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Distance matching in punctured planar
triangulations

R. E. L. Aldred and Michael D. Plummer

Distance matching extension with prescribed and proscribed edges
in planar triangulations has been previously studied. In the present
work, matching extension behavior is investigated when the graph
families are slightly more general than triangulations. More partic-
ularly, we replace the triangulation hypothesis with the weaker hy-
potheses that (a) the graph is locally connected and (b) the graph
has at most two non-triangular faces. We investigate which dis-
tance matching properties enjoyed by triangulations are retained
and which are lost.

1. Introduction

A graph G with at least 2m + 2n + 2 vertices which contains a perfect
matching is said to satisfy property E(m,n) (or simply “G is E(m,n)”) if,
given any two matchings M and N with |M | = m and |N | = n such that
M ∩ N = ∅, there is a perfect matching F in G such that M ⊆ F and
N ∩ F = ∅. This property is a generalization of the widely studied concept
of matching extension in that a graph is m-extendable if and only if it is
E(m, 0).

Matching extension has its roots in the problem of counting perfect
matchings, a problem of some interest in chemistry. (Cf. [6].) For surveys of
the topic of matching extension, see [9, 10, 11]. See also the book [13].

The E(m,n) property was first introduced in [12]. In the same paper,
certain implications and non-implications were shown to exist among the
E(m,n) properties for different values of m and n. These will be of interest
to us in the present paper. A portion of the implication lattice for E(m,n)
is shown in the following figure.

Let us summarize what is known heretofore about E(m,n) for planar
triangulations. In general, no planar graph, triangulation or not, is E(3, 0)
([7]), or even E(2, 1) ([1]). If a planar even triangulation is only 3-connected,
it may not even contain a perfect matching, so we proceed immediately to
the case when the graph is (at least) 4-connected.
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Figure 1: The lattice on implications for E(m,n).

If G is a 4-connected planar even triangulation, it is E(1, 1) ([1]), but
not necessarily E[1, 2] ([3]). It is also E(0, 3) ([1]), and hence by [12], also
E(0, 2) and E(0, 1). But it is not necessarily E(0, 4) ([3]).

If G is a 5-connected planar even triangulation, it is E(2, 0). (In fact
E(2, 0) holds for all 5-connected even planar graphs, and not just triangula-
tions. (See [5, 8].)) Graphs which are 5-connected planar even triangulations,
also have the property E(1, 3), but not necessarily E(1, 4) ([2]). Finally, by
[2], they also satisfy properties E(0, n) for 0 ≤ n ≤ 7.

In [2] the authors first showed that the distance between edges could
affect whether or not they could be extended to a perfect matching. In
particular, although three independent edges in a planar 5-connected even
triangulation do not necessarily extend to a perfect matching, if they lie at
mutual distance at least 2, then they do in fact so extend.

We define the property Ed(m,n) as follows. Let d be a positive integer
and m and n, non-negative integers. A graph G is said to have the property
Ed(m,n) (or simply “G is Ed(m,n)”) if given any two disjoint matchings M
with |M | = m and N with |N | = n in G, where the distance between every
two edges in M and every two edges in N is at least d, there is a perfect
matching F in G such that M ⊆ F and N ∩ F = ∅.

Work in the present paper is motivated by the question: What is the
effect of relaxing the condition that the planar graphs are triangulations?

In particular, we study relaxations in two directions by demanding that
(a) the planar graph be only locally connected and (b) the graph have only
a small number of non-triangular faces.
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Figure 2: A graph which is not E2(3, 0).

For general graph theoretic terminology, the reader is referred to [4]. In
addition, however, we shall need the following. Suppose a graph G contains
two disjoint matchings E and F , such that G′ = G − V (E) − F does not
contain a perfect matching. Then by Tutte’s classical result, G′ must contain
a set of vertices S (usually called a Tutte set or barrier) such that the number
of odd components of G′ − S exceeds |S| in number. We shall denote the
number of odd components of G′ − S by o(G′ − S). We shall make use of
the idea of the bipartite distillation G∗ obtained from G via G′ based upon
E,S and F which we define as follows. (1) Contract each odd component of
G′ −S to a separate singleton and delete any multiple edges and loops thus
formed, (2) delete all even components of G′−S, and (3) delete all edges in
E ∪ G[S] ∪ F . Then let G∗ be the bipartite graph thus obtained having as
S ∪ V (E) as the vertices of one partite set and the contracted components
of G′ − S as the vertices in the other partite set. Clearly, G∗ will be planar
if the original graph G is planar.

2. Main results

We begin our current investigations by treating E2(m,n).
As noted above, all 5-connected planar even triangulations are E2(3, 0).

(Cf. [2].) In fact these graphs are also E2(2, 1). (Cf. [3].) However, the graph
in Figure 2 is 5-connected, locally connected, planar, even and has exactly
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one non-triangular face, but is not E2(3, 0). (The infinite face F is the only
non-triangular face.)

Here D is any suitable graph. For example, D could be any D2d+2, d ≥ 2,
where D2d+2 is the graph shown in Figure 3.

Figure 3: The graph D2d+2.

Note that D2d+2 has (2d+ 2)(2�d/2	 − 1) + 1 vertices, an odd number.

The graph in Figure 4 is also 5-connected, locally connected, planar, even
and has exactly two non-triangular faces F1 and F2, but is not E2(2, 1). In
fact, it is not Ed(2, 1), for any d ≥ 2.

On the other hand, we have the next result.

Theorem 2.1: Let G be a 5-connected locally connected even planar graph.
Then G satisfies (a) E2(1, 3) and (b) E2(0, n), for 0 ≤ n ≤ 6.

Proof: In part (a), by way of contradiction, let us suppose thatG contains an
edge e = uv and an induced matching F consisting of three edges {f1, f2, f3},
where each fi is disjoint from e, such that there is no perfect matching in G
containing e, but none of the three fis. Then G′ = G− V (e)−F contains a
barrier S such that o(G− S) ≥ |S|+ 2.

Forming the bipartite distillation G∗ of G via G′, e, F and S, we have

|E(G∗)| ≤ 2(2|S|+ 4)− 4 = 4|S|+ 4. (1)
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Figure 4: A graph which is not Ed(2, 1), d ≥ 2.

By the 5-connectivity of G, we also have

|E(G∗)| ≥ 5(|S|+ 2)− 6 = 5|S|+ 4. (2)

Combining (1) and (2), we have |S| = 0.
By Corollary 3.2 of [1] we know that G is E(1, 2), so o(G′−S) = |S|+2 =

2 and each edge fi in F has one endvertex in one odd component of G′ − S
and the other endvertex in the other odd component of G′ − S. Since G
is locally connected, for each edge fi = xiyi ∈ F , either xiyiuxi or xiyivxi
is a triangular face of G. But uv = e ∈ E(G) and so G is non-planar, a
contradiction.

Now let us consider part (b). Let G be as in the statement of the
theorem and let n be the smallest integer such that we can find a set
F = {f1, f2, . . . , fn} ⊆ E(G) such that the distance between any fi and
fj , i �= j, is at least two, but such that every perfect matching in G contains
an edge in F .

Thus G′ = G − F has no perfect matching and by Tutte’s theorem,
there is a set S ⊆ V (G) = V (G′) such that o(G′ − S) ≥ |S| + 2. By the
minimality of n, we see that o(G′ − S) = |S|+ 2 and that each edge fi ∈ F
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has its endvertices in two distinct odd components of G′ − S. Moreover, if
we choose S to be a smallest possible barrier set for G′, each vertex s ∈ S
must have neighbors in at least three distinct odd components of G′ − S.
Forming the bipartite distillation G∗ of G based on F and S, we use the
5-connectivity of G to determine that |E(G∗)| ≥ 5(|S|+ 2)− 2n.

Since G∗ is planar and bipartite on 2|S|+2 vertices, we have |E(G∗)| ≤
2(2|S|+ 2)− 4 = 4|S|. Consequently, 0 ≤ |S| ≤ 2n− 10 and it follows that
n ≥ 5.

If n = 5, we have |S| = 0 and G′ −S has precisely two odd components,
call them C1 and C2. Since each fi ∈ F has one endvertex in C1 and one
in C2, by local connectivity, fi must form one edge of a triangular face. But
then by the distance criterion, the third vertex of this triangular face must
lie in S, a contradiction.

Suppose then that n = 6. Then 0 ≤ |S| ≤ 2. Note that by arguing
as in the preceding paragraph, S �= ∅. If |S| = 1, then o(G′ − S) = 3
and the single vertex in S has neighbors in all three odd components of
G′−S. We denote these three odd components by C1, C2 and C3. Moreover,
since G is 5-connected, each Ci must have at least, and hence exactly, four
fis incident with it. We thus may assume the configuration and labelling
shown in Figure 5. But then neither endvertex of edge f1 has a connected
neighborhood and hence G is not locally connected, a contradiction.

Thus we may assume that |S| = 2 and G′ − S has precisely four odd
components C1, C2, C3 and C4. Moreover, since G is 5-connected, each Ci

has at least three fis incident with it. Hence each has exactly three such fis.
Note now that no two different Cis can be joined by more than one fi, or else
we contradict the 5-connectivity of G, a contradiction. So each Ci is joined
to each of the other three Cjs by a single fi and the four Cis and the six fjs
together form a K4 configuration. But now by planarity it is impossible for
each of the two vertices in S to be adjacent to each of the four Cis. Hence
G is not 5-connected, a contradiction.

Remark: Note that a 5-connected, locally connected, planar even graph
is E2(1, 2) because it is E(1, 2) (cf. Corollary 3.2, [1]) and E(1, 2) implies
E2(1, 2). It therefore follows that it is also E2(1, 1) since E(1, 2) implies
E(1, 1) in general (cf. Theorem 2.4 of [12]) and E(1, 1) implies E2(1, 1).

We note that Theorem 2.1 is best possible in several respects. First,
we cannot drop local connectivity as evidenced by the graphs in Figures 6
and 5.

The graph in Figure 6 is 5-connected, planar and even, but not E3(1, 3),
and in fact is not E2(1, 3). Here F1 and F2 are the only non-triangular faces.
Note, however, it is not locally connected. See either endvertex of edge f3.
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Figure 5.

Figure 6: A graph which is not E3(1, 3).
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Similarly, the graph in Figure 2.4 is 5-connected, planar and even, but

not E2(0, 6). However, as noted in the preceding proof, it fails to be locally
connected. Moreover, we cannot hope to strengthen the conclusions of the
theorem, for the graph in Figure 7 below, where D is an appropriate member

of the family D2d+2, is 5-connected, planar and even, but not E2(1, 4). (In
fact, this counterexample graph is a triangulation.)

Figure 7: A graph which is not E2(1, 4).

The graph in Figure 8 is 5-connected, locally connected, planar and
even, but not E2(0, 7). (Here D can be suitably chosen from the family

D2d+2.) However, it has 3 non-triangular faces. It has occurred to the authors
that perhaps if one further limited the number of non-triangular faces, a

stronger conclusion might be obtained. For example, if G is 5-connected,
locally connected, planar and even, but has at most two non-triangular faces,

perhaps G is E2(0, 7).

The graph in Figure 9, where D can be suitably chosen from the family
D2d+2, is 5-connected, locally connected, planar, even and has exactly two

non-triangular faces, but is not E2(0, 8).

The examples above suggest that restricting the number of non-tri-
angular faces in a 5-connected, planar, even, locally connected graph may
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Figure 8: A graph which is not E2(0, 7).

Figure 9: A graph which is not E2(0, 8).
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well strengthen the distance extendability properties. In the following theo-
rem we confirm just that.

Theorem 2.2: Let G be a 5-connected, locally connected, even, planar
graph in which at most two faces are not triangular. Then G is E3(3, 0).

Proof: Suppose to the contrary that G is such a graph and suppose further
that E = {ei = uivi}3i=1 is a set of three edges which are pairwise distance
at least three apart, but which do not lie in a perfect matching in G. Thus
G′ = G−V (E) has no perfect matching and hence by Tutte’s theorem there
must exist a set S ⊆ V (G′) such that o(G′ − S) ≥ |S|+ 2.

Since every 5-connected, even, planar graph is 2-extendable, as we ob-
served in the introduction, it follows that o(G′ − S) = |S| + 2. Moreover,
in the graph G, each edge ei = uivi ∈ E has neighbors in at least two odd
components of G′ − S. In addition, if we choose S to be as small a Tutte
barrier set as possible, each vertex s ∈ S has neighbors in at least three odd
components of G′ − S. Let the odd components of G′ − S be denoted by
C1, . . . , C|S|+2. Since G is 5-connected, each Ci has at least five neighbors
in V (E) ∪ S. Thus if we let G∗ denote the bipartite distillation of G based
upon E and S, there are at least 5(|S|+2) = 5|S|+10 edges in G∗. On the
other hand, G∗ is planar, bipartite and has 2|S| + 8 vertices, so by Euler’s
formula, G∗ can have at most 2(2|S|+8)−4 = 4|S|+12 edges. Consequently,
0 ≤ |S| ≤ 2.

Suppose first that |S| = 0. Then we have precisely two odd components
C1 and C2 in G′−S. Since G is 5-connected, C1 and C2 each have neighbors
on all three of the edges e1, e2 and e3. Clearly, since by our distance 3
hypothesis there can be no edges between endvertices of distinct edges in E,
this results in at least three non-triangular faces in G, a contradiction. (See
by way of example regions R1, R2 and R3 in Figure 10.)

So we may assume that 1 ≤ |S| ≤ 2.
Let s be a vertex in S. As observed earlier, s has neighbors in at least

three odd components of G′ − S. Since G is locally connected, G[NG(s)] is
connected. Hence, scanning the neighbors of s clockwise about s, we must,
without loss of generality, encounter neighbors of s in (S−s)∪V (E) between
the last neighbor of s in V (C1) and the first neighbor of s in V (C2), and
another between the last neighbor of s in V (C2) and the first in V (C3).

By our distance hypothesis, one of these neighbors of s is in S−{s}, for
if both are ends of different eis, then these two eis are at distance no more
than 2 apart, a contradiction, whereas if both are ends of the same ei, then
suivis is a separating 3-cycle, contradicting the fact that G is 5-connected.
Thus |S| = 2 and there are precisely four odd components of G′ − S.



Distance matching in punctured planar triangulations 519

Figure 10.

So without loss of generality, let us assume that as we proceed clockwise
about s from C1 toward C2 we encounter a second member of S which we
denote by s′ and then proceding further clockwise from C2 toward C3 we
encounter a vertex u1 where e1 = u1v1 belongs to the matching E. (See
Figure 11.)

Now consider the neighborhood of s′. Again as observed earlier, s′ has
neighbors in at least three odd components. We already have neighbors of
s′ in C1 and C2. If s

′ also has a neighbor in C3, then we have a closed curve
Γ running from C3 through s, s′ and back to C3. Component C1 lies on one
side of Γ, while C2 and e1 lie on the other side. By 5-connectivity, both e2
and e3 lie on the same side of Γ as does C1 and hence {s, s′, u1, v1} is a
cutset of size 4 in G, a contradiction.

So s′ has neighbors in C1, C2 and in the fourth odd component C4. (See
Figure 12.)

As we argued for vertex s, vertex s′ must have a neighbor in V (E)
either between its last neighbor in C1 and the first in C4 or between its last
neighbor in C4 and its first in C2, where again we are scanning the neighbors
of s′ in a clockwise manner. By the 5-connectivity hypothesis, this neighbor
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Figure 11.

Figure 12.
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cannot be an endvertex of e1, so, without loss of generality, we may suppose

that it is an endvertex of e2.

We thus have two possibilities for the location of edge e2. These are

shown in Figure 13 below.

Figure 13.

In Case (a), by 5-connectivity component C1 must have a neighbor on

e1 or e2, say e1 without loss of generality. Thus we have a closed curve Γ

through C1, s, u1 and possibly v1, separating C3 from C2, C4, s
′ and e2. By

5-connectivity, Γ includes v1 and e3 lies on the same side of Γ in the plane as

C3. In particular, neither C2 nor C4 has neighbors on e3. Consequently we

have that C1 cannot have a neighbor on e2, for otherwise the closed curve

Γ′ through C1, s
′, u2 (and possibly v2) would separate C4 from C2, C3, e1, e3

and s; that is, {s′, u2, v2} would be a 3-cut, a contradiction. So {s, s′, u1, v1}
is a 4-cut separating C3 from C4 which is again a contradiction and so Case

(a) cannot occur.

In Case (b) we consider the neighbors of C1 in S∪V (E). Since there are at

least five such neighbors, C1 has either a neighbor on e1 or e3. Suppose C1 has

a neighbor of e1. As in Case (a) we conclude that e3 is inside a closed curve

through C1, s, u1 and v1 on the same side of the curve as C3. Consequently

C4 has no neighbors on e3 and hence has neighbors s′, u2, v2, u1 and v1. This

leaves only s, s′ and u1 as neighbors of C2, contradicting 5-connectivity. So

C1 has no neighbor on e1 and by symmetry C2 has no neighbor on e2. Thus

both C1 and C2 have neighbors on e3. This yields a closed curve through

C1, C2, s and at least one vertex on e3 separating C3 ∪ e1 from C4 ∪ e2. As a

result, both C3 and C4 each have both ends of e3 as neighbors and we must

have the configuration in Figure 14. But then {s, s′, u3, v3} is a 4-cut which

is a contradiction. This completes the proof.
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Figure 14.

The graph in Figure 15, with D = D6 say, is 5-connected, locally con-
nected, planar and even, but not E3(8, 0). It has exactly one non-triangular
face, namely the exterior face.

The graph in Figure 16 is 5-connected, locally connected, planar and
even, but not E3(6, 0). It has exactly two non-triangular faces.

Remark: We do not know if the conclusion of Theorem 2.2 can be strength-
ened to E3(4, 0) and/or E3(5, 0).

As remarked earlier, the graph shown in Figure 3 is 5-connected, locally
connected, planar, even and has only two non-triangular faces. Hence it is
E3(3, 0) by Theorem 2.2, but is not E3(2, 1). Thus E3(3, 0) �−→ E3(2, 1). On
the other hand, for distance 1 this implication does hold via the lattice of
implications.

Theorem 2.3: Let G be a 5-connected, locally connected, planar, even
graph. Then

(i) if |V (G)| ≥ 10, G is E3(1, n), for n ≤ 3 and (ii) if |V (G)| ≥ 2n+ 4, G is

E3(0, n), for 0 ≤ n ≤ 9.
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Figure 15: A graph which is not E3(8, 0).

Figure 16: A graph which is not E3(6, 0).
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Proof: (i) follows immediately from Theorem 2.1.

(ii) Now let n be the smallest non-negative integer such that G is not

E3(0, n) and suppose F = {f1, . . . , fn} is a matching with edges pairwise at

distance at least 3 from each other and suppose that every perfect matching

in G contains at least one fi. Then G′ = G−F contains no perfect matching

and thus there is a barrier S ⊆ V (G′). By the minimality of n, o(G′ −
S) = |S| + 2 and each edge fi ∈ F has its endvertices in two distinct odd

components of G′ − S.

By the same counting procedure as used previously, we have

5|S|+ 10− 2n ≤ 2(2|S|+ 2)− 4

and hence |S| ≤ 2n− 10.

Now local connectivity of G requires that each of the edges fi in F must

lie in the boundary of a triangular face. The boundary of such a triangular

face must also include a vertex from S and no vertex from S can lie in the

boundaries of faces with fi and fj , for i �= j, by the distance hypothesis for

edges in F . Thus |S| ≥ n.

Hence n ≥ 10 and the result follows.

The conclusion that G is E3(1, 3) in part (i) of the preceding theorem

is best possible in that Figure 17 exhibits a 5-connected, locally connected,

planar, even graph which is not E3(1, 4). Note, however, that it has precisely

four non-triangular faces.

In Figure 18 a graph is exhibited which is 5-connected, locally connected,

planar and even, but which is not E3(0, 10). It possesses ten non-triangular

faces. Here we useD = D6, for example.

We know that a 5-connected, locally connected, planar and even graph is

necessarily E4(2, 0) by virtue of being E(2, 0), but Figure 19 shows a graph

of this type which is not E4(3, 0).

On the other hand, the graph in Figure 4 shows that these graphs are

not necessarily E4(2, 1) either.

In the positive direction, however, we have the next theorem for the

distance 4 case.

Theorem 2.4: Let G be a 5-connected, locally connected, planar, even

graph. Then

(i) if |V (G)| ≥ 2n + 4, G is E4(1, n), for 0 ≤ n ≤ 4; while (ii) if |V (G)| ≥

2n+ 2, then G is E4(0, n), for 0 ≤ n ≤ 10.
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Figure 17: A graph which is not E3(1, 4).

Figure 18: A graph which is not E3(0, 10).
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Figure 19: A graph which is not E4(3, 0).

Proof: (i) Suppose G is as in the statement of the theorem, e = uv ∈ E(G),
F = {f1, . . . , fn} ⊆ E(G) such that e /∈ F , the fis are at mutual distance
at least 4 and there is no perfect matching in G containing e, but no fi.
Moreover, suppose n is as small as possible.

Then G′ = G−V (e)−F has no perfect matching, so G′ has a barrier S ⊆
V (G′). By the minimality of n, G′−S has precisely |S|+2 odd components.
Form G∗, the bipartite distillation of G via G′ based on e, F and S. Then
by planarity, G∗ has at most 2(2|S| + 4) − 4 = 4|S| + 4 edges. By the 5-
connectivity of G, G∗ has at least 5(|S| + 2) − 2n = 5|S| + 10 − 2n edges.
So

0 ≤ |S| ≤ 2n− 6. (1)

Since G is locally connected and by the minimality of n, each fi ∈ F
has endvertices lying in two different odd components of G′ − S, so there
is a vertex w ∈ K = V (e) ∪ S such that w is a common neighbor of both
endvertices of fi.

Note that if w ∈ S, w has no neighbors on any fj ∈ F , j �= i, by our
distance 4 hypothesis. Similarly, if w ∈ {u, v}, then w has no neighbors on
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fj ∈ F, j �= i. Moreover, if vertex u has neighbors on fi, vertex v cannot
have neighbors on fj , j/nei, by the distance 4 hypothesis. Thus

|S|+ 2 = |K| ≥ n+ 1. (2)

Combining (1) and (2), we have that 2n− 4 ≥ n+ 1 and thus n ≥ 5, a
contradiction.

(ii) Now suppose G is as in the statement of the theorem and that F =
{f1, . . . , fn} is a set of n edges at mutual distance 4 such that every perfect
matching in G contains an edge of F . Moreover, assume that such an n is as
small as possible. Then the standard counting yields 5|S|+ 10− 2n ≤ 4|S|,
and so |S| ≤ 2n− 10.

By the minimality of n, each fi ∈ F has endvertices lying in two different
odd components of G− F − S.

Since G is locally connected, each edge fi ∈ F forms part of at least one
triangular face. So there must be an si ∈ S lying on that triangular face. By
our distance requirement, no s ∈ S has neighbors on two different edges in
F . Thus |S| ≥ n.

Now if S is chosen as small as possible, each s ∈ S must have neighbors
in at least three different odd components of G− F − S. Consider scanning
the neighbors of such an s clockwise. Between the last neighbor in odd
component C1 and the first neighbor in the next odd component C2, we must
encounter either an edge in F or a neighbor of s in S. Similarly, without
loss of generality, between the last neighbor in C2 and the first in the next
odd component C3 we must encounter either an edge of F or a neighbor of
s ∈ S. But the distance hypothesis says that it cannot be that both gaps in
our scan can be filled by edges in F . Thus s has a neighbor s′ ∈ S. Note by
the distance 4 hypothesis, s′ has no neighbor on an edge in F , if s does have
such a neighbor. Consequently, |S| ≥ n+1. So we have n+1 ≤ 2n− 10 and
hence n ≥ 11, a contradiction.

Neither E4(1, 4) nor E4(0, 10) is known to be a best possible conclusion
in the above theorem.

Let us now turn to the distance 5 case. Of course 5-connected, locally
connected, planar, even graphs are E5(2, 0), since they are E(2, 0). On the
other hand, these graphs are not necessarily E5(3, 0) by the graph shown
in Figure 19. The graph shown in Figure 4 suffices to show that we do not
necessarily have property E5(2, 1) for these graphs either. However, we do
have the following result which is interesting in that there is no limit on the
parameter n in the conclusions.
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Theorem 2.5: Let n be a non-negative integer and let G be a 5-connected,
locally connected, planar, even graph. Then

(i) if |V (G)| ≥ 2n+ 4, then G is E5(1, n), while (ii) if |V (G)| ≥ 2n+ 2, G is

E5(0, n).

Proof: We give the proof of (i). The proof of (ii) is quite similar, but some-
what less complicated.

Suppose to the contrary that G, e = uv and F = {f1, . . . , fn} constitute
a counterexample, where n is as small as possible. then G′ = G− V (e)− F
has a barrier S which we may choose to be as small as possible.

Now the minimality of n ensures that o(G′−S) = |S|+2. The bipartite
distillation of G, based on e, F and S has 2|S| + 4 vertices and hence by
planarity at most 4|S|+ 4 edges. Since G is 5-connected, |E(G∗)| ≥ 5(|S|+
2)− 2n = 5|S|+ 10− 2n, and so |S| ≤ 2n− 6.

Since G is locally connected, and by the minimality of n, each fi in F
has endvertices in two different odd components of G′ − S, we must have
both endvertices of fi adjacent to a vertex in K = S ∪ V (e). The distance
hypothesis guarantees that for si ∈ S with si in a triangle including edge
fi, vertex si has no neighbors in V (fj), for j �= i. Similarly, for u and fi
forming a triangle, neither u nor v has neighbors in fj , for j �= i.

Moreover, if either u or v lies in a triangular face including edge fi for
some i, then no sj ∈ S lying in a triangular face including fj , for any j �= i,
can be adjacent to u or v. If, on the other hand, for each i = 1, . . . , n, there is
a vertex si ∈ S such that si and fi lie in the same triangular face boundary,
then sisj /∈ E(G), for i �= j.

By the minimality of S, each si ∈ S has neighbors in at least three odd
components of G′−S. So suppose si forms a triangle with fi and fi has end-
vertices in odd components C1 and C2 of G′−S. Then si also has neighbors
in some C3, say, where C3 �= C1, C2. Considering the neighbors of si lying
in odd components when scanning clockwise about si, to be successively in
C1, C2 and C3, and then in C1 again, local connectivity requires, without
loss of generality, that there is a neighbor of si ∈ K between the last neigh-
bor of si in C2 and its first neighbor in C3. By the distance 5 hypothesis,
this vertex in K forms no triangle with any fj , j �= i, nor can this vertex
in K be u (respectively v) if v (respectively u) forms a triangle with fj , for
j �= i.

Thus if neither u nor v forms a triangle with any edge in F , we have at
least two vertices of K at distance at most 2 from fi for each fi ∈ F . This
yields |K| ≥ 2n. But as we have seen earlier, |K| = |S|+2 ≤ 2n− 4, and we
have a contradiction.
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So we may assume that, without loss of generality, u and fn form a
triangle. But then each fi, 1 ≤ i ≤ n−1, has two vertices in S at distance at
most 2 from it giving |S| ≥ 2n− 2 and again |K| ≥ 2n, a contradiction.
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