C. Therefore, there exists D ∈ (V (σ)/�σ) such that |D| ≥ 2
and D ⊇ C. By Theorem 3.7, D ∈ Complete(σ) ∪ Linear(σ) ∪Primitive(σ).
Therefore D ⊆ J , and C ⊆ J .

The next two propositions are used in the proof of Theorem 6.7. The
first one provides two interesting properties of the set of inclusive clans.

Proposition 6.5. Let σ be a 2-structure. The set of inclusive clans of σ is
closed under intersection and union.

Proof. Let J andK be inclusive clans of σ. To begin, we show that J∩K �= ∅.
If |J | = |K| = 1, then it follows from Lemma 6.3 that J = K = V↓(σ). Hence
suppose for example that |J | ≥ 2. By Lemma 6.4, J ∩K �= ∅.
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Since J ∩K �= ∅, J ∪K is a clan of σ and hence J ∪K is an inclusive
clan of σ by (6.1).

Lastly, we prove that J ∩K is an inclusive clan of σ. Since C(σ)∪L(σ)∪
P (σ) ⊆ J and C(σ)∪L(σ)∪P (σ) ⊆ K, we have C(σ)∪L(σ)∪P (σ) ⊆ J∩K.
Now consider a strong clan X of σ such that |X| ≥ 2. We have J ∩X �= ∅
and K ∩ X �= ∅. Thus J,X and K,X are comparable under inclusion. We
obtain J ∩K ⊆ X or X ⊆ J ∩K.

The next result provides a structural analysis of non-prime and inclusive
clans.

Proposition 6.6. Let σ be a 2-structure. Consider a traverse T of σ. Given
an inclusive clan J of σ, if J is not a strong clan of σ, then Quotientσ(J̃)
is complete or linear. Moreover, the following assertions hold.

1. Suppose that Quotientσ(J̃) is complete. We obtain

(a) there exists j ∈ J̃ such that {v ∈ J̃ : {v} ∈ Gallai(σ[J̃ ])} = {j};
(b) J = J̃ \ {j} and hence

J =
⋃

X∈Gallai(σ[J̃ ]),|X|≥2

X.

2. Suppose that Quotientσ(J̃) is linear. Denote by I the smallest interval
of T [J̃ ] containing all the elements X of Gallai(σ[J̃ ]) such that |X| ≥ 2.
Also consider I− = {j ∈ J̃ : j < i mod T for every i ∈ I} and
I+ = {j ∈ J̃ : i < j mod T for every i ∈ I}. We obtain

(a) I ⊆ J and there exists X ∈ Gallai(σ[J̃ ]) such that |X| ≥ 2;

(b) if |I−| ≥ 2, then T [J̃ ] admits a largest element j+, and we have
I+ = {j+} and J̃ \ J = {j+};

(c) if |I+| ≥ 2, then T [J̃ ] admits a smallest element j−, and we have
I− = {j−} and J̃ \ J = {j−};

(d) for each j ∈ J̃ \J , j is the smallest or the largest element of T [J̃ ].

Proof. Let J be an inclusive clan of σ which is not a strong clan of σ.
By Lemma 2.10, J̃ is a strong clan of σ, which is not a limit of σ, and
there is a nontrivial clan J of Quotientσ(J̃) such that J =

⋃
X∈J X. Let

X ∈ Gallai(σ[J̃ ]) such that |X| ≥ 2. Since X is a strong clan of σ, we have
J ∩X �= ∅ and hence X ∈ J . Therefore {X ∈ Gallai(σ[J̃ ]) : |X| ≥ 2} ⊆ J .
For convenience, set

J̃1 = {u ∈ J̃ : {u} ∈ Gallai(σ[J̃ ])}
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and

J̃≥2 =
⋃

X∈Gallai(σ[J̃ ]),|X|≥2

X.

Thus

(6.3) J̃ \ J̃≥2 = J̃1.

Since {X ∈ Gallai(σ[J̃ ]) : |X| ≥ 2} ⊆ J , we get J̃≥2 ⊆ J . Moreover, since

J is not a strong clan of σ, we obtain

(6.4) J̃≥2 ⊆ J � J̃ .

Since J is a nontrivial clan of Quotientσ(J̃), Quotientσ(J̃) is complete or

linear. We distinguish the following two cases.

First, suppose that Quotientσ(J̃) is complete. For a contradiction, sup-

pose that |J̃ \ J̃≥2| ≥ 2. By (6.3), |J̃1| ≥ 2. It follows from Proposition 3.3

that J̃1 ∈ Complete(σ). It follows from (6.3) and (6.4) that

J̃1 �⊆ J,

which contradicts the fact that J is an inclusive clan of σ. Consequently

|J̃ \ J̃≥2| ≤ 1. By (6.4), |J̃ \ J̃≥2| = 1. Hence |J̃1| = 1 (i.e. Assertion 1.(a)

holds) by (6.3). Denote by j the unique element of J̃1. It follows from (6.4)

that J = J̃ \ {j} and J̃≥2 = J (i.e. Assertion 1.(b) holds).

Second, suppose that Quotientσ(J̃) is linear. For a contradiction, sup-

pose that |X| = 1 for every X of Gallai(σ[J̃ ]). By Proposition 3.3, J̃ ∈
Linear(σ). It follows from (6.4) that J̃ �⊆ J , which contradicts the fact that

J is an inclusive clan of σ. Thus there exists X ∈ Gallai(σ[J̃ ]) such that

|X| ≥ 2. Since X ⊆ J̃≥2 and J̃≥2 ⊆ J by (6.4), it follows from the second

assertion of Lemma 4.7 that J is an interval of T [J̃ ]. By minimality of I, we

have I ⊆ J . Hence Assertion 2.(a) holds.

Suppose that |I−| ≥ 2. Denote by K the family of nonempty intervals K

of T [J̃ ] such that {k} ∈ Gallai(σ[J̃ ]) for each k ∈ K. Clearly I− ∈ K. Since

I is the smallest interval of T [J̃ ] containing J̃≥2, I
− is a maximal element

of K. Furthermore, it follows from the second assertion of Lemma 4.7 that

all the elements of K are clans of σ[J̃ ]. Therefore, it follows from the second

assertion of Proposition 3.3 that I− ∈ Linear(σ). Since J is an inclusive clan
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of σ, I− ⊆ J . Consequently,

(6.5)

⎧⎪⎨
⎪⎩
|I−| ≥ 2 =⇒ I− ⊆ J

and similarly

|I+| ≥ 2 =⇒ I+ ⊆ J.

Suppose again that |I−| ≥ 2. By (6.5), I− ⊆ J . Since I ⊆ J and J � J̃ ,
we get I+ �⊆ J . It follows from (6.5) that |I+| = 1. Denote by j+ the
unique element of I+. Clearly j+ is the largest element of T [J̃ ], and we have
J̃ \ J = {j+}. Hence Assertion 2.(b) holds. Similarly, Assertion 2.(c) holds.

Lastly, consider j ∈ J̃ \J . Since I ⊆ J , j ∈ I−∪I+. For instance, assume
that j ∈ I−. It follows from Assertion 2.(b) that |I−| ≤ 1, so I− = {j}.
Clearly, j is the smallest element of T [J̃ ]. In the same manner, if j ∈ I+,
then j is the largest element of T [J̃ ]. Consequently, Assertion 2.(d) holds.

The next result follows from Proposition 6.6. It is used in the proof of
Theorem 7.2.

Theorem 6.7. Let σ be a 2-structure. Consider a traverse T of σ. Given
inclusive clans J and K of σ, if J \K �= ∅ and K \J �= ∅, then the following
assertions hold

1. J̃ = K̃, J̃ is not a limit of σ, and Quotientσ(J̃) is linear;
2. T [J̃ ] admits a smallest element j− and a largest element j+;
3. {j−}, {j+} ∈ Gallai(σ[J̃ ]), and there exists X ∈ Gallai(σ[J̃ ]) such that

|X| ≥ 2;
4. {J,K} = {J̃ \{j−}, J̃ \{j+}}, and J̃ \{j−, j+} is the smallest interval

of T [J̃ ] containing all the elements Y ∈ Gallai(σ[J̃ ]) such that |Y | ≥ 2;
5. for each inclusive clan H of σ such that H �= J and H �= K, we have

H ⊆ J ∩K or J ∪K ⊆ H.

Proof. By Proposition 6.5, J ∩K is an inclusive clan of σ. Hence J ∩K �= ∅.
Therefore J and K are not strong clans of σ, and we can apply Proposi-
tion 6.6 to J and K as follows.

Since J ∩ K �= ∅, we have J̃ ∩ K̃ �= ∅ and hence J̃ ⊆ K̃ or K̃ ⊆ J̃ .
Assume that J̃ ⊆ K̃. For a contradiction, suppose that J̃ � K̃. Since K is
not a strong clan of σ, K̃ is not a limit of σ by Lemma 2.10. By maximality
of the elements of Gallai(σ[K̃]), there exists X ∈ Gallai(σ[K̃]) such that
X ⊇ J̃ . Since J is not a strong clan of σ, we have |J | ≥ 2 and hence |X| ≥ 2.
It follows from Proposition 6.6 that X ⊆ K. We obtain J ⊆ J̃ ⊆ X ⊆ K,
which contradicts J \K �= ∅. Therefore J̃ = K̃.
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Since J is not a strong clan of σ, J̃ is not a limit of σ by Lemma 2.10.
Suppose for a contradiction that Quotientσ(J̃) is complete. By Assertion
1.(a) of Proposition 6.6, there is a unique j ∈ J̃ such that {j} ∈ Gallai(σ[J̃ ]).
Furthermore, it follows from Assertion 1.(b) of Proposition 6.6 that J = K =
J̃ \ {j}. Thus Quotientσ(J̃) is linear. Therefore the first assertion holds.

We have J̃ \J �= ∅, J̃ \K �= ∅ and J̃ \J �= J̃ \K. Therefore, it follows from
Assertion 2.(d) of Proposition 6.6 applied to J and to K that T [J̃ ] admits
a smallest element j− and a largest element j+. Hence the second assertion
holds. Moreover, it follows from Assertion 2.(d) of Proposition 6.6 applied
to J that J̃ \ J ⊆ {j−, j+}. Similarly, J̃ \ K ⊆ {j−, j+}. Since J̃ \ J �= ∅,
J̃ \K �= ∅ and J̃ \ J �= J̃ \K, we obtain

(6.6) J̃ \ (J ∩K) = {j−, j+}.

As in Proposition 6.6, we denote by I the smallest interval of T [J̃ ] con-
taining all the elements X of Gallai(σ[J̃ ]) such that |X| ≥ 2. It follows from
Assertion 2.(a) of Proposition 6.6 applied to J and K that

(6.7) I ⊆ J ∩K,

and there exists X ∈ Gallai(σ[J̃ ]) such that |X| ≥ 2. Thus, it follows from
(6.7) and (6.6) that {j−}, {j+} ∈ Gallai(σ[J̃ ]). Hence the third assertion
holds.

Since J ∩K � J � J̃ , it follows from (6.6) that J = J̃ \{j−} or J̃ \{j+}.
Similarly, K = J̃ \{j−} or J̃ \{j+}. Hence we can assume that J = J̃ \{j+}
and K = J̃ \ {j−}. As in Proposition 6.6, we consider I− = {j ∈ J̃ : j < i
mod T for every i ∈ I} and I+ = {j ∈ J̃ : i < j mod T for every i ∈ I}.
Since J = J̃ \{j+}, it follows from Assertion 2.(c) of Proposition 6.6 applied
to J that |I+| ≤ 1. Furthermore, since j+ ∈ J̃ \ J , it follows from (6.7) that
j+ ∈ J̃ \ I. Therefore, i+ ∈ I+, and hence I+ = {j+}. Similarly, I− = {j−}.
Consequently, we obtain I = J̃ \ {j−, j+}. Hence the fourth assertion holds.
Since J = J̃ \ {j+}, K = J̃ \ {j−} and I = J̃ \ {j−, j+}, we have

(6.8) I = J ∩K.

Lastly, consider an inclusive clan H of σ such that H �= J and H �= K.
Since |J | ≥ 2, it follows from Lemma 6.4 that H ∩ J �= ∅. Thus H ∩ J̃ �= ∅,
and hence H � J̃ or J̃ ⊆ H. If J̃ ⊆ H, then J ∪ K ⊆ H because J̃ = K̃.
Therefore suppose that

(6.9) H � J̃ .
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We show that H ⊆ J ∩K. Set

H = {X ∈ Gallai(σ[J̃ ]) : X ∩H �= ∅}.

Since H is an inclusive clan of σ, H ∩X �= ∅ for every X ∈ Gallai(σ[J̃ ]) such
that |X| ≥ 2. Therefore

(6.10) {X ∈ Gallai(σ[J̃ ]) : |X| ≥ 2} ⊆ H .

Recall that there exists X ∈ Gallai(σ[J̃ ]) such that |X| ≥ 2 (see the third
assertion). Thus H �= ∅, and we distinguish the following two cases.

1. Suppose that |H | = 1. Denote by Y the unique element of H . We have
H ⊆ Y . Since {X ∈ Gallai(σ[J̃ ]) : |X| ≥ 2} �= ∅ (see the third asser-
tion), it follows from (6.10) that Y is the unique element of Gallai(σ[J̃ ])
such that |Y | ≥ 2. Furthermore, Y is an interval of T [J̃ ] by Assertion
A1 (see Definition 4.1). It follows from the definition of I that I = Y .
Since H ⊆ Y , we get H ⊆ I. It follows from (6.8) that H ⊆ J ∩K.

2. Suppose that |H | ≥ 2. We obtain

H =
⋃

X∈H

X.

It follows from the second assertion of Lemma 4.7 that H is an interval
of T [J̃ ]. By (6.10), {X ∈ Gallai(σ[J̃ ]) : |X| ≥ 2} ⊆ H . It follows from
the definition of I that I ⊆ H. Since I = J ∩ K by (6.8), we get
J ∩K ⊆ H. Recall that J̃ = {j−}∪(J ∩K)∪{j+}, J = {j−}∪(J ∩K)
and K = (J ∩K)∪ {j+}. Moreover, recall that H � J̃ by (6.9). Since
H �= J and H �= K, we obtain H = J ∩K.

The next result is an immediate consequence of Theorem 6.7. It is used
in the proof of Proposition 7.7.

Corollary 6.8. If σ is a symmetric 2-structure, then the set of inclusive
clans of σ endowed with inclusion is a linear order.

We complete the section with a result on primitive bounds of asymmetric
2-structures. It is used in the proof of Theorem 7.1.

Theorem 6.9. Let σ be an asymmetric 2-structure. If σ admits an inclusive
clan J such that J �= V (σ), then p(σ) = 1.

Proof. Since σ admits an inclusive clan J such that J �= V (σ), we have
|V (σ)| ≥ 3. It follows from Lemma 6.3 and (6.1) that σ admits an inclusive
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clan J which is a nontrivial clan of σ. In particular, σ is imprimitive, and

hence

(6.11) p(σ) ≥ 1.

By Proposition 4.2, σ admits a traverse T . Furthermore T admits a dense
bicoloring β by Proposition 4.12. Given e ∈ E(σ), set e0 = e and e1 = e�.

Let a �∈ V (σ). We associate with β the faithful extension τβ of σ defined on
V (σ) ∪ {a} satisfying

(x, a)τβ = eβ(x) for every x ∈ J ;(6.12a)

(x, a)τβ = ((x, J)σ)
� for every x ∈ V (σ) \ J .(6.12b)

If τβ is imprimitive, then we establish the following assertions

• T has a smallest element v− and a largest element v+;
• there exists v ∈ {v−, v+} such that J = V (σ) \ {v};
• by denoting by u the unique element of {v−, v+} \ {v}, we have

(6.13) eβ(u) = (u, v)σ.

Indeed, suppose that τβ is imprimitive, and consider a nontrivial clan
Dβ of τβ . To prove the three assertions above, we need some preliminary

facts (see (6.14), (6.15), (6.16) and (6.17)).

Suppose for a contradiction that a �∈ Dβ . We obtain that Dβ is a clan

of σ such that |Dβ| ≥ 2. Hence J ∩ Dβ is a clan of σ. By Corollary 4.9,
J ∩ Dβ is an interval of T . For x, y ∈ J ∩ Dβ, we have (x, a)τβ = (y, a)τβ .

It follows from (6.12a) that eβ(x) = eβ(y) and hence β(x) = β(y). Therefore
β�J∩Dβ

is constant. Since Dβ is a clan of σ such that |Dβ | ≥ 2, it follows

from Lemma 6.4 that J ∩ Dβ �= ∅. Since β is a dense bicoloring of T ,
we obtain |J ∩ Dβ| = 1. Denote by z the unique element of J ∩ Dβ . We

show that Dβ \ {z} is a clan of σ. It suffices to verify that Dβ \ {z} is a
clan of σ[Dβ ], that is, z ←→σ Dβ \ {z}. Let x, y ∈ Dβ \ {z}. Since Dβ

is a clan of τβ, we have (x, a)τβ = (y, a)τβ . It follows from (6.12b) that
(x, z)σ = (y, z)σ. Consequently Dβ \ {z} is a clan of σ. It follows from

Lemma 6.4 that |Dβ \ {z}| = 1. Hence |Dβ | = 2 and σ[Dβ ] is linear. By

Lemma 3.2, we obtain that Dβ ⊆ L(σ). Since Dβ \ J �= ∅, J is not an
inclusive clan of σ. It follows that

(6.14) a ∈ Dβ.
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We get Dβ \ {a} is a clan of σ. Suppose for a contradiction that J ∩ (Dβ \
{a}) = ∅. We have (Dβ \{a}) ←→σ J . It follows that a ←→τβ J . By (6.12a),
β�J is constant. Since J is an interval of T by Corollary 4.9, β is not a dense
bicoloring of T . Consequently, J ∩ (Dβ \{a}) �= ∅. Therefore J ∪Dβ is a clan
of τβ. It follows from (6.12b) that

(6.15) J ∪ (Dβ \ {a}) = V (σ).

Since J �= V (σ), it follows from (6.15) that

(6.16) (Dβ \ {a}) \ J �= ∅.

Furthermore, since Dβ is a nontrivial clan of τβ, it follows from (6.14) and
(6.15) that

(6.17) J \ (Dβ \ {a}) �= ∅.

Thus (Dβ \ {a}) \ J is a clan of σ. It follows from Lemma 6.4 that |(Dβ \
{a}) \ J | ≤ 1. Hence |(Dβ \ {a}) \ J | = 1 by (6.16). Denote by v the unique
element of (Dβ \ {a}) \ J . It follows from (6.15) that

J = V (σ) \ {v}.

By Corollary 4.9, J is an interval of T . Since J = V (σ)\{v}, v is the smallest
or the largest element of T .

By (6.16), J \ (Dβ \ {a}) is a clan of σ. Since Dβ \ {a} is a clan of σ, we
have (Dβ \ {a}) ←→σ J \ (Dβ \ {a}). Since Dβ is a clan of τβ, we obtain

a ←→τβ J \ (Dβ \ {a}).

By (6.12a), β�J\(Dβ\{a}) is constant. Moreover, J \ (Dβ \ {a}) is an interval
of T by Corollary 4.9. Since β is a dense bicoloring of T , |J \ (Dβ \{a})| ≤ 1.
Thus |J \ (Dβ \ {a})| = 1 by (6.17). Denote by u the unique element of
J \ (Dβ \ {a}). It follows from (6.14) and (6.15) that

Dβ = V (τβ) \ {u}.

It follows that V (σ) \ {u} is a clan of σ. By Corollary 4.9, V (σ) \ {u} is an
interval of T . Therefore u is the smallest or the largest element of T . Since
u ∈ J , we have u �= v. Consequently, T has a smallest element v− and a
largest element v+. Hence v ∈ {v−, v+} and {u} = {v−, v+} \ {v}. Since Dβ

is a clan of τβ, (u, a)τβ = (u, v)σ. Thus (6.13) follows from (6.12a).
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We conclude as follows. Clearly (6.13) cannot hold for both dense bicol-

orings β and 1−β of T . Consequently τβ or τ1−β is primitive. Thus p(σ) ≤ 1.

By (6.11), p(σ) = 1.

7. Primitive bounds of reversible 2-structures

Let σ be a reversible 2-structure such that |V (σ)| ≥ 2. Suppose that |E(σ)| =
1, that is, σ is complete. We consider extensions of σ which are identifiable

with graphs. When |V (σ)| < ℵ0, it follows from [27, Theorem 2.45] that there

exists a primitive extension τ of σ such that τ is symmetric, |E(τ)| = 2 and

|V (τ) \ V (σ)| ≥ 	log2(|V (σ)| + 1)
. This result is easily adaptable when

|V (σ)| ≥ ℵ0 by replacing 	log2(|V (σ)|+ 1)
 by log2(|V (σ)|).
Now, we consider reversible 2-structures σ such that |E(σ)| ≥ 2. We be-

gin with tournaments, that is, asymmetric 2-structures σ such that |E(σ)| =
2. As mentioned in Section 1, the next theorem was proved by Erdős et al.

[11].

Theorem 7.1. Given a 2-structure σ such that σ is asymmetric and |E(σ)| =
2, we have p(σ) ≤ 2. Moreover, p(σ) = 2 if and only if σ is a finite linear

order such that |V (σ)| is odd.

Proof. By Corollary 4.14, it suffices to prove that if p(σ) ≥ 2, then σ is

a linear order. Suppose that p(σ) ≥ 2. Denote by Lodd(σ) the family of

L ∈ Linear(σ) such that |L| < ℵ0 and |L| is odd, and denote by P3(σ) the

family of P ∈ Primitive(σ) such that |P | = 3.

Let a �∈ V (σ). Given P ∈ Primitive(σ)\P3(σ), it follows from Lemma 5.5

that σ admits a primitive and faithful extension τP defined on V (σ) ∪ {a}
such that τP [P ∪{a}] is primitive. Given L ∈ Linear(σ) \Lodd(σ), it follows

from Corollary 4.14 that σ admits a primitive and faithful extension τL
defined on V (σ) ∪ {a} such that τL[L ∪ {a}] is primitive.

By Proposition 4.2, σ admits a traverse T . Furthermore T admits a dense

bicoloring β by Proposition 4.12. Set E(σ) = {e0, e1} and F = (Linear(σ) \
Lodd(σ)) ∪ (Primitive(σ) \ P3(σ)). By Theorem 3.7, the elements of F are

pairwise disjoint. Thus, we can consider the faithful extension τ of σ defined

on V (σ) ∪ {a} satisfying

• for each X ∈ F , τ [X ∪ {a}] = τX [C∪{a}];
• for each v ∈ V (σ) \ (

⋃
X∈F X), (v, a)τ = eβ(v).

Since p(σ) ≥ 2, τ admits a nontrivial clan D. It follows from Corollary 5.8
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that ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a ∈ D,

for every clan C of σ such that |C| ≥ 2, C ∩ (D \ {a}) �= ∅,
and⋃

X∈F X ⊆ D \ {a}.

Since p(σ) ≥ 2, D \ {a} is not an inclusive clan of σ by Theorem 6.9. It
follows that

(
⋃

X∈Lodd(σ)∪P3(σ)

X) �⊆ D \ {a}.

We show that

(7.1) (
⋃

P∈P3(σ)

P ) ⊆ D \ {a}.

For a contradiction, suppose that (7.1) does not hold, and consider P ∈
P3(σ) such that P �⊆ D \{a}. By Corollary 5.8, P ∩ (D \{a}) �= ∅. Moreover
P is a strong module of σ because σ[P ] is primitive. Since P �⊆ D \ {a},
we get D \ {a} � P . Since σ[P ] is primitive, we obtain |D \ {a}| = 1.
Since

⋃
X∈F X ⊆ D \ {a} by Corollary 5.8, we obtain F = ∅. Furthermore,

consider C ∈ Lodd(σ)∪P3(σ). By Corollary 5.8, C∩(D\{a}) �= ∅. Therefore
C ∩ P �= ∅ and it follows from Theorem 3.7 that C = P . Consequently,

Linear(σ) ∪ Primitive(σ) = {P}.

By Corollary 5.8, X ∩ (D \ {a}) �= ∅ for every strong clan X of σ such
that |X| ≥ 2. We obtain that P is an inclusive clan of σ. Since p(σ) ≥ 2,
it follows from Theorem 6.9 that P = V (σ). Thus σ is primitive, which
implies p(σ) = 0. It follows that (7.1) holds. Consequently, there exists
L ∈ Lodd(σ) such that L �⊆ D \ {a}. By Corollary 5.8, L ∩ (D \ {a}) �= ∅.
Hence L̃ ∩ (D \ {a}) �= ∅ and necessarily D \ {a} ⊆ L̃. Lastly, consider
L′ ∈ Lodd(σ)\{L}. By Corollary 5.8, L′∩(D\{a}) �= ∅ and hence L′∩L̃ �= ∅.
If L̃ ⊆ L′, then L ⊆ L′, and we have L = L′ by Theorem 3.7. Therefore
L′ ⊆ L̃. It follows that

(
⋃

L′∈Lodd(σ)

L′) ⊆ L̃.

We obtain that L̃ is an inclusive clan of σ. Since p(σ) ≥ 2, it follows from
Theorem 6.9 that L̃ = V (σ). By Proposition 3.3, V (σ) is not a limit of σ,
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and Quotientσ(V (σ)) is linear. Since p(σ) ≥ 2, it follows from Theorem 4.16
that |X| = 1 for each X ∈ Gallai(σ). In other words, σ is a linear order.

We continue with reversible 2-structures σ such that |E(σ)| ≥ 3 or σ is
symmetric and |E(σ)| = 2.

Theorem 7.2. Let σ be a reversible 2-structure.

1. Suppose that c(σ) ≥ 2. If c(σ) < |E(σ)| or if c(σ) = |E(σ)| and
|E(σ)| ≥ ℵ0, then p(σ) = log|E(σ)|(c(σ)) = 1.

2. Suppose that c(σ) = 1. If |E(σ)| ≥ 3 or if σ is symmetric and |E(σ)| =
2, then p(σ) ≤ 1.

Proof. Let a �∈ V (σ). We construct a primitive and faithful extension of σ
to V (σ) ∪ {a}.

First, suppose that Complete(σ) �= ∅. Consider any C ∈ Complete(σ).
There exists e ∈ E(σ) such that for distinct c, d ∈ C, we have (c, d)σ =
(d, c)σ = e. Since Complete(σ) �= ∅, c(σ) ≥ 2. Thus |E(σ)| > c(σ) or |E(σ)| =
c(σ) and |E(σ)| ≥ ℵ0, Since c(σ) ≥ |C|, there exists an injection AC : C −→
E(σ) \ {e}. We consider a faithful extension τC of σ defined on V (σ) ∪ {a}
satisfying −→τC(a)�C = AC . It is easy to verify that τC [C ∪ {a}] is primitive.

Second, suppose that Linear(σ) �= ∅. Consider any L ∈ Linear(σ). We
do not have σ is symmetric and |E(σ)| = 2. Therefore |E(σ)| ≥ 3. By
Corollary 4.15, there exists a faithful extension τL of σ defined on V (σ)∪{a}
such that τL[L ∪ {a}] is primitive.

Third, suppose that Primitive(σ) �= ∅. Consider any P ∈ Primitive(σ).
By Lemma 5.5, there exists a faithful extension τP of σ defined on V (σ)∪{a}
such that τP [P ∪ {a}] is primitive.

By Proposition 4.2, σ admits a traverse T . Let e0 ∈ E(σ). Since |E(σ)| ≥
3 or σ is symmetric and |E(σ)| = 2, there exists

(7.2) e1 ∈ E(σ) \ {e0, (e0)�}.

By Theorem 3.7, the elements of Complete(σ) ∪ Linear(σ) ∪ Primitive(σ)
are pairwise disjoint. Therefore, with each dense bicoloring β of T , we can
associate the faithful extension τβ of σ defined on V (σ) ∪ {a} satisfying

• for every C ∈ Complete(σ) ∪ Linear(σ) ∪ Primitive(σ), τβ [C ∪ {a}] =
τC [C ∪ {a}];

• for each v ∈ V (σ) \ (C(σ) ∪ L(σ) ∪ P (σ)), (v, a)τβ = eβ(v).

We establish the following fact for each dense bicoloring β of T . If τβ is
imprimitive, then for every nontrivial clan Cβ of τβ , we have a ∈ Cβ and
Cβ \ {a} is an inclusive clan of σ.
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Indeed, suppose that τβ is imprimitive, and consider a nontrivial clan Cβ

of τβ. Given C ∈ Complete(σ), we have τβ[C∪{a}] = τC [C∪{a}] is primitive.
Therefore, for each clan D of σ[C] such that |D| ≥ 2, D is not a clan of
τβ[C∪{a}] and hence of τβ. Thus {D ∈ Clans(σ[C]) : |D| ≥ 2}∩Clans(τ) = ∅.
It follows from Corollary 5.8 applied with F = Linear(σ)∪Primitive(σ) that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a ∈ Cβ ,

for every strong clan X of σ such that |X| ≥ 2, X ∩ (Cβ \ {a}) �= ∅,
and

C(σ) ∪ L(σ) ∪ P (σ) ⊆ Cβ \ {a}.

Therefore, Cβ \ {a} is an inclusive clan of σ.
We conclude as follows. By Proposition 4.12, T admits a dense bicol-

oring β. Suppose that τβ is imprimitive, and consider a nontrivial clan
Cβ of τβ . We have a ∈ Cβ , and Cβ \ {a} is an inclusive clan of σ. Since
C(σ)∪L(σ)∪P (σ) ⊆ Cβ\{a}, (v, a)τβ = eβ(v) for every v ∈ V (σ)\(Cβ\{a}).
Clearly 1 − β is also a dense bicoloring of T . Similarly, suppose that τ1−β

is imprimitive, and consider a nontrivial clan C1−β of τ1−β. We obtain
a ∈ C1−β , C1−β \ {a} is an inclusive clan of σ, and (v, a)τ1−β

= e1−β(v) for
every v ∈ V (σ)\(C1−β\{a}). It follows that (Cβ\{a})∪(C1−β\{a}) = V (σ).

By Theorem 6.7, ˜(Cβ \ {a}) = ˜(C1−β \ {a}). Hence ˜(Cβ \ {a}) = V (σ). Fur-
thermore, it follows from Theorem 6.7 that

• V (σ) is not a limit of σ, and Quotientσ(V (σ)) is linear;
• the traverse T admits a smallest element v− and a largest element v+;
• {v−}, {v+} ∈ Gallai(σ);
• by interchanging Cβ \ {a} and C1−β \ {a}, we have Cβ \ {a} = V (σ) \
{v+} and C1−β \ {a} = V (σ) \ {v−}.

Since Cβ \ {a} = V (σ) \ {v+}, we get

(v−, v+)σ = (v−, v+)τβ = (a, v+)τβ = ((v+, a)τβ)
� = (eβ(v+))

�.

Similarly, since C1−β \ {a} = V (σ) \ {v−}, we get

(v−, v+)σ = (v−, v+)τ1−β
= (v−, a)τ1−β

= e1−β(v−).

Since {v−}, {v+} ∈ Gallai(σ) and v− < v+ mod T , it follows from Re-
mark 4.3 that (v−, v+)σ = eV (σ). Therefore eβ(v+) = (eV (σ))

� and e1−β(v−) =
eV (σ). Hence {e0, e1} = {eV (σ), (eV (σ))

�}, which contradicts (7.2). Conse-
quently, τβ or τ1−β is primitive.
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The next proposition provides a natural lower bound of the primitivity

bound.

Proposition 7.3. For a reversible 2-structure σ such that |E(σ)| ≥ 2, we

have p(σ) ≥ log|E(σ)|(c(σ)).

Proof. Consider a set S such that S ∩ V (σ) = ∅, and

(7.3) |E(σ)||S| < c(σ).

Let τ be any faithful extension of σ defined on V (σ) ∪ S. It follows from

(7.3) that there exists C ∈ Complete(σ) such that

(7.4) |E(σ)||S| < |C|.

Now, consider the function

ϕ : C −→ E(σ)S

c �−→ −→τ (c)�S .

It follows from (7.4) that there exist distinct c, d ∈ C such that ϕ(c) = ϕ(d),

that is,

(7.5) −→τ (c)�S = −→τ (d)�S .

Since σ[C] is complete, {c, d} is a clan of σ[C]. Since C is a clan of σ, we

obtain that {c, d} is a clan of σ. It follows from (7.5) that {c, d} is a nontrivial
clan of τ . Thus τ is imprimitive. It follows from (7.3) that |E(σ)|p(σ) ≥ c(σ).

Therefore p(σ) ≥ log|E(σ)|(c(σ)).

Given Theorems 7.1 and 7.2, we consider reversible 2-structures σ such

that |E(σ)| ≥ 2, and c(σ) > |E(σ)| or c(σ) = |E(σ)| and |E(σ)| < ℵ0. The

following result generalizes [2, Theorem 1.4] for finite graphs. In spite of the

length of its proof, it is simpler and shorter than the original proof for finite

graphs.

Theorem 7.4. Given a reversible 2-structure σ, if 2 ≤ |E(σ)| ≤ c(σ) < ℵ0,

then p(σ) ≤ 	log|E(σ)|(c(σ) + 1)
.

Proof. Since c(σ) < ℵ0, there exists Cmax ∈ Complete(σ) such that |Cmax| =
c(σ). Denote by emax the element of E(σ) such that for distinct c, d ∈ Cmax,

(c, d)σ = emax and (d, c)σ = emax. Also consider a set S′ such that S′∩V (σ) =
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∅ and |S′| = 	log|E(σ)|(c(σ) + 1)
. For convenience, for each e ∈ E(σ), we
consider the function

(7.6)
e : S′ −→ E(σ)

s′ �−→ e.

By Lemma 5.4, there exists a faithful extension τmax of σ defined on
V (σ) ∪ S′ satisfying

• τmax[Cmax ∪ S′] is primitive;
• for every s′ ∈ S′, there is c ∈ Cmax such that

(7.7) (−−→τmax(c))
−1({emax}) ∩ S′ = {s′}.

Now consider C ∈ Complete(σ) \ {Cmax}. Denote by eC the element of
E(σ) such that for distinct c, d ∈ C, (c, d)σ = eC and (d, c)σ = eC . Since
|C| ≤ c(σ) < |E(σ)||S′|, there is an injection

(7.8) BC : C −→ E(σ)|S
′| \ {eC} (see (7.6)).

There is a faithful extension τC of σ defined on V (σ)∪S′ such that τC [S
′] =

τmax[S
′], and −→τC(c)�S′ = BC(c) for each c ∈ C. We construct a primitive and

faithful extension of σ to V (σ)∪S′ as follows. By Proposition 4.2, σ admits a
traverse T . Furthermore T admits a dense bicoloring β by Proposition 4.12.
Since |E(σ)| ≥ 2 and |S′| ≥ 2, there exist distinct A0, A1 ∈ E(σ)S

′ \ {e :
e ∈ E(σ)} (see (7.6)). Recall that the elements of Complete(σ) are pairwise
disjoint by Theorem 3.7. Therefore, there exists a faithful extension τ of σ
defined on V (σ) ∪ S′ satisfying

• τ [Cmax ∪ S′] = τmax[Cmax ∪ S′];
• for each C ∈ Complete(σ) \ {Cmax}, τ [C ∪ S′] = τC [C ∪ S′];
• for each v ∈ V (σ) \ C(σ), −→τ (v)�S′ = Aβ(v).

To conclude, we prove that τ is primitive. Let Dτ be a clan of τ such
that |Dτ | ≥ 2. We have to show that Dτ = V (τ). It is easy to verify that
(5.1a) (see Lemma 5.7) is satisfied. Hence it follows from Lemma 5.7 applied
with F = ∅ that Dτ ∩ S′ �= ∅. Moreover, since τ [Cmax ∪ S′] is primitive,
Dτ ∩ V (σ) �= ∅.

For a contradiction, suppose that Cmax ∩ Dτ = ∅. Since τ [Cmax ∪ S′]
is primitive, there is s′ ∈ S′ such that (Cmax ∪ S′) ∩ Dτ = {s′}. Consider
v ∈ Dτ ∩ V (σ). Since Cmax is a clan of σ, there is e ∈ E(σ) such that
(v, Cmax)σ = e. Since Dτ is a clan of τ , we get (s′, Cmax)τ = e. It follows
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that e� = −→τ (c)(s′) = −−→τmax(c)(s
′) for every c ∈ Cmax, which contradicts (7.7).

Consequently Cmax∩Dτ �= ∅. Since S′∩Dτ �= ∅ and τ [Cmax∪S′] is primitive,

we obtain Cmax ∪ S′ ⊆ Dτ .

Let v ∈ V (σ) \ Dτ . Since Cmax ⊆ Dτ , there is ev ∈ E(σ) such that

(v, Cmax)σ = ev. Since Dτ is a clan of τ such that Dτ ⊇ Cmax ∪ S′, we get

(v, S′)τ = ev. Therefore, for each v ∈ V (σ) \ Dτ , there is ev ∈ E(σ) such

that

(7.9) −→τ (v)�S′ = ev (see (7.6)).

Since A0 and A1 are distinct elements of E(σ)S
′ \ {e : e ∈ E(σ)}, it follows

from (7.9) that V (σ) \ C(σ) ⊆ Dτ .

Lastly, consider C ∈ Complete(σ) \ {Cmax}. First, suppose for a con-

tradiction that C ∩ Dτ = ∅. There is e ∈ E(σ) such that (C,Cmax)σ = e.

Since Dτ is a clan of τ such that Dτ ⊇ Cmax ∪ S′, we get (C, S′)τ = e,

that is, −→τ (c)�S′ = e for every c ∈ C. Therefore, for every c ∈ C, we have

BC(c) = e, which contradicts (7.8). Thus C ∩ Dτ �= ∅. Let d ∈ C ∩ Dτ .

Second, suppose for a contradiction that C \ Dτ �= ∅. Given c ∈ C \ Dτ ,

we obtain c ←→τ {d} ∪ S′. Since (b, b′)σ = eC for distinct b, b′ ∈ C, we

obtain (c, {d} ∪ S′)τ = eC . It follows from (7.9) that −→τ (c)�S′ = eC , that is,

BC(c) = eC , which contradicts (7.8). Therefore C ⊆ Dτ .

Consequently C(σ) ⊆ Dτ , and hence Dτ = V (σ) ∪ S′.

The next result follows from Proposition 7.3 and Theorem 7.4.

Corollary 7.5. For a reversible 2-structure σ such that 2 ≤ |E(σ)| ≤ c(σ) <

ℵ0, we have 	log|E(σ)|(c(σ))
 ≤ p(σ) ≤ 	log|E(σ)|(c(σ) + 1)
. Consequently,
if c(σ) �∈ {|E(σ)|k : k ≥ 1}, then p(σ) = 	log|E(σ)|(c(σ))
.

Let σ be a reversible 2-structure such that 2 ≤ |E(σ)| < ℵ0 and c(σ) =

(|E(σ)|k where k ≥ 1. By Corollary 7.5, p(σ) = k or k + 1. We prove in

Theorem 7.8 below that

(7.10)

p(σ) = k + 1 if and only if σ admits exactly |E(σ)|k isolated vertices.

The proofs of the next three results are adapted from that for finite graphs

[2]. We begin by proving (7.10) from right to left.

Lemma 7.6. Let σ be a reversible 2-structure such that 2 ≤ |E(σ)| < ℵ0 and

c(σ) = |E(σ)|k where k ≥ 1. If σ admits exactly |E(σ)|k isolated vertices,

then p(σ) = k + 1.
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Proof. Let u and v be distinct isolated vertices of σ. There exists a symmetric
class e of σ such that (u, v)σ = e. Recall that for each isolated vertex w of
σ, we have (w, V (σ) \ {w})σ = e.

Let S′ be a set such that S′ ∩ V (σ) = ∅ and |S′| = k. We consider the
function

e : S′ −→ E(σ)
s′ �−→ e.

Let τ be a faithful extension of σ defined on V (σ)∪S′. Consider the function

A : {v ∈ V (σ) : v isolated} −→ E(σ)S
′

v �−→ −→τ (v)�S′ .

Since σ admits exactly |E(σ)|k isolated vertices, that is, σ admits exactly
|E(σ)S

′ | isolated vertices, we have either A is not injective or there exists
an isolated vertex v of σ such that −→τ (v)�S′ = e. In the second instance,
V (τ) \ {v} is a clan of τ . In the first, there exist distinct isolated vertices
w and w′ of σ such that −→τ (w)�S′ = −→τ (w′)�S′ . It follows that {w,w′} is
a clan of τ . In both instances, τ is imprimitive. Therefore p(σ) �= k. By
Corollary 7.5, p(σ) = k + 1.

Now, we show (7.10) from left to right when |E(σ)| = 2 and k = 1.

Proposition 7.7. Let σ be a reversible 2-structure such that c(σ) = |E(σ)| =
2. If p(σ) = 2, then σ possesses exactly two isolated vertices.

Proof. Since |E(σ)| = 2 and c(σ) = 2, σ is symmetric. We obtain Linear(σ) =
∅ and |C| = 2 for each C ∈ Complete(σ). Denote the elements of E(σ) by
e0 and e1. By Proposition 4.2, σ admits a traverse T , and T admits a dense
bicoloring β by Proposition 4.12.

Consider a �∈ V (σ). Given P ∈ Primitive(σ), it follows from Lemma 5.5
that there is a primitive and faithful extension τP of σ[P ] defined on P ∪{a}.
By Theorem 3.7, the elements of Complete(σ) ∪ Primitive(σ) are pairwise
disjoint. Therefore, we can associate with β a faithful extension τβ of σ to
V (σ) ∪ {a} satisfying

• for each C ∈ Complete(σ), a �←→τβ C;
• for each P ∈ Primitive(σ), τ [P ] = τP ;
• for each v ∈ V (σ) \ (C(σ) ∪ P (σ)), (v, a)τβ = eβ(v).

Since p(σ) = 2, τβ admits a nontrivial clan Dβ. It follows from Corollary 5.8
applied with F = Primitive(σ) that

• a ∈ Dβ;
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• for each C ∈ Complete(σ), C ∩ (Dβ \ {a}) �= ∅;
• P (σ) ⊆ Dβ \ {a}.

For each C ∈ Complete(σ), we have (Dβ \ {a}) ∪ C is a clan of σ because
C ∩ (Dβ \ {a}) �= ∅. Hence

⋃
C∈Complete(σ)

((Dβ \ {a}) ∪ C), that is, (Dβ \ {a}) ∪ C(σ)

is a clan of σ. It follows that (Dβ \ {a}) ∪ C(σ) is an inclusive clan of σ.
Similarly, since 1−β is also a dense bicoloring of T , τ1−β admits a nontrivial
clanD1−β, and (D1−β\{a})∪C(σ) is an inclusive clan of σ. By Corollary 6.8,
(Dβ \ {a})∪C(σ) and (D1−β \ {a})∪C(σ) are comparable under inclusion.
For instance, assume that

(D1−β \ {a}) ∪ C(σ) ⊆ (Dβ \ {a}) ∪ C(σ).

For a contradiction, suppose that there is v ∈ V (σ) \ ((Dβ \ {a}) ∪ C(σ)).
We get v �∈ C(σ) ∪ P (σ). Hence (v, a)τβ = eβ(v) and (v, a)τ1−β

= e1−β(v). It
follows that (v,Dβ \ {a})σ = eβ(v) and (v,Dβ \ {a})σ = e1−β(v), which is
impossible. Consequently

(Dβ \ {a}) ∪ C(σ) = V (σ).

Since Dβ is a nontrivial clan of τβ , there is C ∈ Complete(σ) such that
C \(Dβ \{a}) �= ∅. Since C∩(Dβ \{a}) �= ∅ and |C| = 2, there exist c, d ∈ C
such that C \ (Dβ \ {a}) = {c} and C ∩ (Dβ \ {a}) = {d}. Since σ[C] is
complete, there exists a symmetric class e of σ such that (c, d)σ = e. We get
(c,Dβ)τβ = e because Dβ is a clan of τ .

Finally, consider v ∈ V (σ) \ (Dβ \ {a}) such that v �= c. Since C \ (Dβ \
{a}) = {c}, there exists C ′ ∈ Complete(σ) \ {C} such that C ′ \ (Dβ \ {a}) =
{v}. Since (c,Dβ)τβ = e, we obtain (c, C ′∩(Dβ \{a}))σ = e. Thus (c, v)σ = e
because C ′ is a clan of σ. It follows that c is an isolated vertex of σ. Since C is
a clan of σ, we obtain that all the elements of C are isolated vertices of σ. In
particular σ has at least two isolated vertices. Clearly {v ∈ V (σ) : v isolated}
is a clan of σ such that σ[{v ∈ V (σ) : v isolated}] is complete. By maximality
of C, we obtain C = {v ∈ V (σ) : v isolated}.

We complete the proof of (7.10) as follows.

Theorem 7.8. For a reversible 2-structure σ such that 2 ≤ |E(σ)| < ℵ0

and c(σ) = |E(σ)|k where k ≥ 1, p(σ) = k+1 if and only if σ admits exactly
|E(σ)|k isolated vertices.
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Proof. By Lemma 7.6 and Proposition 7.7, it suffices to establish (7.10)

from left to right when c(σ) ≥ 3. Hence consider a reversible 2-structure σ

such that 2 ≤ |E(σ)| < ℵ0, c(σ) = |E(σ)|k (where k ≥ 1), c(σ) ≥ 3 and

p(σ) = k + 1. For convenience, set

Cmax(σ) = {C ∈ Complete(σ) : |C| = c(σ)}.

For each C ∈ Cmax(σ), choose
2 wC ∈ C. Set

W = {wC : C ∈ Cmax(σ)}.

We prove that

(7.11) c(σ −W ) = |E(σ)|k − 1.

Let C ∈ Cmax(σ). By Theorem 3.7, the elements of Cmax(σ) are pairwise

disjoint. Thus

(7.12) C \W = C \ {wC}.

Clearly (σ −W )[C \ {wC}] is complete. Furthermore C \ {wC} is a clan of

σ −W . Therefore 2k − 1 = |C \ {wC}| ≤ c(σ −W ).

Now, we demonstrate that c(σ−W ) < c(σ). Consider C ′ ∈ Complete(σ−
W ) such that |C ′| = c(σ − W ). We show that C ′ is a clan of σ. We have

to verify that wC ←→σ C ′ for each C ∈ Cmax(σ). Given C ∈ Cmax(σ), we

distinguish the following two cases.

• First, suppose that there exists v ∈ (C\{wC})\C ′. We have v ←→σ C ′.
Since σ[C] is complete, {v, wC} is a clan of σ[C]. Thus {v, wC} is a

clan of σ, and hence wC ←→σ C ′.
• Second, suppose that C \ {wC} ⊆ C ′. Clearly wC ←→σ C ′ when

C \ {wC} = C ′. Suppose that C ′ \ (C \ {wC}) �= ∅. Since σ[C ′] is
complete, there exists eC′ ∈ E(σ) such that (c′, d′) = eC′ for distinct

elements c′ and d′ of C ′. We have (C \ {wC}, C ′ \C)σ−W = eC′ . Since

C is a clan of σ, we get

(7.13) (wC , C
′ \ C)σ = eC′ .

2It follows from the Axiom of Ultrafilter that there exists a linear order L defined
on V (σ). For each C ∈ Cmax(σ), L[C] is a finite linear order. Hence L[C] admits a
smallest element. For instance, we can choose the smallest element of L[C] for wC .
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Furthermore, we have |C \{wC}| ≥ 2 because |C| = c(σ) and c(σ) ≥ 3.
Since C \{wC} ⊆ C ′ and σ[C] is complete, we obtain also that (c, d) =
eC′ for distinct elements c and d of C. Therefore (wC , C\{wC})σ = eC′ .
Since C \ {wC} ⊆ C ′, it follows from (7.13) that (wC , C

′)σ = eC′ .

Consequently, C ′ is a clan of σ. Since σ[C ′] is complete, it follows from
Lemma 3.2 that there isD ∈ Complete(σ) such thatD ⊇ C ′. IfD �∈ Cmax(σ),
then |C ′| ≤ |D| < c(σ). If D ∈ Cmax(σ), then C ′ ⊆ D \ {wD}, and hence
|C ′| < |D| = c(σ). In both instances, we obtain |C ′| < c(σ). It follows that
c(σ −W ) < c(σ) because |C ′| = c(σ −W ). Consequently (7.11) holds.

By Corollary 7.5, p(σ−W ) = k. Thus there exists a primitive and faithful
extension τ ′ of σ −W such that |V (τ ′) \ (V (σ) \W )| = k. We extend τ ′ to
V (τ ′) ∪W as follows. Let C ∈ Cmax(σ). Consider the function

AC : C \ {wC} −→ E(τ ′)V (τ ′)\(V (σ)\W )

v �−→
−→
τ ′ (v)�V (τ ′)\(V (σ)\W ).

Since τ ′ is primitive, AC is injective. Furthermore, since |C \ {wC}| =
|E(σ)|k − 1 and |E(τ ′)V (τ ′)\(V (σ)\W )| = |E(σ)|k, there is a unique

aC ∈ E(τ ′)V (τ ′)\(V (σ)\W )

such that

(7.14) aC �= AC(v) for each v ∈ C \ {wC}.

Consider the faithful extension τ of τ ′ defined on V (τ ′) ∪W by

−→τ (wC)�V (τ ′)\(V (σ)\W ) = aC for each C ∈ Cmax(σ).

Since p(σ) = k + 1, τ is not primitive. Consider a nontrivial clan Dτ of
τ . Now, we show the following assertion. Given distinct C,C ′ ∈ Cmax(σ),

(7.15) if C ∩Dτ �= ∅ and C ′ ∩Dτ �= ∅, then V (τ ′) ⊆ Dτ .

Indeed Dτ ∩ V (σ) is a clan of σ. Furthermore (Dτ ∩ V (σ)) ∩ C̃ �= ∅ and

(Dτ ∩ V (σ)) ∩ C̃ ′ �= ∅. Since C̃ and C̃ ′ are strong clans of σ, Dτ ∩ V (σ) is

comparable to C̃ and C̃ ′ under inclusion.
Suppose, for a contradiction, that Dτ ∩ V (σ) � C̃ and Dτ ∩ V (σ) � C̃ ′.

It follows that C ∩ C̃ ′ �= ∅. Since C̃ ′ is a strong clan of σ, C̃ ′ � C or C ⊆ C̃ ′.
In the first instance, C̃ ′ is a nontrivial strong clan of σ[C], which contradicts
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the fact that σ[C] is complete. Thus C ⊆ C̃ ′ and hence C̃ ⊆ C̃ ′. Similarly, we

get C̃ ′ ⊆ C̃. Therefore C̃ ′ = C̃. It follows from Proposition 3.3 that C = C ′,
but C and C ′ are supposed to be distinct.

Consequently, C̃ ⊆ (Dτ ∩ V (σ)) or C̃ ′ ⊆ (Dτ ∩ V (σ)). For instance,
assume that C̃ ⊆ (Dτ ∩ V (σ)). We get (Dτ ∩ V (τ ′)) ⊇ (C̃ \W ) ⊇ (C \W )
and C \W = C \ {wC} by (7.12). Since τ ′ is primitive and |C \ {wC}| ≥ 2,
we obtain V (τ ′) ⊆ Dτ . It follows that (7.15) holds.

Clearly Dτ ∩ V (τ ′) is a clan of τ ′. Since τ ′ is primitive, we have |Dτ ∩
V (τ ′)| ≤ 1 orDτ ⊇ V (τ ′). For a contradiction, suppose that |Dτ∩V (τ ′)| ≤ 1.
Since Dτ is a nontrivial clan of τ , there is C ∈ Cmax(σ) such that wC ∈ Dτ .
It follows from (7.15) that

(7.16) C ′ ∩Dτ = ∅ for each C ′ ∈ Completemax(σ) \ {C}.

Thus Dτ ∩ W = {wC}. Since |Dτ ∩ V (τ ′)| ≤ 1, there exists v ∈ V (τ ′)
such that Dτ ∩ V (τ ′) = {v}. Clearly Dτ = {v, wC}, and we distinguish the
following two cases obtaining a contradiction in each case.

• Suppose that v ∈ V (σ − W ). We obtain that {v, wC} is a clan of σ.
Since σ[{v, wC}] is complete or linear, it follows from Lemma 3.2 that
there exists C ′ ∈ Complete(σ) ∪ Linear(σ) such that C ′ ⊇ {v, wC}.
Since C,C ′ ∈ {D ∈ (V (σ)/ �σ) : |D| ≥ 2} by Theorem 3.7, we get
C = C ′. Consequently we obtain

−→τ (wC)�V (τ ′)\(V (σ)\W ) =
−→τ (v)�V (τ ′)\(V (σ)\W ),

that is, AC(v) = aC , which contradicts (7.14).
• Suppose that v ∈ V (τ ′) \ V (σ − W ). Consider the symmetric class
eC of σ such that (c, d)σ = eC for distinct c, d ∈ C. We have (wC , C \
{wC})σ = eC . Since {v, wC} is a clan of τ , we get (v, C \{wC})τ ′ = eC .
Since AC is injective, the function

C \ {wC} −→ E(τ ′)((V (τ ′)\(V (σ)\W ))\{v})

u �−→
−→
τ ′ (u)�(V (τ ′)\(V (σ)\W ))\{v}

is injective also. Therefore, we obtain |E(σ)|k − 1 ≤ |E(σ)|k−1, which
does not hold when |E(σ)|k ≥ 3.

Consequently V (τ ′) ⊆ Dτ . Since Dτ is a nontrivial module of τ , there exists
C ∈ Cmax(σ) such that wC �∈ Dτ . Consider the symmetric class eC of σ
such that (c, d)σ = eC for distinct c, d ∈ C. We have (wC , C \ {wC})σ = eC
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and hence (wC , V (τ ′))τ = eC . In particular (wC , V (σ −W ))σ = eC . Given
C ′ ∈ Cmax(σ) \ {C}, we obtain (wC , C

′ \ {wC′})σ = eC . Since C ′ is a clan of
σ, we get (wC , wC′)σ = eC . It follows that wC is an isolated vertex of σ. As
at the end of the proof of Proposition 7.7, we conclude by C = {v ∈ V (σ) :
v isolated}.

Given Theorems 7.1, 7.2 and 7.4, we complete this section by considering
reversible 2-structures σ such that c(σ) > |E(σ)| ≥ 2 and c(σ) ≥ ℵ0, that
is, reversible 2-structures σ such that |E(σ)| ≥ 2 and log|E(σ)|(c(σ)) ≥ ℵ0.

Theorem 7.9. Consider a reversible 2-structure σ such that |E(σ)| ≥ 2. If
log|E(σ)|(c(σ)) ≥ ℵ0, then p(σ) = log|E(σ)|(c(σ)).

Proof. By Proposition 7.3, it suffices to construct a primitive and faithful
extension τ of σ such that |V (τ) \ V (σ)| = log|E(σ)|(c(σ)). Let S′ be a set

such that S′∩V (σ) = ∅ and |S′| = log|E(σ)|(c(σ)). Thus |E(σ)||S′| ≥ c(σ). We
use Lemma 5.3 as follows. It is easy to construct a primitive and reversible
2-structure σ′ defined on S′ such that |E(σ′)| = 2 and σ′ is symmetric
or asymmetric. Hence we can assume that |{e′ ∈ E(σ′) : e′ asymmetric}| ≤
|{e ∈ E(σ) : e asymmetric}| and |{e′ ∈ E(σ′) : e′ symmetric}| ≤ |{e ∈ E(σ) :
e symmetric}|. Moreover, since |S′| = log|E(σ)|(c(σ)) ≥ ℵ0, we have |E(σ)| <
c(σ) and hence |E(σ)||S′| > |E(σ)|. Finally, consider C ∈ Complete(σ). We
have |C| ≤ c(σ) ≤ |E(σ)||S′|. By Lemma 5.3 applied with S = C, there
exists an extension τC of σ and σ′ to V (σ)∪V (σ′) such that τC is a faithful
extension of σ and τC [C ∪ V (σ′)] is primitive.

Let a �∈ V (σ′). By Lemma 5.5, there exist distinct, primitive and faithful

extensions σ′′
0 and σ′′

1 of σ′ to V (σ′) ∪ {a}. Set A0 =
−→
σ′′
0(a) and A1 =

−→
σ′′
1(a).

We get A0, A1 : S′ −→ E(σ′) and A0 �= A1. As in the proof of Lemma 5.3,
we identify the elements of E(σ′) to elements of E(σ). In this way, A0, A1 ∈
E(σ)S

′
. By Proposition 4.2, σ admits a traverse T , and T admits a dense

bicoloring β by Proposition 4.12. Furthermore, the elements of Complete(σ)
are pairwise disjoint by Theorem 3.7. Therefore, we can consider the faithful
extension τ of σ defined on V (σ) ∪ S′ satisfying

• for each C ∈ Complete(σ), τ [C ∪ S′] = τC [C ∪ V (σ′)];
• for each v ∈ V (σ) \ C(σ), −→τ (v)�S′ = Aβ(v).

For each C ∈ Complete(σ), τ [C∪S′] = τC [C∪V (σ′)] is primitive. Moreover,

consider v ∈ V (σ) \ C(σ). Since −→τ (v)�S′ = Aβ(v) =
−−→
σ′′
β(v)(a), τ [S

′ ∪ {v}] is
primitive. Consequently, τ [X ∪ S′] is primitive for each X ∈ Complete(σ) ∪
{{v} : v ∈ V (σ) \ C(σ)}.
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We prove that τ is primitive. Let Dτ be a clan of τ such that |Dτ | ≥ 2.
We have to show that Dτ = V (σ) ∪ S′. Since τ [C ∪ S′] is primitive for each
C ∈ Complete(σ), (5.1a) holds (see Lemma 5.7). By applying Lemma 5.7
with F = ∅, we obtain Dτ ∩ S′ �= ∅. Since τ [S′] = σ′ is primitive, we
have |Dτ ∩ S′| = 1 or Dτ ∩ S′ = S′. Suppose for a contradiction that the
first instance holds. Since |Dτ | ≥ 2, there is X ∈ Complete(σ) ∪ {{v} :
v ∈ V (σ) \ C(σ)} such that Dτ ∩ X �= ∅. Since τ [X ∪ S′] is imprimitive,
we obtain Dτ ⊇ X ∪ S′, which contradicts |Dτ ∩ S′| = 1. Consequently,
we have Dτ ∩ S′ = S′. Let X ∈ Complete(σ) ∪ {{v} : v ∈ V (σ) \ C(σ)}.
Since τ [X ∪ S′] is primitive, we obtain Dτ ∩ (X ∪ S′) = (X ∪ S′). Therefore
X ⊆ Dτ for every X ∈ Complete(σ) ∪ {{v} : v ∈ V (σ) \ C(σ)}. It follows
that Dτ = V (σ) ∪ S′.

8. Primitive bounds of non-reversible 2-structures

Before extending our results from reversible 2-structures to non-reversible
ones, we discuss the necessity of Conditions (1.1) and (1.2) (see Defini-
tion 1.1). Given n > 0, Ln denotes the usual linear order on {0, . . . , n}.
When n is even, there does not exist a primitive tournament which is a 1-
extension of Ln. On the other hand, there is a primitive tournament which is
a 2-extension of Ln (see [24]). The 2-structure σ(Ln) is defined on {0, . . . , n}
by E(σ(Ln)) = {e, e�}, where e = {(p, q) : 0 ≤ p < q ≤ n}. Let τ be an
extension of σ(Ln) to {0, . . . , n+ 1} satisfying

• for 0 ≤ i ≤ n−1 such that i is even, (n+1, i) ≡τ (0, 1) and (i, n+1) ≡τ

(1, 0);
• for 0 ≤ i ≤ n−1 such that i is odd, (i, n+1) ≡τ (0, 1) and (n+1, i) ≡τ

(1, 0);
• (n, n+ 1) ≡τ (n+ 1, n).

It is simple to verify that τ is primitive. Moreover, τ is not identifiable with
a tournament because (n, n + 1) ≡τ (n + 1, n). If (n, n + 1) �≡τ (0, 1) and
(n, n + 1) �≡τ (1, 0), then |E(τ)| = 3. Since |E(Ln)| = 2, σ(Ln) ↪→ τ is not
bijective, that is, Condition (1.1) does not hold. Now, assume for instance
that (n, n + 1) ≡τ (0, 1). We obtain (n, n + 1) ∈ (σ(Ln) ↪→ τ)(e). We have
also (n+ 1, n) ≡τ (0, 1) and hence (n+ 1, n) ∈ (σ(Ln) ↪→ τ)(e). Thus

(n, n+ 1) ∈ (σ(Ln) ↪→ τ)(e) ∩ ((σ(Ln) ↪→ τ)(e))�,

but e ∩ e� = ∅. Therefore, Condition (1.2) does not hold.
Conditions (1.1) and (1.2) ensure that the faithful extensions of a 2-

structure σ are 2-structures of the “same type” as σ. Also, they ensure that
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the faithful extensions of a reversible 2-structure are reversible as well (see
the next lemma).

Lemma 8.1. Let σ be a 2-structure with |E(σ)| ≥ 2. Given a faithful ex-
tension τ of σ, σ is reversible if and only if τ is.

Proof. To begin, assume that σ is reversible. We prove that for every e ∈
E(σ),

(8.1) (σ ↪→ τ)(e�) = ((σ ↪→ τ)(e))�

Consider e ∈ E(σ). Let (u, v) ∈ ((σ ↪→ τ)(e))�. By Condition (1.1), there is
f(u,v) ∈ E(σ) such that (u, v)τ = (σ ↪→ τ)(f(u,v)). We obtain (u, v) ∈ (σ ↪→
τ)(f(u,v)) ∩ ((σ ↪→ τ)(e))�. By Condition (1.2), f(u,v) ∩ e� �= ∅. Since σ is
reversible, e� ∈ E(σ) and hence f(u,v) = e�. It follows that (u, v)τ = (σ ↪→
τ)(e�) for every (u, v) ∈ ((σ ↪→ τ)(e))�. Thus

(8.2) ((σ ↪→ τ)(e))� ⊆ (σ ↪→ τ)(e�).

By applying (8.2) to e� ∈ E(σ), we obtain ((σ ↪→ τ)(e�))� ⊆ (σ ↪→ τ)(e),
and hence (σ ↪→ τ)(e�) ⊆ ((σ ↪→ τ)(e))�. Therefore (8.1) holds.

Now, consider eτ ∈ E(τ). By Condition (1.1), there is e ∈ E(σ) such that
(σ ↪→ τ)(e) = eτ . By (8.1), (eτ )

� = (σ ↪→ τ)(e�). Consequently, (eτ )
� ∈ E(τ)

for each eτ ∈ E(τ). It follows that τ is reversible.
Conversely, assume that τ is reversible. We observe the following fact.

It follows from Condition (1.1) that

(8.3) (σ ↪→ τ)(e) ∩ ((V (σ)× V (σ)) \ {(v, v) : v ∈ V (σ)}) = e

for each e ∈ E(σ). Consider e ∈ E(σ). It suffices to show that e� ∈ E(σ).
Since τ is reversible and (σ ↪→ τ)(e) ∈ E(τ), we have ((σ ↪→ τ)(e))� ∈ E(τ).
By Condition (1.1), there is f ∈ E(σ) such that ((σ ↪→ τ)(e))� = (σ ↪→
τ)(f). Hence

((σ ↪→ τ)(e))�∩ ((V (σ)× V (σ)) \ {(v, v) : v ∈ V (σ)})
=(σ ↪→ τ)(f) ∩ ((V (σ)× V (σ)) \ {(v, v) : v ∈ V (σ)}).

By (8.3), (σ ↪→ τ)(f)∩((V (σ)×V (σ))\{(v, v) : v ∈ V (σ)}) = f . Furthermore

((σ ↪→ τ)(e))� ∩ ((V (σ)× V (σ)) \ {(v, v) : v ∈ V (σ)})
=((σ ↪→ τ)(e) ∩ ((V (σ)× V (σ)) \ {(v, v) : v ∈ V (σ)}))�
=e� by (8.3).

Therefore e� = f and hence e� ∈ E(σ).



Primitive bound of a 2-structure 589

Lemma 8.2. Consider 2-structures σ and τ such that τ is an extension of

σ. If σ and τ are reversible, then Condition (1.2) holds.

Proof. Consider e, f ∈ E(σ) such that

(σ ↪→ τ)(e) ∩ ((σ ↪→ τ)(f))� �= ∅.

Since (σ ↪→ τ)(f) ⊇ f , we have ((σ ↪→ τ)(f))� ⊇ f�. Since σ is reversible,

f� ∈ E(σ), and we have (σ ↪→ τ)(f�) ⊇ f�. Since τ is reversible, ((σ ↪→
τ)(f))� ∈ E(τ). It follows that ((σ ↪→ τ)(f))� = (σ ↪→ τ)(f�). Since σ ↪→ τ

is injective, (σ ↪→ τ)(e) ∩ ((σ ↪→ τ)(f))� �= ∅ implies e = f�.

Given a 2-structure σ, recall that σ∧σ� is defined on V (σ) by E(σ∧σ�) =

{e ∩ f� : e, f ∈ E(σ), e ∩ f� �= ∅}. Clearly σ ∧ σ� is reversible. Furthermore,

σ and σ ∧ σ� share the same clans.

Proposition 8.3. Let σ be a 2-structure.

1. If τ is a faithful extension of σ, then τ ∧ τ� is a faithful extension of

σ ∧ σ�.

2. If ρ is a faithful extension of σ ∧ σ�, then there is a faithful extension

τ of σ such that ρ = τ ∧ τ�.

Proof. First, suppose that τ is a faithful extension of σ. Clearly τ ∧ τ� is an

extension of σ∧σ�. Consider an element e∩f� of E(σ∧σ�), where e, f ∈ E(σ)

such that e ∩ f� �= ∅. Since (σ ↪→ τ)(e) ⊇ e and ((σ ↪→ τ)(f))� ⊇ f�, we

have (σ ↪→ τ)(e)∩ ((σ ↪→ τ)(f))� ⊇ e∩f�. Furthermore (σ ↪→ τ)(e)∩ ((σ ↪→
τ)(f))� ∈ E(τ ∧ τ�). Thus

(8.4) ((σ ∧ σ�) ↪→ (τ ∧ τ�))(e ∩ f�) = (σ ↪→ τ)(e) ∩ ((σ ↪→ τ)(f))�

for any e, f ∈ E(σ) such that e ∩ f� �= ∅.
Now, we prove that Condition (1.1) holds for the extension τ∧τ� of σ∧σ�.

It suffices to show that (σ ∧ σ�) ↪→ (τ ∧ τ�) is surjective. Consider eτ∧τ� ∈
E(τ ∧ τ�). There exist eτ , fτ ∈ E(τ) such that eτ∧τ� = eτ ∩ (fτ )

�. Since

σ ↪→ τ is bijective, there exist eσ, fσ ∈ E(σ) such that eτ = (σ ↪→ τ)(eσ)

and fτ = (σ ↪→ τ)(fσ). Thus eτ∧τ� = (σ ↪→ τ)(eσ) ∩ ((σ ↪→ τ)(fσ))
�. Since

Condition (1.2) is satisfied by the extension τ of σ, we obtain eσ∩ (fσ)
� �= ∅.

It follows from (8.4) that eτ∧τ� = ((σ ∧ σ�) ↪→ (τ ∧ τ�))(eσ ∩ (fσ)
�).

Lastly, since σ ∧ σ� and τ ∧ τ� are reversible, Condition (1.2) holds by

Lemma 8.2.
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Second, suppose that ρ is a faithful extension of σ∧σ�. For each e ∈ E(σ),
set

(8.5) e =
⋃

{f∈E(σ):e∩f� 	=∅}
((σ ∧ σ�) ↪→ ρ)(e ∩ f�).

Since E(ρ) = {((σ∧σ�) ↪→ ρ)(e∩f�) : e, f ∈ E(σ), e∩f� �= ∅} is a partition
of (V (ρ) × V (ρ)) \ {(v, v) : v ∈ V (ρ)}, {e : e ∈ E(σ)} is also. Denote by τ
the unique 2-structure defined on V (τ) = V (ρ) by E(τ) = {e : e ∈ E(σ)}.

Let e ∈ E(σ). By (8.5),

e∩ (V (σ)× V (σ)) =
⋃

{f∈E(σ):e∩f� 	=∅}
((σ ∧ σ�) ↪→ ρ)(e∩ f�)∩ (V (σ)× V (σ)).

Since ρ is an extension of σ ∧ σ�, we get ((σ ∧ σ�) ↪→ ρ)(e ∩ f�) ∩ (V (σ) ×
V (σ)) = e ∩ f� for each f ∈ E(σ) such that e ∩ f� �= ∅. Thus

e ∩ (V (σ)× V (σ)) =
⋃

{f∈E(σ):e∩f� 	=∅}
e ∩ f� = e.

Therefore, τ is an extension of σ such that (σ ↪→ τ)(e) = e. It follows that
Condition (1.1) holds for the extension τ of σ. For Condition (1.2), consider
e, g ∈ E(σ) such that (σ ↪→ τ)(e) ∩ ((σ ↪→ τ)(g))� �= ∅, that is, e ∩ (g)� �= ∅.
By (8.5), there exist f ∈ E(σ) such that e∩ f� �= ∅, and h ∈ E(σ) such that
g ∩ h� �= ∅ satisfying

((σ ∧ σ�) ↪→ ρ)(e ∩ f�) ∩ (((σ ∧ σ�) ↪→ ρ)(g ∩ h�))� �= ∅.

Since Condition (1.2) holds for the extension ρ of σ ∧ σ�, we obtain (e ∩
f�) ∩ (g ∩ h�)� �= ∅ and hence e ∩ g� �= ∅.

The next corollary is an immediate consequence of Proposition 8.3 and
of the fact that for a 2-structure σ, σ and σ ∧ σ� share the same clans.

Corollary 8.4. Let σ be a 2-structure.

1. If τ is a primitive faithful extension of σ, then τ ∧ τ� is a primitive
faithful extension of σ ∧ σ�.

2. If ρ is a primitive faithful extension of σ∧σ�, then there is a primitive
faithful extension τ of σ such that ρ = τ ∧ τ�.

We conclude with the following.

Theorem 8.5. For every 2-structure σ, p(σ) = p(σ ∧ σ�).
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