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On the longest common pattern contained in two or
more random permutations
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We provide upper and lower bounds for the expected length E(Ln,m)
of the longest common pattern contained in m random permuta-
tions of length n. We also address the tightness of the concentration
of Ln,m around E(Ln,m).
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1. Introduction

The goal of this paper is to investigate a statistic Ln,m which can be thought
of as a measure of similarity among a collection of permutations. To define
this statistic, we must first define some more primitive concepts. Given two
lists of real numbers a(1), a(2), . . . , a(n) and b(1), b(2), . . . , b(n), we say the
lists are order-isomorphic if, for all 1 ≤ i < j ≤ n, a(i) < a(j) if and
only if b(i) < b(j). For example, the sequences 3, 1, 4, 2 and 7, 3, 9, 6 are
order isomorphic. Given permutations σ ∈ Sk and π ∈ Sn, we say that π
contains the pattern σ if there exist indices i1 < i2 < · · · < ik for which the
subsequence π(i1), π(i2), . . . , π(ik) is order isomorphic to σ.

Given m permutations π1, . . . , πm ∈ Sn, a common pattern is a permuta-
tion σ which is a pattern contained in all of the πi, and a longest common pat-
tern is a common pattern of maximal length. Define Ln,m to be the length of
a longest common pattern (LCP) contained inm uniformly randomly chosen
permutations of length n. Our main results show that E(Ln,m) = Θ(n

m

2m−1 )
as n → ∞, and we give asymptotic bounds for E(Ln,m).

The topics contained in this paper are strongly related to two classical
and well-studied problems, namely those of the longest common subsequence
(LCS) Nn between two random strings [17] and the longest monotone sub-
sequence (LMS) of a random permutation [2]. Here is a summary of key
results in these areas:
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First, consider the LCS problem. Given two independent, identically
distributed binary strings (X1, . . . , Xn) and (Y1, . . . , Yn), subadditivity ar-
guments yield that

E(Nn)

n
→ c

for some constant c ∈ (0, 1). The value of c is not known to date (see
[17]), and the best currently known bounds can be found in [14], namely
0.7880 ≤ c ≤ 0.8296. The situation where the variables take values from an
alphabet {0, 1, . . . , d−1} of size d is similarly in an incompletely understood
state, though techniques such as Azuma’s and Talagrand’s inequalities [3]
have been used to provide estimates of the width of concentration intervals
of the LCS around its mean for all alphabet sizes. The work of Kiwi, Loebl,
and Matous̆ek [12] is of particular relevance to this paper. They consider the
case of large alphabet sizes and verify that the limiting constant cd in the
alphabet d LCS problem does indeed satisfy

lim
d→∞

cd
√
d = 2,

as conjectured by Sankoff and Manville.
Good general references for the LMS problem are [17], [4], and [2], which

describe the classical Erdős-Szekeres theorem (every permutation of [n2+1]
contains a monotone sequence of length n + 1); the work of Logan-Shepp
[13] and Vershik-Kerov [18] (namely that the longest monotone subsequence
of a random permutation on [n] is asymptotic to 2

√
n); the concentration

results (Kim [11], Frieze [8]) that reveal that the standard deviation of the

size of the LMS is of order Θ(n
1

6 ); and the landmark work of Baik et al. [4]
that exhibits the limiting law of a normalized version of the LMS.

Other forms of LMS problems have been considered in [16] and [1], and
algorithmic results on the LCP problem that we study in the subsequent
sections may be found in [6] and [7].

2. Upper bound

Theorem 1. E(Ln,m) ≤ �en
m

2m−1 �.

Proof. First, we provide an upper bound on P(Ln,m ≥ k), when k > en
m

2m−1 .
Let S1, . . . , Sm be subsets of [n], each of size k. These define m subsequences
of π1, . . . , πn, by considering the entries of πi whose indices are in Si. Since
the πi are chosen independently at random, the orderings of the subse-
quences will also be independent, and as each subsequence has k! possible



Longest common pattern in permutations 533

equally likely orderings, the probability that the subsequences will all be
order isomorphic is 1/(k!)m−1. Furthermore, Ln,m ≥ k if and only if these
subsequences are order isomorphic for at least one of the

(
n
k

)m
choices for

the list S1, . . . , Sm, so

P(Ln,m ≥ k) ≤
(
n

k

)m 1

k!m−1
≤

(
nk

k!

)m
1

k!m−1
=

nmk

k!2m−1
,

Using the bound k! >
√
2πk

(
k
e

)k
, this implies

P(Ln,m ≥ k) ≤ 1

(2πk)(m− 1

2
)

(
e2m−1nm

k2m−1

)k

,

and thus when k > en
m

2m−1 , we have P(Ln,m ≥ k) ≤ (2πk)−(m− 1

2
).

We can write E(Ln,m) as

E(Ln,m)=

n∑
k=1

P(Ln,m ≥ k)=

⌊
en

m
2m−1

⌋∑
k=1

P(Ln,m ≥ k) +

n∑
k=�en

m
2m−1 �

P(Ln,m ≥ k)

≤
en
m

2m−1 �+
n∑

k=�en
m

2m−1 �

1

(2πk)(m− 1

2
)

≤
en
m

2m−1 �+ 1

(2π)(m− 1

2
)

∞∑
k=1

1

k(m− 1

2
)

The second term on the last line is known to have a sum less than 1 for
m ≥ 2, so it follows that E(Ln,m) ≤ �en

m

2m−1 �.

3. Lower bound

The purpose of this section is to prove the following asymptotic lower bound
for E(Ln,m).

Theorem 2. lim infn→∞ E(Ln,m)/n
m

2m−1 ≥ 1
2 .

Proof. We first give a method to generate them random permutations which
will allow us to identify common patterns more easily. Let I be the interval
[0, 1]. By choosing n points uniformly randomly in the unit square I2, we
can specify a permutation π ∈ Sn uniformly at random as follows. Consider
the point with the ith smallest x coordinate. Assign π(i) = j if that point
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has the jth smallest y coordinate. For our proof, let Xi,j , for 1 ≤ i ≤ m
and 1 ≤ j ≤ n, be i.i.d. points distributed uniformly on I2, and let πi for
1 ≤ i ≤ m, be the permutation specified in the above fashion by the points
Xi,1, . . . , Xi,n.

Furthermore, let r = 
n
1

2m−1 �. We can partition I2 into a rm × rm array
of r2m equally sized square boxes. Call a box full if, for each 1 ≤ i ≤ m, it
contains at least one point from the set {Xi,j : 1 ≤ j ≤ n}. In other words,
it contains a point used to define each of the m permutations. Furthermore,
define a scattering to be a set of full boxes, no two on the same row or column.
Scatterings are related to common patterns among π1, . . . , πm as follows:
if there is a scattering of size k, there will be a common pattern among
π1, . . . , πm of length k. This can be seen by examining the m subsequences
defined by the points in these full boxes. In this proof, we find a probabilistic
lower bound for the number of full boxes, and use this to find a lower bound
for the expected size of the largest scattering.

We need one last tool. Let ρ be an ordering of the r2m boxes chosen
uniformly at random. Ordering the boxes randomly (as opposed to some
arbitrary, deterministic ordering) will simplify parts of the proof later, which
will consider the boxes in the order defined by ρ. Finally, let Fi be the event
that ρ(i) is full, and let F be the total number of full boxes.

Lemma 3. For all ε > 0, P(F < (1− ε)rm) → 0 as n → ∞.

Proof. Since n ≥ r2m−1, we have

P(Fi) =

(
1−

(
r2m − 1

r2m

)n)m

≥
(
1−

(
1− 1

r2m

)r2m−1
)m

≥
(
1− e−1/r

)m

≥
(
1

r
− 1

2r2

)m

≥ 1

rm

(
1− m

2r

)
.

Then, by linearity of expectation, we have E(F ) ≥
(
1− m

2r

)
rm. Also,

the inequalities e−x ≥ 1− x ≥ e−x/(1−x) show that

P(Fi) =

(
1−

(
r2m − 1

r2m

)n)m
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≤
(
1− e−n/(r2m−1)

)m

≤
(

n

r2m − 1

)m

≤ 1

rm
(1 + o(1)).

We now give a bound for Var(F ). Notice that the indicator variables 1Fi
for

Fi are pairwise negatively correlated; given that Fi has occurred, it is less
likely that Fj will occur (since there will be strictly fewer points that can
land in the jth box). Thus,

Var(F ) <

r2m∑
i=1

Var(1Fi
) <

r2m∑
i=1

P(Fi) < rm(1 + o(1)).

Then, for any ε > 0, we have that

P(F < (1− ε)rm) = P

(
F <

(
1− m

2r

)
rm −

(
ε− m

2r

)
rm

)
≤ P

(
F < E(F )−

(
ε− m

2r

)
rm

)
≤ P

(
|F − E(F )| >

(
ε− m

2r

)
rm

)
.

If we choose n sufficiently large so m
2r < ε, then by Chebychev’s inequality,

we have

P(F < (1− ε)rm) ≤ Var(F )(
ε− m

2r

)2
r2m

≤ 1 + o(1)(
ε− m

2r

)2
rm

→ 0

as n → ∞.

Given that there are F full boxes, index them with the numbers 1
through F in the same order as ρ, and let Bk refer to the kth full box.
The fact that ρ was a random ordering ensures that, given {B1, . . . , Bk−1},
Bk is distributed uniformly among the r2m − k + 1 locations not occupied
by {B1, . . . , Bk−1}. Define the sequence of random variables {Sk}Fk=0, where
S0 = 0 and Sk is the size of the largest scattering which is a subset of
{B1, . . . , Bk}. Then S1 = 1, and Sk+1 is equal to either Sk or Sk + 1.

Let ε > 0 be given. Throughout the rest of this proof, we will use the
expression Sx to mean S�x�. The next lemma formalizes the previous ob-
servation that given a size k scattering, there will be a common pattern of
length k.
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Lemma 4. For large enough n, E(Ln,m) ≥ E(S(1−ε)rm)(1− o(1)).

Proof. Let rm = R. By conditioning Ln,m on the event F > (1 − ε)R, we
have

E(Ln,m) ≥ E(Ln,m|F > (1− ε)R) · P(F > (1− ε)R).

Given F > (1 − ε)R, the variable S(1−ε)R is well defined. Suppose that
S(1−ε)R = k, so that there exists a scattering of size k. The centers of these
k boxes define a permutation σ ∈ Sk, as described in the beginning of this
section. For any i ∈ 1, . . . ,m, since the boxes in the scattering are full, there
will be a subsequence πi(j1), . . . , πi(jk), where the points corresponding to
each entry will be in different boxes in the scattering. This implies the sub-
sequence is order isomorphic to σ. Thus, σ is a common pattern among
π1, . . . , πm of length k, implying Ln,m ≥ S(1−ε)R. Combining this with the

proof of Lemma 3, which guarantees P (F > (1 − ε)R) ≥ 1 − C
rm for some

constant C and large n, we get that

E(Ln,m) ≥ E(Ln,m|F > (1−ε)R)·P(F > (1−ε)R) ≥ E(S(1−ε)R)

(
1− C

rm

)
,

as asserted.

For the rest of the proof, we will assume F > (1− ε)R, so that S(1−ε)R

is well defined. The next lemma provides a lower bound for E(Sk) in terms
of another sequence.

Lemma 5. For R = rm, define the sequence {yk}Rk=0, where y0 = 0, and

(1) yk+1 = yk +
1

R
(1− yk)

2

Then, for all 0 ≤ k ≤ (1− ε)R,

E(Sk)

R
≥ yk.

Proof. Suppose that Sk = s and let T be a scattering of size s (there may
be other scatterings the same size as T ). Notice that Bk+1 can be appended
to T to make a larger scattering if it is in one of the (R− s)2 locations not
sharing a row or column with any box in T , in which case there will exist a

scattering of size s+ 1. This occurs with probability (R−s)2

R2−k , so that

E(Sk+1) = E(Sk) + E(Sk+1 − Sk)
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= E(Sk) + P(Sk+1 − Sk = 1)

≥ E(Sk) +
∑
s

P(Sk = s)
(R− s)2

R2 − k

≥ E(Sk) +
∑
s

P(Sk = s)
(
1− s

R

)2

= E(Sk) + E

((
1− Sk

R

)2
)

≥ E(Sk) +

(
E

(
1− Sk

R

))2

,

and thus

(2)
E(Sk+1)

R
≥ E(Sk)

R
+

1

R

(
1− E(Sk)

R

)2

.

We now use induction to complete the proof. Evidently S0 = y0 = 0. Assume
that E(Sk)/R ≥ yk. Define f(x) = x + 1

R(1 − x)2, so that f(E(Sk)/R) is
the right hand side of (2). Provided R ≥ 2, f is an increasing function,
since f ′(x) = 1 − 2

R(1 − x) > 0. It then follows from (2) and the induction
hypothesis that

E(Sk+1)

R
≥ f(E(Sk)/R) ≥ f(yk) = yk+1

Lemma 6. limR→∞ y�(1−ε)R� =
1−ε
2−ε .

Proof. The sequence yk is the result of applying Euler’s method to approx-
imate the solution to the differential equation y′(x) = (1− y)2, with initial
condition y(0) = 0, using step size 1/R. This has a unique solution on the
interval (0, 1), given by y(x) = x

x+1 .
To prove this Lemma, we cite Theorems 1.1 and 1.2 of [10], which prove

that the error terms for Euler’s method converge uniformly to zero. The only
difficulty is that this proof assumes that the DE is of the form y′ = F (x, y),
with ∂F

∂y being bounded for all y ∈ R. In our case, ∂
∂y (1−y)2 is not bounded.

However, a careful examination of the proof shows that, if yk, y(x) ∈ [a, b]
for all k and x ∈ [0, 1], it is only required that |∂F∂y | < M for y ∈ [a, b].

Clearly y(x) = x
x+1 ∈ [0, 1] for x ∈ [0, 1], and it can be shown by induction

that yk ∈ [0, 1] for 0 ≤ k ≤ 
R(1 − ε)�. Thus, since ∂
∂y (1 − y)2 is bounded

on [0, 1], the proof still applies.
In this case, the kth error term is |yk − y(k/R)|, so that
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lim
R→∞

y�(1−ε)R� − y

(

(1− ε)R�

R

)
= 0.

Since y(1 − ε − 1
R) ≤ y

(
�(1−ε)R�

R

)
≤ y(1 − ε), this proves that

limR→∞ y�(1−ε)R� = y(1− ε) = 1−ε
2−ε .

Finally, combining Lemmas 4, 5, and 6, we get

lim inf
n→∞

E(Ln,m)

R
≥ lim inf

R→∞

E(S(1−ε)R)

R
≥ lim

R→∞
y�(1−ε)R� =

1− ε

2− ε
.

Since this holds for all ε > 0, this implies lim infn→∞
E(Ln,m)

R ≥ 1
2 . Since

limn→∞ n
m

2m−1 /R = 1 (recall that R = 
n
1

2m−1 �m), we finally have that
lim infn→∞E(Ln,m)/n

m

2m−1 ≥ 1
2 .

This lower bound on lim infn→∞E(Ln,m)/n
m

2m−1 can actually be im-
proved by adjusting the preceding proof slightly. At the beginning of the
proof, we divided I2 into a rm × rm grid of smaller squares; if we instead
use a cmrm × cmrm grid, for some constant cm, then the same proof yields
the lower bound

lim inf
n→∞

E(Ln,m)

nm/2m−1
≥ cm

1 + (cm)2m−1
.

This is maximized when cm =
(

1
2m−2

) 1

2m−1

, in which case we obtain that

lim inf
n→∞

E(Ln,m)

nm/2m−1
≥ 2m− 2

2m− 1

(
1

2m− 2

) 1

2m−1

.

This is approximately 0.529 when m = 2, a slight improvement over 1
2 , and

converges to 1 as m → ∞. We have also been able to obtain improvements
on the lower bounds using (i) Poisson approximation [5]; (ii) coding the
problem using large alphabet results [12]; (iii) exploiting the possibility of
multiple matchings within cells; and (iv) exploiting the theory of perfect
matchings in random bipartite graphs [9].

4. Open problems

We have shown that ELn,m grows as nm/(2m−1), so the next natural question
is whether or not

lim
n→∞

E(Ln,m)/n
m

2m−1
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exists. We conjecture it does, and further conjecture (inspired by work in
[12]) that

lim
m→∞

lim
n→∞

E(Ln,m)/n
m

2m−1 = 2.

Talagrand’s in equality can be used as in [3] to show that Ln,m is con-
centrated in an interval of length O(nm/4m−2) = O(E(Ln,m)1/2). It would
be interesting to study whether or not this is the true order of the concen-
traion interval. Ultimately, one would want to determine, à la Baik, Deift
and Johansson [4], the limiting distribution of Ln,m after an appropriate
normalization.
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